A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection

Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 94; no. 9
Main Authors Yuan, Duanyang, Yue, Jingwei, Xu, Huiyan, Wang, Yuanbo, Zan, Peng, Li, Chunyong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher’s domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research.
AbstractList Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher’s domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research.
Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers' domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher's domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research.Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers' domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher's domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research.
Author Yuan, Duanyang
Li, Chunyong
Wang, Yuanbo
Xu, Huiyan
Yue, Jingwei
Zan, Peng
Author_xml – sequence: 1
  givenname: Duanyang
  surname: Yuan
  fullname: Yuan, Duanyang
  organization: 2Beijing Institute of Radiation Medicine, Beijing 100850, China
– sequence: 2
  givenname: Jingwei
  surname: Yue
  fullname: Yue, Jingwei
  organization: Beijing Institute of Radiation Medicine
– sequence: 3
  givenname: Huiyan
  surname: Xu
  fullname: Xu, Huiyan
  organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University
– sequence: 4
  givenname: Yuanbo
  surname: Wang
  fullname: Wang, Yuanbo
  organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University
– sequence: 5
  givenname: Peng
  surname: Zan
  fullname: Zan, Peng
  email: zanpeng@shu.edu.cn, lcy07@tsinghua.org.cn
  organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University
– sequence: 6
  givenname: Chunyong
  surname: Li
  fullname: Li, Chunyong
  email: zanpeng@shu.edu.cn, lcy07@tsinghua.org.cn
  organization: Beijing Institute of Radiation Medicine
BookMark eNp9kU1v1DAQhi1UJLaFA_8gEhdASuuP2ImPVcWXVIkLnKOJPV6yOPZiO1T8D34w3t1yWSHmMmPN876j8VySixADEvKS0WtGlbiR15QJQTV_QjaMDrrtFRcXZEOp6FrVd8MzcpnzjtaQjG3I79sm4TZhznMMzRIt-sbEZZoD2lqEn9GvpbbANwHXdEzlIabvDQRbpWZNCUM5b7qYGvRoSooYDO6_gY_bBEs7QT4Yp5hzm9dpV5HGQZm3KzYWS33WYc_JUwc-44vHfEW-vn_35e5je__5w6e72_vWCC5L67RG0XcKtNXWwaQcMHRWSgsgej4w2vNpcBrMNAluOs0k7agatHEceyvEFXl98t2n-GPFXMZlzga9h4BxzSMflGKMd3Ko6KszdBfXVL_lSElNOyVkpd6cqOOCCd24T_MC6dfI6Hi4zyjHx_tU9uaMNXOBw_olwez_qXh7UuS_5H_s_wBhOqTw
CODEN RSINAK
CitedBy_id crossref_primary_10_1063_5_0221637
Cites_doi 10.24200/sci.2020.53905.3479
10.3390/electronics11142169
10.1007/s11571-018-9485-1
10.1016/j.neubiorev.2012.10.003
10.3389/fnins.2021.634147
10.1109/tnnls.2015.2496330
10.3390/e23101298
10.1504/IJCSE.2021.115656
10.1007/s13246-020-00853-8
10.3390/electronics9050775
10.3906/elk-2008-83
10.1155/2019/4721863
10.3389/fnhum.2021.733426
10.3390/fi11050115
10.1007/s11571-018-9496-y
10.1109/access.2021.3100478
10.1088/1741-2552/abe397
10.3390/s21072369
10.1016/j.bspc.2021.102857
10.1109/tim.2018.2865842
10.3390/info14040210
10.1109/TCDS.2019.2929858
10.3389/fpsyg.2021.721266
10.1016/j.eswa.2021.115581
10.2478/amcs-2018-0057
10.1088/1361-6579/aae42e
10.1007/s11571-020-09601-w
10.3390/s20247251
10.1109/tetci.2022.3189695
10.1109/TCYB.2021.3123842
10.1049/ipr2.12373
10.1109/tnnls.2018.2886414
10.1109/jbhi.2020.3008229
10.1088/1741-2552/ab255d
10.1038/s41597-019-0027-4
10.1016/j.aei.2020.101157
10.1209/0295-5075/134/50003
10.1038/s41591-018-0268-3
10.1249/MSS.0000000000000762
10.1109/access.2020.3006907
10.1109/jsen.2021.3058658
10.1049/ell2.12275
10.1016/j.eswa.2008.09.030
10.1088/1741-2552/aa5a98
10.1109/tsmc.2019.2956022
10.1109/tpami.2010.86
10.1109/tim.2020.3047502
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0133092
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef

Technology Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 10_1063_5_0133092
rsi
GrantInformation_xml – fundername: Development Fund for Shanghai Talents
  grantid: 2020010
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 22xtcx00300
  funderid: https://doi.org/10.13039/501100003399
GroupedDBID ---
-DZ
-~X
.DC
123
2-P
29P
4.4
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c325t-f99e3746a9d9dfab6fa1efd55daa37281072b8f9acbb32c4915040689cf2e7d33
ISSN 0034-6748
1089-7623
IngestDate Thu Jul 10 22:48:10 EDT 2025
Mon Jun 30 05:06:11 EDT 2025
Tue Jul 01 02:58:14 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Fri Jun 21 00:10:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-f99e3746a9d9dfab6fa1efd55daa37281072b8f9acbb32c4915040689cf2e7d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9308-4527
0000-0001-7468-0289
0000-0002-3308-4373
0000-0003-2588-2188
PQID 2865904635
PQPubID 2050675
PageCount 9
ParticipantIDs crossref_primary_10_1063_5_0133092
proquest_miscellaneous_2866112458
crossref_citationtrail_10_1063_5_0133092
scitation_primary_10_1063_5_0133092
proquest_journals_2865904635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 20230901
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Review of scientific instruments
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hu, Zheng (c3) 2009; 36
Kong, Jiang, Fan, Zhu, Wei (c52) 2018; 28
Wang, Johnson, Lin (c26) 2021; 29
Hong, Zhang, Zakaria, Babiloni, Gianluca, Li, Kong (c7) 2020; 24
Zeng, Li, Borghini, Zhao, Aricò, Flumeri, Sciaraffa, Zakaria, Kong, Babiloni (c10) 2021; 21
Murugan, Selvaraj, Sahayadhas (c15) 2020; 43
Dong, Zhang, Wu, Li, Xu, Ma, Gao (c38) 2021; 134
Bulling, Ward, Gellersen, Tröster (c14) 2011; 33
Foong, Ang, Zhang, Quek (c11) 2019; 16
Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (c44) 2019; 25
Ma, Zhang, Qi, Luo, Li, Potter, Zhang (c25) 2020; 9
Cao, Chuang, King, Lin (c48) 2019; 6
Krigolson, Hammerstrom, Abimbola, Trska, Wright, Hecker, Binsted (c8) 2021; 15
Lee, Jeong, Kim, Yu, Lee (c47) 2020; 8
Gao, Wang, Yang, Mu, Cai, Dang, Zuo (c36) 2019; 30
Gao, Li, Cai, Dang, Yang, Mu, Hui (c12) 2019; 68
Halomoan, Ramli, Sudiana, Gunawan, Salman (c43) 2023; 14
Tang, Li, Yang, Zhang (c30) 2021; 57
Tabejamaat, Mohammadzade (c39) 2022; 29
Eltrass, Ghanem (c49) 2021; 18
Peng, Wong, Wang, Rosa, Wang, Wan (c13) 2021; 9
Eldele, Ragab, Chen, Wu, Kwoh, Li, Guan (c51) 2023; 7
Lees, Chalmers, Burton, Zilberg, Penzel, Lal, Lal (c18) 2018; 39
Hu, Min (c20) 2018; 12
Zhang, Zhang, Chen, Lin, Xie (c31) 2021; 24
Zhao, Lu, Hou, Chen, Wei, Zhang, Hu (c37) 2021; 23
Wang, Liu, Ruan, Wang, Wang (c40) 2021; 185
Zeng, Yang, Dai, Qin, Zhang, Kong (c28) 2018; 12
Bose, Wang, Dragomir, Thakor, Bezerianos, Li (c42) 2020; 12
Min, Xiong, Zhang, Cai (c21) 2021; 69
Borghini, Astolfi, Vecchiato, Mattia, Babiloni (c2) 2014; 44
Wang, Xu, Bezerianos, Chen, Zhang (c46) 2021; 70
Ma, Chen, Li, Wang, Wang, She, Luo, Zhang (c27) 2019; 2019
Liu, Xu, Hu, Jiang (c32) 2022; 16
Ni, Ni, Xue, Wang (c50) 2021; 12
Dang, Gao, Lv, Sun, Cheng (c19) 2021; 25
Yang, Gao, Li, Cai, Marwan, Kurths (c35) 2021; 51
Liu, Lin, Wu, Chuang, Lin (c29) 2016; 27
Sheykhivand, Rezaii, Mousavi, Meshgini, Makouei, Farzamnia, Danishvar, Teo Tze Kin (c33) 2022; 11
Wang, Wu, Ping, Xu, Chu (c23) 2021; 21
Liu, Lan, Cui, Sourina, Müller-Wittig (c1) 2020; 46
Liu, Qian, Yao, Jiao, Pan (c4) 2019; 11
Smith, Coutts, Merlini, Deprez, Matthieu, Marcora (c5) 2016; 48
Du, Long, Li, Wang, Liu (c17) 2021; 53
Zheng, Lu (c6) 2017; 14
Zhang, Wang, Geng, Li, Wang (c22) 2021; 15
Tuncer, Dogan, Ertam, Subasi (c45) 2021; 15
(2023091813015380000_c26) 2021; 29
(2023091813015380000_c1) 2020; 46
(2023091813015380000_c37) 2021; 23
(2023091813015380000_c40) 2021; 185
(2023091813015380000_c12) 2019; 68
(2023091813015380000_c9) 2020
(2023091813015380000_c16) 2018
(2023091813015380000_c36) 2019; 30
(2023091813015380000_c22) 2021; 15
(2023091813015380000_c20) 2018; 12
(2023091813015380000_c30) 2021; 57
(2023091813015380000_c8) 2021; 15
(2023091813015380000_c33) 2022; 11
(2023091813015380000_c41) 2017
(2023091813015380000_c23) 2021; 21
(2023091813015380000_c29) 2016; 27
(2023091813015380000_c10) 2021; 21
(2023091813015380000_c45) 2021; 15
(2023091813015380000_c38) 2021; 134
(2023091813015380000_c19) 2021; 25
(2023091813015380000_c4) 2019; 11
(2023091813015380000_c7) 2020; 24
(2023091813015380000_c49) 2021; 18
(2023091813015380000_c32) 2022; 16
(2023091813015380000_c44) 2019; 25
(2023091813015380000_c15) 2020; 43
(2023091813015380000_c14) 2011; 33
(2023091813015380000_c17) 2021; 53
(2023091813015380000_c47) 2020; 8
(2023091813015380000_c18) 2018; 39
(2023091813015380000_c2) 2014; 44
(2023091813015380000_c24) 2017
(2023091813015380000_c5) 2016; 48
(2023091813015380000_c28) 2018; 12
(2023091813015380000_c3) 2009; 36
(2023091813015380000_c34) 2021
(2023091813015380000_c25) 2020; 9
(2023091813015380000_c42) 2020; 12
(2023091813015380000_c31) 2021; 24
(2023091813015380000_c39) 2022; 29
(2023091813015380000_c48) 2019; 6
(2023091813015380000_c13) 2021; 9
(2023091813015380000_c27) 2019; 2019
(2023091813015380000_c21) 2021; 69
(2023091813015380000_c35) 2021; 51
(2023091813015380000_c51) 2023; 7
(2023091813015380000_c52) 2018; 28
(2023091813015380000_c46) 2021; 70
(2023091813015380000_c11) 2019; 16
(2023091813015380000_c43) 2023; 14
(2023091813015380000_c50) 2021; 12
(2023091813015380000_c6) 2017; 14
References_xml – volume: 51
  start-page: 5800
  year: 2021
  ident: c35
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 185
  start-page: 115581
  year: 2021
  ident: c40
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 65
  year: 2019
  ident: c44
  publication-title: Nat. Med.
– volume: 57
  start-page: 836
  year: 2021
  ident: c30
  publication-title: Electron. Lett.
– volume: 12
  start-page: 721266
  year: 2021
  ident: c50
  publication-title: Front. Psychol.
– volume: 33
  start-page: 741
  year: 2011
  ident: c14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 19
  year: 2019
  ident: c48
  publication-title: Sci Data
– volume: 36
  start-page: 7651
  year: 2009
  ident: c3
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 223
  year: 2021
  ident: c45
  publication-title: Cognit. Neurodyn.
– volume: 9
  start-page: 114905
  year: 2021
  ident: c13
  publication-title: IEEE Access
– volume: 9
  start-page: 775
  year: 2020
  ident: c25
  publication-title: Electronics
– volume: 11
  start-page: 115
  year: 2019
  ident: c4
  publication-title: Future Internet
– volume: 25
  start-page: 693
  year: 2021
  ident: c19
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 43
  start-page: 525
  year: 2020
  ident: c15
  publication-title: Phys. Eng. Sci. Med.
– volume: 12
  start-page: 431
  year: 2018
  ident: c20
  publication-title: Cognit. Neurodyn.
– volume: 23
  start-page: 1298
  year: 2021
  ident: c37
  publication-title: Entropy
– volume: 21
  start-page: 2369
  year: 2021
  ident: c10
  publication-title: Sensors
– volume: 44
  start-page: 58
  year: 2014
  ident: c2
  publication-title: Neurosci. Biobehav. Rev.
– volume: 29
  start-page: 1429
  year: 2021
  ident: c26
  publication-title: J. Electr. Eng. Comput. Sci.
– volume: 14
  start-page: 026017
  year: 2017
  ident: c6
  publication-title: J. Neural Eng.
– volume: 30
  start-page: 2755
  year: 2019
  ident: c36
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 39
  start-page: 105012
  year: 2018
  ident: c18
  publication-title: Physiol. Meas.
– volume: 18
  start-page: 036023
  year: 2021
  ident: c49
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 634147
  year: 2021
  ident: c8
  publication-title: Front. Neurosci.
– volume: 2019
  start-page: 1
  year: 2019
  ident: c27
  publication-title: Comput. Intell. Neurosci.
– volume: 16
  start-page: 056013
  year: 2019
  ident: c11
  publication-title: J. Neural Eng.
– volume: 12
  start-page: 597
  year: 2018
  ident: c28
  publication-title: Cognit. Neurodyn.
– volume: 16
  start-page: 576
  year: 2022
  ident: c32
  publication-title: IET Image Process.
– volume: 29
  start-page: 1486
  year: 2022
  ident: c39
  publication-title: Sci. Iran.
– volume: 24
  start-page: 7251
  year: 2020
  ident: c7
  publication-title: Sensors
– volume: 15
  start-page: 733426
  year: 2021
  ident: c22
  publication-title: Front. Hum. Neurosci.
– volume: 53
  start-page: 4175
  year: 2021
  ident: c17
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 121929
  year: 2020
  ident: c47
  publication-title: IEEE Access
– volume: 28
  start-page: 745
  year: 2018
  ident: c52
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 11
  start-page: 2169
  year: 2022
  ident: c33
  publication-title: Electronics
– volume: 14
  start-page: 210
  year: 2023
  ident: c43
  publication-title: Information
– volume: 134
  start-page: 50003
  year: 2021
  ident: c38
  publication-title: Europhys. Lett.
– volume: 24
  start-page: 290
  year: 2021
  ident: c31
  publication-title: Int. J. Comput. Mater. Sci. Eng.
– volume: 70
  start-page: 2504811
  year: 2021
  ident: c46
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 10811
  year: 2021
  ident: c23
  publication-title: IEEE Sens. J.
– volume: 69
  start-page: 102857
  year: 2021
  ident: c21
  publication-title: Biomed. Signal Process. Control
– volume: 12
  start-page: 323
  year: 2020
  ident: c42
  publication-title: IEEE Trans. Cognit. Dev. Syst.
– volume: 27
  start-page: 347
  year: 2016
  ident: c29
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 7
  start-page: 210
  year: 2023
  ident: c51
  publication-title: IEEE Trans. Emerging Top. Comput. Intell.
– volume: 48
  start-page: 267
  year: 2016
  ident: c5
  publication-title: Med. Sci. Sports Exercise
– volume: 68
  start-page: 2491
  year: 2019
  ident: c12
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 46
  start-page: 101157
  year: 2020
  ident: c1
  publication-title: Adv. Eng. Inf.
– volume: 29
  start-page: 1486
  year: 2022
  ident: 2023091813015380000_c39
  publication-title: Sci. Iran.
  doi: 10.24200/sci.2020.53905.3479
– year: 2020
  ident: 2023091813015380000_c9
– volume: 11
  start-page: 2169
  year: 2022
  ident: 2023091813015380000_c33
  publication-title: Electronics
  doi: 10.3390/electronics11142169
– volume: 12
  start-page: 431
  year: 2018
  ident: 2023091813015380000_c20
  publication-title: Cognit. Neurodyn.
  doi: 10.1007/s11571-018-9485-1
– volume: 44
  start-page: 58
  year: 2014
  ident: 2023091813015380000_c2
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2012.10.003
– volume: 15
  start-page: 634147
  year: 2021
  ident: 2023091813015380000_c8
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.634147
– volume: 27
  start-page: 347
  year: 2016
  ident: 2023091813015380000_c29
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/tnnls.2015.2496330
– volume: 23
  start-page: 1298
  year: 2021
  ident: 2023091813015380000_c37
  publication-title: Entropy
  doi: 10.3390/e23101298
– volume: 24
  start-page: 290
  year: 2021
  ident: 2023091813015380000_c31
  publication-title: Int. J. Comput. Mater. Sci. Eng.
  doi: 10.1504/IJCSE.2021.115656
– volume: 43
  start-page: 525
  year: 2020
  ident: 2023091813015380000_c15
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00853-8
– year: 2017
  ident: 2023091813015380000_c24
– volume: 9
  start-page: 775
  year: 2020
  ident: 2023091813015380000_c25
  publication-title: Electronics
  doi: 10.3390/electronics9050775
– volume: 29
  start-page: 1429
  year: 2021
  ident: 2023091813015380000_c26
  publication-title: J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-2008-83
– year: 2021
  ident: 2023091813015380000_c34
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2023091813015380000_c27
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/4721863
– volume: 15
  start-page: 733426
  year: 2021
  ident: 2023091813015380000_c22
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.733426
– volume: 11
  start-page: 115
  year: 2019
  ident: 2023091813015380000_c4
  publication-title: Future Internet
  doi: 10.3390/fi11050115
– start-page: 3220
  year: 2017
  ident: 2023091813015380000_c41
– volume: 12
  start-page: 597
  year: 2018
  ident: 2023091813015380000_c28
  publication-title: Cognit. Neurodyn.
  doi: 10.1007/s11571-018-9496-y
– volume: 9
  start-page: 114905
  year: 2021
  ident: 2023091813015380000_c13
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3100478
– volume: 18
  start-page: 036023
  year: 2021
  ident: 2023091813015380000_c49
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abe397
– volume: 21
  start-page: 2369
  year: 2021
  ident: 2023091813015380000_c10
  publication-title: Sensors
  doi: 10.3390/s21072369
– volume: 69
  start-page: 102857
  year: 2021
  ident: 2023091813015380000_c21
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102857
– volume: 68
  start-page: 2491
  year: 2019
  ident: 2023091813015380000_c12
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2018.2865842
– year: 2018
  ident: 2023091813015380000_c16
– volume: 14
  start-page: 210
  year: 2023
  ident: 2023091813015380000_c43
  publication-title: Information
  doi: 10.3390/info14040210
– volume: 12
  start-page: 323
  year: 2020
  ident: 2023091813015380000_c42
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2019.2929858
– volume: 12
  start-page: 721266
  year: 2021
  ident: 2023091813015380000_c50
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2021.721266
– volume: 185
  start-page: 115581
  year: 2021
  ident: 2023091813015380000_c40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115581
– volume: 28
  start-page: 745
  year: 2018
  ident: 2023091813015380000_c52
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2018-0057
– volume: 39
  start-page: 105012
  year: 2018
  ident: 2023091813015380000_c18
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aae42e
– volume: 15
  start-page: 223
  year: 2021
  ident: 2023091813015380000_c45
  publication-title: Cognit. Neurodyn.
  doi: 10.1007/s11571-020-09601-w
– volume: 24
  start-page: 7251
  year: 2020
  ident: 2023091813015380000_c7
  publication-title: Sensors
  doi: 10.3390/s20247251
– volume: 7
  start-page: 210
  year: 2023
  ident: 2023091813015380000_c51
  publication-title: IEEE Trans. Emerging Top. Comput. Intell.
  doi: 10.1109/tetci.2022.3189695
– volume: 53
  start-page: 4175
  year: 2021
  ident: 2023091813015380000_c17
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3123842
– volume: 16
  start-page: 576
  year: 2022
  ident: 2023091813015380000_c32
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12373
– volume: 30
  start-page: 2755
  year: 2019
  ident: 2023091813015380000_c36
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/tnnls.2018.2886414
– volume: 25
  start-page: 693
  year: 2021
  ident: 2023091813015380000_c19
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/jbhi.2020.3008229
– volume: 16
  start-page: 056013
  year: 2019
  ident: 2023091813015380000_c11
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab255d
– volume: 6
  start-page: 19
  year: 2019
  ident: 2023091813015380000_c48
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0027-4
– volume: 46
  start-page: 101157
  year: 2020
  ident: 2023091813015380000_c1
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101157
– volume: 134
  start-page: 50003
  year: 2021
  ident: 2023091813015380000_c38
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/134/50003
– volume: 25
  start-page: 65
  year: 2019
  ident: 2023091813015380000_c44
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 48
  start-page: 267
  year: 2016
  ident: 2023091813015380000_c5
  publication-title: Med. Sci. Sports Exercise
  doi: 10.1249/MSS.0000000000000762
– volume: 8
  start-page: 121929
  year: 2020
  ident: 2023091813015380000_c47
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3006907
– volume: 21
  start-page: 10811
  year: 2021
  ident: 2023091813015380000_c23
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2021.3058658
– volume: 57
  start-page: 836
  year: 2021
  ident: 2023091813015380000_c30
  publication-title: Electron. Lett.
  doi: 10.1049/ell2.12275
– volume: 36
  start-page: 7651
  year: 2009
  ident: 2023091813015380000_c3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.030
– volume: 14
  start-page: 026017
  year: 2017
  ident: 2023091813015380000_c6
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5a98
– volume: 51
  start-page: 5800
  year: 2021
  ident: 2023091813015380000_c35
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/tsmc.2019.2956022
– volume: 33
  start-page: 741
  year: 2011
  ident: 2023091813015380000_c14
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2010.86
– volume: 70
  start-page: 2504811
  year: 2021
  ident: 2023091813015380000_c46
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/tim.2020.3047502
SSID ssj0000511
Score 2.4295092
Snippet Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based...
Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Classification
Correlation coefficients
Deep learning
Design of experiments
Electroencephalography
Feature extraction
Machine learning
Neural networks
Recurrent neural networks
Regression models
Root-mean-square errors
Sampling methods
Scientific apparatus & instruments
Traffic safety
Title A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection
URI http://dx.doi.org/10.1063/5.0133092
https://www.proquest.com/docview/2865904635
https://www.proquest.com/docview/2866112458
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaG9gAXRFnEQEFmORRVhkwcJ_FxREEVohygFb1FdmyXkSBTdSag8jv4wbxnO5lFU6lwSUaO5UR-n982byHkpSuFKzJjWeJUwkD_V0yWOmWpqbkRhbHpCBOFjz7lhyfZh1NxOhj8XIpaauf6df17Y17J_1AVxoCumCX7D5TtF4UB-A30hStQGK7XovF4_8KehUDWJvS0wRBxsHWt8eHk8eVABSxb6W8-6DsElaOn3ddmWnvoi4CH7jh47M-_KV_X-gdDiQcLo1xls1ajB2ffwaectZh8NfdBXc2ytvu5z4sJeZcYloTR73Os2BBrSHmW0wY37AHcL1WUpX48ePhBvP6yk270tPXysp1cLpD9Nbq9cSU9XXZlpLyP1erZM88Ydj8Jwilw5KSUDDg2X2bZoS9yhKbcKAlA9QLyYU1WzpPQbm-tsPbFbHKDbKdgXgB_3B4fHH38spDhYhR6LcYP6mpS5fxNv-SqJrMwT27CloYwiiVN5fgOuR1NDDoOeNkhA9vcJTuRic_oXqw0_uoe-TOmCwBRDyDaAYiuAIgGjNCIEQoAoj2A1h8CgOjVAKIrAKIRQLQH0H1y8v7d8dtDFtt0sJqnYs6clJYXWa6kkcYpnTs1ss4IYZTiRVqOkiLVpZOq1pqndSbBBgE1spS1S21hOH9AtpppYx8Smjm0GGolXWkzU5TaWaeVyBVYVUnG9ZDsdVtedZuMrVS-Vz6WIueVqCJ1huR5P_U8FG7ZNGm3o1sVz_WswlxtiYX0xJA86x8D18W_0lRjp62fk4OlkolySF709L76RY-uNesxubU4FrtkC06jfQI671w_jQD9C5kNuHU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regression+model+combined+convolutional+neural+network+and+recurrent+neural+network+for+electroencephalogram-based+cross-subject+fatigue+detection&rft.jtitle=Review+of+scientific+instruments&rft.au=Yuan%2C+Duanyang&rft.au=Yue%2C+Jingwei&rft.au=Xu%2C+Huiyan&rft.au=Wang%2C+Yuanbo&rft.date=2023-09-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=94&rft.issue=9&rft_id=info:doi/10.1063%2F5.0133092&rft.externalDocID=rsi
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon