A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection
Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will...
Saved in:
Published in | Review of scientific instruments Vol. 94; no. 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher’s domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research. |
---|---|
AbstractList | Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers’ domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher’s domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research. Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers' domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher's domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research.Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based on feature engineering and classification models. The feature engineering is greatly influenced by researchers' domain knowledge, which will lead to a poor performance in fatigue detection, especially in cross-subject experiment design. In addition, fatigue detection is often simplified as a classification problem of several discrete states. Models based on deep learning can realize automatic feature extraction without the limitation of researcher's domain knowledge. Therefore, this paper proposes a regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based (EEG-based) cross-subject fatigue detection. At the same time, a twofold random-offset zero-overlapping sampling method is proposed to train a bigger model and reduce overfitting. Compared with existing results, the proposed method achieves a much better result of 0.94 correlation coefficient (COR) and 0.09 root mean square error (RMSE) in a within-subject experiment design. What is more, there is no misclassification between awake and drowsy states. For cross-subject experiment design, the COR and RMSE are 0.79 and 0.15, respectively, which are close to the existing within-subject results and better than similar cross-subject results. The cross-subject regression model is very important for fatigue detection application since the fatigue indication is more precise than several discrete states and no model calibration is required for a new user. The twofold random-offset zero-overlapping sampling method can also be used as a reference by other EEG-based deep learning research. |
Author | Yuan, Duanyang Li, Chunyong Wang, Yuanbo Xu, Huiyan Yue, Jingwei Zan, Peng |
Author_xml | – sequence: 1 givenname: Duanyang surname: Yuan fullname: Yuan, Duanyang organization: 2Beijing Institute of Radiation Medicine, Beijing 100850, China – sequence: 2 givenname: Jingwei surname: Yue fullname: Yue, Jingwei organization: Beijing Institute of Radiation Medicine – sequence: 3 givenname: Huiyan surname: Xu fullname: Xu, Huiyan organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University – sequence: 4 givenname: Yuanbo surname: Wang fullname: Wang, Yuanbo organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University – sequence: 5 givenname: Peng surname: Zan fullname: Zan, Peng email: zanpeng@shu.edu.cn, lcy07@tsinghua.org.cn organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University – sequence: 6 givenname: Chunyong surname: Li fullname: Li, Chunyong email: zanpeng@shu.edu.cn, lcy07@tsinghua.org.cn organization: Beijing Institute of Radiation Medicine |
BookMark | eNp9kU1v1DAQhi1UJLaFA_8gEhdASuuP2ImPVcWXVIkLnKOJPV6yOPZiO1T8D34w3t1yWSHmMmPN876j8VySixADEvKS0WtGlbiR15QJQTV_QjaMDrrtFRcXZEOp6FrVd8MzcpnzjtaQjG3I79sm4TZhznMMzRIt-sbEZZoD2lqEn9GvpbbANwHXdEzlIabvDQRbpWZNCUM5b7qYGvRoSooYDO6_gY_bBEs7QT4Yp5hzm9dpV5HGQZm3KzYWS33WYc_JUwc-44vHfEW-vn_35e5je__5w6e72_vWCC5L67RG0XcKtNXWwaQcMHRWSgsgej4w2vNpcBrMNAluOs0k7agatHEceyvEFXl98t2n-GPFXMZlzga9h4BxzSMflGKMd3Ko6KszdBfXVL_lSElNOyVkpd6cqOOCCd24T_MC6dfI6Hi4zyjHx_tU9uaMNXOBw_olwez_qXh7UuS_5H_s_wBhOqTw |
CODEN | RSINAK |
CitedBy_id | crossref_primary_10_1063_5_0221637 |
Cites_doi | 10.24200/sci.2020.53905.3479 10.3390/electronics11142169 10.1007/s11571-018-9485-1 10.1016/j.neubiorev.2012.10.003 10.3389/fnins.2021.634147 10.1109/tnnls.2015.2496330 10.3390/e23101298 10.1504/IJCSE.2021.115656 10.1007/s13246-020-00853-8 10.3390/electronics9050775 10.3906/elk-2008-83 10.1155/2019/4721863 10.3389/fnhum.2021.733426 10.3390/fi11050115 10.1007/s11571-018-9496-y 10.1109/access.2021.3100478 10.1088/1741-2552/abe397 10.3390/s21072369 10.1016/j.bspc.2021.102857 10.1109/tim.2018.2865842 10.3390/info14040210 10.1109/TCDS.2019.2929858 10.3389/fpsyg.2021.721266 10.1016/j.eswa.2021.115581 10.2478/amcs-2018-0057 10.1088/1361-6579/aae42e 10.1007/s11571-020-09601-w 10.3390/s20247251 10.1109/tetci.2022.3189695 10.1109/TCYB.2021.3123842 10.1049/ipr2.12373 10.1109/tnnls.2018.2886414 10.1109/jbhi.2020.3008229 10.1088/1741-2552/ab255d 10.1038/s41597-019-0027-4 10.1016/j.aei.2020.101157 10.1209/0295-5075/134/50003 10.1038/s41591-018-0268-3 10.1249/MSS.0000000000000762 10.1109/access.2020.3006907 10.1109/jsen.2021.3058658 10.1049/ell2.12275 10.1016/j.eswa.2008.09.030 10.1088/1741-2552/aa5a98 10.1109/tsmc.2019.2956022 10.1109/tpami.2010.86 10.1109/tim.2020.3047502 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0133092 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 10_1063_5_0133092 rsi |
GrantInformation_xml | – fundername: Development Fund for Shanghai Talents grantid: 2020010 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 22xtcx00300 funderid: https://doi.org/10.13039/501100003399 |
GroupedDBID | --- -DZ -~X .DC 123 2-P 29P 4.4 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c325t-f99e3746a9d9dfab6fa1efd55daa37281072b8f9acbb32c4915040689cf2e7d33 |
ISSN | 0034-6748 1089-7623 |
IngestDate | Thu Jul 10 22:48:10 EDT 2025 Mon Jun 30 05:06:11 EDT 2025 Tue Jul 01 02:58:14 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Fri Jun 21 00:10:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-f99e3746a9d9dfab6fa1efd55daa37281072b8f9acbb32c4915040689cf2e7d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9308-4527 0000-0001-7468-0289 0000-0002-3308-4373 0000-0003-2588-2188 |
PQID | 2865904635 |
PQPubID | 2050675 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1063_5_0133092 proquest_miscellaneous_2866112458 crossref_citationtrail_10_1063_5_0133092 scitation_primary_10_1063_5_0133092 proquest_journals_2865904635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 20230901 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Review of scientific instruments |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hu, Zheng (c3) 2009; 36 Kong, Jiang, Fan, Zhu, Wei (c52) 2018; 28 Wang, Johnson, Lin (c26) 2021; 29 Hong, Zhang, Zakaria, Babiloni, Gianluca, Li, Kong (c7) 2020; 24 Zeng, Li, Borghini, Zhao, Aricò, Flumeri, Sciaraffa, Zakaria, Kong, Babiloni (c10) 2021; 21 Murugan, Selvaraj, Sahayadhas (c15) 2020; 43 Dong, Zhang, Wu, Li, Xu, Ma, Gao (c38) 2021; 134 Bulling, Ward, Gellersen, Tröster (c14) 2011; 33 Foong, Ang, Zhang, Quek (c11) 2019; 16 Hannun, Rajpurkar, Haghpanahi, Tison, Bourn, Turakhia, Ng (c44) 2019; 25 Ma, Zhang, Qi, Luo, Li, Potter, Zhang (c25) 2020; 9 Cao, Chuang, King, Lin (c48) 2019; 6 Krigolson, Hammerstrom, Abimbola, Trska, Wright, Hecker, Binsted (c8) 2021; 15 Lee, Jeong, Kim, Yu, Lee (c47) 2020; 8 Gao, Wang, Yang, Mu, Cai, Dang, Zuo (c36) 2019; 30 Gao, Li, Cai, Dang, Yang, Mu, Hui (c12) 2019; 68 Halomoan, Ramli, Sudiana, Gunawan, Salman (c43) 2023; 14 Tang, Li, Yang, Zhang (c30) 2021; 57 Tabejamaat, Mohammadzade (c39) 2022; 29 Eltrass, Ghanem (c49) 2021; 18 Peng, Wong, Wang, Rosa, Wang, Wan (c13) 2021; 9 Eldele, Ragab, Chen, Wu, Kwoh, Li, Guan (c51) 2023; 7 Lees, Chalmers, Burton, Zilberg, Penzel, Lal, Lal (c18) 2018; 39 Hu, Min (c20) 2018; 12 Zhang, Zhang, Chen, Lin, Xie (c31) 2021; 24 Zhao, Lu, Hou, Chen, Wei, Zhang, Hu (c37) 2021; 23 Wang, Liu, Ruan, Wang, Wang (c40) 2021; 185 Zeng, Yang, Dai, Qin, Zhang, Kong (c28) 2018; 12 Bose, Wang, Dragomir, Thakor, Bezerianos, Li (c42) 2020; 12 Min, Xiong, Zhang, Cai (c21) 2021; 69 Borghini, Astolfi, Vecchiato, Mattia, Babiloni (c2) 2014; 44 Wang, Xu, Bezerianos, Chen, Zhang (c46) 2021; 70 Ma, Chen, Li, Wang, Wang, She, Luo, Zhang (c27) 2019; 2019 Liu, Xu, Hu, Jiang (c32) 2022; 16 Ni, Ni, Xue, Wang (c50) 2021; 12 Dang, Gao, Lv, Sun, Cheng (c19) 2021; 25 Yang, Gao, Li, Cai, Marwan, Kurths (c35) 2021; 51 Liu, Lin, Wu, Chuang, Lin (c29) 2016; 27 Sheykhivand, Rezaii, Mousavi, Meshgini, Makouei, Farzamnia, Danishvar, Teo Tze Kin (c33) 2022; 11 Wang, Wu, Ping, Xu, Chu (c23) 2021; 21 Liu, Lan, Cui, Sourina, Müller-Wittig (c1) 2020; 46 Liu, Qian, Yao, Jiao, Pan (c4) 2019; 11 Smith, Coutts, Merlini, Deprez, Matthieu, Marcora (c5) 2016; 48 Du, Long, Li, Wang, Liu (c17) 2021; 53 Zheng, Lu (c6) 2017; 14 Zhang, Wang, Geng, Li, Wang (c22) 2021; 15 Tuncer, Dogan, Ertam, Subasi (c45) 2021; 15 (2023091813015380000_c26) 2021; 29 (2023091813015380000_c1) 2020; 46 (2023091813015380000_c37) 2021; 23 (2023091813015380000_c40) 2021; 185 (2023091813015380000_c12) 2019; 68 (2023091813015380000_c9) 2020 (2023091813015380000_c16) 2018 (2023091813015380000_c36) 2019; 30 (2023091813015380000_c22) 2021; 15 (2023091813015380000_c20) 2018; 12 (2023091813015380000_c30) 2021; 57 (2023091813015380000_c8) 2021; 15 (2023091813015380000_c33) 2022; 11 (2023091813015380000_c41) 2017 (2023091813015380000_c23) 2021; 21 (2023091813015380000_c29) 2016; 27 (2023091813015380000_c10) 2021; 21 (2023091813015380000_c45) 2021; 15 (2023091813015380000_c38) 2021; 134 (2023091813015380000_c19) 2021; 25 (2023091813015380000_c4) 2019; 11 (2023091813015380000_c7) 2020; 24 (2023091813015380000_c49) 2021; 18 (2023091813015380000_c32) 2022; 16 (2023091813015380000_c44) 2019; 25 (2023091813015380000_c15) 2020; 43 (2023091813015380000_c14) 2011; 33 (2023091813015380000_c17) 2021; 53 (2023091813015380000_c47) 2020; 8 (2023091813015380000_c18) 2018; 39 (2023091813015380000_c2) 2014; 44 (2023091813015380000_c24) 2017 (2023091813015380000_c5) 2016; 48 (2023091813015380000_c28) 2018; 12 (2023091813015380000_c3) 2009; 36 (2023091813015380000_c34) 2021 (2023091813015380000_c25) 2020; 9 (2023091813015380000_c42) 2020; 12 (2023091813015380000_c31) 2021; 24 (2023091813015380000_c39) 2022; 29 (2023091813015380000_c48) 2019; 6 (2023091813015380000_c13) 2021; 9 (2023091813015380000_c27) 2019; 2019 (2023091813015380000_c21) 2021; 69 (2023091813015380000_c35) 2021; 51 (2023091813015380000_c51) 2023; 7 (2023091813015380000_c52) 2018; 28 (2023091813015380000_c46) 2021; 70 (2023091813015380000_c11) 2019; 16 (2023091813015380000_c43) 2023; 14 (2023091813015380000_c50) 2021; 12 (2023091813015380000_c6) 2017; 14 |
References_xml | – volume: 51 start-page: 5800 year: 2021 ident: c35 publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 185 start-page: 115581 year: 2021 ident: c40 publication-title: Expert Syst. Appl. – volume: 25 start-page: 65 year: 2019 ident: c44 publication-title: Nat. Med. – volume: 57 start-page: 836 year: 2021 ident: c30 publication-title: Electron. Lett. – volume: 12 start-page: 721266 year: 2021 ident: c50 publication-title: Front. Psychol. – volume: 33 start-page: 741 year: 2011 ident: c14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 19 year: 2019 ident: c48 publication-title: Sci Data – volume: 36 start-page: 7651 year: 2009 ident: c3 publication-title: Expert Syst. Appl. – volume: 15 start-page: 223 year: 2021 ident: c45 publication-title: Cognit. Neurodyn. – volume: 9 start-page: 114905 year: 2021 ident: c13 publication-title: IEEE Access – volume: 9 start-page: 775 year: 2020 ident: c25 publication-title: Electronics – volume: 11 start-page: 115 year: 2019 ident: c4 publication-title: Future Internet – volume: 25 start-page: 693 year: 2021 ident: c19 publication-title: IEEE J. Biomed. Health Inf. – volume: 43 start-page: 525 year: 2020 ident: c15 publication-title: Phys. Eng. Sci. Med. – volume: 12 start-page: 431 year: 2018 ident: c20 publication-title: Cognit. Neurodyn. – volume: 23 start-page: 1298 year: 2021 ident: c37 publication-title: Entropy – volume: 21 start-page: 2369 year: 2021 ident: c10 publication-title: Sensors – volume: 44 start-page: 58 year: 2014 ident: c2 publication-title: Neurosci. Biobehav. Rev. – volume: 29 start-page: 1429 year: 2021 ident: c26 publication-title: J. Electr. Eng. Comput. Sci. – volume: 14 start-page: 026017 year: 2017 ident: c6 publication-title: J. Neural Eng. – volume: 30 start-page: 2755 year: 2019 ident: c36 publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 39 start-page: 105012 year: 2018 ident: c18 publication-title: Physiol. Meas. – volume: 18 start-page: 036023 year: 2021 ident: c49 publication-title: J. Neural Eng. – volume: 15 start-page: 634147 year: 2021 ident: c8 publication-title: Front. Neurosci. – volume: 2019 start-page: 1 year: 2019 ident: c27 publication-title: Comput. Intell. Neurosci. – volume: 16 start-page: 056013 year: 2019 ident: c11 publication-title: J. Neural Eng. – volume: 12 start-page: 597 year: 2018 ident: c28 publication-title: Cognit. Neurodyn. – volume: 16 start-page: 576 year: 2022 ident: c32 publication-title: IET Image Process. – volume: 29 start-page: 1486 year: 2022 ident: c39 publication-title: Sci. Iran. – volume: 24 start-page: 7251 year: 2020 ident: c7 publication-title: Sensors – volume: 15 start-page: 733426 year: 2021 ident: c22 publication-title: Front. Hum. Neurosci. – volume: 53 start-page: 4175 year: 2021 ident: c17 publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 121929 year: 2020 ident: c47 publication-title: IEEE Access – volume: 28 start-page: 745 year: 2018 ident: c52 publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 11 start-page: 2169 year: 2022 ident: c33 publication-title: Electronics – volume: 14 start-page: 210 year: 2023 ident: c43 publication-title: Information – volume: 134 start-page: 50003 year: 2021 ident: c38 publication-title: Europhys. Lett. – volume: 24 start-page: 290 year: 2021 ident: c31 publication-title: Int. J. Comput. Mater. Sci. Eng. – volume: 70 start-page: 2504811 year: 2021 ident: c46 publication-title: IEEE Trans. Instrum. Meas. – volume: 21 start-page: 10811 year: 2021 ident: c23 publication-title: IEEE Sens. J. – volume: 69 start-page: 102857 year: 2021 ident: c21 publication-title: Biomed. Signal Process. Control – volume: 12 start-page: 323 year: 2020 ident: c42 publication-title: IEEE Trans. Cognit. Dev. Syst. – volume: 27 start-page: 347 year: 2016 ident: c29 publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 7 start-page: 210 year: 2023 ident: c51 publication-title: IEEE Trans. Emerging Top. Comput. Intell. – volume: 48 start-page: 267 year: 2016 ident: c5 publication-title: Med. Sci. Sports Exercise – volume: 68 start-page: 2491 year: 2019 ident: c12 publication-title: IEEE Trans. Instrum. Meas. – volume: 46 start-page: 101157 year: 2020 ident: c1 publication-title: Adv. Eng. Inf. – volume: 29 start-page: 1486 year: 2022 ident: 2023091813015380000_c39 publication-title: Sci. Iran. doi: 10.24200/sci.2020.53905.3479 – year: 2020 ident: 2023091813015380000_c9 – volume: 11 start-page: 2169 year: 2022 ident: 2023091813015380000_c33 publication-title: Electronics doi: 10.3390/electronics11142169 – volume: 12 start-page: 431 year: 2018 ident: 2023091813015380000_c20 publication-title: Cognit. Neurodyn. doi: 10.1007/s11571-018-9485-1 – volume: 44 start-page: 58 year: 2014 ident: 2023091813015380000_c2 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.10.003 – volume: 15 start-page: 634147 year: 2021 ident: 2023091813015380000_c8 publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.634147 – volume: 27 start-page: 347 year: 2016 ident: 2023091813015380000_c29 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/tnnls.2015.2496330 – volume: 23 start-page: 1298 year: 2021 ident: 2023091813015380000_c37 publication-title: Entropy doi: 10.3390/e23101298 – volume: 24 start-page: 290 year: 2021 ident: 2023091813015380000_c31 publication-title: Int. J. Comput. Mater. Sci. Eng. doi: 10.1504/IJCSE.2021.115656 – volume: 43 start-page: 525 year: 2020 ident: 2023091813015380000_c15 publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00853-8 – year: 2017 ident: 2023091813015380000_c24 – volume: 9 start-page: 775 year: 2020 ident: 2023091813015380000_c25 publication-title: Electronics doi: 10.3390/electronics9050775 – volume: 29 start-page: 1429 year: 2021 ident: 2023091813015380000_c26 publication-title: J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-2008-83 – year: 2021 ident: 2023091813015380000_c34 – volume: 2019 start-page: 1 year: 2019 ident: 2023091813015380000_c27 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/4721863 – volume: 15 start-page: 733426 year: 2021 ident: 2023091813015380000_c22 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.733426 – volume: 11 start-page: 115 year: 2019 ident: 2023091813015380000_c4 publication-title: Future Internet doi: 10.3390/fi11050115 – start-page: 3220 year: 2017 ident: 2023091813015380000_c41 – volume: 12 start-page: 597 year: 2018 ident: 2023091813015380000_c28 publication-title: Cognit. Neurodyn. doi: 10.1007/s11571-018-9496-y – volume: 9 start-page: 114905 year: 2021 ident: 2023091813015380000_c13 publication-title: IEEE Access doi: 10.1109/access.2021.3100478 – volume: 18 start-page: 036023 year: 2021 ident: 2023091813015380000_c49 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abe397 – volume: 21 start-page: 2369 year: 2021 ident: 2023091813015380000_c10 publication-title: Sensors doi: 10.3390/s21072369 – volume: 69 start-page: 102857 year: 2021 ident: 2023091813015380000_c21 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102857 – volume: 68 start-page: 2491 year: 2019 ident: 2023091813015380000_c12 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2018.2865842 – year: 2018 ident: 2023091813015380000_c16 – volume: 14 start-page: 210 year: 2023 ident: 2023091813015380000_c43 publication-title: Information doi: 10.3390/info14040210 – volume: 12 start-page: 323 year: 2020 ident: 2023091813015380000_c42 publication-title: IEEE Trans. Cognit. Dev. Syst. doi: 10.1109/TCDS.2019.2929858 – volume: 12 start-page: 721266 year: 2021 ident: 2023091813015380000_c50 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2021.721266 – volume: 185 start-page: 115581 year: 2021 ident: 2023091813015380000_c40 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115581 – volume: 28 start-page: 745 year: 2018 ident: 2023091813015380000_c52 publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/amcs-2018-0057 – volume: 39 start-page: 105012 year: 2018 ident: 2023091813015380000_c18 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aae42e – volume: 15 start-page: 223 year: 2021 ident: 2023091813015380000_c45 publication-title: Cognit. Neurodyn. doi: 10.1007/s11571-020-09601-w – volume: 24 start-page: 7251 year: 2020 ident: 2023091813015380000_c7 publication-title: Sensors doi: 10.3390/s20247251 – volume: 7 start-page: 210 year: 2023 ident: 2023091813015380000_c51 publication-title: IEEE Trans. Emerging Top. Comput. Intell. doi: 10.1109/tetci.2022.3189695 – volume: 53 start-page: 4175 year: 2021 ident: 2023091813015380000_c17 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3123842 – volume: 16 start-page: 576 year: 2022 ident: 2023091813015380000_c32 publication-title: IET Image Process. doi: 10.1049/ipr2.12373 – volume: 30 start-page: 2755 year: 2019 ident: 2023091813015380000_c36 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/tnnls.2018.2886414 – volume: 25 start-page: 693 year: 2021 ident: 2023091813015380000_c19 publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/jbhi.2020.3008229 – volume: 16 start-page: 056013 year: 2019 ident: 2023091813015380000_c11 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab255d – volume: 6 start-page: 19 year: 2019 ident: 2023091813015380000_c48 publication-title: Sci Data doi: 10.1038/s41597-019-0027-4 – volume: 46 start-page: 101157 year: 2020 ident: 2023091813015380000_c1 publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101157 – volume: 134 start-page: 50003 year: 2021 ident: 2023091813015380000_c38 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/134/50003 – volume: 25 start-page: 65 year: 2019 ident: 2023091813015380000_c44 publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 48 start-page: 267 year: 2016 ident: 2023091813015380000_c5 publication-title: Med. Sci. Sports Exercise doi: 10.1249/MSS.0000000000000762 – volume: 8 start-page: 121929 year: 2020 ident: 2023091813015380000_c47 publication-title: IEEE Access doi: 10.1109/access.2020.3006907 – volume: 21 start-page: 10811 year: 2021 ident: 2023091813015380000_c23 publication-title: IEEE Sens. J. doi: 10.1109/jsen.2021.3058658 – volume: 57 start-page: 836 year: 2021 ident: 2023091813015380000_c30 publication-title: Electron. Lett. doi: 10.1049/ell2.12275 – volume: 36 start-page: 7651 year: 2009 ident: 2023091813015380000_c3 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.030 – volume: 14 start-page: 026017 year: 2017 ident: 2023091813015380000_c6 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5a98 – volume: 51 start-page: 5800 year: 2021 ident: 2023091813015380000_c35 publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/tsmc.2019.2956022 – volume: 33 start-page: 741 year: 2011 ident: 2023091813015380000_c14 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/tpami.2010.86 – volume: 70 start-page: 2504811 year: 2021 ident: 2023091813015380000_c46 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/tim.2020.3047502 |
SSID | ssj0000511 |
Score | 2.4295092 |
Snippet | Fatigue, one of the most important factors affecting road safety, has attracted many researchers’ attention. Most existing fatigue detection methods are based... Fatigue, one of the most important factors affecting road safety, has attracted many researchers' attention. Most existing fatigue detection methods are based... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Classification Correlation coefficients Deep learning Design of experiments Electroencephalography Feature extraction Machine learning Neural networks Recurrent neural networks Regression models Root-mean-square errors Sampling methods Scientific apparatus & instruments Traffic safety |
Title | A regression model combined convolutional neural network and recurrent neural network for electroencephalogram-based cross-subject fatigue detection |
URI | http://dx.doi.org/10.1063/5.0133092 https://www.proquest.com/docview/2865904635 https://www.proquest.com/docview/2866112458 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaG9gAXRFnEQEFmORRVhkwcJ_FxREEVohygFb1FdmyXkSBTdSag8jv4wbxnO5lFU6lwSUaO5UR-n982byHkpSuFKzJjWeJUwkD_V0yWOmWpqbkRhbHpCBOFjz7lhyfZh1NxOhj8XIpaauf6df17Y17J_1AVxoCumCX7D5TtF4UB-A30hStQGK7XovF4_8KehUDWJvS0wRBxsHWt8eHk8eVABSxb6W8-6DsElaOn3ddmWnvoi4CH7jh47M-_KV_X-gdDiQcLo1xls1ajB2ffwaectZh8NfdBXc2ytvu5z4sJeZcYloTR73Os2BBrSHmW0wY37AHcL1WUpX48ePhBvP6yk270tPXysp1cLpD9Nbq9cSU9XXZlpLyP1erZM88Ydj8Jwilw5KSUDDg2X2bZoS9yhKbcKAlA9QLyYU1WzpPQbm-tsPbFbHKDbKdgXgB_3B4fHH38spDhYhR6LcYP6mpS5fxNv-SqJrMwT27CloYwiiVN5fgOuR1NDDoOeNkhA9vcJTuRic_oXqw0_uoe-TOmCwBRDyDaAYiuAIgGjNCIEQoAoj2A1h8CgOjVAKIrAKIRQLQH0H1y8v7d8dtDFtt0sJqnYs6clJYXWa6kkcYpnTs1ss4IYZTiRVqOkiLVpZOq1pqndSbBBgE1spS1S21hOH9AtpppYx8Smjm0GGolXWkzU5TaWaeVyBVYVUnG9ZDsdVtedZuMrVS-Vz6WIueVqCJ1huR5P_U8FG7ZNGm3o1sVz_WswlxtiYX0xJA86x8D18W_0lRjp62fk4OlkolySF709L76RY-uNesxubU4FrtkC06jfQI671w_jQD9C5kNuHU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+regression+model+combined+convolutional+neural+network+and+recurrent+neural+network+for+electroencephalogram-based+cross-subject+fatigue+detection&rft.jtitle=Review+of+scientific+instruments&rft.au=Yuan%2C+Duanyang&rft.au=Yue%2C+Jingwei&rft.au=Xu%2C+Huiyan&rft.au=Wang%2C+Yuanbo&rft.date=2023-09-01&rft.issn=0034-6748&rft.eissn=1089-7623&rft.volume=94&rft.issue=9&rft_id=info:doi/10.1063%2F5.0133092&rft.externalDocID=rsi |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |