Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design

The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 385; no. 6716; pp. 1438 - 1444
Main Authors Li, Zhen, Chen, I-Chun, Cao, Li, Liu, Xiaowei, Huang, Kuo-Wei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 27.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%. The centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li et al . now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song et al . used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine
AbstractList Editor’s summaryThe centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li et al. now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song et al. used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine
The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.
The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%. The centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li et al . now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song et al . used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine
The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.
Author Liu, Xiaowei
Li, Zhen
Cao, Li
Huang, Kuo-Wei
Chen, I-Chun
Lai, Zhiping
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0002-7048-9011
  surname: Li
  fullname: Li, Zhen
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 2
  givenname: I-Chun
  orcidid: 0000-0002-6602-6153
  surname: Chen
  fullname: Chen, I-Chun
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-7087-9431
  surname: Cao
  fullname: Cao, Li
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 4
  givenname: Xiaowei
  orcidid: 0000-0002-2577-0701
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 5
  givenname: Kuo-Wei
  orcidid: 0000-0003-1900-2658
  surname: Huang
  fullname: Huang, Kuo-Wei
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 6
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39325903$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUtFbP3iTgxcvayWZ3uzlK8QsKXvQcsslsm7Kb1GQX9L83pfUiCIEc5veGN-9dkInzDgm5ZnDPWF7No7boNN4rs66LenFCpgxEmYkc-IRMAXiV1bAoz8lFjFuANBP8jJxzwfNSAJ8SubLDxo49xa8hKD1Y72gbfE-bYB3SYRP8uN5QRQ1qP-46NFQ5Q3vsm6AcZm1ApNihHoLXG-ytVh3V2HVJEO3aXZLTVnURr47_jHw8Pb4vX7LV2_Pr8mGV6eRkyFpRgq7LhotGKISqUnnLUUNTI6jaiFpxU6kmF4YvTFkIqNK8aFGUujKLdOeM3B327oL_HDEOsrdx7yOZ9GOUnDEoIL0qobd_0K0fg0vuEgVCcFYAS9TNkRqbHo3cBdur8C1_o0tAeQB08DEGbKW2g9oHmIK0nWQg9xXJY0XyWFHSzf_oflf_p_gBh6eXDA
CitedBy_id crossref_primary_10_1002_smtd_202401972
crossref_primary_10_1016_j_dwt_2025_101128
crossref_primary_10_1002_ange_202503644
crossref_primary_10_1016_j_desal_2025_118761
crossref_primary_10_1039_D4IM00159A
crossref_primary_10_1039_D4MH01857E
crossref_primary_10_1021_acsnano_4c18818
crossref_primary_10_1016_j_seppur_2025_132351
crossref_primary_10_1038_s44221_025_00398_8
crossref_primary_10_1002_ange_202423992
crossref_primary_10_1016_j_seppur_2025_132245
crossref_primary_10_1002_anie_202503644
crossref_primary_10_1002_anie_202423992
crossref_primary_10_1021_acselectrochem_4c00134
crossref_primary_10_3390_inorganics13010004
crossref_primary_10_1016_j_desal_2024_118419
crossref_primary_10_26599_NR_2025_94907261
crossref_primary_10_1126_science_ads3699
crossref_primary_10_1016_j_desal_2024_118515
crossref_primary_10_1021_acsnano_4c18135
crossref_primary_10_1038_s44221_025_00393_z
Cites_doi 10.1007/s11837-013-0666-4
10.1039/C5EE02985F
10.1016/j.hydromet.2014.03.010
10.1039/c2ee23036d
10.1016/j.joule.2020.05.017
10.1126/sciadv.abe9924
10.1038/s41565-022-01110-7
10.1021/acsnano.0c08628
10.1016/j.apcatb.2019.118426
10.1016/j.hydromet.2012.11.013
10.1016/S0378-7753(02)00234-3
10.1038/s41578-021-00300-4
10.1016/j.desal.2021.114935
10.1016/j.joule.2018.07.006
10.1126/science.1257443
10.1038/nature11876
10.1126/sciadv.1701069
10.1021/jacs.0c11251
10.1016/j.desal.2021.115326
10.1038/nature24670
10.1016/j.mineng.2019.106085
10.1038/s41467-020-14674-6
10.1039/C8EM00498F
10.1039/C3EE43823F
10.1038/s43017-022-00387-5
10.1016/j.mineng.2020.106743
10.1023/A:1017597321655
10.1016/j.rser.2018.03.002
10.1016/j.desal.2017.06.028
10.1038/nmat4876
10.1002/adma.201905440
10.1126/sciadv.abg2183
10.1016/j.renene.2023.119288
10.1016/j.electacta.2019.135285
10.1016/j.desal.2020.114621
10.1016/j.jallcom.2008.11.109
10.1021/ed075p1182
10.1021/jacs.1c00547
10.1038/s41560-019-0462-7
10.1038/d41586-021-02222-1
10.1016/j.desal.2022.115767
10.1002/adma.202108410
10.1038/s41570-017-0091
10.1038/s41467-019-11792-8
10.1016/j.desal.2021.115112
10.1016/j.rser.2011.11.023
10.1016/S0378-3812(01)00523-4
10.1016/j.ensm.2016.11.004
10.1039/D1EE00354B
10.1016/j.rser.2014.04.018
10.1002/cssc.201803045
10.1016/j.electacta.2017.08.178
10.1038/s41467-022-31523-w
10.1021/jacs.2c04223
10.1016/S0378-3812(02)00278-9
10.1021/jacs.2c02798
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adg8487
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1444
ExternalDocumentID 39325903
10_1126_science_adg8487
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PV9
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-f950c85b39b9ae066a2f3ec0b8e0a8d98a3d6ab29d37d549062f34fe95c6d7003
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 05:41:22 EDT 2025
Fri Jul 25 19:15:04 EDT 2025
Thu Apr 03 07:04:10 EDT 2025
Tue Jul 01 03:14:11 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6716
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-f950c85b39b9ae066a2f3ec0b8e0a8d98a3d6ab29d37d549062f34fe95c6d7003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1900-2658
0000-0002-2577-0701
0000-0002-7048-9011
0000-0002-6602-6153
0000-0001-9555-6009
0000-0002-7087-9431
PMID 39325903
PQID 3109931401
PQPubID 1256
PageCount 7
ParticipantIDs proquest_miscellaneous_3110400406
proquest_journals_3109931401
pubmed_primary_39325903
crossref_citationtrail_10_1126_science_adg8487
crossref_primary_10_1126_science_adg8487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
2024-Sep-27
20240927
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2024
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
39325917 - Science. 2024 Sep 27;385(6716):1421-1422. doi: 10.1126/science.ads3699
References_xml – ident: e_1_3_2_5_2
  doi: 10.1007/s11837-013-0666-4
– ident: e_1_3_2_24_2
  doi: 10.1039/C5EE02985F
– ident: e_1_3_2_62_2
  doi: 10.1016/j.hydromet.2014.03.010
– ident: e_1_3_2_33_2
  doi: 10.1039/c2ee23036d
– ident: e_1_3_2_10_2
  doi: 10.1016/j.joule.2020.05.017
– ident: e_1_3_2_6_2
– ident: e_1_3_2_50_2
  doi: 10.1126/sciadv.abe9924
– ident: e_1_3_2_42_2
  doi: 10.1038/s41565-022-01110-7
– ident: e_1_3_2_25_2
  doi: 10.1021/acsnano.0c08628
– ident: e_1_3_2_39_2
  doi: 10.1016/j.apcatb.2019.118426
– ident: e_1_3_2_13_2
  doi: 10.1016/j.hydromet.2012.11.013
– ident: e_1_3_2_40_2
  doi: 10.1016/S0378-7753(02)00234-3
– ident: e_1_3_2_22_2
  doi: 10.1038/s41578-021-00300-4
– ident: e_1_3_2_54_2
  doi: 10.1016/j.desal.2021.114935
– ident: e_1_3_2_12_2
  doi: 10.1016/j.joule.2018.07.006
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1257443
– ident: e_1_3_2_46_2
  doi: 10.1038/nature11876
– ident: e_1_3_2_41_2
  doi: 10.1126/sciadv.1701069
– ident: e_1_3_2_47_2
  doi: 10.1021/jacs.0c11251
– ident: e_1_3_2_55_2
  doi: 10.1016/j.desal.2021.115326
– ident: e_1_3_2_19_2
  doi: 10.1038/nature24670
– ident: e_1_3_2_17_2
– ident: e_1_3_2_36_2
  doi: 10.1016/j.mineng.2019.106085
– ident: e_1_3_2_44_2
  doi: 10.1038/s41467-020-14674-6
– ident: e_1_3_2_59_2
  doi: 10.1039/C8EM00498F
– ident: e_1_3_2_35_2
  doi: 10.1039/C3EE43823F
– ident: e_1_3_2_53_2
  doi: 10.1038/s43017-022-00387-5
– ident: e_1_3_2_9_2
  doi: 10.1016/j.mineng.2020.106743
– ident: e_1_3_2_31_2
  doi: 10.1023/A:1017597321655
– ident: e_1_3_2_2_2
  doi: 10.1016/j.rser.2018.03.002
– ident: e_1_3_2_21_2
  doi: 10.1016/j.desal.2017.06.028
– ident: e_1_3_2_27_2
  doi: 10.1038/nmat4876
– ident: e_1_3_2_38_2
– ident: e_1_3_2_11_2
  doi: 10.1002/adma.201905440
– ident: e_1_3_2_48_2
  doi: 10.1126/sciadv.abg2183
– ident: e_1_3_2_34_2
  doi: 10.1016/j.renene.2023.119288
– ident: e_1_3_2_57_2
  doi: 10.1016/j.electacta.2019.135285
– ident: e_1_3_2_61_2
  doi: 10.1016/j.desal.2020.114621
– ident: e_1_3_2_60_2
  doi: 10.1016/j.jallcom.2008.11.109
– ident: e_1_3_2_3_2
– ident: e_1_3_2_32_2
  doi: 10.1021/ed075p1182
– ident: e_1_3_2_49_2
  doi: 10.1021/jacs.1c00547
– ident: e_1_3_2_28_2
  doi: 10.1038/s41560-019-0462-7
– ident: e_1_3_2_7_2
  doi: 10.1038/d41586-021-02222-1
– ident: e_1_3_2_15_2
  doi: 10.1016/j.desal.2022.115767
– ident: e_1_3_2_20_2
  doi: 10.1002/adma.202108410
– ident: e_1_3_2_23_2
  doi: 10.1038/s41570-017-0091
– ident: e_1_3_2_45_2
  doi: 10.1038/s41467-019-11792-8
– ident: e_1_3_2_58_2
  doi: 10.1016/j.desal.2021.115112
– ident: e_1_3_2_37_2
  doi: 10.1016/j.rser.2011.11.023
– ident: e_1_3_2_29_2
  doi: 10.1016/S0378-3812(01)00523-4
– ident: e_1_3_2_4_2
  doi: 10.1016/j.ensm.2016.11.004
– ident: e_1_3_2_18_2
  doi: 10.1039/D1EE00354B
– ident: e_1_3_2_8_2
  doi: 10.1016/j.rser.2014.04.018
– ident: e_1_3_2_56_2
  doi: 10.1002/cssc.201803045
– ident: e_1_3_2_14_2
  doi: 10.1016/j.electacta.2017.08.178
– ident: e_1_3_2_16_2
– ident: e_1_3_2_51_2
  doi: 10.1038/s41467-022-31523-w
– ident: e_1_3_2_43_2
  doi: 10.1021/jacs.2c04223
– ident: e_1_3_2_30_2
  doi: 10.1016/S0378-3812(02)00278-9
– ident: e_1_3_2_52_2
  doi: 10.1021/jacs.2c02798
– reference: 39325917 - Science. 2024 Sep 27;385(6716):1421-1422. doi: 10.1126/science.ads3699
SSID ssj0009593
Score 2.606188
Snippet The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient...
Editor’s summaryThe centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1438
SubjectTerms Cations
Electrochemical cells
Electrochemistry
Evaporators
Fresh water
Iron phosphates
Lithium
Lithium batteries
Magnesium
Oceans
Oxidation
Renewable energy
Saline water
Seawater
Title Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design
URI https://www.ncbi.nlm.nih.gov/pubmed/39325903
https://www.proquest.com/docview/3109931401
https://www.proquest.com/docview/3110400406
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZy2AvY-0-mq0bGuyhIzg4luxYj2m20o2ypxbCXoysjyXQJCW1GdvftD9yJ0uWldJAtxcTFEs2up_udPLd_RD6IONcpKwJaofVRFVCIwa6Mko4HTM-IsaKm2iLb9n5Ff06S2e93p8gaqmuyqH4fW9eyf9IFdpAriZL9h8k6weFBvgN8oUrSBiuD5LxxaKaL-rlABTsxnF-N-kipUnp8xQ8fCDBx6xvrlVTlnWwVEtwkVcq0hulBo4HR7SFA8xJPnTwcR1u49rqANiQ-o88gWh9tOLExhS0IQauW3DecNGED3yfdyloU5cg8iWazuuula_tmUHXsTYNswVf_1SL8LQCJG8-4IxDDewKIFv7Y5VubPgik5iEWplYJh8Hv2w8CtWs4WwPTDY4hfR-cxAQWKohlz9y6sz7VuHtOwbRhyk2DlKSFW6Awg3wCO0n4JSAVt2fnH46PdtZ5NmVkgqStNp32N4F7XBtmi3O5TP01PkmeGKBdoB6anWIHlu20l-H6MAJ8xafuGLlH5-jwmEQdxjEBoO4wSB2GMQcewxiwCDewiC-g0FsMIgtBl-gq7PPl9PzyJF2RIIkaRVplsYiT0vCSsYVbGh5ookScZmrmOeS5ZzIjJcJk2QsU2rKZGtCtWKpyOQYpu4l2lutV-oIYS1oKTSjQhtOBsOLkGoZs5yQTCqa6T4atpNYCFfR3hCrXBc7BNdHJ77DjS3msvvW41YqhVvxt4WposuIOZLoo_f-b9DHZlpgzta1uWfU2MU466NXVpr-WQScpZTF5PXD3-MNetIto2O0V21q9Ra2wVX5zqHvL0DXtvM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+extraction+from+brine+through+a+decoupled+and+membrane-free+electrochemical+cell+design&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Zhen&rft.au=Chen%2C+I-Chun&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.date=2024-09-27&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=385&rft.issue=6716&rft.spage=1438&rft.epage=1444&rft_id=info:doi/10.1126%2Fscience.adg8487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adg8487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon