Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design
The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 385; no. 6716; pp. 1438 - 1444 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
27.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.
The centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li
et al
. now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song
et al
. used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine |
---|---|
AbstractList | Editor’s summaryThe centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li et al. now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song et al. used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%. The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%. The centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing. The oceans contain substantial aggregate quantities of lithium salts, but the comparatively low concentration makes them hard to separate from sodium and magnesium (see the Perspective by Darling). Li et al . now demonstrate a method inspired by the batteries themselves. In this method, iron phosphate electrodes can selectively intercalate lithium from salt water and then release it into fresh water. Charge balance is provided by silver oxidation and reduction at paired counterelectrodes in each medium, keeping all other cations on the salt side. In a different approach, Song et al . used plants as an inspiration to create a solar transpirational evaporator that extracts, stores, and releases lithium powered by sunlight. —Jake S. Yeston and Marc S. Lavine The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%.The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient lithium extraction from harsh brines. In this work, we describe a decoupled membrane-free electrochemical cell that cycles lithium ions between iron-phosphate electrodes and features cathode (brine) and anode (fresh water) compartments that are isolated from each other yet electrochemically connected through a pair of silver/silver-halide redox electrodes. This design is compatible with harsh brines having magnesium/lithium molar ratios of up to 3258 and lithium concentrations down to 0.15 millimolar, enabling the production of battery-grade (>99.95% pure) lithium carbonate. Energy savings of up to ~21.5% were realized by efficiently harvesting the osmotic energy of the brines. A pilot-scale cell with an electrode surface area of 33.75 square meters was used to realize lithium extraction from Dead Sea brine with a recovery rate of 84.0%. |
Author | Liu, Xiaowei Li, Zhen Cao, Li Huang, Kuo-Wei Chen, I-Chun Lai, Zhiping |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0002-7048-9011 surname: Li fullname: Li, Zhen organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 2 givenname: I-Chun orcidid: 0000-0002-6602-6153 surname: Chen fullname: Chen, I-Chun organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 3 givenname: Li orcidid: 0000-0002-7087-9431 surname: Cao fullname: Cao, Li organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 4 givenname: Xiaowei orcidid: 0000-0002-2577-0701 surname: Liu fullname: Liu, Xiaowei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 5 givenname: Kuo-Wei orcidid: 0000-0003-1900-2658 surname: Huang fullname: Huang, Kuo-Wei organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 6 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39325903$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LAzEQxYNUtFbP3iTgxcvayWZ3uzlK8QsKXvQcsslsm7Kb1GQX9L83pfUiCIEc5veGN-9dkInzDgm5ZnDPWF7No7boNN4rs66LenFCpgxEmYkc-IRMAXiV1bAoz8lFjFuANBP8jJxzwfNSAJ8SubLDxo49xa8hKD1Y72gbfE-bYB3SYRP8uN5QRQ1qP-46NFQ5Q3vsm6AcZm1ApNihHoLXG-ytVh3V2HVJEO3aXZLTVnURr47_jHw8Pb4vX7LV2_Pr8mGV6eRkyFpRgq7LhotGKISqUnnLUUNTI6jaiFpxU6kmF4YvTFkIqNK8aFGUujKLdOeM3B327oL_HDEOsrdx7yOZ9GOUnDEoIL0qobd_0K0fg0vuEgVCcFYAS9TNkRqbHo3cBdur8C1_o0tAeQB08DEGbKW2g9oHmIK0nWQg9xXJY0XyWFHSzf_oflf_p_gBh6eXDA |
CitedBy_id | crossref_primary_10_1002_smtd_202401972 crossref_primary_10_1016_j_dwt_2025_101128 crossref_primary_10_1002_ange_202503644 crossref_primary_10_1016_j_desal_2025_118761 crossref_primary_10_1039_D4IM00159A crossref_primary_10_1039_D4MH01857E crossref_primary_10_1021_acsnano_4c18818 crossref_primary_10_1016_j_seppur_2025_132351 crossref_primary_10_1038_s44221_025_00398_8 crossref_primary_10_1002_ange_202423992 crossref_primary_10_1016_j_seppur_2025_132245 crossref_primary_10_1002_anie_202503644 crossref_primary_10_1002_anie_202423992 crossref_primary_10_1021_acselectrochem_4c00134 crossref_primary_10_3390_inorganics13010004 crossref_primary_10_1016_j_desal_2024_118419 crossref_primary_10_26599_NR_2025_94907261 crossref_primary_10_1126_science_ads3699 crossref_primary_10_1016_j_desal_2024_118515 crossref_primary_10_1021_acsnano_4c18135 crossref_primary_10_1038_s44221_025_00393_z |
Cites_doi | 10.1007/s11837-013-0666-4 10.1039/C5EE02985F 10.1016/j.hydromet.2014.03.010 10.1039/c2ee23036d 10.1016/j.joule.2020.05.017 10.1126/sciadv.abe9924 10.1038/s41565-022-01110-7 10.1021/acsnano.0c08628 10.1016/j.apcatb.2019.118426 10.1016/j.hydromet.2012.11.013 10.1016/S0378-7753(02)00234-3 10.1038/s41578-021-00300-4 10.1016/j.desal.2021.114935 10.1016/j.joule.2018.07.006 10.1126/science.1257443 10.1038/nature11876 10.1126/sciadv.1701069 10.1021/jacs.0c11251 10.1016/j.desal.2021.115326 10.1038/nature24670 10.1016/j.mineng.2019.106085 10.1038/s41467-020-14674-6 10.1039/C8EM00498F 10.1039/C3EE43823F 10.1038/s43017-022-00387-5 10.1016/j.mineng.2020.106743 10.1023/A:1017597321655 10.1016/j.rser.2018.03.002 10.1016/j.desal.2017.06.028 10.1038/nmat4876 10.1002/adma.201905440 10.1126/sciadv.abg2183 10.1016/j.renene.2023.119288 10.1016/j.electacta.2019.135285 10.1016/j.desal.2020.114621 10.1016/j.jallcom.2008.11.109 10.1021/ed075p1182 10.1021/jacs.1c00547 10.1038/s41560-019-0462-7 10.1038/d41586-021-02222-1 10.1016/j.desal.2022.115767 10.1002/adma.202108410 10.1038/s41570-017-0091 10.1038/s41467-019-11792-8 10.1016/j.desal.2021.115112 10.1016/j.rser.2011.11.023 10.1016/S0378-3812(01)00523-4 10.1016/j.ensm.2016.11.004 10.1039/D1EE00354B 10.1016/j.rser.2014.04.018 10.1002/cssc.201803045 10.1016/j.electacta.2017.08.178 10.1038/s41467-022-31523-w 10.1021/jacs.2c04223 10.1016/S0378-3812(02)00278-9 10.1021/jacs.2c02798 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adg8487 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1444 |
ExternalDocumentID | 39325903 10_1126_science_adg8487 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PV9 PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-f950c85b39b9ae066a2f3ec0b8e0a8d98a3d6ab29d37d549062f34fe95c6d7003 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 05:41:22 EDT 2025 Fri Jul 25 19:15:04 EDT 2025 Thu Apr 03 07:04:10 EDT 2025 Tue Jul 01 03:14:11 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6716 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-f950c85b39b9ae066a2f3ec0b8e0a8d98a3d6ab29d37d549062f34fe95c6d7003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1900-2658 0000-0002-2577-0701 0000-0002-7048-9011 0000-0002-6602-6153 0000-0001-9555-6009 0000-0002-7087-9431 |
PMID | 39325903 |
PQID | 3109931401 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3110400406 proquest_journals_3109931401 pubmed_primary_39325903 crossref_citationtrail_10_1126_science_adg8487 crossref_primary_10_1126_science_adg8487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 2024-Sep-27 20240927 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 39325917 - Science. 2024 Sep 27;385(6716):1421-1422. doi: 10.1126/science.ads3699 |
References_xml | – ident: e_1_3_2_5_2 doi: 10.1007/s11837-013-0666-4 – ident: e_1_3_2_24_2 doi: 10.1039/C5EE02985F – ident: e_1_3_2_62_2 doi: 10.1016/j.hydromet.2014.03.010 – ident: e_1_3_2_33_2 doi: 10.1039/c2ee23036d – ident: e_1_3_2_10_2 doi: 10.1016/j.joule.2020.05.017 – ident: e_1_3_2_6_2 – ident: e_1_3_2_50_2 doi: 10.1126/sciadv.abe9924 – ident: e_1_3_2_42_2 doi: 10.1038/s41565-022-01110-7 – ident: e_1_3_2_25_2 doi: 10.1021/acsnano.0c08628 – ident: e_1_3_2_39_2 doi: 10.1016/j.apcatb.2019.118426 – ident: e_1_3_2_13_2 doi: 10.1016/j.hydromet.2012.11.013 – ident: e_1_3_2_40_2 doi: 10.1016/S0378-7753(02)00234-3 – ident: e_1_3_2_22_2 doi: 10.1038/s41578-021-00300-4 – ident: e_1_3_2_54_2 doi: 10.1016/j.desal.2021.114935 – ident: e_1_3_2_12_2 doi: 10.1016/j.joule.2018.07.006 – ident: e_1_3_2_26_2 doi: 10.1126/science.1257443 – ident: e_1_3_2_46_2 doi: 10.1038/nature11876 – ident: e_1_3_2_41_2 doi: 10.1126/sciadv.1701069 – ident: e_1_3_2_47_2 doi: 10.1021/jacs.0c11251 – ident: e_1_3_2_55_2 doi: 10.1016/j.desal.2021.115326 – ident: e_1_3_2_19_2 doi: 10.1038/nature24670 – ident: e_1_3_2_17_2 – ident: e_1_3_2_36_2 doi: 10.1016/j.mineng.2019.106085 – ident: e_1_3_2_44_2 doi: 10.1038/s41467-020-14674-6 – ident: e_1_3_2_59_2 doi: 10.1039/C8EM00498F – ident: e_1_3_2_35_2 doi: 10.1039/C3EE43823F – ident: e_1_3_2_53_2 doi: 10.1038/s43017-022-00387-5 – ident: e_1_3_2_9_2 doi: 10.1016/j.mineng.2020.106743 – ident: e_1_3_2_31_2 doi: 10.1023/A:1017597321655 – ident: e_1_3_2_2_2 doi: 10.1016/j.rser.2018.03.002 – ident: e_1_3_2_21_2 doi: 10.1016/j.desal.2017.06.028 – ident: e_1_3_2_27_2 doi: 10.1038/nmat4876 – ident: e_1_3_2_38_2 – ident: e_1_3_2_11_2 doi: 10.1002/adma.201905440 – ident: e_1_3_2_48_2 doi: 10.1126/sciadv.abg2183 – ident: e_1_3_2_34_2 doi: 10.1016/j.renene.2023.119288 – ident: e_1_3_2_57_2 doi: 10.1016/j.electacta.2019.135285 – ident: e_1_3_2_61_2 doi: 10.1016/j.desal.2020.114621 – ident: e_1_3_2_60_2 doi: 10.1016/j.jallcom.2008.11.109 – ident: e_1_3_2_3_2 – ident: e_1_3_2_32_2 doi: 10.1021/ed075p1182 – ident: e_1_3_2_49_2 doi: 10.1021/jacs.1c00547 – ident: e_1_3_2_28_2 doi: 10.1038/s41560-019-0462-7 – ident: e_1_3_2_7_2 doi: 10.1038/d41586-021-02222-1 – ident: e_1_3_2_15_2 doi: 10.1016/j.desal.2022.115767 – ident: e_1_3_2_20_2 doi: 10.1002/adma.202108410 – ident: e_1_3_2_23_2 doi: 10.1038/s41570-017-0091 – ident: e_1_3_2_45_2 doi: 10.1038/s41467-019-11792-8 – ident: e_1_3_2_58_2 doi: 10.1016/j.desal.2021.115112 – ident: e_1_3_2_37_2 doi: 10.1016/j.rser.2011.11.023 – ident: e_1_3_2_29_2 doi: 10.1016/S0378-3812(01)00523-4 – ident: e_1_3_2_4_2 doi: 10.1016/j.ensm.2016.11.004 – ident: e_1_3_2_18_2 doi: 10.1039/D1EE00354B – ident: e_1_3_2_8_2 doi: 10.1016/j.rser.2014.04.018 – ident: e_1_3_2_56_2 doi: 10.1002/cssc.201803045 – ident: e_1_3_2_14_2 doi: 10.1016/j.electacta.2017.08.178 – ident: e_1_3_2_16_2 – ident: e_1_3_2_51_2 doi: 10.1038/s41467-022-31523-w – ident: e_1_3_2_43_2 doi: 10.1021/jacs.2c04223 – ident: e_1_3_2_30_2 doi: 10.1016/S0378-3812(02)00278-9 – ident: e_1_3_2_52_2 doi: 10.1021/jacs.2c02798 – reference: 39325917 - Science. 2024 Sep 27;385(6716):1421-1422. doi: 10.1126/science.ads3699 |
SSID | ssj0009593 |
Score | 2.606188 |
Snippet | The sustainability of lithium-based energy storage or conversion systems, e.g., lithium-ion batteries, can be enhanced by establishing methods of efficient... Editor’s summaryThe centrality of lithium batteries to renewable energy infrastructure has motivated vigorous research into more efficient lithium sourcing.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1438 |
SubjectTerms | Cations Electrochemical cells Electrochemistry Evaporators Fresh water Iron phosphates Lithium Lithium batteries Magnesium Oceans Oxidation Renewable energy Saline water Seawater |
Title | Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39325903 https://www.proquest.com/docview/3109931401 https://www.proquest.com/docview/3110400406 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZy2AvY-0-mq0bGuyhIzg4luxYj2m20o2ypxbCXoysjyXQJCW1GdvftD9yJ0uWldJAtxcTFEs2up_udPLd_RD6IONcpKwJaofVRFVCIwa6Mko4HTM-IsaKm2iLb9n5Ff06S2e93p8gaqmuyqH4fW9eyf9IFdpAriZL9h8k6weFBvgN8oUrSBiuD5LxxaKaL-rlABTsxnF-N-kipUnp8xQ8fCDBx6xvrlVTlnWwVEtwkVcq0hulBo4HR7SFA8xJPnTwcR1u49rqANiQ-o88gWh9tOLExhS0IQauW3DecNGED3yfdyloU5cg8iWazuuula_tmUHXsTYNswVf_1SL8LQCJG8-4IxDDewKIFv7Y5VubPgik5iEWplYJh8Hv2w8CtWs4WwPTDY4hfR-cxAQWKohlz9y6sz7VuHtOwbRhyk2DlKSFW6Awg3wCO0n4JSAVt2fnH46PdtZ5NmVkgqStNp32N4F7XBtmi3O5TP01PkmeGKBdoB6anWIHlu20l-H6MAJ8xafuGLlH5-jwmEQdxjEBoO4wSB2GMQcewxiwCDewiC-g0FsMIgtBl-gq7PPl9PzyJF2RIIkaRVplsYiT0vCSsYVbGh5ookScZmrmOeS5ZzIjJcJk2QsU2rKZGtCtWKpyOQYpu4l2lutV-oIYS1oKTSjQhtOBsOLkGoZs5yQTCqa6T4atpNYCFfR3hCrXBc7BNdHJ77DjS3msvvW41YqhVvxt4WposuIOZLoo_f-b9DHZlpgzta1uWfU2MU466NXVpr-WQScpZTF5PXD3-MNetIto2O0V21q9Ra2wVX5zqHvL0DXtvM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+extraction+from+brine+through+a+decoupled+and+membrane-free+electrochemical+cell+design&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li%2C+Zhen&rft.au=Chen%2C+I-Chun&rft.au=Cao%2C+Li&rft.au=Liu%2C+Xiaowei&rft.date=2024-09-27&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=385&rft.issue=6716&rft.spage=1438&rft.epage=1444&rft_id=info:doi/10.1126%2Fscience.adg8487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adg8487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |