SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model

Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is...

Full description

Saved in:
Bibliographic Details
Published inJOURNAL OF POWER ELECTRONICS Vol. 21; no. 11; pp. 1712 - 1723
Main Authors Zhang, Ji’ang, Wang, Ping, Gong, Qingrui, Cheng, Ze
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.11.2021
전력전자학회
Subjects
Online AccessGet full text
ISSN1598-2092
2093-4718
DOI10.1007/s43236-021-00307-8

Cover

Loading…
Abstract Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness.
AbstractList Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness.
Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness. KCI Citation Count: 3
Author Gong, Qingrui
Zhang, Ji’ang
Cheng, Ze
Wang, Ping
Author_xml – sequence: 1
  givenname: Ji’ang
  orcidid: 0000-0003-1451-729X
  surname: Zhang
  fullname: Zhang, Ji’ang
  organization: Department of Electrical Engineering, Tianjin University
– sequence: 2
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  organization: Department of Electrical Engineering, Tianjin University
– sequence: 3
  givenname: Qingrui
  surname: Gong
  fullname: Gong, Qingrui
  organization: Department of Electrical Engineering, Tianjin University
– sequence: 4
  givenname: Ze
  surname: Cheng
  fullname: Cheng, Ze
  email: chengze@tju.edu.cn
  organization: Department of Electrical Engineering, Tianjin University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002775272$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtOwzAQRS0EEqXwA6yyZWEY20njLBHiUQkJicfacpwJNSR2sV0k_h63YcWiq5m5undGc07IofMOCTlncMkA6qtYCi4WFDijAAJqKg_IjEMjaFkzeUhmrGokzQI_Jmcx2hZK4FxKkDPiXp4eCozJjjpZ7wrfF4NNK7sZ6XZsdUoYLMbcReyKLA2oYyri10aHLMfNeu1DKr7RJB-KUZuVdVhgCHkyflyji9Pm0Xc4nJKjXg8Rz_7qnLzd3b7ePNDHp_vlzfUjNYJXiWK3kJ1GrKpOtIz1vGYCkHeLpulro6EudSVb1oiOtRVAKWrDgZmmrbrsqUHMycW014VefRqrvLa7-u7VZ1DXz69L1UhZNQuWvXzymuBjDNirdcg4wo9ioLaA1QRYZcBqB1jJHJL_Qsam3aMpaDvsj4opGvMd945BffhNcBnHvtQvv-GTJg
CitedBy_id crossref_primary_10_1007_s11581_024_05914_6
crossref_primary_10_1016_j_energy_2024_134258
crossref_primary_10_1016_j_rser_2023_114264
crossref_primary_10_1016_j_energy_2025_134411
crossref_primary_10_3390_batteries9080413
crossref_primary_10_3390_en16248010
crossref_primary_10_1016_j_est_2022_105384
crossref_primary_10_1007_s40747_024_01458_4
crossref_primary_10_1007_s40747_023_01300_3
crossref_primary_10_1002_ente_202100767
crossref_primary_10_3390_batteries9020120
crossref_primary_10_1002_ese3_1506
crossref_primary_10_1016_j_est_2021_103849
crossref_primary_10_1016_j_est_2024_114112
crossref_primary_10_1016_j_est_2024_113086
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1016_j_ijoes_2024_100747
crossref_primary_10_1016_j_egyr_2023_04_264
crossref_primary_10_1007_s42835_024_01864_1
crossref_primary_10_3390_en15197416
crossref_primary_10_1016_j_energy_2024_131154
crossref_primary_10_1016_j_jechem_2024_06_024
crossref_primary_10_1007_s42835_023_01524_w
crossref_primary_10_1016_j_energy_2024_131398
crossref_primary_10_1016_j_heliyon_2024_e39121
crossref_primary_10_1016_j_electacta_2024_144449
crossref_primary_10_1109_TIM_2024_3417600
crossref_primary_10_1016_j_est_2025_115347
crossref_primary_10_3390_batteries9120565
crossref_primary_10_1088_1742_6596_2473_1_012020
crossref_primary_10_1016_j_jpowsour_2024_235713
crossref_primary_10_1016_j_est_2023_109014
crossref_primary_10_1109_TPWRD_2023_3276268
crossref_primary_10_1016_j_ijoes_2023_100137
crossref_primary_10_3390_s22134809
Cites_doi 10.1016/j.jpowsour.2013.03.129
10.3390/en13184858
10.1016/j.energy.2018.10.131
10.1504/IJPELEC.2020.108383
10.1016/j.jpowsour.2014.06.111
10.1108/IMDS-03-2019-0195
10.1016/j.microrel.2011.06.004
10.1016/j.electacta.2019.03.199
10.1063/1.3541879
10.1109/JESTPE.2020.3004972
10.1016/j.jpowsour.2018.11.072
10.1149/1.2221597
10.1016/j.pnsc.2018.11.002
10.1109/TPEL.2020.2978493
10.1109/TPEL.2015.2439578
10.1016/j.microrel.2012.12.003
10.1109/ACCESS.2020.3026552
10.3390/en8042889
10.1016/j.ijepes.2020.105883
10.1115/1.4042987
10.1016/j.jpowsour.2017.10.092
10.1016/j.microrel.2006.07.077
ContentType Journal Article
Copyright The Korean Institute of Power Electronics 2021
Copyright_xml – notice: The Korean Institute of Power Electronics 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s43236-021-00307-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-4718
EndPage 1723
ExternalDocumentID oai_kci_go_kr_ARTI_9885961
10_1007_s43236_021_00307_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873180
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID .UV
0R~
406
5GY
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYYP
ABAKF
ABECU
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADTPH
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
BGNMA
DBRKI
DPUIP
EBLON
EBS
FIGPU
FNLPD
GW5
IKXTQ
IWAJR
JDI
JZLTJ
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
OK1
P2P
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
ZMTXR
ZZE
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAUYE
ACYCR
ADKNI
AFQWF
AMYLF
KOV
ID FETCH-LOGICAL-c325t-ed68daee55d3b11f27130e2d699f7ca074a58b193d1b500437c201c9b5dd69703
ISSN 1598-2092
IngestDate Tue Nov 21 21:05:25 EST 2023
Tue Jul 01 03:15:35 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Fri Feb 21 02:47:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Lithium-ion battery
Least squares support machines
State of health
Error compensation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-ed68daee55d3b11f27130e2d699f7ca074a58b193d1b500437c201c9b5dd69703
Notes https://link.springer.com/article/10.1007/s43236-021-00307-8
ORCID 0000-0003-1451-729X
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9885961
crossref_primary_10_1007_s43236_021_00307_8
crossref_citationtrail_10_1007_s43236_021_00307_8
springer_journals_10_1007_s43236_021_00307_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
2021-11
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle JOURNAL OF POWER ELECTRONICS
PublicationTitleAbbrev J. Power Electron
PublicationYear 2021
Publisher Springer Singapore
전력전자학회
Publisher_xml – name: Springer Singapore
– name: 전력전자학회
References Doyle (CR5) 1993; 140
Tian, Xiong, Shen (CR15) 2020; 35
Xiong, Mo, Yan (CR18) 2021; 9
Yun, Qin, Shi (CR26) 2020; 13
Kim, Lee, Cho (CR3) 2012; 20
Liu, Wang, Chen (CR4) 2019; 166
Meng, Luo, Gao (CR19) 2016; 31
Gao, Huang (CR16) 2017; 17
Che, Liu, Cheng (CR14) 2021; 9
Pang, Mou, Guo (CR6) 2019; 307
Peiyao, Ze, Lei (CR17) 2019; 412
Manić, Danković (CR24) 2011; 51
Han, Ouyang, Languang (CR11) 2014; 268
Park, Ahn, Kang (CR2) 2020; 12
Xing, Ma, Tsui (CR7) 2013; 53
Birkl (CR20) 2017
Qin, Lv, Liu (CR8) 2020; 120
Tseng, Liang, Chang (CR9) 2015; 8
Wang, Miao, Pecht (CR10) 2013; 239
Choi, Lee (CR23) 2011; 98
CR21
Ma, Jiang, Tao (CR25) 2018; 28
Yang, Xu, Li (CR12) 2020; 119
Yi, Abdel-Monem, Gopalakris-Hnan (CR13) 2018; 373
Danković, Manić, Djorić (CR22) 2006; 46
Sarmah, Kalita, Garg (CR1) 2019; 16
Z Yun (307_CR26) 2020; 13
W Xiong (307_CR18) 2021; 9
KH Tseng (307_CR9) 2015; 8
D Gao (307_CR16) 2017; 17
C Liu (307_CR4) 2019; 166
SB Sarmah (307_CR1) 2019; 16
M Doyle (307_CR5) 1993; 140
L Yi (307_CR13) 2018; 373
D Danković (307_CR22) 2006; 46
J Tian (307_CR15) 2020; 35
X Han (307_CR11) 2014; 268
S Park (307_CR2) 2020; 12
Y Xing (307_CR7) 2013; 53
Q Yang (307_CR12) 2020; 119
D Manić (307_CR24) 2011; 51
Y Che (307_CR14) 2021; 9
G Peiyao (307_CR17) 2019; 412
307_CR21
C Birkl (307_CR20) 2017
J Meng (307_CR19) 2016; 31
D Wang (307_CR10) 2013; 239
C Choi (307_CR23) 2011; 98
J Kim (307_CR3) 2012; 20
W Qin (307_CR8) 2020; 120
S Ma (307_CR25) 2018; 28
H Pang (307_CR6) 2019; 307
References_xml – volume: 20
  start-page: 1526
  issue: 6
  year: 2012
  end-page: 1540
  ident: CR3
  article-title: Discharging/charging voltage-temperature pattern recognition for improved SOC/capacity estimation and SOH prediction at various temperatures
  publication-title: J. Power Electron.
– volume: 239
  start-page: 253
  year: 2013
  end-page: 264
  ident: CR10
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 13
  start-page: 4858
  year: 2020
  end-page: 4868
  ident: CR26
  article-title: State-of-health prediction for lithium-ion batteries based on a novel hybrid approach
  publication-title: Energies
  doi: 10.3390/en13184858
– volume: 166
  start-page: 796
  year: 2019
  end-page: 806
  ident: CR4
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.131
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  ident: CR2
  article-title: Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems
  publication-title: J. Power Electron.
  doi: 10.1504/IJPELEC.2020.108383
– volume: 268
  start-page: 658
  year: 2014
  end-page: 669
  ident: CR11
  article-title: A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity vehicle: capacity loss estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.111
– volume: 120
  start-page: 312
  issue: 2
  year: 2020
  end-page: 328
  ident: CR8
  article-title: Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network
  publication-title: Ind. Manag. Data Syst.
  doi: 10.1108/IMDS-03-2019-0195
– volume: 51
  start-page: 1540
  year: 2011
  end-page: 1543
  ident: CR24
  article-title: Prijić: NBTI related degradati on and lifetime estimation in p-channel power VDM OSFETs under the static and pulsed NBT stress condi tions
  publication-title: Microelectron. Reliabil.
  doi: 10.1016/j.microrel.2011.06.004
– year: 2017
  ident: CR20
  publication-title: Oxford Battery Degradation Dataset 1
– volume: 307
  start-page: 474
  year: 2019
  end-page: 487
  ident: CR6
  article-title: Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.199
– volume: 98
  start-page: 063504
  year: 2011
  end-page: 063508
  ident: CR23
  article-title: Bulk and interface trap generation under negative bias temperature instability stress of p-channel metal-oxide-semicondu ctor field-effect transistors with nitrogen and silicon incorporated HfO2 gate dielectrics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3541879
– volume: 9
  start-page: 4050
  issue: 4
  year: 2021
  end-page: 4061
  ident: CR14
  article-title: SOC and SOH identification method of Li-ion battery based on SWPSO-DRNN
  publication-title: IEEE J. Emerg. Select. Top. Power Electron.
  doi: 10.1109/JESTPE.2020.3004972
– volume: 412
  start-page: 442
  year: 2019
  end-page: 450
  ident: CR17
  article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.072
– volume: 140
  start-page: 1526
  issue: 6
  year: 1993
  end-page: 1534
  ident: CR5
  article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 28
  start-page: 653
  year: 2018
  end-page: 666
  ident: CR25
  article-title: Temperature effect and thermal impact in lithium-ion batteries: a review
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2018.11.002
– ident: CR21
– volume: 35
  start-page: 10363
  issue: 10
  year: 2020
  end-page: 10373
  ident: CR15
  article-title: State-of-health estimation based on differential temperature for lithium ion batteries
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2978493
– volume: 31
  start-page: 2226
  issue: 3
  year: 2016
  end-page: 2238
  ident: CR19
  article-title: Lithium polymer battery state-of-charge estimation based on adaptive unscented kalman filter and support vector machine
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2439578
– volume: 17
  start-page: 1288
  issue: 5
  year: 2017
  end-page: 1297
  ident: CR16
  article-title: Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization
  publication-title: J. Power Electron.
– volume: 53
  start-page: 811
  issue: 6
  year: 2013
  end-page: 820
  ident: CR7
  article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries
  publication-title: Microelectro. Rel.
  doi: 10.1016/j.microrel.2012.12.003
– volume: 9
  start-page: 1870
  year: 2021
  end-page: 1881
  ident: CR18
  article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026552
– volume: 8
  start-page: 2889
  issue: 4
  year: 2015
  end-page: 2897
  ident: CR9
  article-title: Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en8042889
– volume: 119
  start-page: 105883
  year: 2020
  end-page: 105891
  ident: CR12
  article-title: State-of-Health estimation of lithium-ion battery based on fractional impedance model and interval capacity
  publication-title: Elect. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.105883
– volume: 16
  start-page: 040801
  issue: 4
  year: 2019
  end-page: 040810
  ident: CR1
  article-title: A review of state of health (SoH) estima- tion of energy storage systems: challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles
  publication-title: J. Electrochem. Energy Convers. Storage.
  doi: 10.1115/1.4042987
– volume: 373
  start-page: 40
  year: 2018
  end-page: 53
  ident: CR13
  article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.092
– volume: 46
  start-page: 1828
  year: 2006
  end-page: 1833
  ident: CR22
  article-title: NBT stress-induce d degradation and lifetime estimation in p- channel power VDMOSFETs[J]
  publication-title: Microelectron. Reliabil.
  doi: 10.1016/j.microrel.2006.07.077
– volume: 412
  start-page: 442
  year: 2019
  ident: 307_CR17
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.072
– volume: 166
  start-page: 796
  year: 2019
  ident: 307_CR4
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.131
– volume: 46
  start-page: 1828
  year: 2006
  ident: 307_CR22
  publication-title: Microelectron. Reliabil.
  doi: 10.1016/j.microrel.2006.07.077
– volume: 373
  start-page: 40
  year: 2018
  ident: 307_CR13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.10.092
– volume: 35
  start-page: 10363
  issue: 10
  year: 2020
  ident: 307_CR15
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2978493
– volume: 31
  start-page: 2226
  issue: 3
  year: 2016
  ident: 307_CR19
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2439578
– volume: 17
  start-page: 1288
  issue: 5
  year: 2017
  ident: 307_CR16
  publication-title: J. Power Electron.
– volume: 120
  start-page: 312
  issue: 2
  year: 2020
  ident: 307_CR8
  publication-title: Ind. Manag. Data Syst.
  doi: 10.1108/IMDS-03-2019-0195
– ident: 307_CR21
– volume: 28
  start-page: 653
  year: 2018
  ident: 307_CR25
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2018.11.002
– volume: 8
  start-page: 2889
  issue: 4
  year: 2015
  ident: 307_CR9
  publication-title: Energies
  doi: 10.3390/en8042889
– volume: 98
  start-page: 063504
  year: 2011
  ident: 307_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3541879
– volume: 53
  start-page: 811
  issue: 6
  year: 2013
  ident: 307_CR7
  publication-title: Microelectro. Rel.
  doi: 10.1016/j.microrel.2012.12.003
– volume: 51
  start-page: 1540
  year: 2011
  ident: 307_CR24
  publication-title: Microelectron. Reliabil.
  doi: 10.1016/j.microrel.2011.06.004
– volume: 9
  start-page: 1870
  year: 2021
  ident: 307_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026552
– volume: 119
  start-page: 105883
  year: 2020
  ident: 307_CR12
  publication-title: Elect. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.105883
– volume: 9
  start-page: 4050
  issue: 4
  year: 2021
  ident: 307_CR14
  publication-title: IEEE J. Emerg. Select. Top. Power Electron.
  doi: 10.1109/JESTPE.2020.3004972
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 307_CR2
  publication-title: J. Power Electron.
  doi: 10.1504/IJPELEC.2020.108383
– volume: 20
  start-page: 1526
  issue: 6
  year: 2012
  ident: 307_CR3
  publication-title: J. Power Electron.
– volume: 13
  start-page: 4858
  year: 2020
  ident: 307_CR26
  publication-title: Energies
  doi: 10.3390/en13184858
– volume: 307
  start-page: 474
  year: 2019
  ident: 307_CR6
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.199
– volume: 239
  start-page: 253
  year: 2013
  ident: 307_CR10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 268
  start-page: 658
  year: 2014
  ident: 307_CR11
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.111
– volume: 140
  start-page: 1526
  issue: 6
  year: 1993
  ident: 307_CR5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221597
– volume: 16
  start-page: 040801
  issue: 4
  year: 2019
  ident: 307_CR1
  publication-title: J. Electrochem. Energy Convers. Storage.
  doi: 10.1115/1.4042987
– volume-title: Oxford Battery Degradation Dataset 1
  year: 2017
  ident: 307_CR20
SSID ssib040228808
ssj0003009991
ssib036278191
ssib001106542
Score 2.421393
Snippet Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1712
SubjectTerms Electrical Machines and Networks
Engineering
Original Article
Power Electronics
전기공학
Title SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model
URI https://link.springer.com/article/10.1007/s43236-021-00307-8
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002775272
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Power Electronics, 2021, 21(11), , pp.1712-1723
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKd8MNAgGiDJCFyJXJVCdxGl-2JaNMYoDYxMRNlB9nq7b-kDZccMUr8HC8AE_COY6TZpRNg15E8VGauD5f7e8454eQF4FUXiz7uS38XNieD7pIeF_ZqXBSIOzcTQUGCr899CfH3sGJOOl0fra8lsp1spd--2tcyf9oFWSgV4yS_QfNNjcFAZyDfuEIGobjjXT88d2EYZaMWcP7gFSfTctZ7cLAUZzoFJpgETNcsjJ8PXCBFXvY6kuJ0UdsVS6RhbOvegefzbR_pWKqKKCFPudg6lZP0HVzruCz77HeGgubsjoaIA7HRFC8td9wMK07J-P5KdMb1s38jPsWn1qCDyAoyil7vdjIPis2PlOmbfYrHG4C92qEWeHYGvatwLPCEZ4MRUsytmRoyb4VvrKkgH7ok6EVjNsztEQQVAX09pSWQdO1cZVtzcR8YNyzlWlWYc1bK0blJLLyXMdFb2zoq86bGWzWx9on4I9l81KC7vN0Gp0uovMiAjPkTSSDQEg0ynccsF6cLtkZ7o9GhxueynWhsLoNJGKAhnPd9jApUaCrKTY_1wR86bDPrc5eIlW35kW-9V5f06Wju-SOwQUdVqC9Rzpqfp8sAbB0A1i6yKkB7K_vP1DQQJVqqFIQaahSA1VqoEorqFIDVaqhSttQpRqqD8jxfng0ntim5Ieduo5Y2yrzgyxWSojMTTjPnQFwLOVkvpT5II2B78YiSMDoyHgidF6uFBhsKhORwTWwej0k3flirh4RGqsBfrCSHjAwFwYYLGnX536seJ7kcY_wesyi1OTDx7IsF1GTyVuPcwTjHOlxjoIeYc13llU2mGuvfg6q0Ni4GiM98rLWVGSmltU193x8k3vuktubf94T0l0XpXoK3HmdPDNI_A337baS
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOH+estimation+of+lithium%E2%80%91ion+batteries+based+on+least+squares+support+vector+machine+error+compensation+model&rft.jtitle=Journal+of+Power+Electronics%2C+21%2811%29&rft.au=Ji%E2%80%99ang+Zhang&rft.au=Ping+Wang&rft.au=Qingrui+Gong&rft.au=Ze+Cheng&rft.date=2021-11-01&rft.pub=%EC%A0%84%EB%A0%A5%EC%A0%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-2092&rft.eissn=2093-4718&rft.spage=1712&rft.epage=1723&rft_id=info:doi/10.1007%2Fs43236-021-00307-8&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9885961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon