SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model
Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is...
Saved in:
Published in | JOURNAL OF POWER ELECTRONICS Vol. 21; no. 11; pp. 1712 - 1723 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.11.2021
전력전자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-2092 2093-4718 |
DOI | 10.1007/s43236-021-00307-8 |
Cover
Loading…
Abstract | Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness. |
---|---|
AbstractList | Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness. Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a method for the SOH estimation of lithium-ion batteries based on the least squares support vector machine error compensation model (LSSVM-ECM) is proposed. This method achieves a combination of an empirical degradation model and a data-driven method. Battery degradation can be divided into overall trends and local differences, where the former can be described by an empirical degradation model (EDM) established by the historical data of the battery capacity, while the latter can be mapped by a least squares support vector machine (LSSVM). An LSSVM-ECM is established, where the input is the time interval of the equal charging voltage rising (DV_DT) and the output is the fitting error of the EDM, which represents the local difference of the capacity degradation to dynamically compensate the prediction results of the EDM that represents the global trend in terms of the capacity degradation. Validations are carried out with battery data provided by Oxford and NASA datasets. Results show that the proposed method has a high prediction accuracy and a strong robustness. KCI Citation Count: 3 |
Author | Gong, Qingrui Zhang, Ji’ang Cheng, Ze Wang, Ping |
Author_xml | – sequence: 1 givenname: Ji’ang orcidid: 0000-0003-1451-729X surname: Zhang fullname: Zhang, Ji’ang organization: Department of Electrical Engineering, Tianjin University – sequence: 2 givenname: Ping surname: Wang fullname: Wang, Ping organization: Department of Electrical Engineering, Tianjin University – sequence: 3 givenname: Qingrui surname: Gong fullname: Gong, Qingrui organization: Department of Electrical Engineering, Tianjin University – sequence: 4 givenname: Ze surname: Cheng fullname: Cheng, Ze email: chengze@tju.edu.cn organization: Department of Electrical Engineering, Tianjin University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002775272$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMtOwzAQRS0EEqXwA6yyZWEY20njLBHiUQkJicfacpwJNSR2sV0k_h63YcWiq5m5undGc07IofMOCTlncMkA6qtYCi4WFDijAAJqKg_IjEMjaFkzeUhmrGokzQI_Jmcx2hZK4FxKkDPiXp4eCozJjjpZ7wrfF4NNK7sZ6XZsdUoYLMbcReyKLA2oYyri10aHLMfNeu1DKr7RJB-KUZuVdVhgCHkyflyji9Pm0Xc4nJKjXg8Rz_7qnLzd3b7ePNDHp_vlzfUjNYJXiWK3kJ1GrKpOtIz1vGYCkHeLpulro6EudSVb1oiOtRVAKWrDgZmmrbrsqUHMycW014VefRqrvLa7-u7VZ1DXz69L1UhZNQuWvXzymuBjDNirdcg4wo9ioLaA1QRYZcBqB1jJHJL_Qsam3aMpaDvsj4opGvMd945BffhNcBnHvtQvv-GTJg |
CitedBy_id | crossref_primary_10_1007_s11581_024_05914_6 crossref_primary_10_1016_j_energy_2024_134258 crossref_primary_10_1016_j_rser_2023_114264 crossref_primary_10_1016_j_energy_2025_134411 crossref_primary_10_3390_batteries9080413 crossref_primary_10_3390_en16248010 crossref_primary_10_1016_j_est_2022_105384 crossref_primary_10_1007_s40747_024_01458_4 crossref_primary_10_1007_s40747_023_01300_3 crossref_primary_10_1002_ente_202100767 crossref_primary_10_3390_batteries9020120 crossref_primary_10_1002_ese3_1506 crossref_primary_10_1016_j_est_2021_103849 crossref_primary_10_1016_j_est_2024_114112 crossref_primary_10_1016_j_est_2024_113086 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1016_j_ijoes_2024_100747 crossref_primary_10_1016_j_egyr_2023_04_264 crossref_primary_10_1007_s42835_024_01864_1 crossref_primary_10_3390_en15197416 crossref_primary_10_1016_j_energy_2024_131154 crossref_primary_10_1016_j_jechem_2024_06_024 crossref_primary_10_1007_s42835_023_01524_w crossref_primary_10_1016_j_energy_2024_131398 crossref_primary_10_1016_j_heliyon_2024_e39121 crossref_primary_10_1016_j_electacta_2024_144449 crossref_primary_10_1109_TIM_2024_3417600 crossref_primary_10_1016_j_est_2025_115347 crossref_primary_10_3390_batteries9120565 crossref_primary_10_1088_1742_6596_2473_1_012020 crossref_primary_10_1016_j_jpowsour_2024_235713 crossref_primary_10_1016_j_est_2023_109014 crossref_primary_10_1109_TPWRD_2023_3276268 crossref_primary_10_1016_j_ijoes_2023_100137 crossref_primary_10_3390_s22134809 |
Cites_doi | 10.1016/j.jpowsour.2013.03.129 10.3390/en13184858 10.1016/j.energy.2018.10.131 10.1504/IJPELEC.2020.108383 10.1016/j.jpowsour.2014.06.111 10.1108/IMDS-03-2019-0195 10.1016/j.microrel.2011.06.004 10.1016/j.electacta.2019.03.199 10.1063/1.3541879 10.1109/JESTPE.2020.3004972 10.1016/j.jpowsour.2018.11.072 10.1149/1.2221597 10.1016/j.pnsc.2018.11.002 10.1109/TPEL.2020.2978493 10.1109/TPEL.2015.2439578 10.1016/j.microrel.2012.12.003 10.1109/ACCESS.2020.3026552 10.3390/en8042889 10.1016/j.ijepes.2020.105883 10.1115/1.4042987 10.1016/j.jpowsour.2017.10.092 10.1016/j.microrel.2006.07.077 |
ContentType | Journal Article |
Copyright | The Korean Institute of Power Electronics 2021 |
Copyright_xml | – notice: The Korean Institute of Power Electronics 2021 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s43236-021-00307-8 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-4718 |
EndPage | 1723 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9885961 10_1007_s43236_021_00307_8 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873180 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | .UV 0R~ 406 5GY 9ZL AACDK AAHNG AAJBT AASML AATNV AAYYP ABAKF ABECU ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADTPH ADYFF AEFQL AEMSY AENEX AESKC AGMZJ AGQEE AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW BGNMA DBRKI DPUIP EBLON EBS FIGPU FNLPD GW5 IKXTQ IWAJR JDI JZLTJ LLZTM M4Y MZR NPVJJ NQJWS NU0 OK1 P2P PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX ZMTXR ZZE AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAUYE ACYCR ADKNI AFQWF AMYLF KOV |
ID | FETCH-LOGICAL-c325t-ed68daee55d3b11f27130e2d699f7ca074a58b193d1b500437c201c9b5dd69703 |
ISSN | 1598-2092 |
IngestDate | Tue Nov 21 21:05:25 EST 2023 Tue Jul 01 03:15:35 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Fri Feb 21 02:47:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Lithium-ion battery Least squares support machines State of health Error compensation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-ed68daee55d3b11f27130e2d699f7ca074a58b193d1b500437c201c9b5dd69703 |
Notes | https://link.springer.com/article/10.1007/s43236-021-00307-8 |
ORCID | 0000-0003-1451-729X |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9885961 crossref_primary_10_1007_s43236_021_00307_8 crossref_citationtrail_10_1007_s43236_021_00307_8 springer_journals_10_1007_s43236_021_00307_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211100 2021-11-00 2021-11 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | JOURNAL OF POWER ELECTRONICS |
PublicationTitleAbbrev | J. Power Electron |
PublicationYear | 2021 |
Publisher | Springer Singapore 전력전자학회 |
Publisher_xml | – name: Springer Singapore – name: 전력전자학회 |
References | Doyle (CR5) 1993; 140 Tian, Xiong, Shen (CR15) 2020; 35 Xiong, Mo, Yan (CR18) 2021; 9 Yun, Qin, Shi (CR26) 2020; 13 Kim, Lee, Cho (CR3) 2012; 20 Liu, Wang, Chen (CR4) 2019; 166 Meng, Luo, Gao (CR19) 2016; 31 Gao, Huang (CR16) 2017; 17 Che, Liu, Cheng (CR14) 2021; 9 Pang, Mou, Guo (CR6) 2019; 307 Peiyao, Ze, Lei (CR17) 2019; 412 Manić, Danković (CR24) 2011; 51 Han, Ouyang, Languang (CR11) 2014; 268 Park, Ahn, Kang (CR2) 2020; 12 Xing, Ma, Tsui (CR7) 2013; 53 Birkl (CR20) 2017 Qin, Lv, Liu (CR8) 2020; 120 Tseng, Liang, Chang (CR9) 2015; 8 Wang, Miao, Pecht (CR10) 2013; 239 Choi, Lee (CR23) 2011; 98 CR21 Ma, Jiang, Tao (CR25) 2018; 28 Yang, Xu, Li (CR12) 2020; 119 Yi, Abdel-Monem, Gopalakris-Hnan (CR13) 2018; 373 Danković, Manić, Djorić (CR22) 2006; 46 Sarmah, Kalita, Garg (CR1) 2019; 16 Z Yun (307_CR26) 2020; 13 W Xiong (307_CR18) 2021; 9 KH Tseng (307_CR9) 2015; 8 D Gao (307_CR16) 2017; 17 C Liu (307_CR4) 2019; 166 SB Sarmah (307_CR1) 2019; 16 M Doyle (307_CR5) 1993; 140 L Yi (307_CR13) 2018; 373 D Danković (307_CR22) 2006; 46 J Tian (307_CR15) 2020; 35 X Han (307_CR11) 2014; 268 S Park (307_CR2) 2020; 12 Y Xing (307_CR7) 2013; 53 Q Yang (307_CR12) 2020; 119 D Manić (307_CR24) 2011; 51 Y Che (307_CR14) 2021; 9 G Peiyao (307_CR17) 2019; 412 307_CR21 C Birkl (307_CR20) 2017 J Meng (307_CR19) 2016; 31 D Wang (307_CR10) 2013; 239 C Choi (307_CR23) 2011; 98 J Kim (307_CR3) 2012; 20 W Qin (307_CR8) 2020; 120 S Ma (307_CR25) 2018; 28 H Pang (307_CR6) 2019; 307 |
References_xml | – volume: 20 start-page: 1526 issue: 6 year: 2012 end-page: 1540 ident: CR3 article-title: Discharging/charging voltage-temperature pattern recognition for improved SOC/capacity estimation and SOH prediction at various temperatures publication-title: J. Power Electron. – volume: 239 start-page: 253 year: 2013 end-page: 264 ident: CR10 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 13 start-page: 4858 year: 2020 end-page: 4868 ident: CR26 article-title: State-of-health prediction for lithium-ion batteries based on a novel hybrid approach publication-title: Energies doi: 10.3390/en13184858 – volume: 166 start-page: 796 year: 2019 end-page: 806 ident: CR4 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system publication-title: Energy doi: 10.1016/j.energy.2018.10.131 – volume: 12 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR2 article-title: Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems publication-title: J. Power Electron. doi: 10.1504/IJPELEC.2020.108383 – volume: 268 start-page: 658 year: 2014 end-page: 669 ident: CR11 article-title: A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity vehicle: capacity loss estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.111 – volume: 120 start-page: 312 issue: 2 year: 2020 end-page: 328 ident: CR8 article-title: Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network publication-title: Ind. Manag. Data Syst. doi: 10.1108/IMDS-03-2019-0195 – volume: 51 start-page: 1540 year: 2011 end-page: 1543 ident: CR24 article-title: Prijić: NBTI related degradati on and lifetime estimation in p-channel power VDM OSFETs under the static and pulsed NBT stress condi tions publication-title: Microelectron. Reliabil. doi: 10.1016/j.microrel.2011.06.004 – year: 2017 ident: CR20 publication-title: Oxford Battery Degradation Dataset 1 – volume: 307 start-page: 474 year: 2019 end-page: 487 ident: CR6 article-title: Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.199 – volume: 98 start-page: 063504 year: 2011 end-page: 063508 ident: CR23 article-title: Bulk and interface trap generation under negative bias temperature instability stress of p-channel metal-oxide-semicondu ctor field-effect transistors with nitrogen and silicon incorporated HfO2 gate dielectrics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3541879 – volume: 9 start-page: 4050 issue: 4 year: 2021 end-page: 4061 ident: CR14 article-title: SOC and SOH identification method of Li-ion battery based on SWPSO-DRNN publication-title: IEEE J. Emerg. Select. Top. Power Electron. doi: 10.1109/JESTPE.2020.3004972 – volume: 412 start-page: 442 year: 2019 end-page: 450 ident: CR17 article-title: A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.072 – volume: 140 start-page: 1526 issue: 6 year: 1993 end-page: 1534 ident: CR5 article-title: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221597 – volume: 28 start-page: 653 year: 2018 end-page: 666 ident: CR25 article-title: Temperature effect and thermal impact in lithium-ion batteries: a review publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2018.11.002 – ident: CR21 – volume: 35 start-page: 10363 issue: 10 year: 2020 end-page: 10373 ident: CR15 article-title: State-of-health estimation based on differential temperature for lithium ion batteries publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2978493 – volume: 31 start-page: 2226 issue: 3 year: 2016 end-page: 2238 ident: CR19 article-title: Lithium polymer battery state-of-charge estimation based on adaptive unscented kalman filter and support vector machine publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2439578 – volume: 17 start-page: 1288 issue: 5 year: 2017 end-page: 1297 ident: CR16 article-title: Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization publication-title: J. Power Electron. – volume: 53 start-page: 811 issue: 6 year: 2013 end-page: 820 ident: CR7 article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries publication-title: Microelectro. Rel. doi: 10.1016/j.microrel.2012.12.003 – volume: 9 start-page: 1870 year: 2021 end-page: 1881 ident: CR18 article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026552 – volume: 8 start-page: 2889 issue: 4 year: 2015 end-page: 2897 ident: CR9 article-title: Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries publication-title: Energies doi: 10.3390/en8042889 – volume: 119 start-page: 105883 year: 2020 end-page: 105891 ident: CR12 article-title: State-of-Health estimation of lithium-ion battery based on fractional impedance model and interval capacity publication-title: Elect. Power Energy Syst. doi: 10.1016/j.ijepes.2020.105883 – volume: 16 start-page: 040801 issue: 4 year: 2019 end-page: 040810 ident: CR1 article-title: A review of state of health (SoH) estima- tion of energy storage systems: challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles publication-title: J. Electrochem. Energy Convers. Storage. doi: 10.1115/1.4042987 – volume: 373 start-page: 40 year: 2018 end-page: 53 ident: CR13 article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.092 – volume: 46 start-page: 1828 year: 2006 end-page: 1833 ident: CR22 article-title: NBT stress-induce d degradation and lifetime estimation in p- channel power VDMOSFETs[J] publication-title: Microelectron. Reliabil. doi: 10.1016/j.microrel.2006.07.077 – volume: 412 start-page: 442 year: 2019 ident: 307_CR17 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.072 – volume: 166 start-page: 796 year: 2019 ident: 307_CR4 publication-title: Energy doi: 10.1016/j.energy.2018.10.131 – volume: 46 start-page: 1828 year: 2006 ident: 307_CR22 publication-title: Microelectron. Reliabil. doi: 10.1016/j.microrel.2006.07.077 – volume: 373 start-page: 40 year: 2018 ident: 307_CR13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.10.092 – volume: 35 start-page: 10363 issue: 10 year: 2020 ident: 307_CR15 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2978493 – volume: 31 start-page: 2226 issue: 3 year: 2016 ident: 307_CR19 publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2015.2439578 – volume: 17 start-page: 1288 issue: 5 year: 2017 ident: 307_CR16 publication-title: J. Power Electron. – volume: 120 start-page: 312 issue: 2 year: 2020 ident: 307_CR8 publication-title: Ind. Manag. Data Syst. doi: 10.1108/IMDS-03-2019-0195 – ident: 307_CR21 – volume: 28 start-page: 653 year: 2018 ident: 307_CR25 publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2018.11.002 – volume: 8 start-page: 2889 issue: 4 year: 2015 ident: 307_CR9 publication-title: Energies doi: 10.3390/en8042889 – volume: 98 start-page: 063504 year: 2011 ident: 307_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3541879 – volume: 53 start-page: 811 issue: 6 year: 2013 ident: 307_CR7 publication-title: Microelectro. Rel. doi: 10.1016/j.microrel.2012.12.003 – volume: 51 start-page: 1540 year: 2011 ident: 307_CR24 publication-title: Microelectron. Reliabil. doi: 10.1016/j.microrel.2011.06.004 – volume: 9 start-page: 1870 year: 2021 ident: 307_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026552 – volume: 119 start-page: 105883 year: 2020 ident: 307_CR12 publication-title: Elect. Power Energy Syst. doi: 10.1016/j.ijepes.2020.105883 – volume: 9 start-page: 4050 issue: 4 year: 2021 ident: 307_CR14 publication-title: IEEE J. Emerg. Select. Top. Power Electron. doi: 10.1109/JESTPE.2020.3004972 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 307_CR2 publication-title: J. Power Electron. doi: 10.1504/IJPELEC.2020.108383 – volume: 20 start-page: 1526 issue: 6 year: 2012 ident: 307_CR3 publication-title: J. Power Electron. – volume: 13 start-page: 4858 year: 2020 ident: 307_CR26 publication-title: Energies doi: 10.3390/en13184858 – volume: 307 start-page: 474 year: 2019 ident: 307_CR6 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.199 – volume: 239 start-page: 253 year: 2013 ident: 307_CR10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 268 start-page: 658 year: 2014 ident: 307_CR11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.111 – volume: 140 start-page: 1526 issue: 6 year: 1993 ident: 307_CR5 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221597 – volume: 16 start-page: 040801 issue: 4 year: 2019 ident: 307_CR1 publication-title: J. Electrochem. Energy Convers. Storage. doi: 10.1115/1.4042987 – volume-title: Oxford Battery Degradation Dataset 1 year: 2017 ident: 307_CR20 |
SSID | ssib040228808 ssj0003009991 ssib036278191 ssib001106542 |
Score | 2.421393 |
Snippet | Accurate estimation of the state of health (SOH) of lithium-ion batteries is an important determinant of their safe and stable operation. In this paper, a... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1712 |
SubjectTerms | Electrical Machines and Networks Engineering Original Article Power Electronics 전기공학 |
Title | SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model |
URI | https://link.springer.com/article/10.1007/s43236-021-00307-8 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002775272 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Power Electronics, 2021, 21(11), , pp.1712-1723 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZKd8MNAgGiDJCFyJXJVCdxGl-2JaNMYoDYxMRNlB9nq7b-kDZccMUr8HC8AE_COY6TZpRNg15E8VGauD5f7e8454eQF4FUXiz7uS38XNieD7pIeF_ZqXBSIOzcTQUGCr899CfH3sGJOOl0fra8lsp1spd--2tcyf9oFWSgV4yS_QfNNjcFAZyDfuEIGobjjXT88d2EYZaMWcP7gFSfTctZ7cLAUZzoFJpgETNcsjJ8PXCBFXvY6kuJ0UdsVS6RhbOvegefzbR_pWKqKKCFPudg6lZP0HVzruCz77HeGgubsjoaIA7HRFC8td9wMK07J-P5KdMb1s38jPsWn1qCDyAoyil7vdjIPis2PlOmbfYrHG4C92qEWeHYGvatwLPCEZ4MRUsytmRoyb4VvrKkgH7ok6EVjNsztEQQVAX09pSWQdO1cZVtzcR8YNyzlWlWYc1bK0blJLLyXMdFb2zoq86bGWzWx9on4I9l81KC7vN0Gp0uovMiAjPkTSSDQEg0ynccsF6cLtkZ7o9GhxueynWhsLoNJGKAhnPd9jApUaCrKTY_1wR86bDPrc5eIlW35kW-9V5f06Wju-SOwQUdVqC9Rzpqfp8sAbB0A1i6yKkB7K_vP1DQQJVqqFIQaahSA1VqoEorqFIDVaqhSttQpRqqD8jxfng0ntim5Ieduo5Y2yrzgyxWSojMTTjPnQFwLOVkvpT5II2B78YiSMDoyHgidF6uFBhsKhORwTWwej0k3flirh4RGqsBfrCSHjAwFwYYLGnX536seJ7kcY_wesyi1OTDx7IsF1GTyVuPcwTjHOlxjoIeYc13llU2mGuvfg6q0Ni4GiM98rLWVGSmltU193x8k3vuktubf94T0l0XpXoK3HmdPDNI_A337baS |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOH+estimation+of+lithium%E2%80%91ion+batteries+based+on+least+squares+support+vector+machine+error+compensation+model&rft.jtitle=Journal+of+Power+Electronics%2C+21%2811%29&rft.au=Ji%E2%80%99ang+Zhang&rft.au=Ping+Wang&rft.au=Qingrui+Gong&rft.au=Ze+Cheng&rft.date=2021-11-01&rft.pub=%EC%A0%84%EB%A0%A5%EC%A0%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-2092&rft.eissn=2093-4718&rft.spage=1712&rft.epage=1723&rft_id=info:doi/10.1007%2Fs43236-021-00307-8&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9885961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2092&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2092&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2092&client=summon |