Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs

Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventiona...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 146; p. 103225
Main Authors Jang, Seowoo, Yoo, Soyoung, Kang, Namwoo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention. •This study proposes an RL-based generative design framework enhancing the diversity of topology optimized designs.•Proximal Policy Optimization as the learning framework is demonstrated in the case study of an automotive wheel design problem.•This study proposes a neural network to generate designs without topology optimization process, thus reducing complexity.
AbstractList Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention.
Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention. •This study proposes an RL-based generative design framework enhancing the diversity of topology optimized designs.•Proximal Policy Optimization as the learning framework is demonstrated in the case study of an automotive wheel design problem.•This study proposes a neural network to generate designs without topology optimization process, thus reducing complexity.
ArticleNumber 103225
Author Kang, Namwoo
Yoo, Soyoung
Jang, Seowoo
Author_xml – sequence: 1
  givenname: Seowoo
  surname: Jang
  fullname: Jang, Seowoo
  email: sjang@netlab.snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Republic of Korea
– sequence: 2
  givenname: Soyoung
  surname: Yoo
  fullname: Yoo, Soyoung
  email: ysy@sm.ac.kr
  organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University, Republic of Korea
– sequence: 3
  givenname: Namwoo
  surname: Kang
  fullname: Kang, Namwoo
  email: nwkang@kaist.ac.kr
  organization: The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Republic of Korea
BookMark eNp9kEFPAjEQhRuDiYD-AG9NPC-23XZ30ZNBRBMSEsO9Kd0plECLbSHBX28RTx44zUzyvjczr4c6zjtA6J6SASW0elwPtGoHjDCW55IxcYW6tKmHBasa0UFdQigpOG_EDerFuCaEMFoOuwgm4CCoZA-AXyHapcOLI_4E64wPGrbgEp6CCs665RMeu5VyOrc4rbI-QyHadMTe4Lnf-Y1fHvFsl-zWfmdL7_4s4y26NmoT4e6v9tH8bTwfvRfT2eRj9DItdMlEKkBTymreKi5Mw9lQCKhMq40B1QrSMlOKqtaqgqbhi1JpU4tS1FwoytpMlX30cLbdBf-1h5jk2u-Dyxslq7hohrxiLKvqs0oHH2MAI7VNv-emoOxGUiJPkcq1zJHKU6TyHGkm6T9yF-xWheNF5vnMQP77YCHIqC04Da0NoJNsvb1A_wDbqJGW
CitedBy_id crossref_primary_10_1007_s00158_022_03485_6
crossref_primary_10_32604_cmes_2023_025143
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1016_j_cad_2024_103748
crossref_primary_10_1016_j_cad_2024_103707
crossref_primary_10_1016_j_procir_2024_06_023
crossref_primary_10_1016_j_autcon_2024_105747
crossref_primary_10_30657_pea_2024_30_35
crossref_primary_10_1016_j_apm_2024_115738
crossref_primary_10_1115_1_4065488
crossref_primary_10_1007_s00158_022_03347_1
crossref_primary_10_3390_electronics12081946
crossref_primary_10_1016_j_procs_2022_12_239
crossref_primary_10_1016_j_icheatmasstransfer_2024_107991
crossref_primary_10_1093_jcde_qwae087
crossref_primary_10_1115_1_4062980
crossref_primary_10_1115_1_4065017
crossref_primary_10_1016_j_cad_2023_103531
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_aei_2024_102966
crossref_primary_10_1007_s10845_025_02568_7
crossref_primary_10_1016_j_engappai_2024_108185
crossref_primary_10_1016_j_aei_2024_102763
crossref_primary_10_1080_0305215X_2024_2434188
crossref_primary_10_1007_s10489_023_05261_5
crossref_primary_10_1115_1_4064408
crossref_primary_10_1007_s10010_023_00699_y
crossref_primary_10_3390_ma15144753
crossref_primary_10_1007_s00466_023_02358_z
crossref_primary_10_1007_s10409_024_24207_x
crossref_primary_10_1016_j_aei_2024_103074
crossref_primary_10_1016_j_autcon_2024_105284
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_1016_j_ijmecsci_2024_109736
crossref_primary_10_1115_1_4067089
crossref_primary_10_1007_s00170_025_15273_9
crossref_primary_10_1007_s00163_025_00445_1
crossref_primary_10_1038_s41598_024_82281_2
crossref_primary_10_1007_s00158_022_03386_8
crossref_primary_10_1177_16878132241238089
crossref_primary_10_1016_j_mfglet_2023_08_030
crossref_primary_10_3390_app15052753
crossref_primary_10_3724_j_fjyl_202405120259
crossref_primary_10_1016_j_autcon_2024_105411
crossref_primary_10_1002_sys_21666
crossref_primary_10_1016_j_eng_2024_04_024
crossref_primary_10_1007_s40964_024_00887_4
crossref_primary_10_1016_j_compstruc_2024_107474
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1016_j_cad_2023_103639
crossref_primary_10_3390_ai5040085
crossref_primary_10_1115_1_4056693
crossref_primary_10_1080_09544828_2024_2365118
Cites_doi 10.1016/j.autcon.2004.07.002
10.1111/j.1432-0436.1976.tb01478.x
10.1016/j.cad.2010.09.009
10.1142/S0219876218501165
10.1007/s00158-003-0300-0
10.1145/3355089.3356488
10.3390/designs4020010
10.1016/j.compstruct.2019.111385
10.1109/TMAG.2019.2901906
10.1016/j.cma.2020.112992
10.2514/6.2018-0804
10.1109/TC.2004.95
10.1016/j.cad.2018.12.008
10.1016/S0022-5193(75)80051-8
10.1115/1.4044229
10.1038/s41598-019-47154-z
10.1515/nanoph-2019-0474
10.1126/science.aat2663
10.1016/j.destud.2011.06.001
10.1021/acs.nanolett.7b03613
10.1038/nature14236
10.1115/1.4041319
10.1145/3173574.3174070
10.1080/0305215X.2019.1646258
10.1080/0305215X.2010.502935
10.1007/s00158-018-2101-5
10.1016/j.promfg.2020.02.251
10.1039/C9CP05621A
10.1007/s00158-019-02276-w
10.1007/s00158-011-0711-2
10.1109/TIP.2003.819861
10.1115/1.4044397
10.1016/j.icheatmasstransfer.2018.07.001
10.1145/3173574.3173943
10.1002/nme.5801
10.1109/CVPR.2015.7298965
10.1016/j.sbspro.2012.08.225
10.1007/s00158-016-1628-6
10.1007/s00158-020-02570-y
10.1109/CVPR.2016.90
10.1609/aaai.v31i1.11231
10.1007/s00158-021-02953-9
10.1016/j.cad.2019.05.038
10.1016/j.compstruc.2020.106283
10.1162/artl_a_00301
10.1145/3447548.3467414
10.1115/1.4048626
10.1016/j.cad.2011.06.011
10.1145/290941.291025
10.1364/OE.27.005874
10.1080/21681163.2015.1030775
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2022.103225
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2022_103225
S0010448522000239
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-ec11274da45f842955e6fdcffead50d2f3567ca6e884b3acf7535745a12d4da3
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Wed Aug 13 11:33:39 EDT 2025
Tue Jul 01 03:34:36 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Fri Feb 23 02:39:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Design diversity
Topology optimization
Generative design
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-ec11274da45f842955e6fdcffead50d2f3567ca6e884b3acf7535745a12d4da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2645894622
PQPubID 2045267
ParticipantIDs proquest_journals_2645894622
crossref_citationtrail_10_1016_j_cad_2022_103225
crossref_primary_10_1016_j_cad_2022_103225
elsevier_sciencedirect_doi_10_1016_j_cad_2022_103225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Schulman, Wolski, Dhariwal, Radford, Klimov (b69) 2017
Autodesk. 2021.
Zhou, Saitou (b54) 2017; 55
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3431–40.
Sasaki, Igarashi (b20) 2019; 55
Yu, Hur, Jung, Jang (b15) 2019; 59
Frazer (b26) 2002
Sun, Ma (b7) 2020; 4
Alaimo, Auricchio, Bianchini, Lanzarone (b47) 2018; 115
Sanchez-Lengeling, Aspuru-Guzik (b64) 2018; 361
Cang, Yao, Ren (b12) 2019; 109
Wang, Bovik, Sheikh, Simoncelli (b78) 2004; 13
Ng, Khong, Thwaites (b33) 2012; 51
Keshavarzzadeh, Kirby, Narayan (b49) 2020; 365
Kallioras, Lagaros (b5) 2020; 44
Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (b57) 2019; 141
Sajedian, Lee, Rho (b61) 2019; 9
Kumar, Suresh (b42) 2019
Krish (b2) 2011; 43
Sajedian, Badloe, Rho (b60) 2019; 27
Gao, Yang, Wu, Yuan, Fu, Lai (b77) 2019; 38
Wang, Tao, Zhu, Chen (b50) 2020
So, Badloe, Noh, Bravo-Abad, Rho (b63) 2020; 9
Chen, Ahmed (b35) 2021; 143
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Zhang, Chen, Peng, Zhou, Wang (b16) 2019
Guo T, Lohan DJ, Cang R, Ren MY, Allison JT. An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2018, 0804.
Yonekura, Hattori (b24) 2019; 60
.
Abueidda, Koric, Sobh (b17) 2020; 237
Oh, Jung, Kim, Lee, Kang (b4) 2019; 141
Cui, Turan, Sayer (b58) 2012; 44
Singh, Gu (b3) 2012; 33
Liu, Tovar, Nutwell, Detwiler (b41) 2015
Li, Malik (b23) 2016
Li, Cheng, Jia, Shi (b14) 2019; 229
Badloe, Kim, Rho (b62) 2020; 22
Kingma, Welling (b79) 2013
Caldas (b29) 2001
Lei, Liu, Du, Zhang, Guo (b45) 2019; 86
Meinhardt (b28) 1976; 6
Dong, Ho, Yu, Fu, Paniagua-Dominguez, Wang (b59) 2017; 17
Nobari AH, Chen W, Ahmed F. PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Invese Design. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021, p. 606–16.
Ronneberger, Fischer, Brox (b55) 2015
Carbonell J, Goldstein J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceeding of the 21st annual international ACM SIGIR conference on research and development in information retrieval. 1998, p. 335–6.
Lin, Hong, Liu, Li, Wang (b10) 2018; 97
Wang, Yang, Chattopadhyay (b32) 2015
Oh, Jung, Lee, Kang (b21) 2018
Mitra, Saxena, McCluskey (b30) 2004; 53
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b66) 2015; 518
Ha (b25) 2019; 25
Vlah, Žavbi, Vukašinović (b38) 2020
Bendsoe, Sigmund (b36) 2013
Li, Huang, Li, Zheng, Hong (b13) 2019; 115
Chen XA, Tao Y, Wang G, Kang R, Grossman T, Coros S, et al. Forte: User-driven generative design. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12.
Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. 2016, p. 1928–37.
Tire Rack. 2018.
Sosnovik, Oseledets (b11) 2017
Hoyer, Sohl-Dickstein, Greydanus (b19) 2019
Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: International conference on machine learning. 2015a, p. 1889–97.
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017.
Yoo, Lee, Kim, Hwang, Park, Kang (b22) 2021; 64
Xiao, Lu, Breitkopf, Raghavan, Dutta, Zhang (b48) 2020
Schulman, Moritz, Levine, Jordan, Abbeel (b71) 2015
Van Hasselt, Guez, Silver (b67) 2016
Rawat, Shen (b56) 2019
Ulu, Zhang, Kara (b53) 2016; 4
Lindenmayer (b27) 1975; 54
Xiao, Chu, Gao, Li (b44) 2019; 16
Kazi, Grossman, Cheong, Hashemi, Fitzmaurice (b40) 2017
Kingma, Ba (b76) 2014
Matejka J, Glueck M, Bradner E, Hashemi A, Grossman T, Fitzmaurice G. Dream lens: Exploration and visualization of large-scale generative design datasets. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12.
Shea, Aish, Gourtovaia (b1) 2005; 14
Strömberg (b46) 2020; 52
Yildiz, Öztürk, Kaya, Öztürk (b51) 2003; 25
Patel, Choi (b52) 2012; 45
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra (b65) 2013
Kunakote, Bureerat (b37) 2011; 43
Qiu, Quhao, Shutian, Rui (b43) 2020
Banga, Gehani, Bhilare, Patel, Kara (b9) 2018
Lovric (b31) 1994
Kazi (10.1016/j.cad.2022.103225_b40) 2017
Li (10.1016/j.cad.2022.103225_b14) 2019; 229
Liu (10.1016/j.cad.2022.103225_b41) 2015
Banga (10.1016/j.cad.2022.103225_b9) 2018
Xiao (10.1016/j.cad.2022.103225_b44) 2019; 16
Kumar (10.1016/j.cad.2022.103225_b42) 2019
Alaimo (10.1016/j.cad.2022.103225_b47) 2018; 115
Kallioras (10.1016/j.cad.2022.103225_b5) 2020; 44
Wang (10.1016/j.cad.2022.103225_b50) 2020
Shea (10.1016/j.cad.2022.103225_b1) 2005; 14
Ha (10.1016/j.cad.2022.103225_b25) 2019; 25
Mnih (10.1016/j.cad.2022.103225_b66) 2015; 518
Oh (10.1016/j.cad.2022.103225_b4) 2019; 141
Ng (10.1016/j.cad.2022.103225_b33) 2012; 51
Sajedian (10.1016/j.cad.2022.103225_b61) 2019; 9
10.1016/j.cad.2022.103225_b68
Abueidda (10.1016/j.cad.2022.103225_b17) 2020; 237
Li (10.1016/j.cad.2022.103225_b13) 2019; 115
Qiu (10.1016/j.cad.2022.103225_b43) 2020
Dong (10.1016/j.cad.2022.103225_b59) 2017; 17
Schulman (10.1016/j.cad.2022.103225_b71) 2015
Sanchez-Lengeling (10.1016/j.cad.2022.103225_b64) 2018; 361
Singh (10.1016/j.cad.2022.103225_b3) 2012; 33
Zhang (10.1016/j.cad.2022.103225_b16) 2019
Van Hasselt (10.1016/j.cad.2022.103225_b67) 2016
Gao (10.1016/j.cad.2022.103225_b77) 2019; 38
Kunakote (10.1016/j.cad.2022.103225_b37) 2011; 43
Krish (10.1016/j.cad.2022.103225_b2) 2011; 43
Zhou (10.1016/j.cad.2022.103225_b54) 2017; 55
Sun (10.1016/j.cad.2022.103225_b7) 2020; 4
Bendsoe (10.1016/j.cad.2022.103225_b36) 2013
10.1016/j.cad.2022.103225_b39
Hoyer (10.1016/j.cad.2022.103225_b19) 2019
Lindenmayer (10.1016/j.cad.2022.103225_b27) 1975; 54
10.1016/j.cad.2022.103225_b34
10.1016/j.cad.2022.103225_b73
10.1016/j.cad.2022.103225_b74
10.1016/j.cad.2022.103225_b75
Schulman (10.1016/j.cad.2022.103225_b69) 2017
Wang (10.1016/j.cad.2022.103225_b78) 2004; 13
Patel (10.1016/j.cad.2022.103225_b52) 2012; 45
Sosnovik (10.1016/j.cad.2022.103225_b11) 2017
10.1016/j.cad.2022.103225_b70
Ulu (10.1016/j.cad.2022.103225_b53) 2016; 4
10.1016/j.cad.2022.103225_b72
Sasaki (10.1016/j.cad.2022.103225_b20) 2019; 55
Lee (10.1016/j.cad.2022.103225_b57) 2019; 141
So (10.1016/j.cad.2022.103225_b63) 2020; 9
Frazer (10.1016/j.cad.2022.103225_b26) 2002
Keshavarzzadeh (10.1016/j.cad.2022.103225_b49) 2020; 365
Mitra (10.1016/j.cad.2022.103225_b30) 2004; 53
Chen (10.1016/j.cad.2022.103225_b35) 2021; 143
Lovric (10.1016/j.cad.2022.103225_b31) 1994
Mnih (10.1016/j.cad.2022.103225_b65) 2013
Meinhardt (10.1016/j.cad.2022.103225_b28) 1976; 6
Cang (10.1016/j.cad.2022.103225_b12) 2019; 109
Lei (10.1016/j.cad.2022.103225_b45) 2019; 86
Sajedian (10.1016/j.cad.2022.103225_b60) 2019; 27
Kingma (10.1016/j.cad.2022.103225_b76) 2014
Yildiz (10.1016/j.cad.2022.103225_b51) 2003; 25
10.1016/j.cad.2022.103225_b6
Lin (10.1016/j.cad.2022.103225_b10) 2018; 97
10.1016/j.cad.2022.103225_b80
Caldas (10.1016/j.cad.2022.103225_b29) 2001
Vlah (10.1016/j.cad.2022.103225_b38) 2020
Strömberg (10.1016/j.cad.2022.103225_b46) 2020; 52
10.1016/j.cad.2022.103225_b8
Ronneberger (10.1016/j.cad.2022.103225_b55) 2015
Kingma (10.1016/j.cad.2022.103225_b79) 2013
Cui (10.1016/j.cad.2022.103225_b58) 2012; 44
Yoo (10.1016/j.cad.2022.103225_b22) 2021; 64
Rawat (10.1016/j.cad.2022.103225_b56) 2019
10.1016/j.cad.2022.103225_b18
Yonekura (10.1016/j.cad.2022.103225_b24) 2019; 60
Xiao (10.1016/j.cad.2022.103225_b48) 2020
Oh (10.1016/j.cad.2022.103225_b21) 2018
Li (10.1016/j.cad.2022.103225_b23) 2016
Badloe (10.1016/j.cad.2022.103225_b62) 2020; 22
Wang (10.1016/j.cad.2022.103225_b32) 2015
Yu (10.1016/j.cad.2022.103225_b15) 2019; 59
References_xml – reference: Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: International conference on machine learning. 2015a, p. 1889–97.
– year: 2019
  ident: b16
  article-title: A deep convolutional neural network for topology optimization with strong generalization ability
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b78
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 25
  start-page: 251
  year: 2003
  end-page: 260
  ident: b51
  article-title: Integrated optimal topology design and shape optimization using neural networks
  publication-title: Struct Multidiscip Optim
– volume: 86
  year: 2019
  ident: b45
  article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework
  publication-title: J Appl Mech
– volume: 55
  start-page: 2073
  year: 2017
  end-page: 2086
  ident: b54
  article-title: Topology optimization of composite structures with data-driven resin filling time manufacturing constraint
  publication-title: Struct Multidiscip Optim
– volume: 43
  start-page: 88
  year: 2011
  end-page: 100
  ident: b2
  article-title: A practical generative design method
  publication-title: Comput Aided Des
– volume: 4
  start-page: 10
  year: 2020
  ident: b7
  article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization
  publication-title: Designs
– reference: Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3431–40.
– volume: 6
  start-page: 117
  year: 1976
  end-page: 123
  ident: b28
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
– start-page: 1
  year: 2020
  end-page: 22
  ident: b48
  article-title: On-the-fly model reduction for large-scale structural topology optimization using principal components analysis
  publication-title: Struct Multidiscip Optim
– year: 2018
  ident: b21
  article-title: Design automation by integrating generative adversarial networks and topology optimization
  publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 51753
– volume: 52
  start-page: 1136
  year: 2020
  end-page: 1148
  ident: b46
  article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels
  publication-title: Eng Optim
– year: 2014
  ident: b76
  article-title: Adam: A method for stochastic optimization
– volume: 229
  year: 2019
  ident: b14
  article-title: Dimension reduction and surrogate based topology optimization of periodic structures
  publication-title: Compos Struct
– reference: Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. 2016, p. 1928–37.
– year: 2015
  ident: b71
  article-title: High-dimensional continuous control using generalized advantage estimation
– volume: 44
  start-page: 591
  year: 2020
  end-page: 598
  ident: b5
  article-title: DzAI
  publication-title: Procedia Manuf
– volume: 237
  year: 2020
  ident: b17
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput Struct
– volume: 4
  start-page: 61
  year: 2016
  end-page: 72
  ident: b53
  article-title: A data-driven investigation and estimation of optimal topologies under variable loading configurations
  publication-title: Comput Methods Biomech Biomed Eng Imag Vis
– year: 2017
  ident: b69
  article-title: Proximal policy optimization algorithms
– volume: 64
  start-page: 2725
  year: 2021
  end-page: 2747
  ident: b22
  article-title: Integrating deep learning into CAD/CAE system: Generative design and evaluation of 3D conceptual wheel
  publication-title: Struct Multidiscip Optim
– start-page: 307
  year: 1994
  end-page: 326
  ident: b31
  article-title: Systematic and design diversity—Software techniques for hardware fault detection
  publication-title: European dependable computing conference
– year: 2016
  ident: b23
  article-title: Learning to optimize
– volume: 22
  start-page: 2337
  year: 2020
  end-page: 2342
  ident: b62
  article-title: Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning
  publication-title: Phys Chem Chem Phys
– volume: 60
  start-page: 1709
  year: 2019
  end-page: 1713
  ident: b24
  article-title: Framework for design optimization using deep reinforcement learning
  publication-title: Struct Multidiscip Optim
– reference: Chen XA, Tao Y, Wang G, Kang R, Grossman T, Coros S, et al. Forte: User-driven generative design. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12.
– volume: 9
  start-page: 1041
  year: 2020
  end-page: 1057
  ident: b63
  article-title: Deep learning enabled inverse design in nanophotonics
  publication-title: Nanophotonics
– reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017.
– year: 2018
  ident: b9
  article-title: 3D topology optimization using convolutional neural networks
– volume: 115
  start-page: 189
  year: 2018
  end-page: 208
  ident: b47
  article-title: Applying functional principal components to structural topology optimization
  publication-title: Internat J Numer Methods Engrg
– volume: 43
  start-page: 541
  year: 2011
  end-page: 557
  ident: b37
  article-title: Multi-objective topology optimization using evolutionary algorithms
  publication-title: Eng Optim
– volume: 361
  start-page: 360
  year: 2018
  end-page: 365
  ident: b64
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
– volume: 44
  start-page: 186
  year: 2012
  end-page: 195
  ident: b58
  article-title: Learning-based ship design optimization approach
  publication-title: Comput Aided Des
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
– volume: 33
  start-page: 185
  year: 2012
  end-page: 207
  ident: b3
  article-title: Towards an integrated generative design framework
  publication-title: Des Stud
– volume: 27
  start-page: 5874
  year: 2019
  end-page: 5883
  ident: b60
  article-title: Optimisation of colour generation from dielectric nanostructures using reinforcement learning
  publication-title: Opt Express
– reference: Autodesk. 2021.
– year: 2019
  ident: b19
  article-title: Neural reparameterization improves structural optimization
– year: 2019
  ident: b56
  article-title: Application of adversarial networks for 3d structural topology optimization (No. 2019-01-0829)
– reference: Tire Rack. 2018.
– volume: 16
  year: 2019
  ident: b44
  article-title: A hybrid method for density-related topology optimization
  publication-title: Int J Comput Methods
– reference: Carbonell J, Goldstein J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceeding of the 21st annual international ACM SIGIR conference on research and development in information retrieval. 1998, p. 335–6.
– start-page: 253
  year: 2002
  end-page: 274
  ident: b26
  article-title: Creative design and the generative evolutionary paradigm
  publication-title: Creative evolutionary systems
– start-page: 401
  year: 2017
  end-page: 414
  ident: b40
  article-title: DreamSketch: Early stage 3D design explorations with sketching and generative design
  publication-title: UIST. Vol. 14
– year: 2020
  ident: b50
  article-title: Data-driven multiscale topology optimization using multi-response latent variable Gaussian process
  publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 84003
– year: 2001
  ident: b29
  article-title: An evolution-based generative design system: using adaptation to shape architectural form
– year: 2015
  ident: b41
  article-title: Towards nonlinear multimaterial topology optimization using unsupervised machine learning and metamodel-based optimization
  publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 57083
– volume: 54
  start-page: 3
  year: 1975
  end-page: 22
  ident: b27
  article-title: Developmental algorithms for multicellular organisms: A survey of l-systems
  publication-title: J Theoret Biol
– volume: 14
  start-page: 253
  year: 2005
  end-page: 264
  ident: b1
  article-title: Towards integrated performance-driven generative design tools
  publication-title: Autom Constr
– volume: 97
  start-page: 103
  year: 2018
  end-page: 109
  ident: b10
  article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach
  publication-title: Int Commun Heat Mass Transfer
– start-page: 451
  year: 2020
  end-page: 460
  ident: b38
  article-title: Evaluation of topology optimization and generative design tools as support for conceptual design
  publication-title: Proceedings of the design society: DESIGN conference. Vol. 1
– start-page: 1
  year: 2019
  end-page: 17
  ident: b42
  article-title: A density-and-strain-based K-clustering approach to microstructural topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 17
  start-page: 7620
  year: 2017
  end-page: 7628
  ident: b59
  article-title: Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space
  publication-title: Nano Lett
– volume: 53
  start-page: 1483
  year: 2004
  end-page: 1492
  ident: b30
  article-title: Efficient design diversity estimation for combinational circuits
  publication-title: IEEE Trans Comput
– volume: 109
  start-page: 12
  year: 2019
  end-page: 21
  ident: b12
  article-title: One-shot generation of near-optimal topology through theory-driven machine learning
  publication-title: Comput Aided Des
– reference: Matejka J, Glueck M, Bradner E, Hashemi A, Grossman T, Fitzmaurice G. Dream lens: Exploration and visualization of large-scale generative design datasets. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12.
– year: 2017
  ident: b11
  article-title: Neural networks for topology optimization
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: b61
  article-title: Double-deep Q-learning to increase the efficiency of metasurface holograms
  publication-title: Sci Rep
– volume: 143
  year: 2021
  ident: b35
  article-title: PaDGAN: Learning to generate high-quality novel designs
  publication-title: J Mech Des
– start-page: 112
  year: 2015
  end-page: 117
  ident: b32
  article-title: Architectural reliability estimation using design diversity
  publication-title: Sixteenth international symposium on quality electronic design
– year: 2016
  ident: b67
  article-title: Deep reinforcement learning with double q-learning
  publication-title: Thirtieth AAAI conference on artificial intelligence
– year: 2013
  ident: b65
  article-title: Playing atari with deep reinforcement learning
– volume: 115
  start-page: 172
  year: 2019
  end-page: 180
  ident: b13
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput Aided Des
– start-page: 1
  year: 2020
  end-page: 21
  ident: b43
  article-title: Clustering-based concurrent topology optimization with macrostructure, components, and materials
  publication-title: Struct Multidiscip Optim
– start-page: 234
  year: 2015
  end-page: 241
  ident: b55
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International conference on medical image computing and computer-assisted intervention
– year: 2013
  ident: b36
  article-title: Topology optimization: theory, methods, and applications
– volume: 38
  start-page: 1
  year: 2019
  end-page: 15
  ident: b77
  article-title: SDM-NET: Deep generative network for structured deformable mesh
  publication-title: ACM Trans Graph
– reference: .
– volume: 51
  start-page: 687
  year: 2012
  end-page: 691
  ident: b33
  article-title: A review of affective design towards video games
  publication-title: Procedia Soc Behav Sci
– reference: Guo T, Lohan DJ, Cang R, Ren MY, Allison JT. An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2018, 0804.
– reference: Nobari AH, Chen W, Ahmed F. PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Invese Design. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021, p. 606–16.
– volume: 59
  start-page: 787
  year: 2019
  end-page: 799
  ident: b15
  article-title: Deep learning for determining a near-optimal topological design without any iteration
  publication-title: Struct Multidiscip Optim
– volume: 141
  year: 2019
  ident: b57
  article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting
  publication-title: J Mech Des
– volume: 141
  year: 2019
  ident: b4
  article-title: Deep generative design: Integration of topology optimization and generative models
  publication-title: J Mech Des
– volume: 45
  start-page: 529
  year: 2012
  end-page: 543
  ident: b52
  article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks
  publication-title: Struct Multidiscip Optim
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b66
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 55
  start-page: 1
  year: 2019
  end-page: 5
  ident: b20
  article-title: Topology optimization accelerated by deep learning
  publication-title: IEEE Trans Magn
– volume: 365
  year: 2020
  ident: b49
  article-title: Stress-based topology optimization under uncertainty via simulation-based Gaussian process
  publication-title: Comput Methods Appl Mech Engrg
– volume: 25
  start-page: 352
  year: 2019
  end-page: 365
  ident: b25
  article-title: Reinforcement learning for improving agent design
  publication-title: Artif Life
– year: 2013
  ident: b79
  article-title: Auto-encoding variational bayes
– volume: 14
  start-page: 253
  issue: 2
  year: 2005
  ident: 10.1016/j.cad.2022.103225_b1
  article-title: Towards integrated performance-driven generative design tools
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2004.07.002
– volume: 6
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.cad.2022.103225_b28
  article-title: Morphogenesis of lines and nets
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1976.tb01478.x
– year: 2020
  ident: 10.1016/j.cad.2022.103225_b50
  article-title: Data-driven multiscale topology optimization using multi-response latent variable Gaussian process
– volume: 43
  start-page: 88
  issue: 1
  year: 2011
  ident: 10.1016/j.cad.2022.103225_b2
  article-title: A practical generative design method
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.09.009
– volume: 16
  issue: 08
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b44
  article-title: A hybrid method for density-related topology optimization
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876218501165
– volume: 25
  start-page: 251
  issue: 4
  year: 2003
  ident: 10.1016/j.cad.2022.103225_b51
  article-title: Integrated optimal topology design and shape optimization using neural networks
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-003-0300-0
– year: 2017
  ident: 10.1016/j.cad.2022.103225_b69
– year: 2016
  ident: 10.1016/j.cad.2022.103225_b67
  article-title: Deep reinforcement learning with double q-learning
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b77
  article-title: SDM-NET: Deep generative network for structured deformable mesh
  publication-title: ACM Trans Graph
  doi: 10.1145/3355089.3356488
– volume: 4
  start-page: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b7
  article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization
  publication-title: Designs
  doi: 10.3390/designs4020010
– volume: 229
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b14
  article-title: Dimension reduction and surrogate based topology optimization of periodic structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2019.111385
– ident: 10.1016/j.cad.2022.103225_b70
– volume: 55
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b20
  article-title: Topology optimization accelerated by deep learning
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2019.2901906
– volume: 365
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b49
  article-title: Stress-based topology optimization under uncertainty via simulation-based Gaussian process
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2020.112992
– year: 2017
  ident: 10.1016/j.cad.2022.103225_b11
– ident: 10.1016/j.cad.2022.103225_b18
  doi: 10.2514/6.2018-0804
– volume: 53
  start-page: 1483
  issue: 11
  year: 2004
  ident: 10.1016/j.cad.2022.103225_b30
  article-title: Efficient design diversity estimation for combinational circuits
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2004.95
– year: 2015
  ident: 10.1016/j.cad.2022.103225_b71
– year: 2013
  ident: 10.1016/j.cad.2022.103225_b36
– start-page: 234
  year: 2015
  ident: 10.1016/j.cad.2022.103225_b55
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 109
  start-page: 12
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b12
  article-title: One-shot generation of near-optimal topology through theory-driven machine learning
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2018.12.008
– year: 2019
  ident: 10.1016/j.cad.2022.103225_b56
– year: 2016
  ident: 10.1016/j.cad.2022.103225_b23
– ident: 10.1016/j.cad.2022.103225_b68
– volume: 54
  start-page: 3
  issue: 1
  year: 1975
  ident: 10.1016/j.cad.2022.103225_b27
  article-title: Developmental algorithms for multicellular organisms: A survey of l-systems
  publication-title: J Theoret Biol
  doi: 10.1016/S0022-5193(75)80051-8
– start-page: 1
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b42
  article-title: A density-and-strain-based K-clustering approach to microstructural topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 141
  issue: 11
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b4
  article-title: Deep generative design: Integration of topology optimization and generative models
  publication-title: J Mech Des
  doi: 10.1115/1.4044229
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b61
  article-title: Double-deep Q-learning to increase the efficiency of metasurface holograms
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47154-z
– volume: 9
  start-page: 1041
  issue: 5
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b63
  article-title: Deep learning enabled inverse design in nanophotonics
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0474
– volume: 361
  start-page: 360
  issue: 6400
  year: 2018
  ident: 10.1016/j.cad.2022.103225_b64
  article-title: Inverse molecular design using machine learning: Generative models for matter engineering
  publication-title: Science
  doi: 10.1126/science.aat2663
– year: 2019
  ident: 10.1016/j.cad.2022.103225_b16
– start-page: 401
  year: 2017
  ident: 10.1016/j.cad.2022.103225_b40
  article-title: DreamSketch: Early stage 3D design explorations with sketching and generative design
– volume: 33
  start-page: 185
  issue: 2
  year: 2012
  ident: 10.1016/j.cad.2022.103225_b3
  article-title: Towards an integrated generative design framework
  publication-title: Des Stud
  doi: 10.1016/j.destud.2011.06.001
– volume: 17
  start-page: 7620
  issue: 12
  year: 2017
  ident: 10.1016/j.cad.2022.103225_b59
  article-title: Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b03613
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.cad.2022.103225_b66
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 86
  issue: 1
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b45
  article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework
  publication-title: J Appl Mech
  doi: 10.1115/1.4041319
– ident: 10.1016/j.cad.2022.103225_b39
  doi: 10.1145/3173574.3174070
– volume: 52
  start-page: 1136
  issue: 7
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b46
  article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2019.1646258
– volume: 43
  start-page: 541
  issue: 5
  year: 2011
  ident: 10.1016/j.cad.2022.103225_b37
  article-title: Multi-objective topology optimization using evolutionary algorithms
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2010.502935
– volume: 59
  start-page: 787
  issue: 3
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b15
  article-title: Deep learning for determining a near-optimal topological design without any iteration
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2101-5
– volume: 44
  start-page: 591
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b5
  article-title: DzAI N: Deep learning based generative design
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2020.02.251
– volume: 22
  start-page: 2337
  issue: 4
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b62
  article-title: Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C9CP05621A
– volume: 60
  start-page: 1709
  issue: 4
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b24
  article-title: Framework for design optimization using deep reinforcement learning
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-019-02276-w
– year: 2014
  ident: 10.1016/j.cad.2022.103225_b76
– volume: 45
  start-page: 529
  issue: 4
  year: 2012
  ident: 10.1016/j.cad.2022.103225_b52
  article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0711-2
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.cad.2022.103225_b78
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– year: 2019
  ident: 10.1016/j.cad.2022.103225_b19
– ident: 10.1016/j.cad.2022.103225_b72
– start-page: 253
  year: 2002
  ident: 10.1016/j.cad.2022.103225_b26
  article-title: Creative design and the generative evolutionary paradigm
– volume: 141
  issue: 11
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b57
  article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting
  publication-title: J Mech Des
  doi: 10.1115/1.4044397
– volume: 97
  start-page: 103
  year: 2018
  ident: 10.1016/j.cad.2022.103225_b10
  article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2018.07.001
– ident: 10.1016/j.cad.2022.103225_b6
  doi: 10.1145/3173574.3173943
– volume: 115
  start-page: 189
  issue: 2
  year: 2018
  ident: 10.1016/j.cad.2022.103225_b47
  article-title: Applying functional principal components to structural topology optimization
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.5801
– ident: 10.1016/j.cad.2022.103225_b74
  doi: 10.1109/CVPR.2015.7298965
– volume: 51
  start-page: 687
  year: 2012
  ident: 10.1016/j.cad.2022.103225_b33
  article-title: A review of affective design towards video games
  publication-title: Procedia Soc Behav Sci
  doi: 10.1016/j.sbspro.2012.08.225
– volume: 55
  start-page: 2073
  issue: 6
  year: 2017
  ident: 10.1016/j.cad.2022.103225_b54
  article-title: Topology optimization of composite structures with data-driven resin filling time manufacturing constraint
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1628-6
– start-page: 1
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b48
  article-title: On-the-fly model reduction for large-scale structural topology optimization using principal components analysis
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-020-02570-y
– year: 2018
  ident: 10.1016/j.cad.2022.103225_b21
  article-title: Design automation by integrating generative adversarial networks and topology optimization
– ident: 10.1016/j.cad.2022.103225_b75
  doi: 10.1109/CVPR.2016.90
– start-page: 307
  year: 1994
  ident: 10.1016/j.cad.2022.103225_b31
  article-title: Systematic and design diversity—Software techniques for hardware fault detection
– year: 2013
  ident: 10.1016/j.cad.2022.103225_b79
– ident: 10.1016/j.cad.2022.103225_b8
– year: 2013
  ident: 10.1016/j.cad.2022.103225_b65
– ident: 10.1016/j.cad.2022.103225_b73
  doi: 10.1609/aaai.v31i1.11231
– volume: 64
  start-page: 2725
  issue: 4
  year: 2021
  ident: 10.1016/j.cad.2022.103225_b22
  article-title: Integrating deep learning into CAD/CAE system: Generative design and evaluation of 3D conceptual wheel
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-021-02953-9
– volume: 115
  start-page: 172
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b13
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2019.05.038
– volume: 237
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b17
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2020.106283
– year: 2015
  ident: 10.1016/j.cad.2022.103225_b41
  article-title: Towards nonlinear multimaterial topology optimization using unsupervised machine learning and metamodel-based optimization
– volume: 25
  start-page: 352
  issue: 4
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b25
  article-title: Reinforcement learning for improving agent design
  publication-title: Artif Life
  doi: 10.1162/artl_a_00301
– ident: 10.1016/j.cad.2022.103225_b34
  doi: 10.1145/3447548.3467414
– start-page: 1
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b43
  article-title: Clustering-based concurrent topology optimization with macrostructure, components, and materials
  publication-title: Struct Multidiscip Optim
– volume: 143
  issue: 3
  year: 2021
  ident: 10.1016/j.cad.2022.103225_b35
  article-title: PaDGAN: Learning to generate high-quality novel designs
  publication-title: J Mech Des
  doi: 10.1115/1.4048626
– start-page: 451
  year: 2020
  ident: 10.1016/j.cad.2022.103225_b38
  article-title: Evaluation of topology optimization and generative design tools as support for conceptual design
– volume: 44
  start-page: 186
  issue: 3
  year: 2012
  ident: 10.1016/j.cad.2022.103225_b58
  article-title: Learning-based ship design optimization approach
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2011.06.011
– year: 2018
  ident: 10.1016/j.cad.2022.103225_b9
– year: 2001
  ident: 10.1016/j.cad.2022.103225_b29
– ident: 10.1016/j.cad.2022.103225_b80
  doi: 10.1145/290941.291025
– volume: 27
  start-page: 5874
  issue: 4
  year: 2019
  ident: 10.1016/j.cad.2022.103225_b60
  article-title: Optimisation of colour generation from dielectric nanostructures using reinforcement learning
  publication-title: Opt Express
  doi: 10.1364/OE.27.005874
– start-page: 112
  year: 2015
  ident: 10.1016/j.cad.2022.103225_b32
  article-title: Architectural reliability estimation using design diversity
– volume: 4
  start-page: 61
  issue: 2
  year: 2016
  ident: 10.1016/j.cad.2022.103225_b53
  article-title: A data-driven investigation and estimation of optimal topologies under variable loading configurations
  publication-title: Comput Methods Biomech Biomed Eng Imag Vis
  doi: 10.1080/21681163.2015.1030775
SSID ssj0002139
Score 2.6163626
Snippet Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103225
SubjectTerms Artificial intelligence
Automotive wheels
Deep learning
Design
Design diversity
Design optimization
Design parameters
Generative design
Machine learning
Neural networks
Optimization
Reinforcement learning
Topology optimization
Title Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
URI https://dx.doi.org/10.1016/j.cad.2022.103225
https://www.proquest.com/docview/2645894622
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw6ehLVtNtndeit9UBUrSIXeQjab1Ipui62HXvztTh7rC-nB07JLEpbJ5JtJMvMNQmcJGMUWkWmQ0TgLaJykgRDarCsVkljGWdOW6bwdRoMHej1m4xLqFLkwJqzSY7_DdIvW_kvdS7M-n05Nji9sJWgCDoRlbTFJfJTGRssv3r_CPEgzdC4w4I1pXdxs2hgvKQxZKCEm9ZyYatl_26ZfKG1NT38HbXufEbfdb-2iksr30NY3JsF9pBx9tMEu3LVBGThd4XtleVGlPQLEnkp1col7-aOh2cgnGNw_3C1CM_BM45ErmrDCd4AlLz5J0w-5OECjfm_UGQS-gkIgQ8KWgZLgTsU0E5TpBCwPYyrSmdQa9Ic1MqJDFsVSRCpJaBoKqWHzwmLKRJNk0Cs8ROV8lqsjhBnsJLQy5HJam6vWFMSakVDAI1HQtIIahei49OzipsjFMy_CyJ44SJsbaXMn7Qo6_-wyd9Qa6xrTYj74D_3gAP3rulWLueN-cS44-IAsadGIkOP_jXqCNs2bi3usovLy9U2dgm-yTGtW-Wpoo311Mxh-AFeK4kU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5WPagH8Ylvc9CLUHebJm1X8CCusuv6AFlhb6FNk1XRKu6K7MUf5S90kqa-EA-Cp0KbhPIl_WbSzHwDsBmjUaxTmXoZizKPRXHqJYk235UKaCSjzLdlOk_PwuYlO-7ybgVey1wYE1bpuL_gdMvW7k7VoVl9uL42Ob64lWAxOhBWtaXuIivbaviM-7b-XquBk7xF6dFh56DpudICngwoH3hKop8RsSxhXMdIyZyrUGdSawSW1zKqAx5GMglVHLM0SKRGr55HjCc-zbBXgMOOwBhDtjBVE3ZePsJKqB8ULjfym3m78iTVxpTJxIiTUmpS3ampzv2zLfxmFaypO5qGKeejkv0ChhmoqHwWJj8pF86BKuSqDVeShg0CIemQXCirwyrtL0fipFt7u-QwvzKyHnmPoLtJGmUoCLnXpFMUaRiSc-SuO5cU6obsz0PnP2BdgNH8PleLQDjuXLQyYnZam6PdFGHNaJDgJVbYdAlqJXRCOjVzU1TjVpRhazcC0RYGbVGgvQTb710eCimP3xqzcj7El_Uo0NT81m21nDvhyKAv0OfkcZ2FlC7_bdQNGG92Tk_ESeusvQIT5okJHPf5KowOHp_UGvpFg3TdLkQC4p8X_hvkxx56
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Design+by+Reinforcement+Learning%3A+Enhancing+the+Diversity+of+Topology+Optimization+Designs&rft.jtitle=Computer+aided+design&rft.au=Jang%2C+Seowoo&rft.au=Yoo%2C+Soyoung&rft.au=Kang%2C+Namwoo&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=146&rft_id=info:doi/10.1016%2Fj.cad.2022.103225&rft.externalDocID=S0010448522000239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon