Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventiona...
Saved in:
Published in | Computer aided design Vol. 146; p. 103225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention.
•This study proposes an RL-based generative design framework enhancing the diversity of topology optimized designs.•Proximal Policy Optimization as the learning framework is demonstrated in the case study of an automotive wheel design problem.•This study proposes a neural network to generate designs without topology optimization process, thus reducing complexity. |
---|---|
AbstractList | Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention. Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many approaches, topology optimization-based generative designs aim to explore diverse topology designs, which cannot be represented by conventional parametric design approaches. Recently, data-driven topology optimization research has started to exploit artificial intelligence, such as deep learning or machine learning, to improve the capability of design exploration. This study proposes a reinforcement learning (RL) based generative design process, with reward functions maximizing the diversity of topology designs. We formulate generative design as a sequential problem of finding optimal design parameter combinations in accordance with a given reference design. Proximal Policy Optimization is used as the learning framework, which is demonstrated in the case study of an automotive wheel design problem. To reduce the heavy computational burden of the wheel topology optimization process required by our RL formulation, we approximate the optimization process with neural networks. With efficient data preprocessing/augmentation and neural architecture, the neural networks achieve a generalized performance and symmetricity-reserving characteristics. We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner. It is different from the previous approach using CPU which takes much more processing time and involving human intervention. •This study proposes an RL-based generative design framework enhancing the diversity of topology optimized designs.•Proximal Policy Optimization as the learning framework is demonstrated in the case study of an automotive wheel design problem.•This study proposes a neural network to generate designs without topology optimization process, thus reducing complexity. |
ArticleNumber | 103225 |
Author | Kang, Namwoo Yoo, Soyoung Jang, Seowoo |
Author_xml | – sequence: 1 givenname: Seowoo surname: Jang fullname: Jang, Seowoo email: sjang@netlab.snu.ac.kr organization: Department of Electrical and Computer Engineering, Seoul National University, Republic of Korea – sequence: 2 givenname: Soyoung surname: Yoo fullname: Yoo, Soyoung email: ysy@sm.ac.kr organization: Department of Mechanical Systems Engineering, Sookmyung Women’s University, Republic of Korea – sequence: 3 givenname: Namwoo surname: Kang fullname: Kang, Namwoo email: nwkang@kaist.ac.kr organization: The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology, Republic of Korea |
BookMark | eNp9kEFPAjEQhRuDiYD-AG9NPC-23XZ30ZNBRBMSEsO9Kd0plECLbSHBX28RTx44zUzyvjczr4c6zjtA6J6SASW0elwPtGoHjDCW55IxcYW6tKmHBasa0UFdQigpOG_EDerFuCaEMFoOuwgm4CCoZA-AXyHapcOLI_4E64wPGrbgEp6CCs665RMeu5VyOrc4rbI-QyHadMTe4Lnf-Y1fHvFsl-zWfmdL7_4s4y26NmoT4e6v9tH8bTwfvRfT2eRj9DItdMlEKkBTymreKi5Mw9lQCKhMq40B1QrSMlOKqtaqgqbhi1JpU4tS1FwoytpMlX30cLbdBf-1h5jk2u-Dyxslq7hohrxiLKvqs0oHH2MAI7VNv-emoOxGUiJPkcq1zJHKU6TyHGkm6T9yF-xWheNF5vnMQP77YCHIqC04Da0NoJNsvb1A_wDbqJGW |
CitedBy_id | crossref_primary_10_1007_s00158_022_03485_6 crossref_primary_10_32604_cmes_2023_025143 crossref_primary_10_1016_j_jobe_2024_110972 crossref_primary_10_1016_j_cad_2024_103748 crossref_primary_10_1016_j_cad_2024_103707 crossref_primary_10_1016_j_procir_2024_06_023 crossref_primary_10_1016_j_autcon_2024_105747 crossref_primary_10_30657_pea_2024_30_35 crossref_primary_10_1016_j_apm_2024_115738 crossref_primary_10_1115_1_4065488 crossref_primary_10_1007_s00158_022_03347_1 crossref_primary_10_3390_electronics12081946 crossref_primary_10_1016_j_procs_2022_12_239 crossref_primary_10_1016_j_icheatmasstransfer_2024_107991 crossref_primary_10_1093_jcde_qwae087 crossref_primary_10_1115_1_4062980 crossref_primary_10_1115_1_4065017 crossref_primary_10_1016_j_cad_2023_103531 crossref_primary_10_1093_jcde_qwad072 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_aei_2024_102966 crossref_primary_10_1007_s10845_025_02568_7 crossref_primary_10_1016_j_engappai_2024_108185 crossref_primary_10_1016_j_aei_2024_102763 crossref_primary_10_1080_0305215X_2024_2434188 crossref_primary_10_1007_s10489_023_05261_5 crossref_primary_10_1115_1_4064408 crossref_primary_10_1007_s10010_023_00699_y crossref_primary_10_3390_ma15144753 crossref_primary_10_1007_s00466_023_02358_z crossref_primary_10_1007_s10409_024_24207_x crossref_primary_10_1016_j_aei_2024_103074 crossref_primary_10_1016_j_autcon_2024_105284 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_1016_j_ijmecsci_2024_109736 crossref_primary_10_1115_1_4067089 crossref_primary_10_1007_s00170_025_15273_9 crossref_primary_10_1007_s00163_025_00445_1 crossref_primary_10_1038_s41598_024_82281_2 crossref_primary_10_1007_s00158_022_03386_8 crossref_primary_10_1177_16878132241238089 crossref_primary_10_1016_j_mfglet_2023_08_030 crossref_primary_10_3390_app15052753 crossref_primary_10_3724_j_fjyl_202405120259 crossref_primary_10_1016_j_autcon_2024_105411 crossref_primary_10_1002_sys_21666 crossref_primary_10_1016_j_eng_2024_04_024 crossref_primary_10_1007_s40964_024_00887_4 crossref_primary_10_1016_j_compstruc_2024_107474 crossref_primary_10_32604_cmes_2024_048118 crossref_primary_10_1016_j_cad_2023_103639 crossref_primary_10_3390_ai5040085 crossref_primary_10_1115_1_4056693 crossref_primary_10_1080_09544828_2024_2365118 |
Cites_doi | 10.1016/j.autcon.2004.07.002 10.1111/j.1432-0436.1976.tb01478.x 10.1016/j.cad.2010.09.009 10.1142/S0219876218501165 10.1007/s00158-003-0300-0 10.1145/3355089.3356488 10.3390/designs4020010 10.1016/j.compstruct.2019.111385 10.1109/TMAG.2019.2901906 10.1016/j.cma.2020.112992 10.2514/6.2018-0804 10.1109/TC.2004.95 10.1016/j.cad.2018.12.008 10.1016/S0022-5193(75)80051-8 10.1115/1.4044229 10.1038/s41598-019-47154-z 10.1515/nanoph-2019-0474 10.1126/science.aat2663 10.1016/j.destud.2011.06.001 10.1021/acs.nanolett.7b03613 10.1038/nature14236 10.1115/1.4041319 10.1145/3173574.3174070 10.1080/0305215X.2019.1646258 10.1080/0305215X.2010.502935 10.1007/s00158-018-2101-5 10.1016/j.promfg.2020.02.251 10.1039/C9CP05621A 10.1007/s00158-019-02276-w 10.1007/s00158-011-0711-2 10.1109/TIP.2003.819861 10.1115/1.4044397 10.1016/j.icheatmasstransfer.2018.07.001 10.1145/3173574.3173943 10.1002/nme.5801 10.1109/CVPR.2015.7298965 10.1016/j.sbspro.2012.08.225 10.1007/s00158-016-1628-6 10.1007/s00158-020-02570-y 10.1109/CVPR.2016.90 10.1609/aaai.v31i1.11231 10.1007/s00158-021-02953-9 10.1016/j.cad.2019.05.038 10.1016/j.compstruc.2020.106283 10.1162/artl_a_00301 10.1145/3447548.3467414 10.1115/1.4048626 10.1016/j.cad.2011.06.011 10.1145/290941.291025 10.1364/OE.27.005874 10.1080/21681163.2015.1030775 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2022.103225 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2022_103225 S0010448522000239 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-ec11274da45f842955e6fdcffead50d2f3567ca6e884b3acf7535745a12d4da3 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Wed Aug 13 11:33:39 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Fri Feb 23 02:39:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Design diversity Topology optimization Generative design Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-ec11274da45f842955e6fdcffead50d2f3567ca6e884b3acf7535745a12d4da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2645894622 |
PQPubID | 2045267 |
ParticipantIDs | proquest_journals_2645894622 crossref_citationtrail_10_1016_j_cad_2022_103225 crossref_primary_10_1016_j_cad_2022_103225 elsevier_sciencedirect_doi_10_1016_j_cad_2022_103225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Schulman, Wolski, Dhariwal, Radford, Klimov (b69) 2017 Autodesk. 2021. Zhou, Saitou (b54) 2017; 55 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3431–40. Sasaki, Igarashi (b20) 2019; 55 Yu, Hur, Jung, Jang (b15) 2019; 59 Frazer (b26) 2002 Sun, Ma (b7) 2020; 4 Alaimo, Auricchio, Bianchini, Lanzarone (b47) 2018; 115 Sanchez-Lengeling, Aspuru-Guzik (b64) 2018; 361 Cang, Yao, Ren (b12) 2019; 109 Wang, Bovik, Sheikh, Simoncelli (b78) 2004; 13 Ng, Khong, Thwaites (b33) 2012; 51 Keshavarzzadeh, Kirby, Narayan (b49) 2020; 365 Kallioras, Lagaros (b5) 2020; 44 Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (b57) 2019; 141 Sajedian, Lee, Rho (b61) 2019; 9 Kumar, Suresh (b42) 2019 Krish (b2) 2011; 43 Sajedian, Badloe, Rho (b60) 2019; 27 Gao, Yang, Wu, Yuan, Fu, Lai (b77) 2019; 38 Wang, Tao, Zhu, Chen (b50) 2020 So, Badloe, Noh, Bravo-Abad, Rho (b63) 2020; 9 Chen, Ahmed (b35) 2021; 143 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. Zhang, Chen, Peng, Zhou, Wang (b16) 2019 Guo T, Lohan DJ, Cang R, Ren MY, Allison JT. An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2018, 0804. Yonekura, Hattori (b24) 2019; 60 . Abueidda, Koric, Sobh (b17) 2020; 237 Oh, Jung, Kim, Lee, Kang (b4) 2019; 141 Cui, Turan, Sayer (b58) 2012; 44 Singh, Gu (b3) 2012; 33 Liu, Tovar, Nutwell, Detwiler (b41) 2015 Li, Malik (b23) 2016 Li, Cheng, Jia, Shi (b14) 2019; 229 Badloe, Kim, Rho (b62) 2020; 22 Kingma, Welling (b79) 2013 Caldas (b29) 2001 Lei, Liu, Du, Zhang, Guo (b45) 2019; 86 Meinhardt (b28) 1976; 6 Dong, Ho, Yu, Fu, Paniagua-Dominguez, Wang (b59) 2017; 17 Nobari AH, Chen W, Ahmed F. PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Invese Design. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021, p. 606–16. Ronneberger, Fischer, Brox (b55) 2015 Carbonell J, Goldstein J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceeding of the 21st annual international ACM SIGIR conference on research and development in information retrieval. 1998, p. 335–6. Lin, Hong, Liu, Li, Wang (b10) 2018; 97 Wang, Yang, Chattopadhyay (b32) 2015 Oh, Jung, Lee, Kang (b21) 2018 Mitra, Saxena, McCluskey (b30) 2004; 53 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b66) 2015; 518 Ha (b25) 2019; 25 Vlah, Žavbi, Vukašinović (b38) 2020 Bendsoe, Sigmund (b36) 2013 Li, Huang, Li, Zheng, Hong (b13) 2019; 115 Chen XA, Tao Y, Wang G, Kang R, Grossman T, Coros S, et al. Forte: User-driven generative design. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. 2016, p. 1928–37. Tire Rack. 2018. Sosnovik, Oseledets (b11) 2017 Hoyer, Sohl-Dickstein, Greydanus (b19) 2019 Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: International conference on machine learning. 2015a, p. 1889–97. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017. Yoo, Lee, Kim, Hwang, Park, Kang (b22) 2021; 64 Xiao, Lu, Breitkopf, Raghavan, Dutta, Zhang (b48) 2020 Schulman, Moritz, Levine, Jordan, Abbeel (b71) 2015 Van Hasselt, Guez, Silver (b67) 2016 Rawat, Shen (b56) 2019 Ulu, Zhang, Kara (b53) 2016; 4 Lindenmayer (b27) 1975; 54 Xiao, Chu, Gao, Li (b44) 2019; 16 Kazi, Grossman, Cheong, Hashemi, Fitzmaurice (b40) 2017 Kingma, Ba (b76) 2014 Matejka J, Glueck M, Bradner E, Hashemi A, Grossman T, Fitzmaurice G. Dream lens: Exploration and visualization of large-scale generative design datasets. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12. Shea, Aish, Gourtovaia (b1) 2005; 14 Strömberg (b46) 2020; 52 Yildiz, Öztürk, Kaya, Öztürk (b51) 2003; 25 Patel, Choi (b52) 2012; 45 Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra (b65) 2013 Kunakote, Bureerat (b37) 2011; 43 Qiu, Quhao, Shutian, Rui (b43) 2020 Banga, Gehani, Bhilare, Patel, Kara (b9) 2018 Lovric (b31) 1994 Kazi (10.1016/j.cad.2022.103225_b40) 2017 Li (10.1016/j.cad.2022.103225_b14) 2019; 229 Liu (10.1016/j.cad.2022.103225_b41) 2015 Banga (10.1016/j.cad.2022.103225_b9) 2018 Xiao (10.1016/j.cad.2022.103225_b44) 2019; 16 Kumar (10.1016/j.cad.2022.103225_b42) 2019 Alaimo (10.1016/j.cad.2022.103225_b47) 2018; 115 Kallioras (10.1016/j.cad.2022.103225_b5) 2020; 44 Wang (10.1016/j.cad.2022.103225_b50) 2020 Shea (10.1016/j.cad.2022.103225_b1) 2005; 14 Ha (10.1016/j.cad.2022.103225_b25) 2019; 25 Mnih (10.1016/j.cad.2022.103225_b66) 2015; 518 Oh (10.1016/j.cad.2022.103225_b4) 2019; 141 Ng (10.1016/j.cad.2022.103225_b33) 2012; 51 Sajedian (10.1016/j.cad.2022.103225_b61) 2019; 9 10.1016/j.cad.2022.103225_b68 Abueidda (10.1016/j.cad.2022.103225_b17) 2020; 237 Li (10.1016/j.cad.2022.103225_b13) 2019; 115 Qiu (10.1016/j.cad.2022.103225_b43) 2020 Dong (10.1016/j.cad.2022.103225_b59) 2017; 17 Schulman (10.1016/j.cad.2022.103225_b71) 2015 Sanchez-Lengeling (10.1016/j.cad.2022.103225_b64) 2018; 361 Singh (10.1016/j.cad.2022.103225_b3) 2012; 33 Zhang (10.1016/j.cad.2022.103225_b16) 2019 Van Hasselt (10.1016/j.cad.2022.103225_b67) 2016 Gao (10.1016/j.cad.2022.103225_b77) 2019; 38 Kunakote (10.1016/j.cad.2022.103225_b37) 2011; 43 Krish (10.1016/j.cad.2022.103225_b2) 2011; 43 Zhou (10.1016/j.cad.2022.103225_b54) 2017; 55 Sun (10.1016/j.cad.2022.103225_b7) 2020; 4 Bendsoe (10.1016/j.cad.2022.103225_b36) 2013 10.1016/j.cad.2022.103225_b39 Hoyer (10.1016/j.cad.2022.103225_b19) 2019 Lindenmayer (10.1016/j.cad.2022.103225_b27) 1975; 54 10.1016/j.cad.2022.103225_b34 10.1016/j.cad.2022.103225_b73 10.1016/j.cad.2022.103225_b74 10.1016/j.cad.2022.103225_b75 Schulman (10.1016/j.cad.2022.103225_b69) 2017 Wang (10.1016/j.cad.2022.103225_b78) 2004; 13 Patel (10.1016/j.cad.2022.103225_b52) 2012; 45 Sosnovik (10.1016/j.cad.2022.103225_b11) 2017 10.1016/j.cad.2022.103225_b70 Ulu (10.1016/j.cad.2022.103225_b53) 2016; 4 10.1016/j.cad.2022.103225_b72 Sasaki (10.1016/j.cad.2022.103225_b20) 2019; 55 Lee (10.1016/j.cad.2022.103225_b57) 2019; 141 So (10.1016/j.cad.2022.103225_b63) 2020; 9 Frazer (10.1016/j.cad.2022.103225_b26) 2002 Keshavarzzadeh (10.1016/j.cad.2022.103225_b49) 2020; 365 Mitra (10.1016/j.cad.2022.103225_b30) 2004; 53 Chen (10.1016/j.cad.2022.103225_b35) 2021; 143 Lovric (10.1016/j.cad.2022.103225_b31) 1994 Mnih (10.1016/j.cad.2022.103225_b65) 2013 Meinhardt (10.1016/j.cad.2022.103225_b28) 1976; 6 Cang (10.1016/j.cad.2022.103225_b12) 2019; 109 Lei (10.1016/j.cad.2022.103225_b45) 2019; 86 Sajedian (10.1016/j.cad.2022.103225_b60) 2019; 27 Kingma (10.1016/j.cad.2022.103225_b76) 2014 Yildiz (10.1016/j.cad.2022.103225_b51) 2003; 25 10.1016/j.cad.2022.103225_b6 Lin (10.1016/j.cad.2022.103225_b10) 2018; 97 10.1016/j.cad.2022.103225_b80 Caldas (10.1016/j.cad.2022.103225_b29) 2001 Vlah (10.1016/j.cad.2022.103225_b38) 2020 Strömberg (10.1016/j.cad.2022.103225_b46) 2020; 52 10.1016/j.cad.2022.103225_b8 Ronneberger (10.1016/j.cad.2022.103225_b55) 2015 Kingma (10.1016/j.cad.2022.103225_b79) 2013 Cui (10.1016/j.cad.2022.103225_b58) 2012; 44 Yoo (10.1016/j.cad.2022.103225_b22) 2021; 64 Rawat (10.1016/j.cad.2022.103225_b56) 2019 10.1016/j.cad.2022.103225_b18 Yonekura (10.1016/j.cad.2022.103225_b24) 2019; 60 Xiao (10.1016/j.cad.2022.103225_b48) 2020 Oh (10.1016/j.cad.2022.103225_b21) 2018 Li (10.1016/j.cad.2022.103225_b23) 2016 Badloe (10.1016/j.cad.2022.103225_b62) 2020; 22 Wang (10.1016/j.cad.2022.103225_b32) 2015 Yu (10.1016/j.cad.2022.103225_b15) 2019; 59 |
References_xml | – reference: Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region policy optimization. In: International conference on machine learning. 2015a, p. 1889–97. – year: 2019 ident: b16 article-title: A deep convolutional neural network for topology optimization with strong generalization ability – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b78 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 25 start-page: 251 year: 2003 end-page: 260 ident: b51 article-title: Integrated optimal topology design and shape optimization using neural networks publication-title: Struct Multidiscip Optim – volume: 86 year: 2019 ident: b45 article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework publication-title: J Appl Mech – volume: 55 start-page: 2073 year: 2017 end-page: 2086 ident: b54 article-title: Topology optimization of composite structures with data-driven resin filling time manufacturing constraint publication-title: Struct Multidiscip Optim – volume: 43 start-page: 88 year: 2011 end-page: 100 ident: b2 article-title: A practical generative design method publication-title: Comput Aided Des – volume: 4 start-page: 10 year: 2020 ident: b7 article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization publication-title: Designs – reference: Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3431–40. – volume: 6 start-page: 117 year: 1976 end-page: 123 ident: b28 article-title: Morphogenesis of lines and nets publication-title: Differentiation – start-page: 1 year: 2020 end-page: 22 ident: b48 article-title: On-the-fly model reduction for large-scale structural topology optimization using principal components analysis publication-title: Struct Multidiscip Optim – year: 2018 ident: b21 article-title: Design automation by integrating generative adversarial networks and topology optimization publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 51753 – volume: 52 start-page: 1136 year: 2020 end-page: 1148 ident: b46 article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels publication-title: Eng Optim – year: 2014 ident: b76 article-title: Adam: A method for stochastic optimization – volume: 229 year: 2019 ident: b14 article-title: Dimension reduction and surrogate based topology optimization of periodic structures publication-title: Compos Struct – reference: Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al. Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. 2016, p. 1928–37. – year: 2015 ident: b71 article-title: High-dimensional continuous control using generalized advantage estimation – volume: 44 start-page: 591 year: 2020 end-page: 598 ident: b5 article-title: DzAI publication-title: Procedia Manuf – volume: 237 year: 2020 ident: b17 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput Struct – volume: 4 start-page: 61 year: 2016 end-page: 72 ident: b53 article-title: A data-driven investigation and estimation of optimal topologies under variable loading configurations publication-title: Comput Methods Biomech Biomed Eng Imag Vis – year: 2017 ident: b69 article-title: Proximal policy optimization algorithms – volume: 64 start-page: 2725 year: 2021 end-page: 2747 ident: b22 article-title: Integrating deep learning into CAD/CAE system: Generative design and evaluation of 3D conceptual wheel publication-title: Struct Multidiscip Optim – start-page: 307 year: 1994 end-page: 326 ident: b31 article-title: Systematic and design diversity—Software techniques for hardware fault detection publication-title: European dependable computing conference – year: 2016 ident: b23 article-title: Learning to optimize – volume: 22 start-page: 2337 year: 2020 end-page: 2342 ident: b62 article-title: Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning publication-title: Phys Chem Chem Phys – volume: 60 start-page: 1709 year: 2019 end-page: 1713 ident: b24 article-title: Framework for design optimization using deep reinforcement learning publication-title: Struct Multidiscip Optim – reference: Chen XA, Tao Y, Wang G, Kang R, Grossman T, Coros S, et al. Forte: User-driven generative design. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12. – volume: 9 start-page: 1041 year: 2020 end-page: 1057 ident: b63 article-title: Deep learning enabled inverse design in nanophotonics publication-title: Nanophotonics – reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017. – year: 2018 ident: b9 article-title: 3D topology optimization using convolutional neural networks – volume: 115 start-page: 189 year: 2018 end-page: 208 ident: b47 article-title: Applying functional principal components to structural topology optimization publication-title: Internat J Numer Methods Engrg – volume: 43 start-page: 541 year: 2011 end-page: 557 ident: b37 article-title: Multi-objective topology optimization using evolutionary algorithms publication-title: Eng Optim – volume: 361 start-page: 360 year: 2018 end-page: 365 ident: b64 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science – volume: 44 start-page: 186 year: 2012 end-page: 195 ident: b58 article-title: Learning-based ship design optimization approach publication-title: Comput Aided Des – reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. – volume: 33 start-page: 185 year: 2012 end-page: 207 ident: b3 article-title: Towards an integrated generative design framework publication-title: Des Stud – volume: 27 start-page: 5874 year: 2019 end-page: 5883 ident: b60 article-title: Optimisation of colour generation from dielectric nanostructures using reinforcement learning publication-title: Opt Express – reference: Autodesk. 2021. – year: 2019 ident: b19 article-title: Neural reparameterization improves structural optimization – year: 2019 ident: b56 article-title: Application of adversarial networks for 3d structural topology optimization (No. 2019-01-0829) – reference: Tire Rack. 2018. – volume: 16 year: 2019 ident: b44 article-title: A hybrid method for density-related topology optimization publication-title: Int J Comput Methods – reference: Carbonell J, Goldstein J. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceeding of the 21st annual international ACM SIGIR conference on research and development in information retrieval. 1998, p. 335–6. – start-page: 253 year: 2002 end-page: 274 ident: b26 article-title: Creative design and the generative evolutionary paradigm publication-title: Creative evolutionary systems – start-page: 401 year: 2017 end-page: 414 ident: b40 article-title: DreamSketch: Early stage 3D design explorations with sketching and generative design publication-title: UIST. Vol. 14 – year: 2020 ident: b50 article-title: Data-driven multiscale topology optimization using multi-response latent variable Gaussian process publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 84003 – year: 2001 ident: b29 article-title: An evolution-based generative design system: using adaptation to shape architectural form – year: 2015 ident: b41 article-title: Towards nonlinear multimaterial topology optimization using unsupervised machine learning and metamodel-based optimization publication-title: International design engineering technical conferences and computers and information in engineering conference. Vol. 57083 – volume: 54 start-page: 3 year: 1975 end-page: 22 ident: b27 article-title: Developmental algorithms for multicellular organisms: A survey of l-systems publication-title: J Theoret Biol – volume: 14 start-page: 253 year: 2005 end-page: 264 ident: b1 article-title: Towards integrated performance-driven generative design tools publication-title: Autom Constr – volume: 97 start-page: 103 year: 2018 end-page: 109 ident: b10 article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach publication-title: Int Commun Heat Mass Transfer – start-page: 451 year: 2020 end-page: 460 ident: b38 article-title: Evaluation of topology optimization and generative design tools as support for conceptual design publication-title: Proceedings of the design society: DESIGN conference. Vol. 1 – start-page: 1 year: 2019 end-page: 17 ident: b42 article-title: A density-and-strain-based K-clustering approach to microstructural topology optimization publication-title: Struct Multidiscip Optim – volume: 17 start-page: 7620 year: 2017 end-page: 7628 ident: b59 article-title: Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space publication-title: Nano Lett – volume: 53 start-page: 1483 year: 2004 end-page: 1492 ident: b30 article-title: Efficient design diversity estimation for combinational circuits publication-title: IEEE Trans Comput – volume: 109 start-page: 12 year: 2019 end-page: 21 ident: b12 article-title: One-shot generation of near-optimal topology through theory-driven machine learning publication-title: Comput Aided Des – reference: Matejka J, Glueck M, Bradner E, Hashemi A, Grossman T, Fitzmaurice G. Dream lens: Exploration and visualization of large-scale generative design datasets. In: Proceedings of the 2018 CHI conference on human factors in computing systems. 2018, p. 1–12. – year: 2017 ident: b11 article-title: Neural networks for topology optimization – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: b61 article-title: Double-deep Q-learning to increase the efficiency of metasurface holograms publication-title: Sci Rep – volume: 143 year: 2021 ident: b35 article-title: PaDGAN: Learning to generate high-quality novel designs publication-title: J Mech Des – start-page: 112 year: 2015 end-page: 117 ident: b32 article-title: Architectural reliability estimation using design diversity publication-title: Sixteenth international symposium on quality electronic design – year: 2016 ident: b67 article-title: Deep reinforcement learning with double q-learning publication-title: Thirtieth AAAI conference on artificial intelligence – year: 2013 ident: b65 article-title: Playing atari with deep reinforcement learning – volume: 115 start-page: 172 year: 2019 end-page: 180 ident: b13 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput Aided Des – start-page: 1 year: 2020 end-page: 21 ident: b43 article-title: Clustering-based concurrent topology optimization with macrostructure, components, and materials publication-title: Struct Multidiscip Optim – start-page: 234 year: 2015 end-page: 241 ident: b55 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International conference on medical image computing and computer-assisted intervention – year: 2013 ident: b36 article-title: Topology optimization: theory, methods, and applications – volume: 38 start-page: 1 year: 2019 end-page: 15 ident: b77 article-title: SDM-NET: Deep generative network for structured deformable mesh publication-title: ACM Trans Graph – reference: . – volume: 51 start-page: 687 year: 2012 end-page: 691 ident: b33 article-title: A review of affective design towards video games publication-title: Procedia Soc Behav Sci – reference: Guo T, Lohan DJ, Cang R, Ren MY, Allison JT. An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2018, 0804. – reference: Nobari AH, Chen W, Ahmed F. PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network for Invese Design. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021, p. 606–16. – volume: 59 start-page: 787 year: 2019 end-page: 799 ident: b15 article-title: Deep learning for determining a near-optimal topological design without any iteration publication-title: Struct Multidiscip Optim – volume: 141 year: 2019 ident: b57 article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting publication-title: J Mech Des – volume: 141 year: 2019 ident: b4 article-title: Deep generative design: Integration of topology optimization and generative models publication-title: J Mech Des – volume: 45 start-page: 529 year: 2012 end-page: 543 ident: b52 article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks publication-title: Struct Multidiscip Optim – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b66 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 55 start-page: 1 year: 2019 end-page: 5 ident: b20 article-title: Topology optimization accelerated by deep learning publication-title: IEEE Trans Magn – volume: 365 year: 2020 ident: b49 article-title: Stress-based topology optimization under uncertainty via simulation-based Gaussian process publication-title: Comput Methods Appl Mech Engrg – volume: 25 start-page: 352 year: 2019 end-page: 365 ident: b25 article-title: Reinforcement learning for improving agent design publication-title: Artif Life – year: 2013 ident: b79 article-title: Auto-encoding variational bayes – volume: 14 start-page: 253 issue: 2 year: 2005 ident: 10.1016/j.cad.2022.103225_b1 article-title: Towards integrated performance-driven generative design tools publication-title: Autom Constr doi: 10.1016/j.autcon.2004.07.002 – volume: 6 start-page: 117 issue: 2 year: 1976 ident: 10.1016/j.cad.2022.103225_b28 article-title: Morphogenesis of lines and nets publication-title: Differentiation doi: 10.1111/j.1432-0436.1976.tb01478.x – year: 2020 ident: 10.1016/j.cad.2022.103225_b50 article-title: Data-driven multiscale topology optimization using multi-response latent variable Gaussian process – volume: 43 start-page: 88 issue: 1 year: 2011 ident: 10.1016/j.cad.2022.103225_b2 article-title: A practical generative design method publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.09.009 – volume: 16 issue: 08 year: 2019 ident: 10.1016/j.cad.2022.103225_b44 article-title: A hybrid method for density-related topology optimization publication-title: Int J Comput Methods doi: 10.1142/S0219876218501165 – volume: 25 start-page: 251 issue: 4 year: 2003 ident: 10.1016/j.cad.2022.103225_b51 article-title: Integrated optimal topology design and shape optimization using neural networks publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0300-0 – year: 2017 ident: 10.1016/j.cad.2022.103225_b69 – year: 2016 ident: 10.1016/j.cad.2022.103225_b67 article-title: Deep reinforcement learning with double q-learning – volume: 38 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.cad.2022.103225_b77 article-title: SDM-NET: Deep generative network for structured deformable mesh publication-title: ACM Trans Graph doi: 10.1145/3355089.3356488 – volume: 4 start-page: 10 issue: 2 year: 2020 ident: 10.1016/j.cad.2022.103225_b7 article-title: Generative design by using exploration approaches of reinforcement learning in density-based structural topology optimization publication-title: Designs doi: 10.3390/designs4020010 – volume: 229 year: 2019 ident: 10.1016/j.cad.2022.103225_b14 article-title: Dimension reduction and surrogate based topology optimization of periodic structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2019.111385 – ident: 10.1016/j.cad.2022.103225_b70 – volume: 55 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.cad.2022.103225_b20 article-title: Topology optimization accelerated by deep learning publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2019.2901906 – volume: 365 year: 2020 ident: 10.1016/j.cad.2022.103225_b49 article-title: Stress-based topology optimization under uncertainty via simulation-based Gaussian process publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.112992 – year: 2017 ident: 10.1016/j.cad.2022.103225_b11 – ident: 10.1016/j.cad.2022.103225_b18 doi: 10.2514/6.2018-0804 – volume: 53 start-page: 1483 issue: 11 year: 2004 ident: 10.1016/j.cad.2022.103225_b30 article-title: Efficient design diversity estimation for combinational circuits publication-title: IEEE Trans Comput doi: 10.1109/TC.2004.95 – year: 2015 ident: 10.1016/j.cad.2022.103225_b71 – year: 2013 ident: 10.1016/j.cad.2022.103225_b36 – start-page: 234 year: 2015 ident: 10.1016/j.cad.2022.103225_b55 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 109 start-page: 12 year: 2019 ident: 10.1016/j.cad.2022.103225_b12 article-title: One-shot generation of near-optimal topology through theory-driven machine learning publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.12.008 – year: 2019 ident: 10.1016/j.cad.2022.103225_b56 – year: 2016 ident: 10.1016/j.cad.2022.103225_b23 – ident: 10.1016/j.cad.2022.103225_b68 – volume: 54 start-page: 3 issue: 1 year: 1975 ident: 10.1016/j.cad.2022.103225_b27 article-title: Developmental algorithms for multicellular organisms: A survey of l-systems publication-title: J Theoret Biol doi: 10.1016/S0022-5193(75)80051-8 – start-page: 1 year: 2019 ident: 10.1016/j.cad.2022.103225_b42 article-title: A density-and-strain-based K-clustering approach to microstructural topology optimization publication-title: Struct Multidiscip Optim – volume: 141 issue: 11 year: 2019 ident: 10.1016/j.cad.2022.103225_b4 article-title: Deep generative design: Integration of topology optimization and generative models publication-title: J Mech Des doi: 10.1115/1.4044229 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.cad.2022.103225_b61 article-title: Double-deep Q-learning to increase the efficiency of metasurface holograms publication-title: Sci Rep doi: 10.1038/s41598-019-47154-z – volume: 9 start-page: 1041 issue: 5 year: 2020 ident: 10.1016/j.cad.2022.103225_b63 article-title: Deep learning enabled inverse design in nanophotonics publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0474 – volume: 361 start-page: 360 issue: 6400 year: 2018 ident: 10.1016/j.cad.2022.103225_b64 article-title: Inverse molecular design using machine learning: Generative models for matter engineering publication-title: Science doi: 10.1126/science.aat2663 – year: 2019 ident: 10.1016/j.cad.2022.103225_b16 – start-page: 401 year: 2017 ident: 10.1016/j.cad.2022.103225_b40 article-title: DreamSketch: Early stage 3D design explorations with sketching and generative design – volume: 33 start-page: 185 issue: 2 year: 2012 ident: 10.1016/j.cad.2022.103225_b3 article-title: Towards an integrated generative design framework publication-title: Des Stud doi: 10.1016/j.destud.2011.06.001 – volume: 17 start-page: 7620 issue: 12 year: 2017 ident: 10.1016/j.cad.2022.103225_b59 article-title: Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b03613 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.cad.2022.103225_b66 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 86 issue: 1 year: 2019 ident: 10.1016/j.cad.2022.103225_b45 article-title: Machine learning-driven real-time topology optimization under moving morphable component-based framework publication-title: J Appl Mech doi: 10.1115/1.4041319 – ident: 10.1016/j.cad.2022.103225_b39 doi: 10.1145/3173574.3174070 – volume: 52 start-page: 1136 issue: 7 year: 2020 ident: 10.1016/j.cad.2022.103225_b46 article-title: Efficient detailed design optimization of topology optimization concepts by using support vector machines and metamodels publication-title: Eng Optim doi: 10.1080/0305215X.2019.1646258 – volume: 43 start-page: 541 issue: 5 year: 2011 ident: 10.1016/j.cad.2022.103225_b37 article-title: Multi-objective topology optimization using evolutionary algorithms publication-title: Eng Optim doi: 10.1080/0305215X.2010.502935 – volume: 59 start-page: 787 issue: 3 year: 2019 ident: 10.1016/j.cad.2022.103225_b15 article-title: Deep learning for determining a near-optimal topological design without any iteration publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-2101-5 – volume: 44 start-page: 591 year: 2020 ident: 10.1016/j.cad.2022.103225_b5 article-title: DzAI N: Deep learning based generative design publication-title: Procedia Manuf doi: 10.1016/j.promfg.2020.02.251 – volume: 22 start-page: 2337 issue: 4 year: 2020 ident: 10.1016/j.cad.2022.103225_b62 article-title: Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning publication-title: Phys Chem Chem Phys doi: 10.1039/C9CP05621A – volume: 60 start-page: 1709 issue: 4 year: 2019 ident: 10.1016/j.cad.2022.103225_b24 article-title: Framework for design optimization using deep reinforcement learning publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02276-w – year: 2014 ident: 10.1016/j.cad.2022.103225_b76 – volume: 45 start-page: 529 issue: 4 year: 2012 ident: 10.1016/j.cad.2022.103225_b52 article-title: Classification approach for reliability-based topology optimization using probabilistic neural networks publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0711-2 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.cad.2022.103225_b78 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – year: 2019 ident: 10.1016/j.cad.2022.103225_b19 – ident: 10.1016/j.cad.2022.103225_b72 – start-page: 253 year: 2002 ident: 10.1016/j.cad.2022.103225_b26 article-title: Creative design and the generative evolutionary paradigm – volume: 141 issue: 11 year: 2019 ident: 10.1016/j.cad.2022.103225_b57 article-title: A case study of deep reinforcement learning for engineering design: Application to microfluidic devices for flow sculpting publication-title: J Mech Des doi: 10.1115/1.4044397 – volume: 97 start-page: 103 year: 2018 ident: 10.1016/j.cad.2022.103225_b10 article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2018.07.001 – ident: 10.1016/j.cad.2022.103225_b6 doi: 10.1145/3173574.3173943 – volume: 115 start-page: 189 issue: 2 year: 2018 ident: 10.1016/j.cad.2022.103225_b47 article-title: Applying functional principal components to structural topology optimization publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.5801 – ident: 10.1016/j.cad.2022.103225_b74 doi: 10.1109/CVPR.2015.7298965 – volume: 51 start-page: 687 year: 2012 ident: 10.1016/j.cad.2022.103225_b33 article-title: A review of affective design towards video games publication-title: Procedia Soc Behav Sci doi: 10.1016/j.sbspro.2012.08.225 – volume: 55 start-page: 2073 issue: 6 year: 2017 ident: 10.1016/j.cad.2022.103225_b54 article-title: Topology optimization of composite structures with data-driven resin filling time manufacturing constraint publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1628-6 – start-page: 1 year: 2020 ident: 10.1016/j.cad.2022.103225_b48 article-title: On-the-fly model reduction for large-scale structural topology optimization using principal components analysis publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02570-y – year: 2018 ident: 10.1016/j.cad.2022.103225_b21 article-title: Design automation by integrating generative adversarial networks and topology optimization – ident: 10.1016/j.cad.2022.103225_b75 doi: 10.1109/CVPR.2016.90 – start-page: 307 year: 1994 ident: 10.1016/j.cad.2022.103225_b31 article-title: Systematic and design diversity—Software techniques for hardware fault detection – year: 2013 ident: 10.1016/j.cad.2022.103225_b79 – ident: 10.1016/j.cad.2022.103225_b8 – year: 2013 ident: 10.1016/j.cad.2022.103225_b65 – ident: 10.1016/j.cad.2022.103225_b73 doi: 10.1609/aaai.v31i1.11231 – volume: 64 start-page: 2725 issue: 4 year: 2021 ident: 10.1016/j.cad.2022.103225_b22 article-title: Integrating deep learning into CAD/CAE system: Generative design and evaluation of 3D conceptual wheel publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-021-02953-9 – volume: 115 start-page: 172 year: 2019 ident: 10.1016/j.cad.2022.103225_b13 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput Aided Des doi: 10.1016/j.cad.2019.05.038 – volume: 237 year: 2020 ident: 10.1016/j.cad.2022.103225_b17 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput Struct doi: 10.1016/j.compstruc.2020.106283 – year: 2015 ident: 10.1016/j.cad.2022.103225_b41 article-title: Towards nonlinear multimaterial topology optimization using unsupervised machine learning and metamodel-based optimization – volume: 25 start-page: 352 issue: 4 year: 2019 ident: 10.1016/j.cad.2022.103225_b25 article-title: Reinforcement learning for improving agent design publication-title: Artif Life doi: 10.1162/artl_a_00301 – ident: 10.1016/j.cad.2022.103225_b34 doi: 10.1145/3447548.3467414 – start-page: 1 year: 2020 ident: 10.1016/j.cad.2022.103225_b43 article-title: Clustering-based concurrent topology optimization with macrostructure, components, and materials publication-title: Struct Multidiscip Optim – volume: 143 issue: 3 year: 2021 ident: 10.1016/j.cad.2022.103225_b35 article-title: PaDGAN: Learning to generate high-quality novel designs publication-title: J Mech Des doi: 10.1115/1.4048626 – start-page: 451 year: 2020 ident: 10.1016/j.cad.2022.103225_b38 article-title: Evaluation of topology optimization and generative design tools as support for conceptual design – volume: 44 start-page: 186 issue: 3 year: 2012 ident: 10.1016/j.cad.2022.103225_b58 article-title: Learning-based ship design optimization approach publication-title: Comput Aided Des doi: 10.1016/j.cad.2011.06.011 – year: 2018 ident: 10.1016/j.cad.2022.103225_b9 – year: 2001 ident: 10.1016/j.cad.2022.103225_b29 – ident: 10.1016/j.cad.2022.103225_b80 doi: 10.1145/290941.291025 – volume: 27 start-page: 5874 issue: 4 year: 2019 ident: 10.1016/j.cad.2022.103225_b60 article-title: Optimisation of colour generation from dielectric nanostructures using reinforcement learning publication-title: Opt Express doi: 10.1364/OE.27.005874 – start-page: 112 year: 2015 ident: 10.1016/j.cad.2022.103225_b32 article-title: Architectural reliability estimation using design diversity – volume: 4 start-page: 61 issue: 2 year: 2016 ident: 10.1016/j.cad.2022.103225_b53 article-title: A data-driven investigation and estimation of optimal topologies under variable loading configurations publication-title: Comput Methods Biomech Biomed Eng Imag Vis doi: 10.1080/21681163.2015.1030775 |
SSID | ssj0002139 |
Score | 2.6163626 |
Snippet | Generative design refers to computational design methods that can automatically conduct design exploration under constraints defined by designers. Among many... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103225 |
SubjectTerms | Artificial intelligence Automotive wheels Deep learning Design Design diversity Design optimization Design parameters Generative design Machine learning Neural networks Optimization Reinforcement learning Topology optimization |
Title | Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs |
URI | https://dx.doi.org/10.1016/j.cad.2022.103225 https://www.proquest.com/docview/2645894622 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw6ehLVtNtndeit9UBUrSIXeQjab1Ipui62HXvztTh7rC-nB07JLEpbJ5JtJMvMNQmcJGMUWkWmQ0TgLaJykgRDarCsVkljGWdOW6bwdRoMHej1m4xLqFLkwJqzSY7_DdIvW_kvdS7M-n05Nji9sJWgCDoRlbTFJfJTGRssv3r_CPEgzdC4w4I1pXdxs2hgvKQxZKCEm9ZyYatl_26ZfKG1NT38HbXufEbfdb-2iksr30NY3JsF9pBx9tMEu3LVBGThd4XtleVGlPQLEnkp1col7-aOh2cgnGNw_3C1CM_BM45ErmrDCd4AlLz5J0w-5OECjfm_UGQS-gkIgQ8KWgZLgTsU0E5TpBCwPYyrSmdQa9Ic1MqJDFsVSRCpJaBoKqWHzwmLKRJNk0Cs8ROV8lqsjhBnsJLQy5HJam6vWFMSakVDAI1HQtIIahei49OzipsjFMy_CyJ44SJsbaXMn7Qo6_-wyd9Qa6xrTYj74D_3gAP3rulWLueN-cS44-IAsadGIkOP_jXqCNs2bi3usovLy9U2dgm-yTGtW-Wpoo311Mxh-AFeK4kU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5WPagH8Ylvc9CLUHebJm1X8CCusuv6AFlhb6FNk1XRKu6K7MUf5S90kqa-EA-Cp0KbhPIl_WbSzHwDsBmjUaxTmXoZizKPRXHqJYk235UKaCSjzLdlOk_PwuYlO-7ybgVey1wYE1bpuL_gdMvW7k7VoVl9uL42Ob64lWAxOhBWtaXuIivbaviM-7b-XquBk7xF6dFh56DpudICngwoH3hKop8RsSxhXMdIyZyrUGdSawSW1zKqAx5GMglVHLM0SKRGr55HjCc-zbBXgMOOwBhDtjBVE3ZePsJKqB8ULjfym3m78iTVxpTJxIiTUmpS3ampzv2zLfxmFaypO5qGKeejkv0ChhmoqHwWJj8pF86BKuSqDVeShg0CIemQXCirwyrtL0fipFt7u-QwvzKyHnmPoLtJGmUoCLnXpFMUaRiSc-SuO5cU6obsz0PnP2BdgNH8PleLQDjuXLQyYnZam6PdFGHNaJDgJVbYdAlqJXRCOjVzU1TjVpRhazcC0RYGbVGgvQTb710eCimP3xqzcj7El_Uo0NT81m21nDvhyKAv0OfkcZ2FlC7_bdQNGG92Tk_ESeusvQIT5okJHPf5KowOHp_UGvpFg3TdLkQC4p8X_hvkxx56 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Design+by+Reinforcement+Learning%3A+Enhancing+the+Diversity+of+Topology+Optimization+Designs&rft.jtitle=Computer+aided+design&rft.au=Jang%2C+Seowoo&rft.au=Yoo%2C+Soyoung&rft.au=Kang%2C+Namwoo&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=146&rft_id=info:doi/10.1016%2Fj.cad.2022.103225&rft.externalDocID=S0010448522000239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |