Poly(arylene piperidinium) terpolymer membranes with dual piperidinium cations and semi-fluoroalkyl pendants for anion exchange membrane water electrolyzers

To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 37; pp. 25429 - 25441
Main Authors Yadav, Vikrant, Miyatake, Kenji, Ahmed Mahmoud, Ahmed Mohamed, Liu, Fanghua, Xian, Fang, Guo, Lin, Wong, Chun Yik, Iwataki, Toshio, Uchida, Makoto, Kakinuma, Katsuyoshi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g −1 ) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm −1 (at 80 °C) was achieved for the membrane formulated with the C 11 pendant. C x -QPip- n membranes showed good alkaline stability; in particular, C 11 -QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C 11 -QPip-1.86 membrane and with a PGM-free anode catalyst (Ni 0.8 Co 0.2 O) showed good performance (1.0 A cm −2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h −1 ) under constant current density (1.0 A cm −2 ) operation. The effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties was investigated for poly(arylene piperidinium) terpolymer-based anion exchange membranes for applications in alkaline water electrolyzers.
AbstractList To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g −1 ) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm −1 (at 80 °C) was achieved for the membrane formulated with the C 11 pendant. C x -QPip- n membranes showed good alkaline stability; in particular, C 11 -QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C 11 -QPip-1.86 membrane and with a PGM-free anode catalyst (Ni 0.8 Co 0.2 O) showed good performance (1.0 A cm −2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h −1 ) under constant current density (1.0 A cm −2 ) operation. The effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties was investigated for poly(arylene piperidinium) terpolymer-based anion exchange membranes for applications in alkaline water electrolyzers.
To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g−1) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm−1 (at 80 °C) was achieved for the membrane formulated with the C11 pendant. Cx-QPip-n membranes showed good alkaline stability; in particular, C11-QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C11-QPip-1.86 membrane and with a PGM-free anode catalyst (Ni0.8Co0.2O) showed good performance (1.0 A cm−2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h−1) under constant current density (1.0 A cm−2) operation.
To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g −1 ) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm −1 (at 80 °C) was achieved for the membrane formulated with the C 11 pendant. C x -QPip- n membranes showed good alkaline stability; in particular, C 11 -QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C 11 -QPip-1.86 membrane and with a PGM-free anode catalyst (Ni 0.8 Co 0.2 O) showed good performance (1.0 A cm −2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h −1 ) under constant current density (1.0 A cm −2 ) operation.
Author Kakinuma, Katsuyoshi
Ahmed Mahmoud, Ahmed Mohamed
Yadav, Vikrant
Iwataki, Toshio
Liu, Fanghua
Miyatake, Kenji
Uchida, Makoto
Guo, Lin
Xian, Fang
Wong, Chun Yik
AuthorAffiliation Hydrogen and Fuel Cell Nanomaterials Center
Waseda University
Department of Applied Chemistry
University of Yamanashi
Clean Energy Research Center
AuthorAffiliation_xml – sequence: 0
  name: Waseda University
– sequence: 0
  name: Clean Energy Research Center
– sequence: 0
  name: Department of Applied Chemistry
– sequence: 0
  name: Hydrogen and Fuel Cell Nanomaterials Center
– sequence: 0
  name: University of Yamanashi
Author_xml – sequence: 1
  givenname: Vikrant
  surname: Yadav
  fullname: Yadav, Vikrant
– sequence: 2
  givenname: Kenji
  surname: Miyatake
  fullname: Miyatake, Kenji
– sequence: 3
  givenname: Ahmed Mohamed
  surname: Ahmed Mahmoud
  fullname: Ahmed Mahmoud, Ahmed Mohamed
– sequence: 4
  givenname: Fanghua
  surname: Liu
  fullname: Liu, Fanghua
– sequence: 5
  givenname: Fang
  surname: Xian
  fullname: Xian, Fang
– sequence: 6
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
– sequence: 7
  givenname: Chun Yik
  surname: Wong
  fullname: Wong, Chun Yik
– sequence: 8
  givenname: Toshio
  surname: Iwataki
  fullname: Iwataki, Toshio
– sequence: 9
  givenname: Makoto
  surname: Uchida
  fullname: Uchida, Makoto
– sequence: 10
  givenname: Katsuyoshi
  surname: Kakinuma
  fullname: Kakinuma, Katsuyoshi
BookMark eNptkU1LxDAQhoMoqKsX70LAiwrVtE36cVzWT1jQg55LTCZutE1qkrKuv8Ufa3RlRXEuMzDPzMvMu43WjTWA0F5KTlKS16eSBk7yIid8DW1lhJGkpHWxvqqrahPtev9EYlSEFHW9hd5vbbs45G7RggHc6x6cltrooTvCAVwfux043EH34LgBj-c6zLAcePsLxoIHbY3H3EjsodOJagfrLG-fF5EEI7kJHivrIhFBDK9ixs0jrDbjOY96GFoQwUXVN3B-B20o3nrY_c4jdH9xfje5SqY3l9eT8TQRecZCAnUpgSlKM6UyVQhOVFWVkqSlklQwVVa15BWRjHEpaCmoLFlaxB9QUihVP-QjdLDc2zv7MoAPzZMdnImSTZ6SilGWZXmkyJISznrvQDVCh6-zg-O6bVLSfNrQnNG78ZcN4zhy_Gekd7qL3_4f3l_CzosV9-Np_gGIJpjW
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c05582
Cites_doi 10.1039/C7TA09409D
10.1016/j.memsci.2023.121672
10.1002/polb.23149
10.1039/C8TA04310H
10.1002/adma.202007100
10.1021/ja403671u
10.1016/j.memsci.2019.02.051
10.1021/acs.accounts.9b00355
10.1039/C5TA00350D
10.1016/j.memsci.2022.121229
10.1016/j.jelechem.2022.116112
10.1039/c2ee22050d
10.1002/celc.202200999
10.1039/D3TA03288D
10.1021/acs.macromol.2c02291
10.1002/cssc.201403022
10.1021/acsaem.9b01733
10.1021/acsapm.2c02227
10.1021/acscatal.2c02586
10.1039/D0CS01079K
10.1016/j.fuel.2023.129686
10.1002/adfm.202302364
10.1002/celc.202001329
10.1021/acsaem.2c03689
10.1016/j.nxener.2023.100044
10.1039/D0EE01842B
10.1002/cssc.202200027
10.1021/acs.macromol.6b01381
10.1039/D3CS00186E
10.1021/acs.chemmater.7b00958
10.1002/aesr.202300236
10.1039/c2ee22146b
10.1021/acsaem.8b00387
10.1016/j.memsci.2023.122164
10.1039/D2TA03291K
10.1002/9783527837588.ch11
10.1002/adma.202210432
10.1016/j.joule.2024.02.011
10.1021/acs.chemrev.1c00854
10.1038/s41560-020-0577-x
10.1039/C6TA05090E
10.1039/D2ME00027J
10.1016/j.jechem.2023.11.026
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta03630a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 25441
ExternalDocumentID 10_1039_D4TA03630A
d4ta03630a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c325t-e97de5f442ff2f6ca0f887d017fd4c5f789da80d55adc47c4d7516008406ff9b3
ISSN 2050-7488
IngestDate Mon Jun 30 12:03:10 EDT 2025
Tue Jul 01 03:28:21 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Tue Dec 17 20:57:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-e97de5f442ff2f6ca0f887d017fd4c5f789da80d55adc47c4d7516008406ff9b3
Notes https://doi.org/10.1039/d4ta03630a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2108-0612
0000-0002-8963-4178
0000-0001-5713-2635
0000-0002-2880-1753
0000-0002-7847-3727
OpenAccessLink https://yamanashi.repo.nii.ac.jp/records/2000443
PQID 3108545223
PQPubID 2047523
PageCount 13
ParticipantIDs crossref_citationtrail_10_1039_D4TA03630A
crossref_primary_10_1039_D4TA03630A
rsc_primary_d4ta03630a
proquest_journals_3108545223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-24
PublicationDateYYYYMMDD 2024-09-24
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-24
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Haj-Bsoul (D4TA03630A/cit18/1) 2022; 908
Zhang (D4TA03630A/cit21/1) 2023; 678
Hua (D4TA03630A/cit2/1) 2023; 10
Bakvand (D4TA03630A/cit15/1) 2023; 668
Kimura (D4TA03630A/cit24/1) 2020; 3
Sharma (D4TA03630A/cit22/1) 2024
Mandal (D4TA03630A/cit11/1) 2020; 8
Santoro (D4TA03630A/cit7/1) 2022; 15
Arges (D4TA03630A/cit19/1) 2018; 1
DU (D4TA03630A/cit3/1) 2022; 122
Li (D4TA03630A/cit8/1) 2020; 5
Marino (D4TA03630A/cit20/1) 2015; 8
Xue (D4TA03630A/cit33/1) 2024; 8
Xiao (D4TA03630A/cit9/1) 2012; 5
Khataee (D4TA03630A/cit5/1) 2022; 10
Liu (D4TA03630A/cit12/1) 2024; 90
Noh (D4TA03630A/cit17/1) 2019; 52
Willdorf-Cohen (D4TA03630A/cit35/1) 2023; 6
Shi (D4TA03630A/cit30/1) 2022; 12
Mahmoud (D4TA03630A/cit43/1) 2024; 5
Ono (D4TA03630A/cit31/1) 2017; 5
Huang (D4TA03630A/cit28/1) 2024; 357
Hibbs (D4TA03630A/cit25/1) 2013; 51
Chatenet (D4TA03630A/cit1/1) 2022; 51
Cha (D4TA03630A/cit10/1) 2020; 13
Ozawa (D4TA03630A/cit23/1) 2023; 11
Dang (D4TA03630A/cit26/1) 2015; 3
Dekel (D4TA03630A/cit34/1) 2017; 29
Xu (D4TA03630A/cit27/1) 2023; 33
Li (D4TA03630A/cit38/1) 2012; 5
Chu (D4TA03630A/cit41/1) 2019; 578
Allushi (D4TA03630A/cit40/1) 2023; 56
Yassin (D4TA03630A/cit36/1) 2024; 690
Hu (D4TA03630A/cit6/1) 2023; 1
Mahmoud (D4TA03630A/cit14/1) 2023; 5
Ozawa (D4TA03630A/cit13/1) 2022; 7
Zhu (D4TA03630A/cit42/1) 2017; 50
Li (D4TA03630A/cit37/1) 2013; 135
Lin (D4TA03630A/cit39/1) 2016; 4
Wu (D4TA03630A/cit29/1) 2023; 35
Yu (D4TA03630A/cit4/1) 2021; 33
Mahmoud (D4TA03630A/cit32/1) 2018; 6
Park (D4TA03630A/cit16/1) 2024; 53
References_xml – issn: 2024
  end-page: p 241-284
  publication-title: Alkaline Anion Exchange Membranes for Fuel Cells: From Tailored Materials to Novel Applications
  doi: Sharma Kulshrestha
– volume: 5
  start-page: 24804
  year: 2017
  ident: D4TA03630A/cit31/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09409D
– volume: 678
  start-page: 121672
  year: 2023
  ident: D4TA03630A/cit21/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.121672
– volume: 51
  start-page: 1736
  year: 2013
  ident: D4TA03630A/cit25/1
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23149
– volume: 6
  start-page: 14400
  year: 2018
  ident: D4TA03630A/cit32/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04310H
– volume: 33
  start-page: 2007100
  year: 2021
  ident: D4TA03630A/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007100
– volume: 135
  start-page: 10124
  year: 2013
  ident: D4TA03630A/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403671u
– volume: 578
  start-page: 239
  year: 2019
  ident: D4TA03630A/cit41/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.02.051
– volume: 52
  start-page: 2745
  issue: 9
  year: 2019
  ident: D4TA03630A/cit17/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00355
– volume: 3
  start-page: 5280
  year: 2015
  ident: D4TA03630A/cit26/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00350D
– volume: 668
  start-page: 121229
  year: 2023
  ident: D4TA03630A/cit15/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.121229
– volume: 908
  start-page: 116112
  year: 2022
  ident: D4TA03630A/cit18/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2022.116112
– volume: 5
  start-page: 7888
  year: 2012
  ident: D4TA03630A/cit38/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22050d
– volume: 10
  start-page: e202200999
  year: 2023
  ident: D4TA03630A/cit2/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202200999
– volume: 11
  start-page: 19925
  year: 2023
  ident: D4TA03630A/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA03288D
– volume: 56
  start-page: 1165
  year: 2023
  ident: D4TA03630A/cit40/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c02291
– volume: 8
  start-page: 513
  year: 2015
  ident: D4TA03630A/cit20/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403022
– volume: 3
  start-page: 469
  issue: 1
  year: 2020
  ident: D4TA03630A/cit24/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01733
– volume: 5
  start-page: 2243
  year: 2023
  ident: D4TA03630A/cit14/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.2c02227
– volume: 12
  start-page: 14209
  issue: 22
  year: 2022
  ident: D4TA03630A/cit30/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02586
– volume: 51
  start-page: 4583
  year: 2022
  ident: D4TA03630A/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01079K
– volume: 357
  start-page: 129686
  year: 2024
  ident: D4TA03630A/cit28/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129686
– volume: 33
  start-page: 2302364
  year: 2023
  ident: D4TA03630A/cit27/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302364
– volume: 8
  start-page: 36
  year: 2020
  ident: D4TA03630A/cit11/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202001329
– volume: 6
  start-page: 1085
  issue: 2
  year: 2023
  ident: D4TA03630A/cit35/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c03689
– volume: 1
  start-page: 100044
  year: 2023
  ident: D4TA03630A/cit6/1
  publication-title: Next Energy
  doi: 10.1016/j.nxener.2023.100044
– volume: 13
  start-page: 3633
  year: 2020
  ident: D4TA03630A/cit10/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01842B
– volume: 15
  start-page: e202200027
  year: 2022
  ident: D4TA03630A/cit7/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202200027
– volume: 50
  start-page: 2329
  issue: 6
  year: 2017
  ident: D4TA03630A/cit42/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01381
– volume: 53
  start-page: 5704
  year: 2024
  ident: D4TA03630A/cit16/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00186E
– volume: 29
  start-page: 4425
  issue: 10
  year: 2017
  ident: D4TA03630A/cit34/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00958
– volume: 5
  start-page: 2300236
  year: 2024
  ident: D4TA03630A/cit43/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202300236
– volume: 5
  start-page: 7869
  year: 2012
  ident: D4TA03630A/cit9/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22146b
– volume: 1
  start-page: 2991
  year: 2018
  ident: D4TA03630A/cit19/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00387
– volume: 690
  start-page: 122164
  year: 2024
  ident: D4TA03630A/cit36/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.122164
– volume: 10
  start-page: 16061
  year: 2022
  ident: D4TA03630A/cit5/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03291K
– start-page: 241
  volume-title: Alkaline Anion Exchange Membranes for Fuel Cells: From Tailored Materials to Novel Applications
  year: 2024
  ident: D4TA03630A/cit22/1
  doi: 10.1002/9783527837588.ch11
– volume: 35
  start-page: 2210432
  year: 2023
  ident: D4TA03630A/cit29/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210432
– volume: 8
  start-page: 1457
  year: 2024
  ident: D4TA03630A/cit33/1
  publication-title: Joule
  doi: 10.1016/j.joule.2024.02.011
– volume: 122
  start-page: 11830
  year: 2022
  ident: D4TA03630A/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00854
– volume: 5
  start-page: 378
  year: 2020
  ident: D4TA03630A/cit8/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0577-x
– volume: 4
  start-page: 13938
  year: 2016
  ident: D4TA03630A/cit39/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05090E
– volume: 7
  start-page: 798
  year: 2022
  ident: D4TA03630A/cit13/1
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D2ME00027J
– volume: 90
  start-page: 348
  year: 2024
  ident: D4TA03630A/cit12/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.11.026
SSID ssj0000800699
Score 2.4532177
Snippet To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25429
SubjectTerms Alkaline water
Anion exchange
Anion exchanging
Catalysts
Cations
Conductivity
Copolymerization
Dichlorobenzene
Electrochemical analysis
Electrochemistry
Electrolysis
High voltage
Ion exchange
Membranes
Piperidine
Terpolymers
Voltage
Water uptake
Title Poly(arylene piperidinium) terpolymer membranes with dual piperidinium cations and semi-fluoroalkyl pendants for anion exchange membrane water electrolyzers
URI https://www.proquest.com/docview/3108545223
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IP5WFBZkCQ6soiz5sdPmWMGiBQHi0JWWU-XGthq2aVYlAbrPwiPyEMzYiZOiIgGXqLJdx818nRk738wQ8gy2PaGMssRnKR7dCMX9MYjZV1E0D0dZIrU0LN8Pydk5e3vBLwaDnz3WUl3NT7LrnXEl_yNVaAO5YpTsP0jWTQoN8BnkC1eQMFz_SsYfS6wTPRbrDdgO5V3lmLYYjFGOxYtTz1TQWm4KtfYKVcC2GNSaPXi1AVi94V5LKjfn6KrIfb2sy3UplpcbGKlg4458GUu5RMSo7zZk2M3sfROYb7Epq7PcXDfU-h2eb4Ej8el4WVtu7sSb2MihtsdkIrdxiWZJbZwXUnndW4BPQoqvhqmbX8IaHIPnfb4RlbC0I7Akn3MH6wUYf7jLoihre6BuG8qFKJooLyQn5bXx6eH3LWrRPxeJmG9eFXXqMwp4gJlSrXZX_TZbQ9fp_6iHc5uBptXmWMyr5xpgOrdwp90JYkzbKlkl8MV40LOujvPYde6Rgwg2NaCVDyan0zfv3Jkgeu-JKXnqFt9m1I3TF90E2z5UtzHaW7dVa4x3NL1NbjXCpROL0TtkoFZ3yc1esst75Aei9XmDVdoH3zHtkEodUikilSJStwbTBqkUYEF_RyptkUoBP9QglbZIdTNTg1S6hdT75Pz16fTlmd_UBvGzOOKVr9KRVFwzFmkd6SQTgQZzKcG-aMkyrkfjVIpxIDkXMmOjjMkRDxOsHhEkWqfz-JDsr8qVekBoGmrws0MuQyVYIFjKFLjNWs7jLOCCZ0Ny3D7tWdYkzsf6LcuZIXDE6ewVm06MZCZD8tSNvbLpYnaOOmqFNmvUyZdZjHFAWN8gHpJDEKT7fif3h3_qeERudH-BI7JfrWv1GJzlav6kwdgvvK7MoQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28arylene+piperidinium%29+terpolymer+membranes+with+dual+piperidinium+cations+and+semi-fluoroalkyl+pendants+for+anion+exchange+membrane+water+electrolyzers&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yadav%2C+Vikrant&rft.au=Miyatake%2C+Kenji&rft.au=Ahmed+Mahmoud%2C+Ahmed+Mohamed&rft.au=Liu%2C+Fanghua&rft.date=2024-09-24&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=37&rft.spage=25429&rft.epage=25441&rft_id=info:doi/10.1039%2Fd4ta03630a&rft.externalDocID=d4ta03630a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon