Poly(arylene piperidinium) terpolymer membranes with dual piperidinium cations and semi-fluoroalkyl pendants for anion exchange membrane water electrolyzers
To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 37; pp. 25429 - 25441 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC =
ca.
1.85 meq g
−1
) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm
−1
(at 80 °C) was achieved for the membrane formulated with the C
11
pendant. C
x
-QPip-
n
membranes showed good alkaline stability; in particular, C
11
-QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C
11
-QPip-1.86 membrane and with a PGM-free anode catalyst (Ni
0.8
Co
0.2
O) showed good performance (1.0 A cm
−2
at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h
−1
) under constant current density (1.0 A cm
−2
) operation.
The effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties was investigated for poly(arylene piperidinium) terpolymer-based anion exchange membranes for applications in alkaline water electrolyzers. |
---|---|
AbstractList | To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC =
ca.
1.85 meq g
−1
) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm
−1
(at 80 °C) was achieved for the membrane formulated with the C
11
pendant. C
x
-QPip-
n
membranes showed good alkaline stability; in particular, C
11
-QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C
11
-QPip-1.86 membrane and with a PGM-free anode catalyst (Ni
0.8
Co
0.2
O) showed good performance (1.0 A cm
−2
at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h
−1
) under constant current density (1.0 A cm
−2
) operation.
The effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties was investigated for poly(arylene piperidinium) terpolymer-based anion exchange membranes for applications in alkaline water electrolyzers. To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g−1) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm−1 (at 80 °C) was achieved for the membrane formulated with the C11 pendant. Cx-QPip-n membranes showed good alkaline stability; in particular, C11-QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C11-QPip-1.86 membrane and with a PGM-free anode catalyst (Ni0.8Co0.2O) showed good performance (1.0 A cm−2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h−1) under constant current density (1.0 A cm−2) operation. To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties of the resulting AEMs was investigated. A series of 2,5-dichlorobenzene monomers differing in semi-fluoroalkyl pendant length were synthesized and copolymerized with 2,2-bis(4-chlorophenyl)hexafluoropropane and piperidine functionalized 2,7-dichlorofluorene. The terpolymers provided bendable membranes by solution casting. The membranes with comparable ion exchange capacity (IEC = ca. 1.85 meq g −1 ) showed similar water uptake, while the hydroxide ion conductivity increased by 24% on increasing the pendant chain from 7 to 11 carbons. The maximum ion conductivity of 112 mS cm −1 (at 80 °C) was achieved for the membrane formulated with the C 11 pendant. C x -QPip- n membranes showed good alkaline stability; in particular, C 11 -QPip-1.86 retained 75% of the original conductivity after 1056 h under harsh alkaline conditions (8 M KOH at 80 °C). An alkaline water electrolysis cell assembled with the C 11 -QPip-1.86 membrane and with a PGM-free anode catalyst (Ni 0.8 Co 0.2 O) showed good performance (1.0 A cm −2 at 1.64 V) with high voltage efficiency (75%). The cell was durable for 1000 h with minor voltage change (28 μV h −1 ) under constant current density (1.0 A cm −2 ) operation. |
Author | Kakinuma, Katsuyoshi Ahmed Mahmoud, Ahmed Mohamed Yadav, Vikrant Iwataki, Toshio Liu, Fanghua Miyatake, Kenji Uchida, Makoto Guo, Lin Xian, Fang Wong, Chun Yik |
AuthorAffiliation | Hydrogen and Fuel Cell Nanomaterials Center Waseda University Department of Applied Chemistry University of Yamanashi Clean Energy Research Center |
AuthorAffiliation_xml | – sequence: 0 name: Waseda University – sequence: 0 name: Clean Energy Research Center – sequence: 0 name: Department of Applied Chemistry – sequence: 0 name: Hydrogen and Fuel Cell Nanomaterials Center – sequence: 0 name: University of Yamanashi |
Author_xml | – sequence: 1 givenname: Vikrant surname: Yadav fullname: Yadav, Vikrant – sequence: 2 givenname: Kenji surname: Miyatake fullname: Miyatake, Kenji – sequence: 3 givenname: Ahmed Mohamed surname: Ahmed Mahmoud fullname: Ahmed Mahmoud, Ahmed Mohamed – sequence: 4 givenname: Fanghua surname: Liu fullname: Liu, Fanghua – sequence: 5 givenname: Fang surname: Xian fullname: Xian, Fang – sequence: 6 givenname: Lin surname: Guo fullname: Guo, Lin – sequence: 7 givenname: Chun Yik surname: Wong fullname: Wong, Chun Yik – sequence: 8 givenname: Toshio surname: Iwataki fullname: Iwataki, Toshio – sequence: 9 givenname: Makoto surname: Uchida fullname: Uchida, Makoto – sequence: 10 givenname: Katsuyoshi surname: Kakinuma fullname: Kakinuma, Katsuyoshi |
BookMark | eNptkU1LxDAQhoMoqKsX70LAiwrVtE36cVzWT1jQg55LTCZutE1qkrKuv8Ufa3RlRXEuMzDPzMvMu43WjTWA0F5KTlKS16eSBk7yIid8DW1lhJGkpHWxvqqrahPtev9EYlSEFHW9hd5vbbs45G7RggHc6x6cltrooTvCAVwfux043EH34LgBj-c6zLAcePsLxoIHbY3H3EjsodOJagfrLG-fF5EEI7kJHivrIhFBDK9ixs0jrDbjOY96GFoQwUXVN3B-B20o3nrY_c4jdH9xfje5SqY3l9eT8TQRecZCAnUpgSlKM6UyVQhOVFWVkqSlklQwVVa15BWRjHEpaCmoLFlaxB9QUihVP-QjdLDc2zv7MoAPzZMdnImSTZ6SilGWZXmkyJISznrvQDVCh6-zg-O6bVLSfNrQnNG78ZcN4zhy_Gekd7qL3_4f3l_CzosV9-Np_gGIJpjW |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c05582 |
Cites_doi | 10.1039/C7TA09409D 10.1016/j.memsci.2023.121672 10.1002/polb.23149 10.1039/C8TA04310H 10.1002/adma.202007100 10.1021/ja403671u 10.1016/j.memsci.2019.02.051 10.1021/acs.accounts.9b00355 10.1039/C5TA00350D 10.1016/j.memsci.2022.121229 10.1016/j.jelechem.2022.116112 10.1039/c2ee22050d 10.1002/celc.202200999 10.1039/D3TA03288D 10.1021/acs.macromol.2c02291 10.1002/cssc.201403022 10.1021/acsaem.9b01733 10.1021/acsapm.2c02227 10.1021/acscatal.2c02586 10.1039/D0CS01079K 10.1016/j.fuel.2023.129686 10.1002/adfm.202302364 10.1002/celc.202001329 10.1021/acsaem.2c03689 10.1016/j.nxener.2023.100044 10.1039/D0EE01842B 10.1002/cssc.202200027 10.1021/acs.macromol.6b01381 10.1039/D3CS00186E 10.1021/acs.chemmater.7b00958 10.1002/aesr.202300236 10.1039/c2ee22146b 10.1021/acsaem.8b00387 10.1016/j.memsci.2023.122164 10.1039/D2TA03291K 10.1002/9783527837588.ch11 10.1002/adma.202210432 10.1016/j.joule.2024.02.011 10.1021/acs.chemrev.1c00854 10.1038/s41560-020-0577-x 10.1039/C6TA05090E 10.1039/D2ME00027J 10.1016/j.jechem.2023.11.026 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta03630a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 25441 |
ExternalDocumentID | 10_1039_D4TA03630A d4ta03630a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c325t-e97de5f442ff2f6ca0f887d017fd4c5f789da80d55adc47c4d7516008406ff9b3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:03:10 EDT 2025 Tue Jul 01 03:28:21 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Tue Dec 17 20:57:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-e97de5f442ff2f6ca0f887d017fd4c5f789da80d55adc47c4d7516008406ff9b3 |
Notes | https://doi.org/10.1039/d4ta03630a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2108-0612 0000-0002-8963-4178 0000-0001-5713-2635 0000-0002-2880-1753 0000-0002-7847-3727 |
OpenAccessLink | https://yamanashi.repo.nii.ac.jp/records/2000443 |
PQID | 3108545223 |
PQPubID | 2047523 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1039_D4TA03630A crossref_primary_10_1039_D4TA03630A rsc_primary_d4ta03630a proquest_journals_3108545223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-24 |
PublicationDateYYYYMMDD | 2024-09-24 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Haj-Bsoul (D4TA03630A/cit18/1) 2022; 908 Zhang (D4TA03630A/cit21/1) 2023; 678 Hua (D4TA03630A/cit2/1) 2023; 10 Bakvand (D4TA03630A/cit15/1) 2023; 668 Kimura (D4TA03630A/cit24/1) 2020; 3 Sharma (D4TA03630A/cit22/1) 2024 Mandal (D4TA03630A/cit11/1) 2020; 8 Santoro (D4TA03630A/cit7/1) 2022; 15 Arges (D4TA03630A/cit19/1) 2018; 1 DU (D4TA03630A/cit3/1) 2022; 122 Li (D4TA03630A/cit8/1) 2020; 5 Marino (D4TA03630A/cit20/1) 2015; 8 Xue (D4TA03630A/cit33/1) 2024; 8 Xiao (D4TA03630A/cit9/1) 2012; 5 Khataee (D4TA03630A/cit5/1) 2022; 10 Liu (D4TA03630A/cit12/1) 2024; 90 Noh (D4TA03630A/cit17/1) 2019; 52 Willdorf-Cohen (D4TA03630A/cit35/1) 2023; 6 Shi (D4TA03630A/cit30/1) 2022; 12 Mahmoud (D4TA03630A/cit43/1) 2024; 5 Ono (D4TA03630A/cit31/1) 2017; 5 Huang (D4TA03630A/cit28/1) 2024; 357 Hibbs (D4TA03630A/cit25/1) 2013; 51 Chatenet (D4TA03630A/cit1/1) 2022; 51 Cha (D4TA03630A/cit10/1) 2020; 13 Ozawa (D4TA03630A/cit23/1) 2023; 11 Dang (D4TA03630A/cit26/1) 2015; 3 Dekel (D4TA03630A/cit34/1) 2017; 29 Xu (D4TA03630A/cit27/1) 2023; 33 Li (D4TA03630A/cit38/1) 2012; 5 Chu (D4TA03630A/cit41/1) 2019; 578 Allushi (D4TA03630A/cit40/1) 2023; 56 Yassin (D4TA03630A/cit36/1) 2024; 690 Hu (D4TA03630A/cit6/1) 2023; 1 Mahmoud (D4TA03630A/cit14/1) 2023; 5 Ozawa (D4TA03630A/cit13/1) 2022; 7 Zhu (D4TA03630A/cit42/1) 2017; 50 Li (D4TA03630A/cit37/1) 2013; 135 Lin (D4TA03630A/cit39/1) 2016; 4 Wu (D4TA03630A/cit29/1) 2023; 35 Yu (D4TA03630A/cit4/1) 2021; 33 Mahmoud (D4TA03630A/cit32/1) 2018; 6 Park (D4TA03630A/cit16/1) 2024; 53 |
References_xml | – issn: 2024 end-page: p 241-284 publication-title: Alkaline Anion Exchange Membranes for Fuel Cells: From Tailored Materials to Novel Applications doi: Sharma Kulshrestha – volume: 5 start-page: 24804 year: 2017 ident: D4TA03630A/cit31/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09409D – volume: 678 start-page: 121672 year: 2023 ident: D4TA03630A/cit21/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.121672 – volume: 51 start-page: 1736 year: 2013 ident: D4TA03630A/cit25/1 publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.23149 – volume: 6 start-page: 14400 year: 2018 ident: D4TA03630A/cit32/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04310H – volume: 33 start-page: 2007100 year: 2021 ident: D4TA03630A/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007100 – volume: 135 start-page: 10124 year: 2013 ident: D4TA03630A/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403671u – volume: 578 start-page: 239 year: 2019 ident: D4TA03630A/cit41/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.02.051 – volume: 52 start-page: 2745 issue: 9 year: 2019 ident: D4TA03630A/cit17/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00355 – volume: 3 start-page: 5280 year: 2015 ident: D4TA03630A/cit26/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00350D – volume: 668 start-page: 121229 year: 2023 ident: D4TA03630A/cit15/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.121229 – volume: 908 start-page: 116112 year: 2022 ident: D4TA03630A/cit18/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2022.116112 – volume: 5 start-page: 7888 year: 2012 ident: D4TA03630A/cit38/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22050d – volume: 10 start-page: e202200999 year: 2023 ident: D4TA03630A/cit2/1 publication-title: ChemElectroChem doi: 10.1002/celc.202200999 – volume: 11 start-page: 19925 year: 2023 ident: D4TA03630A/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA03288D – volume: 56 start-page: 1165 year: 2023 ident: D4TA03630A/cit40/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.2c02291 – volume: 8 start-page: 513 year: 2015 ident: D4TA03630A/cit20/1 publication-title: ChemSusChem doi: 10.1002/cssc.201403022 – volume: 3 start-page: 469 issue: 1 year: 2020 ident: D4TA03630A/cit24/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01733 – volume: 5 start-page: 2243 year: 2023 ident: D4TA03630A/cit14/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.2c02227 – volume: 12 start-page: 14209 issue: 22 year: 2022 ident: D4TA03630A/cit30/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02586 – volume: 51 start-page: 4583 year: 2022 ident: D4TA03630A/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01079K – volume: 357 start-page: 129686 year: 2024 ident: D4TA03630A/cit28/1 publication-title: Fuel doi: 10.1016/j.fuel.2023.129686 – volume: 33 start-page: 2302364 year: 2023 ident: D4TA03630A/cit27/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302364 – volume: 8 start-page: 36 year: 2020 ident: D4TA03630A/cit11/1 publication-title: ChemElectroChem doi: 10.1002/celc.202001329 – volume: 6 start-page: 1085 issue: 2 year: 2023 ident: D4TA03630A/cit35/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c03689 – volume: 1 start-page: 100044 year: 2023 ident: D4TA03630A/cit6/1 publication-title: Next Energy doi: 10.1016/j.nxener.2023.100044 – volume: 13 start-page: 3633 year: 2020 ident: D4TA03630A/cit10/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01842B – volume: 15 start-page: e202200027 year: 2022 ident: D4TA03630A/cit7/1 publication-title: ChemSusChem doi: 10.1002/cssc.202200027 – volume: 50 start-page: 2329 issue: 6 year: 2017 ident: D4TA03630A/cit42/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01381 – volume: 53 start-page: 5704 year: 2024 ident: D4TA03630A/cit16/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00186E – volume: 29 start-page: 4425 issue: 10 year: 2017 ident: D4TA03630A/cit34/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00958 – volume: 5 start-page: 2300236 year: 2024 ident: D4TA03630A/cit43/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202300236 – volume: 5 start-page: 7869 year: 2012 ident: D4TA03630A/cit9/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22146b – volume: 1 start-page: 2991 year: 2018 ident: D4TA03630A/cit19/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00387 – volume: 690 start-page: 122164 year: 2024 ident: D4TA03630A/cit36/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.122164 – volume: 10 start-page: 16061 year: 2022 ident: D4TA03630A/cit5/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03291K – start-page: 241 volume-title: Alkaline Anion Exchange Membranes for Fuel Cells: From Tailored Materials to Novel Applications year: 2024 ident: D4TA03630A/cit22/1 doi: 10.1002/9783527837588.ch11 – volume: 35 start-page: 2210432 year: 2023 ident: D4TA03630A/cit29/1 publication-title: Adv. Mater. doi: 10.1002/adma.202210432 – volume: 8 start-page: 1457 year: 2024 ident: D4TA03630A/cit33/1 publication-title: Joule doi: 10.1016/j.joule.2024.02.011 – volume: 122 start-page: 11830 year: 2022 ident: D4TA03630A/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00854 – volume: 5 start-page: 378 year: 2020 ident: D4TA03630A/cit8/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0577-x – volume: 4 start-page: 13938 year: 2016 ident: D4TA03630A/cit39/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05090E – volume: 7 start-page: 798 year: 2022 ident: D4TA03630A/cit13/1 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/D2ME00027J – volume: 90 start-page: 348 year: 2024 ident: D4TA03630A/cit12/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.11.026 |
SSID | ssj0000800699 |
Score | 2.4532177 |
Snippet | To develop high-performance anion exchange membranes (AEMs), the effect of the length of semi-fluoroalkyl pendants on physical and electrochemical properties... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25429 |
SubjectTerms | Alkaline water Anion exchange Anion exchanging Catalysts Cations Conductivity Copolymerization Dichlorobenzene Electrochemical analysis Electrochemistry Electrolysis High voltage Ion exchange Membranes Piperidine Terpolymers Voltage Water uptake |
Title | Poly(arylene piperidinium) terpolymer membranes with dual piperidinium cations and semi-fluoroalkyl pendants for anion exchange membrane water electrolyzers |
URI | https://www.proquest.com/docview/3108545223 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IP5WFBZkCQ6soiz5sdPmWMGiBQHi0JWWU-XGthq2aVYlAbrPwiPyEMzYiZOiIgGXqLJdx818nRk738wQ8gy2PaGMssRnKR7dCMX9MYjZV1E0D0dZIrU0LN8Pydk5e3vBLwaDnz3WUl3NT7LrnXEl_yNVaAO5YpTsP0jWTQoN8BnkC1eQMFz_SsYfS6wTPRbrDdgO5V3lmLYYjFGOxYtTz1TQWm4KtfYKVcC2GNSaPXi1AVi94V5LKjfn6KrIfb2sy3UplpcbGKlg4458GUu5RMSo7zZk2M3sfROYb7Epq7PcXDfU-h2eb4Ej8el4WVtu7sSb2MihtsdkIrdxiWZJbZwXUnndW4BPQoqvhqmbX8IaHIPnfb4RlbC0I7Akn3MH6wUYf7jLoihre6BuG8qFKJooLyQn5bXx6eH3LWrRPxeJmG9eFXXqMwp4gJlSrXZX_TZbQ9fp_6iHc5uBptXmWMyr5xpgOrdwp90JYkzbKlkl8MV40LOujvPYde6Rgwg2NaCVDyan0zfv3Jkgeu-JKXnqFt9m1I3TF90E2z5UtzHaW7dVa4x3NL1NbjXCpROL0TtkoFZ3yc1esst75Aei9XmDVdoH3zHtkEodUikilSJStwbTBqkUYEF_RyptkUoBP9QglbZIdTNTg1S6hdT75Pz16fTlmd_UBvGzOOKVr9KRVFwzFmkd6SQTgQZzKcG-aMkyrkfjVIpxIDkXMmOjjMkRDxOsHhEkWqfz-JDsr8qVekBoGmrws0MuQyVYIFjKFLjNWs7jLOCCZ0Ny3D7tWdYkzsf6LcuZIXDE6ewVm06MZCZD8tSNvbLpYnaOOmqFNmvUyZdZjHFAWN8gHpJDEKT7fif3h3_qeERudH-BI7JfrWv1GJzlav6kwdgvvK7MoQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28arylene+piperidinium%29+terpolymer+membranes+with+dual+piperidinium+cations+and+semi-fluoroalkyl+pendants+for+anion+exchange+membrane+water+electrolyzers&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yadav%2C+Vikrant&rft.au=Miyatake%2C+Kenji&rft.au=Ahmed+Mahmoud%2C+Ahmed+Mohamed&rft.au=Liu%2C+Fanghua&rft.date=2024-09-24&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=37&rft.spage=25429&rft.epage=25441&rft_id=info:doi/10.1039%2Fd4ta03630a&rft.externalDocID=d4ta03630a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |