Pre‐adaptation and adaptation shape trait‐environment matching in the Neotropics
AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change...
Saved in:
Published in | Global ecology and biogeography Vol. 32; no. 10; pp. 1760 - 1772 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma.LocationNeotropics.Time PeriodCenozoic.Major Taxa StudiedFabaceae: Papilionoidae: Swartzia.MethodsWe assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments.ResultsLeaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss.Main ConclusionOur results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales. |
---|---|
AbstractList | AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma.LocationNeotropics.Time PeriodCenozoic.Major Taxa StudiedFabaceae: Papilionoidae: Swartzia.MethodsWe assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments.ResultsLeaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss.Main ConclusionOur results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales. AIM: Functional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma. LOCATION: Neotropics. TIME PERIOD: Cenozoic. MAJOR TAXA STUDIED: Fabaceae: Papilionoidae: Swartzia. METHODS: We assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments. RESULTS: Leaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss. MAIN CONCLUSION: Our results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales. |
Author | Velásquez‐Puentes, Francisco J. Barratt, Christopher D. Torke, Benjamin M. Pezzini, Flávia Fonseca Dexter, Kyle G. Pennington, Toby Zizka, Alexander Onstein, Renske E. |
Author_xml | – sequence: 1 givenname: Francisco J. orcidid: 0000-0001-9073-0469 surname: Velásquez‐Puentes fullname: Velásquez‐Puentes, Francisco J. organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Departamento de Química y Biología Universidad del Norte Barranquilla Colombia – sequence: 2 givenname: Benjamin M. orcidid: 0000-0001-8823-3519 surname: Torke fullname: Torke, Benjamin M. organization: Institute of Systematic Botany New York Botanical Garden Bronx New York USA – sequence: 3 givenname: Christopher D. orcidid: 0000-0003-3267-8855 surname: Barratt fullname: Barratt, Christopher D. organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Naturalis Biodiversity Center Leiden the Netherlands – sequence: 4 givenname: Kyle G. orcidid: 0000-0001-9232-5221 surname: Dexter fullname: Dexter, Kyle G. organization: School of GeoSciences University of Edinburgh Edinburgh UK, Royal Botanic Garden Edinburgh Edinburgh UK – sequence: 5 givenname: Toby orcidid: 0000-0002-8196-288X surname: Pennington fullname: Pennington, Toby organization: Royal Botanic Garden Edinburgh Edinburgh UK, Department of Geography University of Exeter Exeter UK – sequence: 6 givenname: Flávia Fonseca orcidid: 0000-0001-5988-7361 surname: Pezzini fullname: Pezzini, Flávia Fonseca organization: Royal Botanic Garden Edinburgh Edinburgh UK – sequence: 7 givenname: Alexander orcidid: 0000-0002-1680-9192 surname: Zizka fullname: Zizka, Alexander organization: Naturalis Biodiversity Center Leiden the Netherlands, Department of Biology Philipps‐University Marburg Marburg Germany – sequence: 8 givenname: Renske E. orcidid: 0000-0002-2295-3510 surname: Onstein fullname: Onstein, Renske E. organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Naturalis Biodiversity Center Leiden the Netherlands |
BookMark | eNptkN1KwzAUgINMcJte-AYFb_SiW37atL2U4R8M9WKCdyVNT7eMNqlJJnjnI_iMPomZE5Fhbk4OfOfvG6GBNhoQOiV4QsKbLqGaEJYxfICGJOE8zinLB79_-nyERs6tMcZpkvIhWjxa-Hz_ELXovfDK6EjoOvqTupXoIfJWKB840K_KGt2B9lEnvFwpvYyUjvwKonsw3ppeSXeMDhvROjj5iWP0dH21mN3G84ebu9nlPJaMpj6GhFeQNpTVtKhFU1EqUil4gmVRMJnxDOqKp7QmpG5SXmV1keGCFJDQIs1ZztgYne_69ta8bMD5slNOQtsKDWbjSprneTi0wFv0bA9dm43VYbtA8TCTE4IDdbGjpDXOWWjK3qpO2LeS4HLrtwx-y2-_gZ3usVLtnG1ltf9UfAHscIFE |
CitedBy_id | crossref_primary_10_1111_1365_2745_14354 crossref_primary_10_1111_jbi_15048 |
Cites_doi | 10.1080/10635150590947131 10.1098/rstb.1991.0076 10.1111/j.1365-2435.2008.01444.x 10.1111/j.1469-8137.2009.03043.x 10.1086/383062 10.1093/aobpla/plac041 10.1126/science.aal4760 10.1086/717623 10.1007/s12228-009-9122-8 10.2307/2806078 10.1007/s12225-013-9442-4 10.1126/science.abf1969 10.2307/2806570 10.1111/geb.13309 10.1111/ele.14128 10.2307/2388705 10.1111/nph.13724 10.1086/374729 10.3732/ajb.95.2.215 10.1111/ele.12252 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 10.1371/journal.pcbi.1003537 10.1146/annurev.ecolsys.33.010802.150452 10.1007/978-3-662-00799-0 10.1098/rspb.2012.1110 10.2307/2399603 10.3732/ajb.90.9.1271 10.1111/nph.16675 10.1038/nature16489 10.2307/3391588 10.1371/journal.pbio.1001949 10.1111/nph.17670 10.1007/978-1-4757-2917-7 10.1007/978-94-009-7299-5_6 10.1111/j.1466-8238.2006.00259.x 10.1002/joc.5086 10.1111/j.1095-8339.2007.00587.x 10.1046/j.1472-4642.2002.00161.x 10.2307/2666621 10.1046/j.1365-2745.2000.00506.x 10.1111/nph.17036 10.2307/4325 10.1002/ece3.6389 10.1086/503444 10.1016/B978-0-12-800049-6.00067-6 10.1146/annurev.ecolsys.110308.120327 10.1073/pnas.1713819115 10.1038/s41467-020-18530-5 10.5194/soil-7-217-2021 10.1002/tax.583019 10.1016/j.cub.2022.01.066 10.1034/j.1600-0706.2000.900310.x 10.1600/036364404774195548 10.1073/pnas.1219690110 10.1098/rspb.2021.2633 10.1093/sysbio/syaa045 10.1111/j.1744-7429.1999.tb00388.x 10.1038/nature12872 10.2307/4119303 10.1111/nph.15633 10.3732/ajb.1000299 10.1111/jbi.13552 10.1080/01621459.1995.10476572 10.1111/j.1466-8238.2011.00727.x 10.1111/nph.17195 10.1017/S0094837300004310 10.1111/nph.17822 10.1007/s12228-011-9219-8 10.3390/f10020178 10.1073/pnas.0801962105 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.13730 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 1772 |
ExternalDocumentID | 10_1111_geb_13730 |
GeographicLocations | Amazonia |
GeographicLocations_xml | – name: Amazonia |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAYXX AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGUYK AGYGG AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD CITATION COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM 7QG 7SN 7SS 7ST 7U6 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c325t-e46be5f23d29dafb22a5ca640c993c767edb652d11df56b7d970919e429583833 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 08:51:54 EDT 2025 Sun Jul 13 05:07:06 EDT 2025 Tue Jul 01 02:37:35 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-e46be5f23d29dafb22a5ca640c993c767edb652d11df56b7d970919e429583833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9232-5221 0000-0001-5988-7361 0000-0001-9073-0469 0000-0002-8196-288X 0000-0001-8823-3519 0000-0003-3267-8855 0000-0002-2295-3510 0000-0002-1680-9192 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.13730 |
PQID | 2866406110 |
PQPubID | 1066347 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2888005903 proquest_journals_2866406110 crossref_primary_10_1111_geb_13730 crossref_citationtrail_10_1111_geb_13730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_11_1_29_1 Torke B. M. (e_1_2_11_2_13_1) 2011 e_1_2_11_1_25_1 e_1_2_11_1_48_1 e_1_2_11_1_27_1 e_1_2_11_1_46_1 Cowan R. S. (e_1_2_11_1_19_1) 1967 e_1_2_11_1_21_1 e_1_2_11_1_44_1 e_1_2_11_1_23_1 e_1_2_11_1_42_1 e_1_2_11_1_65_1 e_1_2_11_1_40_1 e_1_2_11_1_63_1 e_1_2_11_1_61_1 e_1_2_11_2_11_1 e_1_2_11_2_15_1 e_1_2_11_2_6_1 e_1_2_11_2_8_1 e_1_2_11_1_4_1 e_1_2_11_1_17_1 e_1_2_11_1_2_1 e_1_2_11_1_8_1 e_1_2_11_1_13_1 e_1_2_11_1_38_1 e_1_2_11_1_59_1 e_1_2_11_1_6_1 e_1_2_11_1_15_1 e_1_2_11_1_36_1 e_1_2_11_1_57_1 e_1_2_11_1_34_1 e_1_2_11_1_55_1 e_1_2_11_1_11_1 e_1_2_11_1_32_1 e_1_2_11_1_53_1 e_1_2_11_1_30_1 e_1_2_11_1_51_1 Cowan R. S. (e_1_2_11_2_3_1) 1967 e_1_2_11_2_2_1 Cowan R. S. (e_1_2_11_2_4_1) 1973; 86 e_1_2_11_1_28_1 e_1_2_11_1_24_1 e_1_2_11_1_49_1 e_1_2_11_1_26_1 e_1_2_11_1_47_1 e_1_2_11_1_20_1 e_1_2_11_1_45_1 e_1_2_11_1_66_1 e_1_2_11_1_22_1 e_1_2_11_1_43_1 e_1_2_11_1_64_1 e_1_2_11_2_12_1 e_1_2_11_1_41_1 e_1_2_11_1_62_1 e_1_2_11_2_10_1 e_1_2_11_1_60_1 e_1_2_11_2_14_1 e_1_2_11_2_5_1 e_1_2_11_2_7_1 e_1_2_11_2_9_1 e_1_2_11_1_18_1 e_1_2_11_1_5_1 e_1_2_11_1_39_1 e_1_2_11_1_3_1 e_1_2_11_1_14_1 e_1_2_11_1_37_1 e_1_2_11_1_9_1 e_1_2_11_1_16_1 e_1_2_11_1_35_1 e_1_2_11_1_58_1 e_1_2_11_1_7_1 e_1_2_11_1_10_1 e_1_2_11_1_33_1 e_1_2_11_1_56_1 e_1_2_11_1_12_1 e_1_2_11_1_31_1 e_1_2_11_1_54_1 e_1_2_11_1_52_1 e_1_2_11_1_50_1 |
References_xml | – ident: e_1_2_11_1_37_1 doi: 10.1080/10635150590947131 – ident: e_1_2_11_1_13_1 doi: 10.1098/rstb.1991.0076 – ident: e_1_2_11_1_39_1 doi: 10.1111/j.1365-2435.2008.01444.x – ident: e_1_2_11_1_30_1 doi: 10.1111/j.1469-8137.2009.03043.x – ident: e_1_2_11_1_4_1 doi: 10.1086/383062 – ident: e_1_2_11_1_8_1 doi: 10.1093/aobpla/plac041 – volume-title: The Swartzia pages year: 2011 ident: e_1_2_11_2_13_1 – ident: e_1_2_11_1_64_1 doi: 10.1126/science.aal4760 – ident: e_1_2_11_1_34_1 doi: 10.1086/717623 – ident: e_1_2_11_2_14_1 doi: 10.1007/s12228-009-9122-8 – ident: e_1_2_11_2_6_1 doi: 10.2307/2806078 – ident: e_1_2_11_1_32_1 – ident: e_1_2_11_2_12_1 doi: 10.1007/s12225-013-9442-4 – ident: e_1_2_11_1_16_1 doi: 10.1126/science.abf1969 – ident: e_1_2_11_2_5_1 doi: 10.2307/2806570 – ident: e_1_2_11_1_52_1 doi: 10.1111/geb.13309 – ident: e_1_2_11_1_61_1 doi: 10.1111/ele.14128 – ident: e_1_2_11_1_17_1 doi: 10.2307/2388705 – ident: e_1_2_11_1_50_1 doi: 10.1111/nph.13724 – ident: e_1_2_11_1_3_1 doi: 10.1086/374729 – ident: e_1_2_11_1_58_1 doi: 10.3732/ajb.95.2.215 – ident: e_1_2_11_1_47_1 – ident: e_1_2_11_1_6_1 doi: 10.1111/ele.12252 – ident: e_1_2_11_1_25_1 doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 – ident: e_1_2_11_1_12_1 doi: 10.1371/journal.pcbi.1003537 – ident: e_1_2_11_1_62_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_2_11_1_60_1 doi: 10.1007/978-3-662-00799-0 – ident: e_1_2_11_1_54_1 doi: 10.1098/rspb.2012.1110 – ident: e_1_2_11_2_2_1 doi: 10.2307/2399603 – ident: e_1_2_11_1_59_1 doi: 10.3732/ajb.90.9.1271 – ident: e_1_2_11_1_27_1 doi: 10.1111/nph.16675 – ident: e_1_2_11_1_21_1 doi: 10.1038/nature16489 – ident: e_1_2_11_2_10_1 doi: 10.2307/3391588 – ident: e_1_2_11_1_10_1 doi: 10.1371/journal.pbio.1001949 – ident: e_1_2_11_1_11_1 doi: 10.1111/nph.17670 – ident: e_1_2_11_1_14_1 doi: 10.1007/978-1-4757-2917-7 – ident: e_1_2_11_1_29_1 doi: 10.1007/978-94-009-7299-5_6 – ident: e_1_2_11_1_41_1 doi: 10.1111/j.1466-8238.2006.00259.x – ident: e_1_2_11_1_24_1 doi: 10.1002/joc.5086 – ident: e_1_2_11_2_11_1 doi: 10.1111/j.1095-8339.2007.00587.x – ident: e_1_2_11_1_40_1 doi: 10.1046/j.1472-4642.2002.00161.x – ident: e_1_2_11_2_8_1 doi: 10.2307/2666621 – ident: e_1_2_11_1_26_1 doi: 10.1046/j.1365-2745.2000.00506.x – ident: e_1_2_11_1_7_1 – ident: e_1_2_11_1_33_1 doi: 10.1111/nph.17036 – ident: e_1_2_11_1_43_1 doi: 10.2307/4325 – ident: e_1_2_11_1_20_1 doi: 10.1002/ece3.6389 – ident: e_1_2_11_1_49_1 – ident: e_1_2_11_1_48_1 doi: 10.1086/503444 – ident: e_1_2_11_1_44_1 doi: 10.1016/B978-0-12-800049-6.00067-6 – ident: e_1_2_11_1_51_1 doi: 10.1146/annurev.ecolsys.110308.120327 – ident: e_1_2_11_1_5_1 doi: 10.1073/pnas.1713819115 – ident: e_1_2_11_1_38_1 doi: 10.1038/s41467-020-18530-5 – ident: e_1_2_11_1_2_1 doi: 10.1086/383062 – ident: e_1_2_11_1_53_1 doi: 10.5194/soil-7-217-2021 – ident: e_1_2_11_1_57_1 doi: 10.1002/tax.583019 – ident: e_1_2_11_1_15_1 doi: 10.1016/j.cub.2022.01.066 – ident: e_1_2_11_1_42_1 doi: 10.1034/j.1600-0706.2000.900310.x – ident: e_1_2_11_2_15_1 doi: 10.1600/036364404774195548 – ident: e_1_2_11_1_66_1 doi: 10.1073/pnas.1219690110 – ident: e_1_2_11_1_46_1 doi: 10.1098/rspb.2021.2633 – ident: e_1_2_11_1_36_1 doi: 10.1093/sysbio/syaa045 – ident: e_1_2_11_1_63_1 doi: 10.1111/j.1744-7429.1999.tb00388.x – ident: e_1_2_11_1_65_1 doi: 10.1038/nature12872 – ident: e_1_2_11_2_7_1 doi: 10.2307/4119303 – ident: e_1_2_11_1_28_1 doi: 10.1111/nph.15633 – volume-title: Flora Neotropica Monograph 1. Swartzia (Leguminosae, Caesalpinioideae, Swartzieae) year: 1967 ident: e_1_2_11_1_19_1 – ident: e_1_2_11_1_23_1 doi: 10.3732/ajb.1000299 – ident: e_1_2_11_1_45_1 doi: 10.1111/jbi.13552 – ident: e_1_2_11_1_35_1 doi: 10.1080/01621459.1995.10476572 – ident: e_1_2_11_1_56_1 doi: 10.1111/j.1466-8238.2011.00727.x – ident: e_1_2_11_1_18_1 doi: 10.1111/nph.17195 – ident: e_1_2_11_1_31_1 doi: 10.1017/S0094837300004310 – volume-title: Flora Neotropica Monograph 1. Swartzia (Leguminosae, Caesalpinioideae, Swartzieae) year: 1967 ident: e_1_2_11_2_3_1 – volume: 86 start-page: 447 issue: 39 year: 1973 ident: e_1_2_11_2_4_1 article-title: Studies of tropical American Leguminosae VII publication-title: Proceedings of the Biological Society of Washington – ident: e_1_2_11_1_9_1 doi: 10.1111/nph.17822 – ident: e_1_2_11_2_9_1 doi: 10.1007/s12228-011-9219-8 – ident: e_1_2_11_1_55_1 doi: 10.3390/f10020178 – ident: e_1_2_11_1_22_1 doi: 10.1073/pnas.0801962105 |
SSID | ssj0005456 |
Score | 2.4281385 |
Snippet | AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are... AIM: Functional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1760 |
SubjectTerms | Adaptation Amazonia biogeography Biological evolution Cenozoic Cenozoic era climate Climatic data Deoxyribonucleic acid DNA Environmental changes Evolution Fabaceae fruit size Fruits Gene sequencing Geographical distribution herbaria Legumes Low temperature Low temperature environments Macroevolution meteorological data Neotropics Nucleotide sequence Papilionoidea Petals Phylogenetics Phylogeny rain rain forests Rainfall Rainforests regression analysis soil Soil characteristics Soil temperature Soils Swartzia Taxa temperature |
Title | Pre‐adaptation and adaptation shape trait‐environment matching in the Neotropics |
URI | https://www.proquest.com/docview/2866406110 https://www.proquest.com/docview/2888005903 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBI3EwwmxgYKiAukKFFtJ057yWinaRpjQqnUu8h_3TqVJGrSC3bFI8Ar8iQcO79FQxrcRI196rQ-X44_28fnIPRuqDBVPCKe1AHxAjzU3giYqccjrdRICKFsMphPF-x0FpzNw_lg8LPntbQphS9v7zxX8j9ahTLQqzkl-w-abRuFAvgM-oUraBiu99Lx5Vq3zgpc8bz2HLTxV7vb4prn2uaCKFvp3vk2Fzhr5VDZujxm5TrLGzf4m35yAFfLLmiTWGZXuh_y2iTu0iu7944LGHBu2-ddbkzsz6KhynJZyMw987s17tpJ6FinN_zrskXsMV-bMMt_hEFwJ-03J3Zwsebq2woQ7_eXMUjnENdY3oAxD9jKvG-au6VPA8Ghm_s4YkMPR1W6n9romrLeAN7U_mVwuNLCxzSqd4O2AnBffE5OZufnSTydxw_QQwINmaQYky9dRDJDOKsDa9WvrYNVGeewtuFtirM9wlvaEj9Bu_V8w_lQgecpGuh0Dz2aVlrcQ_vTDgggVlv64hmKAVu_vv_oYOSAxp3erUWVY1EFcj08OQ2enGXqAJ6cDk_P0exkGn889eoMHJ6kJCw9HTChwwWhiowVXwhCeCg5C4YSaK2MGLzQgoVEYawWIRORGkfAP8fw2o_Ndjyl-2gnzVL9AjlaBFKGCyqwloGKOLAggjmhUMhgjk4P0Pum0xJZh6c3_2GVNNNU6N_E9u8BetuK5lVMlruEjpqeT-pXtkjIiDHDYDFUv2mrwaCaXTKe6mxjZGBIM0ey6ct7yByixx2aj9BOud7oV0BTS_HaAuc31gSV6g |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre%E2%80%90adaptation+and+adaptation+shape+trait%E2%80%90environment+matching+in+the+Neotropics&rft.jtitle=Global+ecology+and+biogeography&rft.au=Vel%C3%A1squez%E2%80%90Puentes%2C+Francisco+J.&rft.au=Torke%2C+Benjamin&rft.au=Barratt%2C+Christopher+D.&rft.au=Dexter%2C+Kyle+G.&rft.date=2023-10-01&rft.issn=1466-822X&rft.volume=32&rft.issue=10+p.1760-1772&rft.spage=1760&rft.epage=1772&rft_id=info:doi/10.1111%2Fgeb.13730&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |