Pre‐adaptation and adaptation shape trait‐environment matching in the Neotropics

AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 32; no. 10; pp. 1760 - 1772
Main Authors Velásquez‐Puentes, Francisco J., Torke, Benjamin M., Barratt, Christopher D., Dexter, Kyle G., Pennington, Toby, Pezzini, Flávia Fonseca, Zizka, Alexander, Onstein, Renske E.
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma.LocationNeotropics.Time PeriodCenozoic.Major Taxa StudiedFabaceae: Papilionoidae: Swartzia.MethodsWe assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments.ResultsLeaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss.Main ConclusionOur results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales.
AbstractList AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma.LocationNeotropics.Time PeriodCenozoic.Major Taxa StudiedFabaceae: Papilionoidae: Swartzia.MethodsWe assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments.ResultsLeaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss.Main ConclusionOur results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales.
AIM: Functional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are correlated, and what happened first: trait change facilitating environment shifts (pre‐adaptation) or environmental change leading to trait change (adaptation). We focus on a species‐rich Neotropical legume radiation to shed light on this enigma. LOCATION: Neotropics. TIME PERIOD: Cenozoic. MAJOR TAXA STUDIED: Fabaceae: Papilionoidae: Swartzia. METHODS: We assembled leaflet, fruit and petal size data from monographs and herbarium collections for 86 to 96% of the c. 180 Swartzia species, inferred a dated Swartzia phylogenetic tree from existing DNA sequences covering 38% of the species and integrated these with distribution, soil and climate data. We used phylogenetic linear regression to quantify trait–environment relationships and applied comparative methods to evaluate modes of correlated evolution between traits and environments. RESULTS: Leaflet and petal size were strongly linked to climate, while fruit size was not associated with climate or soil characteristics. Evolutionary transitions to relatively low rainfall and low temperature environments were conditional on the evolution of small leaflets, whereas transitions to wet and warm environments were preceded by the evolution of larger leaflets. In contrast, transitions to the warmest or coldest environments were followed, rather than preceded, by petal loss. MAIN CONCLUSION: Our results show that the macroevolution of functional traits has influenced the broad‐scale distribution of Swartzia across Neotropical rainforest, seasonally dry, montane and inundated habitats. We suggest that trait evolution is conditional on environmental change but both pre‐adaptive and adaptive processes may occur. These processes are important to understand the distribution of diversity at both regional (e.g. Amazonia) and global biogeographical scales.
Author Velásquez‐Puentes, Francisco J.
Barratt, Christopher D.
Torke, Benjamin M.
Pezzini, Flávia Fonseca
Dexter, Kyle G.
Pennington, Toby
Zizka, Alexander
Onstein, Renske E.
Author_xml – sequence: 1
  givenname: Francisco J.
  orcidid: 0000-0001-9073-0469
  surname: Velásquez‐Puentes
  fullname: Velásquez‐Puentes, Francisco J.
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Departamento de Química y Biología Universidad del Norte Barranquilla Colombia
– sequence: 2
  givenname: Benjamin M.
  orcidid: 0000-0001-8823-3519
  surname: Torke
  fullname: Torke, Benjamin M.
  organization: Institute of Systematic Botany New York Botanical Garden Bronx New York USA
– sequence: 3
  givenname: Christopher D.
  orcidid: 0000-0003-3267-8855
  surname: Barratt
  fullname: Barratt, Christopher D.
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Naturalis Biodiversity Center Leiden the Netherlands
– sequence: 4
  givenname: Kyle G.
  orcidid: 0000-0001-9232-5221
  surname: Dexter
  fullname: Dexter, Kyle G.
  organization: School of GeoSciences University of Edinburgh Edinburgh UK, Royal Botanic Garden Edinburgh Edinburgh UK
– sequence: 5
  givenname: Toby
  orcidid: 0000-0002-8196-288X
  surname: Pennington
  fullname: Pennington, Toby
  organization: Royal Botanic Garden Edinburgh Edinburgh UK, Department of Geography University of Exeter Exeter UK
– sequence: 6
  givenname: Flávia Fonseca
  orcidid: 0000-0001-5988-7361
  surname: Pezzini
  fullname: Pezzini, Flávia Fonseca
  organization: Royal Botanic Garden Edinburgh Edinburgh UK
– sequence: 7
  givenname: Alexander
  orcidid: 0000-0002-1680-9192
  surname: Zizka
  fullname: Zizka, Alexander
  organization: Naturalis Biodiversity Center Leiden the Netherlands, Department of Biology Philipps‐University Marburg Marburg Germany
– sequence: 8
  givenname: Renske E.
  orcidid: 0000-0002-2295-3510
  surname: Onstein
  fullname: Onstein, Renske E.
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany, Faculty of Life Sciences Leipzig University Leipzig Germany, Naturalis Biodiversity Center Leiden the Netherlands
BookMark eNptkN1KwzAUgINMcJte-AYFb_SiW37atL2U4R8M9WKCdyVNT7eMNqlJJnjnI_iMPomZE5Fhbk4OfOfvG6GBNhoQOiV4QsKbLqGaEJYxfICGJOE8zinLB79_-nyERs6tMcZpkvIhWjxa-Hz_ELXovfDK6EjoOvqTupXoIfJWKB840K_KGt2B9lEnvFwpvYyUjvwKonsw3ppeSXeMDhvROjj5iWP0dH21mN3G84ebu9nlPJaMpj6GhFeQNpTVtKhFU1EqUil4gmVRMJnxDOqKp7QmpG5SXmV1keGCFJDQIs1ZztgYne_69ta8bMD5slNOQtsKDWbjSprneTi0wFv0bA9dm43VYbtA8TCTE4IDdbGjpDXOWWjK3qpO2LeS4HLrtwx-y2-_gZ3usVLtnG1ltf9UfAHscIFE
CitedBy_id crossref_primary_10_1111_1365_2745_14354
crossref_primary_10_1111_jbi_15048
Cites_doi 10.1080/10635150590947131
10.1098/rstb.1991.0076
10.1111/j.1365-2435.2008.01444.x
10.1111/j.1469-8137.2009.03043.x
10.1086/383062
10.1093/aobpla/plac041
10.1126/science.aal4760
10.1086/717623
10.1007/s12228-009-9122-8
10.2307/2806078
10.1007/s12225-013-9442-4
10.1126/science.abf1969
10.2307/2806570
10.1111/geb.13309
10.1111/ele.14128
10.2307/2388705
10.1111/nph.13724
10.1086/374729
10.3732/ajb.95.2.215
10.1111/ele.12252
10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
10.1371/journal.pcbi.1003537
10.1146/annurev.ecolsys.33.010802.150452
10.1007/978-3-662-00799-0
10.1098/rspb.2012.1110
10.2307/2399603
10.3732/ajb.90.9.1271
10.1111/nph.16675
10.1038/nature16489
10.2307/3391588
10.1371/journal.pbio.1001949
10.1111/nph.17670
10.1007/978-1-4757-2917-7
10.1007/978-94-009-7299-5_6
10.1111/j.1466-8238.2006.00259.x
10.1002/joc.5086
10.1111/j.1095-8339.2007.00587.x
10.1046/j.1472-4642.2002.00161.x
10.2307/2666621
10.1046/j.1365-2745.2000.00506.x
10.1111/nph.17036
10.2307/4325
10.1002/ece3.6389
10.1086/503444
10.1016/B978-0-12-800049-6.00067-6
10.1146/annurev.ecolsys.110308.120327
10.1073/pnas.1713819115
10.1038/s41467-020-18530-5
10.5194/soil-7-217-2021
10.1002/tax.583019
10.1016/j.cub.2022.01.066
10.1034/j.1600-0706.2000.900310.x
10.1600/036364404774195548
10.1073/pnas.1219690110
10.1098/rspb.2021.2633
10.1093/sysbio/syaa045
10.1111/j.1744-7429.1999.tb00388.x
10.1038/nature12872
10.2307/4119303
10.1111/nph.15633
10.3732/ajb.1000299
10.1111/jbi.13552
10.1080/01621459.1995.10476572
10.1111/j.1466-8238.2011.00727.x
10.1111/nph.17195
10.1017/S0094837300004310
10.1111/nph.17822
10.1007/s12228-011-9219-8
10.3390/f10020178
10.1073/pnas.0801962105
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.13730
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
EndPage 1772
ExternalDocumentID 10_1111_geb_13730
GeographicLocations Amazonia
GeographicLocations_xml – name: Amazonia
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGUYK
AGYGG
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
CITATION
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
7QG
7SN
7SS
7ST
7U6
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
7S9
L.6
ID FETCH-LOGICAL-c325t-e46be5f23d29dafb22a5ca640c993c767edb652d11df56b7d970919e429583833
ISSN 1466-822X
IngestDate Fri Jul 11 08:51:54 EDT 2025
Sun Jul 13 05:07:06 EDT 2025
Tue Jul 01 02:37:35 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-e46be5f23d29dafb22a5ca640c993c767edb652d11df56b7d970919e429583833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9232-5221
0000-0001-5988-7361
0000-0001-9073-0469
0000-0002-8196-288X
0000-0001-8823-3519
0000-0003-3267-8855
0000-0002-2295-3510
0000-0002-1680-9192
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/geb.13730
PQID 2866406110
PQPubID 1066347
PageCount 13
ParticipantIDs proquest_miscellaneous_2888005903
proquest_journals_2866406110
crossref_primary_10_1111_geb_13730
crossref_citationtrail_10_1111_geb_13730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_1_29_1
Torke B. M. (e_1_2_11_2_13_1) 2011
e_1_2_11_1_25_1
e_1_2_11_1_48_1
e_1_2_11_1_27_1
e_1_2_11_1_46_1
Cowan R. S. (e_1_2_11_1_19_1) 1967
e_1_2_11_1_21_1
e_1_2_11_1_44_1
e_1_2_11_1_23_1
e_1_2_11_1_42_1
e_1_2_11_1_65_1
e_1_2_11_1_40_1
e_1_2_11_1_63_1
e_1_2_11_1_61_1
e_1_2_11_2_11_1
e_1_2_11_2_15_1
e_1_2_11_2_6_1
e_1_2_11_2_8_1
e_1_2_11_1_4_1
e_1_2_11_1_17_1
e_1_2_11_1_2_1
e_1_2_11_1_8_1
e_1_2_11_1_13_1
e_1_2_11_1_38_1
e_1_2_11_1_59_1
e_1_2_11_1_6_1
e_1_2_11_1_15_1
e_1_2_11_1_36_1
e_1_2_11_1_57_1
e_1_2_11_1_34_1
e_1_2_11_1_55_1
e_1_2_11_1_11_1
e_1_2_11_1_32_1
e_1_2_11_1_53_1
e_1_2_11_1_30_1
e_1_2_11_1_51_1
Cowan R. S. (e_1_2_11_2_3_1) 1967
e_1_2_11_2_2_1
Cowan R. S. (e_1_2_11_2_4_1) 1973; 86
e_1_2_11_1_28_1
e_1_2_11_1_24_1
e_1_2_11_1_49_1
e_1_2_11_1_26_1
e_1_2_11_1_47_1
e_1_2_11_1_20_1
e_1_2_11_1_45_1
e_1_2_11_1_66_1
e_1_2_11_1_22_1
e_1_2_11_1_43_1
e_1_2_11_1_64_1
e_1_2_11_2_12_1
e_1_2_11_1_41_1
e_1_2_11_1_62_1
e_1_2_11_2_10_1
e_1_2_11_1_60_1
e_1_2_11_2_14_1
e_1_2_11_2_5_1
e_1_2_11_2_7_1
e_1_2_11_2_9_1
e_1_2_11_1_18_1
e_1_2_11_1_5_1
e_1_2_11_1_39_1
e_1_2_11_1_3_1
e_1_2_11_1_14_1
e_1_2_11_1_37_1
e_1_2_11_1_9_1
e_1_2_11_1_16_1
e_1_2_11_1_35_1
e_1_2_11_1_58_1
e_1_2_11_1_7_1
e_1_2_11_1_10_1
e_1_2_11_1_33_1
e_1_2_11_1_56_1
e_1_2_11_1_12_1
e_1_2_11_1_31_1
e_1_2_11_1_54_1
e_1_2_11_1_52_1
e_1_2_11_1_50_1
References_xml – ident: e_1_2_11_1_37_1
  doi: 10.1080/10635150590947131
– ident: e_1_2_11_1_13_1
  doi: 10.1098/rstb.1991.0076
– ident: e_1_2_11_1_39_1
  doi: 10.1111/j.1365-2435.2008.01444.x
– ident: e_1_2_11_1_30_1
  doi: 10.1111/j.1469-8137.2009.03043.x
– ident: e_1_2_11_1_4_1
  doi: 10.1086/383062
– ident: e_1_2_11_1_8_1
  doi: 10.1093/aobpla/plac041
– volume-title: The Swartzia pages
  year: 2011
  ident: e_1_2_11_2_13_1
– ident: e_1_2_11_1_64_1
  doi: 10.1126/science.aal4760
– ident: e_1_2_11_1_34_1
  doi: 10.1086/717623
– ident: e_1_2_11_2_14_1
  doi: 10.1007/s12228-009-9122-8
– ident: e_1_2_11_2_6_1
  doi: 10.2307/2806078
– ident: e_1_2_11_1_32_1
– ident: e_1_2_11_2_12_1
  doi: 10.1007/s12225-013-9442-4
– ident: e_1_2_11_1_16_1
  doi: 10.1126/science.abf1969
– ident: e_1_2_11_2_5_1
  doi: 10.2307/2806570
– ident: e_1_2_11_1_52_1
  doi: 10.1111/geb.13309
– ident: e_1_2_11_1_61_1
  doi: 10.1111/ele.14128
– ident: e_1_2_11_1_17_1
  doi: 10.2307/2388705
– ident: e_1_2_11_1_50_1
  doi: 10.1111/nph.13724
– ident: e_1_2_11_1_3_1
  doi: 10.1086/374729
– ident: e_1_2_11_1_58_1
  doi: 10.3732/ajb.95.2.215
– ident: e_1_2_11_1_47_1
– ident: e_1_2_11_1_6_1
  doi: 10.1111/ele.12252
– ident: e_1_2_11_1_25_1
  doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
– ident: e_1_2_11_1_12_1
  doi: 10.1371/journal.pcbi.1003537
– ident: e_1_2_11_1_62_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_11_1_60_1
  doi: 10.1007/978-3-662-00799-0
– ident: e_1_2_11_1_54_1
  doi: 10.1098/rspb.2012.1110
– ident: e_1_2_11_2_2_1
  doi: 10.2307/2399603
– ident: e_1_2_11_1_59_1
  doi: 10.3732/ajb.90.9.1271
– ident: e_1_2_11_1_27_1
  doi: 10.1111/nph.16675
– ident: e_1_2_11_1_21_1
  doi: 10.1038/nature16489
– ident: e_1_2_11_2_10_1
  doi: 10.2307/3391588
– ident: e_1_2_11_1_10_1
  doi: 10.1371/journal.pbio.1001949
– ident: e_1_2_11_1_11_1
  doi: 10.1111/nph.17670
– ident: e_1_2_11_1_14_1
  doi: 10.1007/978-1-4757-2917-7
– ident: e_1_2_11_1_29_1
  doi: 10.1007/978-94-009-7299-5_6
– ident: e_1_2_11_1_41_1
  doi: 10.1111/j.1466-8238.2006.00259.x
– ident: e_1_2_11_1_24_1
  doi: 10.1002/joc.5086
– ident: e_1_2_11_2_11_1
  doi: 10.1111/j.1095-8339.2007.00587.x
– ident: e_1_2_11_1_40_1
  doi: 10.1046/j.1472-4642.2002.00161.x
– ident: e_1_2_11_2_8_1
  doi: 10.2307/2666621
– ident: e_1_2_11_1_26_1
  doi: 10.1046/j.1365-2745.2000.00506.x
– ident: e_1_2_11_1_7_1
– ident: e_1_2_11_1_33_1
  doi: 10.1111/nph.17036
– ident: e_1_2_11_1_43_1
  doi: 10.2307/4325
– ident: e_1_2_11_1_20_1
  doi: 10.1002/ece3.6389
– ident: e_1_2_11_1_49_1
– ident: e_1_2_11_1_48_1
  doi: 10.1086/503444
– ident: e_1_2_11_1_44_1
  doi: 10.1016/B978-0-12-800049-6.00067-6
– ident: e_1_2_11_1_51_1
  doi: 10.1146/annurev.ecolsys.110308.120327
– ident: e_1_2_11_1_5_1
  doi: 10.1073/pnas.1713819115
– ident: e_1_2_11_1_38_1
  doi: 10.1038/s41467-020-18530-5
– ident: e_1_2_11_1_2_1
  doi: 10.1086/383062
– ident: e_1_2_11_1_53_1
  doi: 10.5194/soil-7-217-2021
– ident: e_1_2_11_1_57_1
  doi: 10.1002/tax.583019
– ident: e_1_2_11_1_15_1
  doi: 10.1016/j.cub.2022.01.066
– ident: e_1_2_11_1_42_1
  doi: 10.1034/j.1600-0706.2000.900310.x
– ident: e_1_2_11_2_15_1
  doi: 10.1600/036364404774195548
– ident: e_1_2_11_1_66_1
  doi: 10.1073/pnas.1219690110
– ident: e_1_2_11_1_46_1
  doi: 10.1098/rspb.2021.2633
– ident: e_1_2_11_1_36_1
  doi: 10.1093/sysbio/syaa045
– ident: e_1_2_11_1_63_1
  doi: 10.1111/j.1744-7429.1999.tb00388.x
– ident: e_1_2_11_1_65_1
  doi: 10.1038/nature12872
– ident: e_1_2_11_2_7_1
  doi: 10.2307/4119303
– ident: e_1_2_11_1_28_1
  doi: 10.1111/nph.15633
– volume-title: Flora Neotropica Monograph 1. Swartzia (Leguminosae, Caesalpinioideae, Swartzieae)
  year: 1967
  ident: e_1_2_11_1_19_1
– ident: e_1_2_11_1_23_1
  doi: 10.3732/ajb.1000299
– ident: e_1_2_11_1_45_1
  doi: 10.1111/jbi.13552
– ident: e_1_2_11_1_35_1
  doi: 10.1080/01621459.1995.10476572
– ident: e_1_2_11_1_56_1
  doi: 10.1111/j.1466-8238.2011.00727.x
– ident: e_1_2_11_1_18_1
  doi: 10.1111/nph.17195
– ident: e_1_2_11_1_31_1
  doi: 10.1017/S0094837300004310
– volume-title: Flora Neotropica Monograph 1. Swartzia (Leguminosae, Caesalpinioideae, Swartzieae)
  year: 1967
  ident: e_1_2_11_2_3_1
– volume: 86
  start-page: 447
  issue: 39
  year: 1973
  ident: e_1_2_11_2_4_1
  article-title: Studies of tropical American Leguminosae VII
  publication-title: Proceedings of the Biological Society of Washington
– ident: e_1_2_11_1_9_1
  doi: 10.1111/nph.17822
– ident: e_1_2_11_2_9_1
  doi: 10.1007/s12228-011-9219-8
– ident: e_1_2_11_1_55_1
  doi: 10.3390/f10020178
– ident: e_1_2_11_1_22_1
  doi: 10.1073/pnas.0801962105
SSID ssj0005456
Score 2.4281385
Snippet AimFunctional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are...
AIM: Functional traits shape the distribution of taxa across environments. However, it remains unclear whether trait and environmental niche evolution are...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1760
SubjectTerms Adaptation
Amazonia
biogeography
Biological evolution
Cenozoic
Cenozoic era
climate
Climatic data
Deoxyribonucleic acid
DNA
Environmental changes
Evolution
Fabaceae
fruit size
Fruits
Gene sequencing
Geographical distribution
herbaria
Legumes
Low temperature
Low temperature environments
Macroevolution
meteorological data
Neotropics
Nucleotide sequence
Papilionoidea
Petals
Phylogenetics
Phylogeny
rain
rain forests
Rainfall
Rainforests
regression analysis
soil
Soil characteristics
Soil temperature
Soils
Swartzia
Taxa
temperature
Title Pre‐adaptation and adaptation shape trait‐environment matching in the Neotropics
URI https://www.proquest.com/docview/2866406110
https://www.proquest.com/docview/2888005903
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBI3EwwmxgYKiAukKFFtJ057yWinaRpjQqnUu8h_3TqVJGrSC3bFI8Ar8iQcO79FQxrcRI196rQ-X44_28fnIPRuqDBVPCKe1AHxAjzU3giYqccjrdRICKFsMphPF-x0FpzNw_lg8LPntbQphS9v7zxX8j9ahTLQqzkl-w-abRuFAvgM-oUraBiu99Lx5Vq3zgpc8bz2HLTxV7vb4prn2uaCKFvp3vk2Fzhr5VDZujxm5TrLGzf4m35yAFfLLmiTWGZXuh_y2iTu0iu7944LGHBu2-ddbkzsz6KhynJZyMw987s17tpJ6FinN_zrskXsMV-bMMt_hEFwJ-03J3Zwsebq2woQ7_eXMUjnENdY3oAxD9jKvG-au6VPA8Ghm_s4YkMPR1W6n9romrLeAN7U_mVwuNLCxzSqd4O2AnBffE5OZufnSTydxw_QQwINmaQYky9dRDJDOKsDa9WvrYNVGeewtuFtirM9wlvaEj9Bu_V8w_lQgecpGuh0Dz2aVlrcQ_vTDgggVlv64hmKAVu_vv_oYOSAxp3erUWVY1EFcj08OQ2enGXqAJ6cDk_P0exkGn889eoMHJ6kJCw9HTChwwWhiowVXwhCeCg5C4YSaK2MGLzQgoVEYawWIRORGkfAP8fw2o_Ndjyl-2gnzVL9AjlaBFKGCyqwloGKOLAggjmhUMhgjk4P0Pum0xJZh6c3_2GVNNNU6N_E9u8BetuK5lVMlruEjpqeT-pXtkjIiDHDYDFUv2mrwaCaXTKe6mxjZGBIM0ey6ct7yByixx2aj9BOud7oV0BTS_HaAuc31gSV6g
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre%E2%80%90adaptation+and+adaptation+shape+trait%E2%80%90environment+matching+in+the+Neotropics&rft.jtitle=Global+ecology+and+biogeography&rft.au=Vel%C3%A1squez%E2%80%90Puentes%2C+Francisco+J.&rft.au=Torke%2C+Benjamin&rft.au=Barratt%2C+Christopher+D.&rft.au=Dexter%2C+Kyle+G.&rft.date=2023-10-01&rft.issn=1466-822X&rft.volume=32&rft.issue=10+p.1760-1772&rft.spage=1760&rft.epage=1772&rft_id=info:doi/10.1111%2Fgeb.13730&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon