The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics
Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical si...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 368; p. 113127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2020.113127 |
Cover
Loading…
Abstract | Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular.
•A feed-forward neural network is used to construct a global geometric ansatz function.•No special treatment of the incompressibility constraint is necessary.•High order implicit Runge–Kutta time integration is employed.•Excellent conservation properties are demonstrated in numerical examples.•The computations remain stable even for irregularly distributed discretization points. |
---|---|
AbstractList | Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular. Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular. •A feed-forward neural network is used to construct a global geometric ansatz function.•No special treatment of the incompressibility constraint is necessary.•High order implicit Runge–Kutta time integration is employed.•Excellent conservation properties are demonstrated in numerical examples.•The computations remain stable even for irregularly distributed discretization points. |
ArticleNumber | 113127 |
Author | Weißenfels, Christian Wriggers, Peter Wessels, Henning |
Author_xml | – sequence: 1 givenname: Henning orcidid: 0000-0002-2542-1130 surname: Wessels fullname: Wessels, Henning email: wessels@ikm.uni-hannover.de organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany – sequence: 2 givenname: Christian surname: Weißenfels fullname: Weißenfels, Christian organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany – sequence: 3 givenname: Peter surname: Wriggers fullname: Wriggers, Peter organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany |
BookMark | eNp9kDtuGzEQholABiLJPoA7AqlXIWcfXMGVYSROAAFunJqgyFmL8i65IbkJ1PkOuaFPYhqrKoWnGczj-zHzr8jCeYeEXHO24Yw3X48bPagNMMg1LzmIT2TJW7EtgJftgiwZq-pCtFB_JqsYjyxHy2FJpscDUodTUD0dVUhW90gHTAdv6OvLP3rr6DQaldDQnXoKyj1Z5eh4OEWrI7Wu82HIs7OCw_TXh2eau1T7YZySSta7POn6yRpqTk4NGbwkF53qI16d85r8-v7t8e5HsXu4_3l3uyt0CXUqkAlVqUpoDo1ukGvYAkLDWwO6K6Fqge-ZgpJ1YgvARF2brt6bptlmat-xck2-zLpj8L8njEke_RTyPVFCVUEJnDORt8S8pYOPMWAntZ0PT0HZXnIm3z2WR5k9lu8ey9njTPL_yDHYQYXTh8zNzGB-_I_FIKO26DQaG1Anabz9gH4Dm_-Xsw |
CitedBy_id | crossref_primary_10_1016_j_cma_2025_117787 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122791 crossref_primary_10_1016_j_rineng_2024_101931 crossref_primary_10_1016_j_cma_2022_114790 crossref_primary_10_1016_j_camwa_2024_04_017 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1016_j_finel_2022_103893 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1002_nag_3196 crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1016_j_oceaneng_2024_118341 crossref_primary_10_1016_j_physd_2024_134399 crossref_primary_10_1007_s10462_024_10874_4 crossref_primary_10_1007_s10409_022_22185_x crossref_primary_10_1016_j_adapen_2020_100004 crossref_primary_10_5194_gmd_16_3479_2023 crossref_primary_10_1002_nme_7323 crossref_primary_10_1098_rsta_2024_0221 crossref_primary_10_1016_j_apor_2022_103082 crossref_primary_10_1016_j_triboint_2023_108871 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1016_j_cma_2024_117498 crossref_primary_10_1007_s44379_024_00009_5 crossref_primary_10_1016_j_physa_2022_128415 crossref_primary_10_1115_1_4064449 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_apm_2024_115906 crossref_primary_10_1080_15502287_2024_2440420 crossref_primary_10_1016_j_ijheatfluidflow_2024_109721 crossref_primary_10_1016_j_compfluid_2024_106224 crossref_primary_10_1016_j_cma_2021_114399 crossref_primary_10_1007_s11071_024_10655_2 crossref_primary_10_1016_j_istruc_2024_107361 crossref_primary_10_1098_rsos_231606 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121616 crossref_primary_10_1016_j_jcp_2023_112003 crossref_primary_10_1109_ACCESS_2025_3532669 crossref_primary_10_1002_pamm_202200044 crossref_primary_10_1007_s00466_022_02250_2 crossref_primary_10_1007_s00466_022_02252_0 crossref_primary_10_3390_app11146483 crossref_primary_10_1007_s10483_023_2992_6 crossref_primary_10_1016_j_cma_2021_114096 crossref_primary_10_1016_j_cma_2024_117441 crossref_primary_10_3390_math11081805 crossref_primary_10_1007_s00521_022_07838_6 crossref_primary_10_1007_s42452_022_04938_9 crossref_primary_10_32604_sdhm_2024_044751 crossref_primary_10_1016_j_engappai_2023_106907 crossref_primary_10_1016_j_neunet_2021_11_022 crossref_primary_10_1007_s11071_025_11046_x crossref_primary_10_1016_j_jfoodeng_2022_111137 crossref_primary_10_1016_j_neunet_2024_106756 crossref_primary_10_1016_j_apm_2022_02_036 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104937 crossref_primary_10_1016_j_apor_2023_103587 crossref_primary_10_1080_00295639_2022_2123211 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1016_j_cma_2022_115810 crossref_primary_10_1016_j_compfluid_2022_105583 crossref_primary_10_1007_s10489_024_05402_4 crossref_primary_10_1016_j_cma_2021_114524 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_1016_j_cma_2022_115497 crossref_primary_10_1007_s00366_022_01640_7 crossref_primary_10_1007_s00466_023_02324_9 crossref_primary_10_1115_1_4063977 crossref_primary_10_1016_j_advengsoft_2022_103390 crossref_primary_10_1016_j_isprsjprs_2023_12_011 crossref_primary_10_1142_S0219876223500135 crossref_primary_10_1142_S175882512350028X crossref_primary_10_1080_19942060_2023_2238849 crossref_primary_10_1007_s00707_022_03449_3 crossref_primary_10_1016_j_inffus_2023_102041 crossref_primary_10_1098_rsta_2023_0316 crossref_primary_10_1016_j_ijhydene_2023_04_126 crossref_primary_10_1016_j_jcp_2021_110526 crossref_primary_10_1007_s00366_024_02010_1 crossref_primary_10_2514_1_J062708 crossref_primary_10_1016_j_jcp_2024_113579 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1063_5_0055600 crossref_primary_10_1007_s41315_021_00196_x |
Cites_doi | 10.1002/fld.1650070906 10.1142/S0219876204000204 10.1137/1.9780898717761 10.1016/S0893-6080(05)80131-5 10.1016/S0045-7825(99)00416-8 10.1016/0021-9991(90)90173-X 10.1007/BF02551274 10.13182/NSE96-A24205 10.1016/j.cma.2019.112790 10.1016/j.jcp.2011.10.027 10.1016/j.jcp.2018.10.045 10.1016/0045-7825(92)90141-6 10.1007/978-3-642-56026-2 10.1016/j.cma.2017.09.031 10.1145/174462.156635 10.1146/annurev-fluid-010719-060214 10.1016/S0045-7825(98)00079-6 10.1016/0045-7825(88)90168-5 10.1016/j.physd.2020.132368 10.1007/978-3-319-39005-5 10.1017/jfm.2016.803 10.1016/0021-9991(81)90145-5 10.1016/S0045-7825(01)00306-1 10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-N 10.1016/j.neucom.2018.06.056 10.1016/0021-9991(74)90051-5 10.1086/112164 10.1126/science.aaw4741 10.1109/72.712178 10.1016/S0045-7825(96)01132-2 10.1007/BF01589116 10.1109/72.870037 10.1162/neco.1997.9.8.1735 10.1002/nme.2869 10.1016/j.compstruc.2014.12.011 10.1093/mnras/181.3.375 10.1126/science.1127647 10.1098/rsta.1952.0006 10.1016/j.euromechsol.2019.103874 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Aug 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2020.113127 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2020_113127 S0045782520303121 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-e07a4a47c126c6e1c292e2618d2cf324821b0a230f79220755df5bd6694a4bf03 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Mon Jul 14 10:43:11 EDT 2025 Tue Jul 01 04:06:10 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Fri Feb 23 02:46:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Constraint problem Physics-informed neural network Computational fluid dynamics Incompressibility Implicit Runge–Kutta Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-e07a4a47c126c6e1c292e2618d2cf324821b0a230f79220755df5bd6694a4bf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2542-1130 |
PQID | 2442321107 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2442321107 crossref_citationtrail_10_1016_j_cma_2020_113127 crossref_primary_10_1016_j_cma_2020_113127 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-15 |
PublicationDateYYYYMMDD | 2020-08-15 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Maulik, Mohan, Lusch, Madireddy, Balaprakash, Livescu (b26) 2020; 405 Liu, Li, Belytschko (b9) 1997; 143 Li, Liu (b14) 2007 Martin, Moyce (b52) 1952; 244 Ferziger, Perić (b44) 2002 Brezzi, Franca, Hughes, Russo (b16) 1997 Nguyen-Thanh, Zhuang, Rabczuk (b37) 2020; 80 Lucy (b7) 1977; 82 Li, Habbal, Ortiz (b11) 2010; 83 Hairer, Wanner (b40) 2010; vol. 14 Ramaswamy (b46) 1990; 90 Lagaris, Likas, Fotiadis (b31) 1998; 9 Franca, Hughes (b15) 1988; 69 Spencer (b49) 2004 Ramaswamy, Kawahara (b50) 1987; 7 Patankar (b1) 1980 Hinton, Salakhutdinov (b23) 2006; 313 Korelc, Wriggers (b33) 2016 Wriggers (b45) 2008 Edelsbrunner, Mücke (b53) 1994; 13 Liu, Nocedal (b42) 1989; 45 Tezduyar, Mittal, Ray, Shih (b5) 1992; 95 Iserles (b39) 2012; vol. 44 Raissi, Yazdani, Karniadakis (b20) 2020; 367 Weißenfels, Wriggers (b12) 2018; 329 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b36) 2020; 362 Berg, Nyström (b35) 2018; 317 Leshno, Lin, Pinkus, Schocken (b30) 1993; 6 Gingold, Monaghan (b8) 1977; 181 Oñate, Idelsohn, Del Pin, Aubry (b48) 2004; 01 Brezzi (b3) 1974; 8 Hughes, Feijóo, Mazzei, Quincy (b18) 1998; 166 Chatterjee (b22) 2000 Braess, Wriggers (b6) 2000; 190 Griewank (b32) 2008 Raissi, Perdikaris, Karniadakis (b38) 2019; 378 Hirt, Amsden, Cook (b4) 1974; 14 Hirt, Nichols (b2) 1981; 39 Brunton, Noack, Koumoutsakos (b27) 2020; 52 Kutz (b21) 2017; 814 Radovitzky, Ortiz (b47) 1998; 43 Magnus, Popp, Sextro (b43) 2013 Mohan, Lubbers, Livescu, Chertkov (b28) 2020 Lind, Xu, Stansby, Rogers (b10) 2012; 231 Koshizuka, Oka (b51) 1996; 123 Cybenko (b29) 1989; 2 Erichson, Mathelin, Yao, Brunton, Mahoney, Kutz (b19) 2019 Oñate, García (b17) 2001; 191 Chen, Rubanova, Bettencourt, Duvenaud (b25) 2018 Kingma, Ba (b41) 2014 Lagaris, Likas, Papageorgiou (b34) 2000; 11 Hochreiter, Schmidhuber (b24) 1997; 9 Ganzenmüller, Hiermaier, May (b13) 2015; 150 Li (10.1016/j.cma.2020.113127_b11) 2010; 83 Nguyen-Thanh (10.1016/j.cma.2020.113127_b37) 2020; 80 Cybenko (10.1016/j.cma.2020.113127_b29) 1989; 2 Li (10.1016/j.cma.2020.113127_b14) 2007 Chen (10.1016/j.cma.2020.113127_b25) 2018 Ramaswamy (10.1016/j.cma.2020.113127_b50) 1987; 7 Ganzenmüller (10.1016/j.cma.2020.113127_b13) 2015; 150 Iserles (10.1016/j.cma.2020.113127_b39) 2012; vol. 44 Martin (10.1016/j.cma.2020.113127_b52) 1952; 244 Koshizuka (10.1016/j.cma.2020.113127_b51) 1996; 123 Chatterjee (10.1016/j.cma.2020.113127_b22) 2000 Griewank (10.1016/j.cma.2020.113127_b32) 2008 Maulik (10.1016/j.cma.2020.113127_b26) 2020; 405 Radovitzky (10.1016/j.cma.2020.113127_b47) 1998; 43 Lagaris (10.1016/j.cma.2020.113127_b34) 2000; 11 Liu (10.1016/j.cma.2020.113127_b9) 1997; 143 Patankar (10.1016/j.cma.2020.113127_b1) 1980 Samaniego (10.1016/j.cma.2020.113127_b36) 2020; 362 Berg (10.1016/j.cma.2020.113127_b35) 2018; 317 Tezduyar (10.1016/j.cma.2020.113127_b5) 1992; 95 Brezzi (10.1016/j.cma.2020.113127_b16) 1997 Kingma (10.1016/j.cma.2020.113127_b41) 2014 Hairer (10.1016/j.cma.2020.113127_b40) 2010; vol. 14 Hirt (10.1016/j.cma.2020.113127_b4) 1974; 14 Kutz (10.1016/j.cma.2020.113127_b21) 2017; 814 Spencer (10.1016/j.cma.2020.113127_b49) 2004 Leshno (10.1016/j.cma.2020.113127_b30) 1993; 6 Lagaris (10.1016/j.cma.2020.113127_b31) 1998; 9 Lind (10.1016/j.cma.2020.113127_b10) 2012; 231 Korelc (10.1016/j.cma.2020.113127_b33) 2016 Wriggers (10.1016/j.cma.2020.113127_b45) 2008 Edelsbrunner (10.1016/j.cma.2020.113127_b53) 1994; 13 Liu (10.1016/j.cma.2020.113127_b42) 1989; 45 Ramaswamy (10.1016/j.cma.2020.113127_b46) 1990; 90 Oñate (10.1016/j.cma.2020.113127_b48) 2004; 01 Lucy (10.1016/j.cma.2020.113127_b7) 1977; 82 Hinton (10.1016/j.cma.2020.113127_b23) 2006; 313 Franca (10.1016/j.cma.2020.113127_b15) 1988; 69 Hirt (10.1016/j.cma.2020.113127_b2) 1981; 39 Oñate (10.1016/j.cma.2020.113127_b17) 2001; 191 Weißenfels (10.1016/j.cma.2020.113127_b12) 2018; 329 Hughes (10.1016/j.cma.2020.113127_b18) 1998; 166 Raissi (10.1016/j.cma.2020.113127_b38) 2019; 378 Erichson (10.1016/j.cma.2020.113127_b19) 2019 Hochreiter (10.1016/j.cma.2020.113127_b24) 1997; 9 Gingold (10.1016/j.cma.2020.113127_b8) 1977; 181 Brunton (10.1016/j.cma.2020.113127_b27) 2020; 52 Magnus (10.1016/j.cma.2020.113127_b43) 2013 Brezzi (10.1016/j.cma.2020.113127_b3) 1974; 8 Ferziger (10.1016/j.cma.2020.113127_b44) 2002 Raissi (10.1016/j.cma.2020.113127_b20) 2020; 367 Mohan (10.1016/j.cma.2020.113127_b28) 2020 Braess (10.1016/j.cma.2020.113127_b6) 2000; 190 |
References_xml | – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b27 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: vol. 14 year: 2010 ident: b40 article-title: Stiff and differential-algebraic problems publication-title: Springer series in computational mathematics – year: 2019 ident: b19 article-title: Shallow learning for fluid flow reconstruction with limited sensors and limited data – year: 2008 ident: b45 article-title: Nonlinear Finite Element Methods – volume: 329 start-page: 421 year: 2018 end-page: 443 ident: b12 article-title: Stabilization algorithm for the optimal transportation meshfree approximation scheme publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b38 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: b30 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. – volume: 83 start-page: 1541 year: 2010 end-page: 1579 ident: b11 article-title: Optimal transportation meshfree approximation schemes for fluid and plastic flows publication-title: Internat. J. Numer. Methods Engrg. – year: 2007 ident: b14 article-title: Meshfree Particle Methods – volume: 80 start-page: 103874 year: 2020 ident: b37 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solids – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: b8 article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – volume: 143 start-page: 113 year: 1997 end-page: 154 ident: b9 article-title: Moving least-square reproducing kernel methods (I) Methodology and convergence publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2002 ident: b44 article-title: Computational Methods for Fluid Dynamics – volume: 90 start-page: 396 year: 1990 end-page: 430 ident: b46 article-title: Numerical simulation of unsteady viscous free surface flow publication-title: J. Comput. Phys. – year: 2014 ident: b41 article-title: Adam: A method for stochastic optimization – year: 2004 ident: b49 article-title: Continuum Mechanics – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b24 article-title: Long short-term memory publication-title: Neural Comput. – volume: 191 start-page: 635 year: 2001 end-page: 660 ident: b17 article-title: A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 01 start-page: 267 year: 2004 end-page: 307 ident: b48 article-title: The particle finite element method: An overview publication-title: Int. J. Comput. Methods – volume: 14 start-page: 227 year: 1974 end-page: 253 ident: b4 article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds publication-title: J. Comput. Phys. – volume: 69 start-page: 89 year: 1988 end-page: 129 ident: b15 article-title: Two classes of mixed finite element methods publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 362 start-page: 112790 year: 2020 ident: b36 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: b21 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: b35 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b42 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – volume: vol. 44 year: 2012 ident: b39 publication-title: A First Course in the Numerical Analysis of Differential Equations – volume: 244 start-page: 312 year: 1952 end-page: 324 ident: b52 article-title: Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane publication-title: Phil. Trans. R. Soc. A – year: 2020 ident: b28 article-title: Embedding hard physical constraints in neural network coarse-graining of 3d turbulence – volume: 13 start-page: 43 year: 1994 end-page: 72 ident: b53 article-title: Three-dimensional alpha shapes publication-title: ACM Trans. Graph. – year: 2013 ident: b43 article-title: Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen; mit 68 Aufgaben mit Lösungen publication-title: Lehrbuch – volume: 123 start-page: 421 year: 1996 end-page: 434 ident: b51 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. – volume: 43 start-page: 607 year: 1998 end-page: 619 ident: b47 article-title: Lagrangian finite element analysis of Newtonian fluid flows publication-title: Internat. J. Numer. Methods Engrg. – volume: 190 start-page: 95 year: 2000 end-page: 109 ident: b6 article-title: Arbitrary Lagrangian Eulerian finite element analysis of free surface flow publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 6571 year: 2018 end-page: 6583 ident: b25 article-title: Neural ordinary differential equations publication-title: Advances in Neural Information Processing Systems – volume: 405 start-page: 132368 year: 2020 ident: b26 article-title: Time-series learning of latent-space dynamics for reduced-order model closure publication-title: Physica D – volume: 11 start-page: 1041 year: 2000 end-page: 1049 ident: b34 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. – volume: 7 start-page: 953 year: 1987 end-page: 984 ident: b50 article-title: Lagrangian finite element analysis applied to viscous free surface fluid flow publication-title: Internat. J. Numer. Methods Fluids – volume: 231 start-page: 1499 year: 2012 end-page: 1523 ident: b10 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. – volume: 367 start-page: 1026 year: 2020 end-page: 1030 ident: b20 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 150 start-page: 71 year: 2015 end-page: 78 ident: b13 article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics publication-title: Comput. Struct. – year: 1980 ident: b1 article-title: Numerical heat transfer and fluid flow publication-title: Series in computational methods in mechanics and thermal sciences – volume: 8 start-page: 129 year: 1974 end-page: 151 ident: b3 article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers publication-title: RAIRO Anal. Numér. – volume: 166 start-page: 3 year: 1998 end-page: 24 ident: b18 article-title: The variational multiscale method—a paradigm for computational mechanics publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: b2 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 95 start-page: 221 year: 1992 end-page: 242 ident: b5 article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 391 year: 1997 end-page: 406 ident: b16 article-title: Stabilization techniques and subgrid scales capturing publication-title: The State of the Art in Numerical Analysis – volume: 82 start-page: 1013 year: 1977 ident: b7 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. – start-page: 808 year: 2000 end-page: 817 ident: b22 article-title: An introduction to the proper orthogonal decomposition publication-title: Current Sci. – year: 2016 ident: b33 article-title: Automation of Finite Element Methods – year: 2008 ident: b32 article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentation – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: b31 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b23 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b29 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Systems – volume: 7 start-page: 953 issn: 0271-2091 issue: 9 year: 1987 ident: 10.1016/j.cma.2020.113127_b50 article-title: Lagrangian finite element analysis applied to viscous free surface fluid flow publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1650070906 – volume: 01 start-page: 267 issn: 0219-8762 issue: 02 year: 2004 ident: 10.1016/j.cma.2020.113127_b48 article-title: The particle finite element method: An overview publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876204000204 – year: 2004 ident: 10.1016/j.cma.2020.113127_b49 – year: 2008 ident: 10.1016/j.cma.2020.113127_b32 doi: 10.1137/1.9780898717761 – volume: vol. 14 year: 2010 ident: 10.1016/j.cma.2020.113127_b40 article-title: Stiff and differential-algebraic problems – year: 2008 ident: 10.1016/j.cma.2020.113127_b45 – volume: 6 start-page: 861 issn: 08936080 issue: 6 year: 1993 ident: 10.1016/j.cma.2020.113127_b30 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – volume: 8 start-page: 129 issue: R2 year: 1974 ident: 10.1016/j.cma.2020.113127_b3 article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers publication-title: RAIRO Anal. Numér. – volume: 190 start-page: 95 issue: 1–2 year: 2000 ident: 10.1016/j.cma.2020.113127_b6 article-title: Arbitrary Lagrangian Eulerian finite element analysis of free surface flow publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00416-8 – year: 1980 ident: 10.1016/j.cma.2020.113127_b1 article-title: Numerical heat transfer and fluid flow – volume: 90 start-page: 396 issn: 00219991 issue: 2 year: 1990 ident: 10.1016/j.cma.2020.113127_b46 article-title: Numerical simulation of unsteady viscous free surface flow publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90173-X – year: 2007 ident: 10.1016/j.cma.2020.113127_b14 – year: 2020 ident: 10.1016/j.cma.2020.113127_b28 – start-page: 391 year: 1997 ident: 10.1016/j.cma.2020.113127_b16 article-title: Stabilization techniques and subgrid scales capturing – volume: 2 start-page: 303 issn: 0932-4194 issue: 4 year: 1989 ident: 10.1016/j.cma.2020.113127_b29 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Systems doi: 10.1007/BF02551274 – volume: 123 start-page: 421 issn: 0029-5639 issue: 3 year: 1996 ident: 10.1016/j.cma.2020.113127_b51 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE96-A24205 – volume: 362 start-page: 112790 issn: 00457825 year: 2020 ident: 10.1016/j.cma.2020.113127_b36 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – volume: 231 start-page: 1499 issn: 00219991 issue: 4 year: 2012 ident: 10.1016/j.cma.2020.113127_b10 article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.027 – volume: 378 start-page: 686 issn: 00219991 year: 2019 ident: 10.1016/j.cma.2020.113127_b38 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 95 start-page: 221 issn: 00457825 issue: 2 year: 1992 ident: 10.1016/j.cma.2020.113127_b5 article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90141-6 – year: 2002 ident: 10.1016/j.cma.2020.113127_b44 doi: 10.1007/978-3-642-56026-2 – volume: 329 start-page: 421 issn: 00457825 year: 2018 ident: 10.1016/j.cma.2020.113127_b12 article-title: Stabilization algorithm for the optimal transportation meshfree approximation scheme publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.09.031 – year: 2019 ident: 10.1016/j.cma.2020.113127_b19 – volume: 13 start-page: 43 issn: 0730-0301 issue: 1 year: 1994 ident: 10.1016/j.cma.2020.113127_b53 article-title: Three-dimensional alpha shapes publication-title: ACM Trans. Graph. doi: 10.1145/174462.156635 – year: 2013 ident: 10.1016/j.cma.2020.113127_b43 article-title: Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen; mit 68 Aufgaben mit Lösungen – volume: 52 start-page: 477 year: 2020 ident: 10.1016/j.cma.2020.113127_b27 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 166 start-page: 3 issn: 00457825 issue: 1–2 year: 1998 ident: 10.1016/j.cma.2020.113127_b18 article-title: The variational multiscale method—a paradigm for computational mechanics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(98)00079-6 – volume: vol. 44 year: 2012 ident: 10.1016/j.cma.2020.113127_b39 – volume: 69 start-page: 89 issn: 00457825 issue: 1 year: 1988 ident: 10.1016/j.cma.2020.113127_b15 article-title: Two classes of mixed finite element methods publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(88)90168-5 – volume: 405 start-page: 132368 year: 2020 ident: 10.1016/j.cma.2020.113127_b26 article-title: Time-series learning of latent-space dynamics for reduced-order model closure publication-title: Physica D doi: 10.1016/j.physd.2020.132368 – year: 2016 ident: 10.1016/j.cma.2020.113127_b33 doi: 10.1007/978-3-319-39005-5 – volume: 814 start-page: 1 year: 2017 ident: 10.1016/j.cma.2020.113127_b21 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.803 – volume: 39 start-page: 201 issn: 00219991 issue: 1 year: 1981 ident: 10.1016/j.cma.2020.113127_b2 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – start-page: 6571 year: 2018 ident: 10.1016/j.cma.2020.113127_b25 article-title: Neural ordinary differential equations – volume: 191 start-page: 635 issn: 00457825 issue: 6–7 year: 2001 ident: 10.1016/j.cma.2020.113127_b17 article-title: A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00306-1 – volume: 43 start-page: 607 issn: 00295981 issue: 4 year: 1998 ident: 10.1016/j.cma.2020.113127_b47 article-title: Lagrangian finite element analysis of Newtonian fluid flows publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-N – volume: 317 start-page: 28 issn: 09252312 year: 2018 ident: 10.1016/j.cma.2020.113127_b35 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – volume: 14 start-page: 227 issn: 00219991 issue: 3 year: 1974 ident: 10.1016/j.cma.2020.113127_b4 article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(74)90051-5 – volume: 82 start-page: 1013 issn: 00046256 year: 1977 ident: 10.1016/j.cma.2020.113127_b7 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – volume: 367 start-page: 1026 issn: 0036-8075 issue: 6481 year: 2020 ident: 10.1016/j.cma.2020.113127_b20 article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 9 start-page: 987 issn: 1045-9227 issue: 5 year: 1998 ident: 10.1016/j.cma.2020.113127_b31 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – year: 2014 ident: 10.1016/j.cma.2020.113127_b41 – volume: 143 start-page: 113 issn: 00457825 issue: 1–2 year: 1997 ident: 10.1016/j.cma.2020.113127_b9 article-title: Moving least-square reproducing kernel methods (I) Methodology and convergence publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(96)01132-2 – volume: 45 start-page: 503 issn: 0025-5610 issue: 1–3 year: 1989 ident: 10.1016/j.cma.2020.113127_b42 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – start-page: 808 year: 2000 ident: 10.1016/j.cma.2020.113127_b22 article-title: An introduction to the proper orthogonal decomposition publication-title: Current Sci. – volume: 11 start-page: 1041 issn: 1045-9227 issue: 5 year: 2000 ident: 10.1016/j.cma.2020.113127_b34 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870037 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.cma.2020.113127_b24 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 83 start-page: 1541 issn: 00295981 issue: 12 year: 2010 ident: 10.1016/j.cma.2020.113127_b11 article-title: Optimal transportation meshfree approximation schemes for fluid and plastic flows publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2869 – volume: 150 start-page: 71 issn: 00457949 year: 2015 ident: 10.1016/j.cma.2020.113127_b13 article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2014.12.011 – volume: 181 start-page: 375 issn: 0035-8711 issue: 3 year: 1977 ident: 10.1016/j.cma.2020.113127_b8 article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 313 start-page: 504 issn: 0036-8075 issue: 5786 year: 2006 ident: 10.1016/j.cma.2020.113127_b23 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 244 start-page: 312 issn: 0080-4614 issue: 882 year: 1952 ident: 10.1016/j.cma.2020.113127_b52 article-title: Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.1952.0006 – volume: 80 start-page: 103874 issn: 09977538 year: 2020 ident: 10.1016/j.cma.2020.113127_b37 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2019.103874 |
SSID | ssj0000812 |
Score | 2.634358 |
Snippet | Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113127 |
SubjectTerms | Boundary conditions Computational fluid dynamics Computer simulation Constraint problem Continuous improvement Design engineering Euler-Lagrange equation Fluid flow Free surfaces Implicit Runge–Kutta Incompressibility Incompressible flow Machine learning Mathematical analysis Meshless methods Neural networks Numerical analysis Numerical methods Partial differential equations Physics Physics-informed neural network Runge-Kutta method Simulation Solid mechanics Time dependence |
Title | The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics |
URI | https://dx.doi.org/10.1016/j.cma.2020.113127 https://www.proquest.com/docview/2442321107 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AolMoDE1Jo4jh2OlYVqLw6Uamb5dhJVVSFirYr4j_wD_klnB_hJdSBMY4dJb7z3XfO-TuEzlIex2DyVMAYlwFVYRpkaVcHnEquKSsibov23Q_ZYERvxsm4hvrVWRiTVultv7Pp1lr7lo6fzc58OjVnfKnhYk8I6Gkc2cPklHLDn3_x8pXmAS7PMYbTJDC9qz-bNsdLWeohYiub2MIyf_umX1baup6rXbTtMSPuudfaQ7W8bKAdjx-xX52LBtr6Ri64j1agAdjQVcLQuf8k7ApG4_fXN9wr8Wpu4n2N7-QEXNYENAW7nY4FdoSqcM8_oXTp4hhasbKVIPwuIi5mq6nG2lW2Xxyg0dXlQ38Q-CILgYpJsgzykEsqKVcRYYrlkSJdkkNYlWqiCkBbKYmyUEKgUvAuIQAwEl0kmWasC6OyIowPUb18KvMjhNOcxVLqrEhpQUkGvRQAilxmcQJzzFUThdX0CuUZyE0hjJmoUs0eBUhEGIkIJ5EmOv8cMnf0G-s600pm4ocOCXAP64a1KvkKv4AXAlAPYE0THB__76knaNNcme3nKGmh-vJ5lZ8CfllmbaugbbTRu74dDD8AnVnu_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwADb0R5emBCikgcx3bGClEVaDsVqZvl2AkqQqGizc5_4B_ySzjHDi-hDqx2zkp857uzc_4-hM4Fj2NweTpgjKuA6lAEmUhNwKnihrIi4jVp33DE-vf0dpJMVtBVcxfGllV63-98eu2tfculn83L2XRq7_hSi8WeELDTOLKXydsWnQqMvd29ueuPvhyyiBxoOE0CK9D83KzLvHSNPkRqcpOaW-bv8PTLUdfRp7eFNnzaiLvuzbbRSl7uoE2fQmK_QOc7aP0bvuAuqsAIsEWsBNGZ_yrsOKPx--sb7pa4mtktv8ED9QBR6wGMBbvDjjl2mKrQ50coXcU4hlasazIIf5CIi6dqarBx5PbzPXTfux5f9QPPsxDomCSLIA-5oopyHRGmWR5pkpIcdlbCEF1AwiVIlIUK9ioFTwmBHCMxRZIZxlKQyoow3ket8rnMDxAWOYuVMlkhaEFJBk9pyClylcUJzDHXHRQ20yu1ByG3XBhPsqk2e5SgEWk1Ip1GOujiU2TmEDiWPUwbnckfZiQhQiwTO270K_0anktIfCDdtPvjw_-NeoZW--PhQA5uRndHaM322NPoKDlGrcVLlZ9AOrPITr25fgDPbfGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neural+particle+method+%E2%80%93+An+updated+Lagrangian+physics+informed+neural+network+for+computational+fluid+dynamics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Wessels%2C+Henning&rft.au=Wei%C3%9Fenfels%2C+Christian&rft.au=Wriggers%2C+Peter&rft.date=2020-08-15&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=368&rft_id=info:doi/10.1016%2Fj.cma.2020.113127&rft.externalDocID=S0045782520303121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |