The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics

Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical si...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 368; p. 113127
Main Authors Wessels, Henning, Weißenfels, Christian, Wriggers, Peter
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2020.113127

Cover

Loading…
Abstract Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular. •A feed-forward neural network is used to construct a global geometric ansatz function.•No special treatment of the incompressibility constraint is necessary.•High order implicit Runge–Kutta time integration is employed.•Excellent conservation properties are demonstrated in numerical examples.•The computations remain stable even for irregularly distributed discretization points.
AbstractList Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular.
Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for prototypes. While products designed with the aid of numerical simulation undergo continuous improvement, this must also be true for numerical simulation techniques themselves. Up to date, no general purpose numerical method is available which can accurately resolve a variety of physics ranging from fluid to solid mechanics including large deformations and free surface flow phenomena. These complex multi-physics problems occur for example in Additive Manufacturing processes. In this sense, the recent developments in Machine Learning display promise for numerical simulation. It has recently been shown that instead of solving a system of equations as in standard numerical methods, a neural network can be trained solely based on initial and boundary conditions. Neural networks are smooth, differentiable functions that can be used as a global ansatz for Partial Differential Equations (PDEs). While this idea dates back to more than 20 years (Lagaris et al., 1998), it is only recently that an approach for the solution of time dependent problems has been developed (Raissi et al., 2019). With the latter, implicit Runge–Kutta schemes with unprecedented high order have been constructed to solve scalar-valued PDEs. We build on the aforementioned work in order to develop an Updated Lagrangian method for the solution of incompressible free surface flow subject to the inviscid Euler equations. The method is straightforward to implement and does not require any specific algorithmic treatment which is usually necessary to accurately resolve the incompressibility constraint. Due to its meshfree character, we will name it the Neural Particle Method (NPM). It will be demonstrated that the NPM remains stable and accurate even if the location of discretization points is highly irregular. •A feed-forward neural network is used to construct a global geometric ansatz function.•No special treatment of the incompressibility constraint is necessary.•High order implicit Runge–Kutta time integration is employed.•Excellent conservation properties are demonstrated in numerical examples.•The computations remain stable even for irregularly distributed discretization points.
ArticleNumber 113127
Author Weißenfels, Christian
Wriggers, Peter
Wessels, Henning
Author_xml – sequence: 1
  givenname: Henning
  orcidid: 0000-0002-2542-1130
  surname: Wessels
  fullname: Wessels, Henning
  email: wessels@ikm.uni-hannover.de
  organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
– sequence: 2
  givenname: Christian
  surname: Weißenfels
  fullname: Weißenfels, Christian
  organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
– sequence: 3
  givenname: Peter
  surname: Wriggers
  fullname: Wriggers, Peter
  organization: Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
BookMark eNp9kDtuGzEQholABiLJPoA7AqlXIWcfXMGVYSROAAFunJqgyFmL8i65IbkJ1PkOuaFPYhqrKoWnGczj-zHzr8jCeYeEXHO24Yw3X48bPagNMMg1LzmIT2TJW7EtgJftgiwZq-pCtFB_JqsYjyxHy2FJpscDUodTUD0dVUhW90gHTAdv6OvLP3rr6DQaldDQnXoKyj1Z5eh4OEWrI7Wu82HIs7OCw_TXh2eau1T7YZySSta7POn6yRpqTk4NGbwkF53qI16d85r8-v7t8e5HsXu4_3l3uyt0CXUqkAlVqUpoDo1ukGvYAkLDWwO6K6Fqge-ZgpJ1YgvARF2brt6bptlmat-xck2-zLpj8L8njEke_RTyPVFCVUEJnDORt8S8pYOPMWAntZ0PT0HZXnIm3z2WR5k9lu8ey9njTPL_yDHYQYXTh8zNzGB-_I_FIKO26DQaG1Anabz9gH4Dm_-Xsw
CitedBy_id crossref_primary_10_1016_j_cma_2025_117787
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122791
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_cma_2022_114790
crossref_primary_10_1016_j_camwa_2024_04_017
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1016_j_finel_2022_103893
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1002_nag_3196
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1016_j_oceaneng_2024_118341
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1007_s10409_022_22185_x
crossref_primary_10_1016_j_adapen_2020_100004
crossref_primary_10_5194_gmd_16_3479_2023
crossref_primary_10_1002_nme_7323
crossref_primary_10_1098_rsta_2024_0221
crossref_primary_10_1016_j_apor_2022_103082
crossref_primary_10_1016_j_triboint_2023_108871
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_cma_2024_117498
crossref_primary_10_1007_s44379_024_00009_5
crossref_primary_10_1016_j_physa_2022_128415
crossref_primary_10_1115_1_4064449
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_apm_2024_115906
crossref_primary_10_1080_15502287_2024_2440420
crossref_primary_10_1016_j_ijheatfluidflow_2024_109721
crossref_primary_10_1016_j_compfluid_2024_106224
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1007_s11071_024_10655_2
crossref_primary_10_1016_j_istruc_2024_107361
crossref_primary_10_1098_rsos_231606
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121616
crossref_primary_10_1016_j_jcp_2023_112003
crossref_primary_10_1109_ACCESS_2025_3532669
crossref_primary_10_1002_pamm_202200044
crossref_primary_10_1007_s00466_022_02250_2
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_3390_app11146483
crossref_primary_10_1007_s10483_023_2992_6
crossref_primary_10_1016_j_cma_2021_114096
crossref_primary_10_1016_j_cma_2024_117441
crossref_primary_10_3390_math11081805
crossref_primary_10_1007_s00521_022_07838_6
crossref_primary_10_1007_s42452_022_04938_9
crossref_primary_10_32604_sdhm_2024_044751
crossref_primary_10_1016_j_engappai_2023_106907
crossref_primary_10_1016_j_neunet_2021_11_022
crossref_primary_10_1007_s11071_025_11046_x
crossref_primary_10_1016_j_jfoodeng_2022_111137
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104937
crossref_primary_10_1016_j_apor_2023_103587
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_cma_2022_115810
crossref_primary_10_1016_j_compfluid_2022_105583
crossref_primary_10_1007_s10489_024_05402_4
crossref_primary_10_1016_j_cma_2021_114524
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_cma_2022_115497
crossref_primary_10_1007_s00366_022_01640_7
crossref_primary_10_1007_s00466_023_02324_9
crossref_primary_10_1115_1_4063977
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1142_S0219876223500135
crossref_primary_10_1142_S175882512350028X
crossref_primary_10_1080_19942060_2023_2238849
crossref_primary_10_1007_s00707_022_03449_3
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1098_rsta_2023_0316
crossref_primary_10_1016_j_ijhydene_2023_04_126
crossref_primary_10_1016_j_jcp_2021_110526
crossref_primary_10_1007_s00366_024_02010_1
crossref_primary_10_2514_1_J062708
crossref_primary_10_1016_j_jcp_2024_113579
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1063_5_0055600
crossref_primary_10_1007_s41315_021_00196_x
Cites_doi 10.1002/fld.1650070906
10.1142/S0219876204000204
10.1137/1.9780898717761
10.1016/S0893-6080(05)80131-5
10.1016/S0045-7825(99)00416-8
10.1016/0021-9991(90)90173-X
10.1007/BF02551274
10.13182/NSE96-A24205
10.1016/j.cma.2019.112790
10.1016/j.jcp.2011.10.027
10.1016/j.jcp.2018.10.045
10.1016/0045-7825(92)90141-6
10.1007/978-3-642-56026-2
10.1016/j.cma.2017.09.031
10.1145/174462.156635
10.1146/annurev-fluid-010719-060214
10.1016/S0045-7825(98)00079-6
10.1016/0045-7825(88)90168-5
10.1016/j.physd.2020.132368
10.1007/978-3-319-39005-5
10.1017/jfm.2016.803
10.1016/0021-9991(81)90145-5
10.1016/S0045-7825(01)00306-1
10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-N
10.1016/j.neucom.2018.06.056
10.1016/0021-9991(74)90051-5
10.1086/112164
10.1126/science.aaw4741
10.1109/72.712178
10.1016/S0045-7825(96)01132-2
10.1007/BF01589116
10.1109/72.870037
10.1162/neco.1997.9.8.1735
10.1002/nme.2869
10.1016/j.compstruc.2014.12.011
10.1093/mnras/181.3.375
10.1126/science.1127647
10.1098/rsta.1952.0006
10.1016/j.euromechsol.2019.103874
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2020.113127
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2020_113127
S0045782520303121
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-e07a4a47c126c6e1c292e2618d2cf324821b0a230f79220755df5bd6694a4bf03
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Mon Jul 14 10:43:11 EDT 2025
Tue Jul 01 04:06:10 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Fri Feb 23 02:46:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Constraint problem
Physics-informed neural network
Computational fluid dynamics
Incompressibility
Implicit Runge–Kutta
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-e07a4a47c126c6e1c292e2618d2cf324821b0a230f79220755df5bd6694a4bf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2542-1130
PQID 2442321107
PQPubID 2045269
ParticipantIDs proquest_journals_2442321107
crossref_citationtrail_10_1016_j_cma_2020_113127
crossref_primary_10_1016_j_cma_2020_113127
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Maulik, Mohan, Lusch, Madireddy, Balaprakash, Livescu (b26) 2020; 405
Liu, Li, Belytschko (b9) 1997; 143
Li, Liu (b14) 2007
Martin, Moyce (b52) 1952; 244
Ferziger, Perić (b44) 2002
Brezzi, Franca, Hughes, Russo (b16) 1997
Nguyen-Thanh, Zhuang, Rabczuk (b37) 2020; 80
Lucy (b7) 1977; 82
Li, Habbal, Ortiz (b11) 2010; 83
Hairer, Wanner (b40) 2010; vol. 14
Ramaswamy (b46) 1990; 90
Lagaris, Likas, Fotiadis (b31) 1998; 9
Franca, Hughes (b15) 1988; 69
Spencer (b49) 2004
Ramaswamy, Kawahara (b50) 1987; 7
Patankar (b1) 1980
Hinton, Salakhutdinov (b23) 2006; 313
Korelc, Wriggers (b33) 2016
Wriggers (b45) 2008
Edelsbrunner, Mücke (b53) 1994; 13
Liu, Nocedal (b42) 1989; 45
Tezduyar, Mittal, Ray, Shih (b5) 1992; 95
Iserles (b39) 2012; vol. 44
Raissi, Yazdani, Karniadakis (b20) 2020; 367
Weißenfels, Wriggers (b12) 2018; 329
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b36) 2020; 362
Berg, Nyström (b35) 2018; 317
Leshno, Lin, Pinkus, Schocken (b30) 1993; 6
Gingold, Monaghan (b8) 1977; 181
Oñate, Idelsohn, Del Pin, Aubry (b48) 2004; 01
Brezzi (b3) 1974; 8
Hughes, Feijóo, Mazzei, Quincy (b18) 1998; 166
Chatterjee (b22) 2000
Braess, Wriggers (b6) 2000; 190
Griewank (b32) 2008
Raissi, Perdikaris, Karniadakis (b38) 2019; 378
Hirt, Amsden, Cook (b4) 1974; 14
Hirt, Nichols (b2) 1981; 39
Brunton, Noack, Koumoutsakos (b27) 2020; 52
Kutz (b21) 2017; 814
Radovitzky, Ortiz (b47) 1998; 43
Magnus, Popp, Sextro (b43) 2013
Mohan, Lubbers, Livescu, Chertkov (b28) 2020
Lind, Xu, Stansby, Rogers (b10) 2012; 231
Koshizuka, Oka (b51) 1996; 123
Cybenko (b29) 1989; 2
Erichson, Mathelin, Yao, Brunton, Mahoney, Kutz (b19) 2019
Oñate, García (b17) 2001; 191
Chen, Rubanova, Bettencourt, Duvenaud (b25) 2018
Kingma, Ba (b41) 2014
Lagaris, Likas, Papageorgiou (b34) 2000; 11
Hochreiter, Schmidhuber (b24) 1997; 9
Ganzenmüller, Hiermaier, May (b13) 2015; 150
Li (10.1016/j.cma.2020.113127_b11) 2010; 83
Nguyen-Thanh (10.1016/j.cma.2020.113127_b37) 2020; 80
Cybenko (10.1016/j.cma.2020.113127_b29) 1989; 2
Li (10.1016/j.cma.2020.113127_b14) 2007
Chen (10.1016/j.cma.2020.113127_b25) 2018
Ramaswamy (10.1016/j.cma.2020.113127_b50) 1987; 7
Ganzenmüller (10.1016/j.cma.2020.113127_b13) 2015; 150
Iserles (10.1016/j.cma.2020.113127_b39) 2012; vol. 44
Martin (10.1016/j.cma.2020.113127_b52) 1952; 244
Koshizuka (10.1016/j.cma.2020.113127_b51) 1996; 123
Chatterjee (10.1016/j.cma.2020.113127_b22) 2000
Griewank (10.1016/j.cma.2020.113127_b32) 2008
Maulik (10.1016/j.cma.2020.113127_b26) 2020; 405
Radovitzky (10.1016/j.cma.2020.113127_b47) 1998; 43
Lagaris (10.1016/j.cma.2020.113127_b34) 2000; 11
Liu (10.1016/j.cma.2020.113127_b9) 1997; 143
Patankar (10.1016/j.cma.2020.113127_b1) 1980
Samaniego (10.1016/j.cma.2020.113127_b36) 2020; 362
Berg (10.1016/j.cma.2020.113127_b35) 2018; 317
Tezduyar (10.1016/j.cma.2020.113127_b5) 1992; 95
Brezzi (10.1016/j.cma.2020.113127_b16) 1997
Kingma (10.1016/j.cma.2020.113127_b41) 2014
Hairer (10.1016/j.cma.2020.113127_b40) 2010; vol. 14
Hirt (10.1016/j.cma.2020.113127_b4) 1974; 14
Kutz (10.1016/j.cma.2020.113127_b21) 2017; 814
Spencer (10.1016/j.cma.2020.113127_b49) 2004
Leshno (10.1016/j.cma.2020.113127_b30) 1993; 6
Lagaris (10.1016/j.cma.2020.113127_b31) 1998; 9
Lind (10.1016/j.cma.2020.113127_b10) 2012; 231
Korelc (10.1016/j.cma.2020.113127_b33) 2016
Wriggers (10.1016/j.cma.2020.113127_b45) 2008
Edelsbrunner (10.1016/j.cma.2020.113127_b53) 1994; 13
Liu (10.1016/j.cma.2020.113127_b42) 1989; 45
Ramaswamy (10.1016/j.cma.2020.113127_b46) 1990; 90
Oñate (10.1016/j.cma.2020.113127_b48) 2004; 01
Lucy (10.1016/j.cma.2020.113127_b7) 1977; 82
Hinton (10.1016/j.cma.2020.113127_b23) 2006; 313
Franca (10.1016/j.cma.2020.113127_b15) 1988; 69
Hirt (10.1016/j.cma.2020.113127_b2) 1981; 39
Oñate (10.1016/j.cma.2020.113127_b17) 2001; 191
Weißenfels (10.1016/j.cma.2020.113127_b12) 2018; 329
Hughes (10.1016/j.cma.2020.113127_b18) 1998; 166
Raissi (10.1016/j.cma.2020.113127_b38) 2019; 378
Erichson (10.1016/j.cma.2020.113127_b19) 2019
Hochreiter (10.1016/j.cma.2020.113127_b24) 1997; 9
Gingold (10.1016/j.cma.2020.113127_b8) 1977; 181
Brunton (10.1016/j.cma.2020.113127_b27) 2020; 52
Magnus (10.1016/j.cma.2020.113127_b43) 2013
Brezzi (10.1016/j.cma.2020.113127_b3) 1974; 8
Ferziger (10.1016/j.cma.2020.113127_b44) 2002
Raissi (10.1016/j.cma.2020.113127_b20) 2020; 367
Mohan (10.1016/j.cma.2020.113127_b28) 2020
Braess (10.1016/j.cma.2020.113127_b6) 2000; 190
References_xml – volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b27
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: vol. 14
  year: 2010
  ident: b40
  article-title: Stiff and differential-algebraic problems
  publication-title: Springer series in computational mathematics
– year: 2019
  ident: b19
  article-title: Shallow learning for fluid flow reconstruction with limited sensors and limited data
– year: 2008
  ident: b45
  article-title: Nonlinear Finite Element Methods
– volume: 329
  start-page: 421
  year: 2018
  end-page: 443
  ident: b12
  article-title: Stabilization algorithm for the optimal transportation meshfree approximation scheme
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b38
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 861
  year: 1993
  end-page: 867
  ident: b30
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
– volume: 83
  start-page: 1541
  year: 2010
  end-page: 1579
  ident: b11
  article-title: Optimal transportation meshfree approximation schemes for fluid and plastic flows
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2007
  ident: b14
  article-title: Meshfree Particle Methods
– volume: 80
  start-page: 103874
  year: 2020
  ident: b37
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: b8
  article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 143
  start-page: 113
  year: 1997
  end-page: 154
  ident: b9
  article-title: Moving least-square reproducing kernel methods (I) Methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2002
  ident: b44
  article-title: Computational Methods for Fluid Dynamics
– volume: 90
  start-page: 396
  year: 1990
  end-page: 430
  ident: b46
  article-title: Numerical simulation of unsteady viscous free surface flow
  publication-title: J. Comput. Phys.
– year: 2014
  ident: b41
  article-title: Adam: A method for stochastic optimization
– year: 2004
  ident: b49
  article-title: Continuum Mechanics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b24
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 191
  start-page: 635
  year: 2001
  end-page: 660
  ident: b17
  article-title: A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 01
  start-page: 267
  year: 2004
  end-page: 307
  ident: b48
  article-title: The particle finite element method: An overview
  publication-title: Int. J. Comput. Methods
– volume: 14
  start-page: 227
  year: 1974
  end-page: 253
  ident: b4
  article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds
  publication-title: J. Comput. Phys.
– volume: 69
  start-page: 89
  year: 1988
  end-page: 129
  ident: b15
  article-title: Two classes of mixed finite element methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 362
  start-page: 112790
  year: 2020
  ident: b36
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: b21
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b35
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b42
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: vol. 44
  year: 2012
  ident: b39
  publication-title: A First Course in the Numerical Analysis of Differential Equations
– volume: 244
  start-page: 312
  year: 1952
  end-page: 324
  ident: b52
  article-title: Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane
  publication-title: Phil. Trans. R. Soc. A
– year: 2020
  ident: b28
  article-title: Embedding hard physical constraints in neural network coarse-graining of 3d turbulence
– volume: 13
  start-page: 43
  year: 1994
  end-page: 72
  ident: b53
  article-title: Three-dimensional alpha shapes
  publication-title: ACM Trans. Graph.
– year: 2013
  ident: b43
  article-title: Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen; mit 68 Aufgaben mit Lösungen
  publication-title: Lehrbuch
– volume: 123
  start-page: 421
  year: 1996
  end-page: 434
  ident: b51
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
– volume: 43
  start-page: 607
  year: 1998
  end-page: 619
  ident: b47
  article-title: Lagrangian finite element analysis of Newtonian fluid flows
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 190
  start-page: 95
  year: 2000
  end-page: 109
  ident: b6
  article-title: Arbitrary Lagrangian Eulerian finite element analysis of free surface flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 6571
  year: 2018
  end-page: 6583
  ident: b25
  article-title: Neural ordinary differential equations
  publication-title: Advances in Neural Information Processing Systems
– volume: 405
  start-page: 132368
  year: 2020
  ident: b26
  article-title: Time-series learning of latent-space dynamics for reduced-order model closure
  publication-title: Physica D
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b34
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– volume: 7
  start-page: 953
  year: 1987
  end-page: 984
  ident: b50
  article-title: Lagrangian finite element analysis applied to viscous free surface fluid flow
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 231
  start-page: 1499
  year: 2012
  end-page: 1523
  ident: b10
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b20
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 150
  start-page: 71
  year: 2015
  end-page: 78
  ident: b13
  article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics
  publication-title: Comput. Struct.
– year: 1980
  ident: b1
  article-title: Numerical heat transfer and fluid flow
  publication-title: Series in computational methods in mechanics and thermal sciences
– volume: 8
  start-page: 129
  year: 1974
  end-page: 151
  ident: b3
  article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers
  publication-title: RAIRO Anal. Numér.
– volume: 166
  start-page: 3
  year: 1998
  end-page: 24
  ident: b18
  article-title: The variational multiscale method—a paradigm for computational mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: b2
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 95
  start-page: 221
  year: 1992
  end-page: 242
  ident: b5
  article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 391
  year: 1997
  end-page: 406
  ident: b16
  article-title: Stabilization techniques and subgrid scales capturing
  publication-title: The State of the Art in Numerical Analysis
– volume: 82
  start-page: 1013
  year: 1977
  ident: b7
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– start-page: 808
  year: 2000
  end-page: 817
  ident: b22
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Current Sci.
– year: 2016
  ident: b33
  article-title: Automation of Finite Element Methods
– year: 2008
  ident: b32
  article-title: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentation
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b31
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b23
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b29
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Systems
– volume: 7
  start-page: 953
  issn: 0271-2091
  issue: 9
  year: 1987
  ident: 10.1016/j.cma.2020.113127_b50
  article-title: Lagrangian finite element analysis applied to viscous free surface fluid flow
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650070906
– volume: 01
  start-page: 267
  issn: 0219-8762
  issue: 02
  year: 2004
  ident: 10.1016/j.cma.2020.113127_b48
  article-title: The particle finite element method: An overview
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876204000204
– year: 2004
  ident: 10.1016/j.cma.2020.113127_b49
– year: 2008
  ident: 10.1016/j.cma.2020.113127_b32
  doi: 10.1137/1.9780898717761
– volume: vol. 14
  year: 2010
  ident: 10.1016/j.cma.2020.113127_b40
  article-title: Stiff and differential-algebraic problems
– year: 2008
  ident: 10.1016/j.cma.2020.113127_b45
– volume: 6
  start-page: 861
  issn: 08936080
  issue: 6
  year: 1993
  ident: 10.1016/j.cma.2020.113127_b30
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– volume: 8
  start-page: 129
  issue: R2
  year: 1974
  ident: 10.1016/j.cma.2020.113127_b3
  article-title: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers
  publication-title: RAIRO Anal. Numér.
– volume: 190
  start-page: 95
  issue: 1–2
  year: 2000
  ident: 10.1016/j.cma.2020.113127_b6
  article-title: Arbitrary Lagrangian Eulerian finite element analysis of free surface flow
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00416-8
– year: 1980
  ident: 10.1016/j.cma.2020.113127_b1
  article-title: Numerical heat transfer and fluid flow
– volume: 90
  start-page: 396
  issn: 00219991
  issue: 2
  year: 1990
  ident: 10.1016/j.cma.2020.113127_b46
  article-title: Numerical simulation of unsteady viscous free surface flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90173-X
– year: 2007
  ident: 10.1016/j.cma.2020.113127_b14
– year: 2020
  ident: 10.1016/j.cma.2020.113127_b28
– start-page: 391
  year: 1997
  ident: 10.1016/j.cma.2020.113127_b16
  article-title: Stabilization techniques and subgrid scales capturing
– volume: 2
  start-page: 303
  issn: 0932-4194
  issue: 4
  year: 1989
  ident: 10.1016/j.cma.2020.113127_b29
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Systems
  doi: 10.1007/BF02551274
– volume: 123
  start-page: 421
  issn: 0029-5639
  issue: 3
  year: 1996
  ident: 10.1016/j.cma.2020.113127_b51
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE96-A24205
– volume: 362
  start-page: 112790
  issn: 00457825
  year: 2020
  ident: 10.1016/j.cma.2020.113127_b36
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 231
  start-page: 1499
  issn: 00219991
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2020.113127_b10
  article-title: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.027
– volume: 378
  start-page: 686
  issn: 00219991
  year: 2019
  ident: 10.1016/j.cma.2020.113127_b38
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 95
  start-page: 221
  issn: 00457825
  issue: 2
  year: 1992
  ident: 10.1016/j.cma.2020.113127_b5
  article-title: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90141-6
– year: 2002
  ident: 10.1016/j.cma.2020.113127_b44
  doi: 10.1007/978-3-642-56026-2
– volume: 329
  start-page: 421
  issn: 00457825
  year: 2018
  ident: 10.1016/j.cma.2020.113127_b12
  article-title: Stabilization algorithm for the optimal transportation meshfree approximation scheme
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.09.031
– year: 2019
  ident: 10.1016/j.cma.2020.113127_b19
– volume: 13
  start-page: 43
  issn: 0730-0301
  issue: 1
  year: 1994
  ident: 10.1016/j.cma.2020.113127_b53
  article-title: Three-dimensional alpha shapes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/174462.156635
– year: 2013
  ident: 10.1016/j.cma.2020.113127_b43
  article-title: Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen; mit 68 Aufgaben mit Lösungen
– volume: 52
  start-page: 477
  year: 2020
  ident: 10.1016/j.cma.2020.113127_b27
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 166
  start-page: 3
  issn: 00457825
  issue: 1–2
  year: 1998
  ident: 10.1016/j.cma.2020.113127_b18
  article-title: The variational multiscale method—a paradigm for computational mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(98)00079-6
– volume: vol. 44
  year: 2012
  ident: 10.1016/j.cma.2020.113127_b39
– volume: 69
  start-page: 89
  issn: 00457825
  issue: 1
  year: 1988
  ident: 10.1016/j.cma.2020.113127_b15
  article-title: Two classes of mixed finite element methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(88)90168-5
– volume: 405
  start-page: 132368
  year: 2020
  ident: 10.1016/j.cma.2020.113127_b26
  article-title: Time-series learning of latent-space dynamics for reduced-order model closure
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132368
– year: 2016
  ident: 10.1016/j.cma.2020.113127_b33
  doi: 10.1007/978-3-319-39005-5
– volume: 814
  start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2020.113127_b21
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.803
– volume: 39
  start-page: 201
  issn: 00219991
  issue: 1
  year: 1981
  ident: 10.1016/j.cma.2020.113127_b2
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– start-page: 6571
  year: 2018
  ident: 10.1016/j.cma.2020.113127_b25
  article-title: Neural ordinary differential equations
– volume: 191
  start-page: 635
  issn: 00457825
  issue: 6–7
  year: 2001
  ident: 10.1016/j.cma.2020.113127_b17
  article-title: A finite element method for fluid–structure interaction with surface waves using a finite calculus formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00306-1
– volume: 43
  start-page: 607
  issn: 00295981
  issue: 4
  year: 1998
  ident: 10.1016/j.cma.2020.113127_b47
  article-title: Lagrangian finite element analysis of Newtonian fluid flows
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19981030)43:4<607::AID-NME399>3.0.CO;2-N
– volume: 317
  start-page: 28
  issn: 09252312
  year: 2018
  ident: 10.1016/j.cma.2020.113127_b35
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 14
  start-page: 227
  issn: 00219991
  issue: 3
  year: 1974
  ident: 10.1016/j.cma.2020.113127_b4
  article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(74)90051-5
– volume: 82
  start-page: 1013
  issn: 00046256
  year: 1977
  ident: 10.1016/j.cma.2020.113127_b7
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 367
  start-page: 1026
  issn: 0036-8075
  issue: 6481
  year: 2020
  ident: 10.1016/j.cma.2020.113127_b20
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 9
  start-page: 987
  issn: 1045-9227
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2020.113127_b31
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– year: 2014
  ident: 10.1016/j.cma.2020.113127_b41
– volume: 143
  start-page: 113
  issn: 00457825
  issue: 1–2
  year: 1997
  ident: 10.1016/j.cma.2020.113127_b9
  article-title: Moving least-square reproducing kernel methods (I) Methodology and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(96)01132-2
– volume: 45
  start-page: 503
  issn: 0025-5610
  issue: 1–3
  year: 1989
  ident: 10.1016/j.cma.2020.113127_b42
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– start-page: 808
  year: 2000
  ident: 10.1016/j.cma.2020.113127_b22
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Current Sci.
– volume: 11
  start-page: 1041
  issn: 1045-9227
  issue: 5
  year: 2000
  ident: 10.1016/j.cma.2020.113127_b34
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cma.2020.113127_b24
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 83
  start-page: 1541
  issn: 00295981
  issue: 12
  year: 2010
  ident: 10.1016/j.cma.2020.113127_b11
  article-title: Optimal transportation meshfree approximation schemes for fluid and plastic flows
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2869
– volume: 150
  start-page: 71
  issn: 00457949
  year: 2015
  ident: 10.1016/j.cma.2020.113127_b13
  article-title: On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2014.12.011
– volume: 181
  start-page: 375
  issn: 0035-8711
  issue: 3
  year: 1977
  ident: 10.1016/j.cma.2020.113127_b8
  article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 313
  start-page: 504
  issn: 0036-8075
  issue: 5786
  year: 2006
  ident: 10.1016/j.cma.2020.113127_b23
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 244
  start-page: 312
  issn: 0080-4614
  issue: 882
  year: 1952
  ident: 10.1016/j.cma.2020.113127_b52
  article-title: Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.1952.0006
– volume: 80
  start-page: 103874
  issn: 09977538
  year: 2020
  ident: 10.1016/j.cma.2020.113127_b37
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2019.103874
SSID ssj0000812
Score 2.634358
Snippet Today numerical simulation is indispensable in industrial design processes. It can replace cost and time intensive experiments and even reduce the need for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113127
SubjectTerms Boundary conditions
Computational fluid dynamics
Computer simulation
Constraint problem
Continuous improvement
Design engineering
Euler-Lagrange equation
Fluid flow
Free surfaces
Implicit Runge–Kutta
Incompressibility
Incompressible flow
Machine learning
Mathematical analysis
Meshless methods
Neural networks
Numerical analysis
Numerical methods
Partial differential equations
Physics
Physics-informed neural network
Runge-Kutta method
Simulation
Solid mechanics
Time dependence
Title The neural particle method – An updated Lagrangian physics informed neural network for computational fluid dynamics
URI https://dx.doi.org/10.1016/j.cma.2020.113127
https://www.proquest.com/docview/2442321107
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AolMoDE1Jo4jh2OlYVqLw6Uamb5dhJVVSFirYr4j_wD_klnB_hJdSBMY4dJb7z3XfO-TuEzlIex2DyVMAYlwFVYRpkaVcHnEquKSsibov23Q_ZYERvxsm4hvrVWRiTVultv7Pp1lr7lo6fzc58OjVnfKnhYk8I6Gkc2cPklHLDn3_x8pXmAS7PMYbTJDC9qz-bNsdLWeohYiub2MIyf_umX1baup6rXbTtMSPuudfaQ7W8bKAdjx-xX52LBtr6Ri64j1agAdjQVcLQuf8k7ApG4_fXN9wr8Wpu4n2N7-QEXNYENAW7nY4FdoSqcM8_oXTp4hhasbKVIPwuIi5mq6nG2lW2Xxyg0dXlQ38Q-CILgYpJsgzykEsqKVcRYYrlkSJdkkNYlWqiCkBbKYmyUEKgUvAuIQAwEl0kmWasC6OyIowPUb18KvMjhNOcxVLqrEhpQUkGvRQAilxmcQJzzFUThdX0CuUZyE0hjJmoUs0eBUhEGIkIJ5EmOv8cMnf0G-s600pm4ocOCXAP64a1KvkKv4AXAlAPYE0THB__76knaNNcme3nKGmh-vJ5lZ8CfllmbaugbbTRu74dDD8AnVnu_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwADb0R5emBCikgcx3bGClEVaDsVqZvl2AkqQqGizc5_4B_ySzjHDi-hDqx2zkp857uzc_4-hM4Fj2NweTpgjKuA6lAEmUhNwKnihrIi4jVp33DE-vf0dpJMVtBVcxfGllV63-98eu2tfculn83L2XRq7_hSi8WeELDTOLKXydsWnQqMvd29ueuPvhyyiBxoOE0CK9D83KzLvHSNPkRqcpOaW-bv8PTLUdfRp7eFNnzaiLvuzbbRSl7uoE2fQmK_QOc7aP0bvuAuqsAIsEWsBNGZ_yrsOKPx--sb7pa4mtktv8ED9QBR6wGMBbvDjjl2mKrQ50coXcU4hlasazIIf5CIi6dqarBx5PbzPXTfux5f9QPPsxDomCSLIA-5oopyHRGmWR5pkpIcdlbCEF1AwiVIlIUK9ioFTwmBHCMxRZIZxlKQyoow3ket8rnMDxAWOYuVMlkhaEFJBk9pyClylcUJzDHXHRQ20yu1ByG3XBhPsqk2e5SgEWk1Ip1GOujiU2TmEDiWPUwbnckfZiQhQiwTO270K_0anktIfCDdtPvjw_-NeoZW--PhQA5uRndHaM322NPoKDlGrcVLlZ9AOrPITr25fgDPbfGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neural+particle+method+%E2%80%93+An+updated+Lagrangian+physics+informed+neural+network+for+computational+fluid+dynamics&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Wessels%2C+Henning&rft.au=Wei%C3%9Fenfels%2C+Christian&rft.au=Wriggers%2C+Peter&rft.date=2020-08-15&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=368&rft_id=info:doi/10.1016%2Fj.cma.2020.113127&rft.externalDocID=S0045782520303121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon