Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning

Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of differe...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 10; no. 9; p. 793
Main Authors Wang, Jiamin, Chen, Xinxin, Cao, Lin, An, Feng, Chen, Bangqian, Xue, Lianfeng, Yun, Ting
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data.
AbstractList Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data.
Author Xue, Lianfeng
Chen, Bangqian
Wang, Jiamin
Yun, Ting
An, Feng
Chen, Xinxin
Cao, Lin
Author_xml – sequence: 1
  givenname: Jiamin
  surname: Wang
  fullname: Wang, Jiamin
– sequence: 2
  givenname: Xinxin
  surname: Chen
  fullname: Chen, Xinxin
– sequence: 3
  givenname: Lin
  orcidid: 0000-0001-5195-0477
  surname: Cao
  fullname: Cao, Lin
– sequence: 4
  givenname: Feng
  orcidid: 0000-0003-1545-2475
  surname: An
  fullname: An, Feng
– sequence: 5
  givenname: Bangqian
  surname: Chen
  fullname: Chen, Bangqian
– sequence: 6
  givenname: Lianfeng
  surname: Xue
  fullname: Xue, Lianfeng
– sequence: 7
  givenname: Ting
  orcidid: 0000-0003-4294-8337
  surname: Yun
  fullname: Yun, Ting
BookMark eNptkE9LAzEQxYNUsNYe_AYBL3pYmz-b7uZYW1sLS4Vaz0uanZSUbbYmu4Lf3khFRJzLmwe_NwzvEvVc4wCha0ruOZdkZCghkmSSn6E-lVImaXS9X_sFGoawJ3FElkuW9pFZusq-26pTNV532y14vPEA-AV2B3Ctam3j8IMKUOG4LHzTuSo5-cLOJms8U63CylV4rkIb0-tkulrhxuAZwBEXoLyzbneFzo2qAwy_dYBe54-b6VNSPC-W00mRaM5Em1SGUG40kyKrpNDjdMwZkDSjKpNbkVJjjNaGGlblUQXJGWwVVanJc0ZIpvkA3Z7uHn3z1kFoy4MNGupaOWi6UDLOBWXjWEhEb_6g-6bzLn5XMpHmImUZI5EanSjtmxA8mFLbUyutV7YuKSm_qi9_qo-Juz-Jo7cH5T_-YT8BxDiChw
CitedBy_id crossref_primary_10_3390_rs12244088
crossref_primary_10_3390_f15010061
crossref_primary_10_1016_j_compag_2021_106460
crossref_primary_10_1080_17538947_2022_2152882
crossref_primary_10_1109_ACCESS_2020_2998806
crossref_primary_10_1080_17538947_2023_2198261
crossref_primary_10_1016_j_isprsjprs_2020_04_020
crossref_primary_10_1109_JSTARS_2020_3046053
crossref_primary_10_3390_f15091627
crossref_primary_10_3390_f14061159
crossref_primary_10_1016_j_biosystemseng_2022_06_016
crossref_primary_10_1016_j_isprsjprs_2020_12_010
crossref_primary_10_1016_j_ecoinf_2023_102200
crossref_primary_10_1177_1550147720907038
crossref_primary_10_1016_j_jag_2021_102580
crossref_primary_10_1155_2021_5593435
crossref_primary_10_1093_forestry_cpac043
crossref_primary_10_1109_TGRS_2023_3327128
crossref_primary_10_3390_rs14153842
crossref_primary_10_1080_10095020_2024_2439399
crossref_primary_10_1007_s11676_021_01303_1
crossref_primary_10_1109_JSTARS_2024_3378167
crossref_primary_10_3389_fpls_2022_914974
crossref_primary_10_3390_rs14215537
crossref_primary_10_3390_f15010127
crossref_primary_10_1117_1_JRS_15_028503
crossref_primary_10_3390_rs13173444
crossref_primary_10_3390_rs16213920
crossref_primary_10_1016_j_ophoto_2021_100011
crossref_primary_10_1111_phor_12487
crossref_primary_10_1007_s12524_022_01654_0
crossref_primary_10_1016_j_jag_2022_103145
crossref_primary_10_12677_jisp_2025_142011
crossref_primary_10_3390_rs16040610
crossref_primary_10_3390_rs12081318
crossref_primary_10_1080_02827581_2020_1829029
crossref_primary_10_3390_rs16152807
crossref_primary_10_1007_s13369_024_09465_w
crossref_primary_10_1016_j_jag_2024_103938
crossref_primary_10_1109_TGRS_2024_3391352
crossref_primary_10_1016_j_ophoto_2025_100083
crossref_primary_10_1109_JSTARS_2022_3212445
crossref_primary_10_3390_f13030431
crossref_primary_10_3390_agronomy13082059
crossref_primary_10_3390_f14020285
crossref_primary_10_1016_j_isprsjprs_2020_11_006
crossref_primary_10_1109_LRA_2023_3243498
crossref_primary_10_3390_rs14236116
crossref_primary_10_1016_j_ecoinf_2024_102888
crossref_primary_10_3390_rs14061346
crossref_primary_10_1186_s40663_021_00340_w
crossref_primary_10_3390_rs15133334
Cites_doi 10.1109/IMIS.2016.84
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2019.2892425
10.3390/rs11080903
10.1007/s00521-011-0546-1
10.3389/fpls.2018.00866
10.1109/TPAMI.2016.2577031
10.1109/ACCESS.2019.2902620
10.1109/ACCESS.2018.2879324
10.1016/j.scitotenv.2018.01.147
10.1186/s40537-016-0043-6
10.1371/journal.pone.0211392
10.3390/rs11020198
10.1016/j.rse.2013.07.044
10.3389/fpls.2016.01419
10.1109/LGRS.2017.2764938
10.3390/rs8060501
10.1016/j.compind.2018.03.007
10.1109/JSTARS.2016.2565519
10.1016/j.isprsjprs.2015.08.004
10.1016/j.isprsjprs.2012.04.003
10.1016/j.isprsjprs.2018.08.010
10.1016/j.measurement.2019.01.072
10.3390/rs5020584
10.3390/rs8110942
10.1016/j.indcrop.2018.09.055
10.1016/j.rsase.2019.100242
10.1016/j.compag.2017.12.034
10.14358/PERS.78.1.75
10.1016/j.foreco.2012.01.033
10.1016/j.isprsjprs.2014.03.014
10.14358/PERS.77.3.241
10.1080/01431161.2011.599349
10.3390/rs9020148
10.1007/978-3-540-31865-1_25
10.1109/TMM.2018.2875512
10.3390/rs6054323
10.1109/ISCID.2018.00072
10.1016/j.cag.2017.04.004
10.1109/36.921414
10.3390/rs11010015
10.3990/2.388
10.1080/01431161.2010.494184
10.1007/s13042-018-0881-y
10.1109/ACCESS.2019.2909742
10.1016/j.neucom.2016.09.116
10.1016/j.isprsjprs.2015.01.011
10.1016/j.agrformet.2019.06.009
10.1007/s10342-012-0642-5
10.1109/TGRS.2018.2829625
10.3390/rs3112346
10.1093/gigascience/gix083
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.3390/f10090793
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Agricultural Science Database
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10_3390_f10090793
GeographicLocations China
Hainan Island
GeographicLocations_xml – name: Hainan Island
– name: China
GroupedDBID 5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAO
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c325t-df013fc2957d95c64632e0471a79b541fffccf1f2d8ccf5082eba1a4f882007c3
IEDL.DBID BENPR
ISSN 1999-4907
IngestDate Fri Jul 11 00:08:23 EDT 2025
Mon Jun 30 05:48:17 EDT 2025
Tue Jul 01 02:07:06 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-df013fc2957d95c64632e0471a79b541fffccf1f2d8ccf5082eba1a4f882007c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4294-8337
0000-0001-5195-0477
0000-0003-1545-2475
OpenAccessLink https://www.proquest.com/docview/2548542720?pq-origsite=%requestingapplication%
PQID 2548542720
PQPubID 2032398
ParticipantIDs proquest_miscellaneous_2335126199
proquest_journals_2548542720
crossref_citationtrail_10_3390_f10090793
crossref_primary_10_3390_f10090793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190911
PublicationDateYYYYMMDD 2019-09-11
PublicationDate_xml – month: 09
  year: 2019
  text: 20190911
  day: 11
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Astrup (ref_32) 2018; 145
Liu (ref_48) 2018; 99
ref_12
ref_56
Guo (ref_3) 2018; 126
Jung (ref_9) 2011; 3
Wu (ref_44) 2016; 52
Wu (ref_21) 2013; 5
Mohanty (ref_31) 2016; 7
Zhang (ref_29) 2018; 6
Lan (ref_1) 2018; 626
Lei (ref_26) 2019; 138
Zhong (ref_20) 2017; 10
ref_22
Pound (ref_27) 2017; 6
Lin (ref_23) 2011; 33
Jing (ref_16) 2012; 70
Zou (ref_52) 2017; 14
Duncanson (ref_11) 2014; 154
Mongus (ref_13) 2015; 108
Ma (ref_55) 2019; 21
ref_28
Yang (ref_51) 2018; 10
Vo (ref_40) 2015; 104
Lu (ref_17) 2014; 94
Kim (ref_57) 2019; 7
ref_34
Jin (ref_30) 2018; 9
ref_33
Wang (ref_54) 2018; 56
Yang (ref_25) 2011; 21
ref_39
ref_38
Ke (ref_10) 2011; 32
ref_37
Yang (ref_24) 2019; 7
Chen (ref_2) 2012; 274
Lin (ref_15) 2011; 77
Olofsson (ref_18) 2014; 6
Maltamo (ref_14) 2004; 36
Dai (ref_46) 2018; 144
ref_47
Lindberg (ref_19) 2012; 131
ref_43
ref_42
ref_41
Ting (ref_50) 2018; 38
Hu (ref_45) 2017; 67
ref_49
Wang (ref_53) 2019; 7
Li (ref_7) 2012; 78
ref_8
Ren (ref_35) 2017; 39
Yu (ref_36) 2017; 257
ref_5
Kelle (ref_6) 2001; 39
ref_4
References_xml – volume: 36
  start-page: 187
  year: 2004
  ident: ref_14
  article-title: Adaptive methods for individual tree detection on airborne laser based canopy height model
  publication-title: Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci.
– ident: ref_28
  doi: 10.1109/IMIS.2016.84
– ident: ref_38
  doi: 10.1109/CVPR.2009.5206848
– volume: 52
  start-page: 82
  year: 2016
  ident: ref_44
  article-title: Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 12415
  year: 2019
  ident: ref_57
  article-title: Fast Pedestrian Detection in Surveillance Video Based on Soft Target Training of Shallow Random Forest
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892425
– ident: ref_22
  doi: 10.3390/rs11080903
– ident: ref_39
– volume: 21
  start-page: 305
  year: 2011
  ident: ref_25
  article-title: Plane-Gaussian artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0546-1
– volume: 9
  start-page: 866
  year: 2018
  ident: ref_30
  article-title: Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00866
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_35
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_42
– volume: 7
  start-page: 29845
  year: 2019
  ident: ref_24
  article-title: Piecewise Linear Regression Based on Plane Clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902620
– volume: 6
  start-page: 67940
  year: 2018
  ident: ref_29
  article-title: Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879324
– volume: 626
  start-page: 826
  year: 2018
  ident: ref_1
  article-title: Seasonal changes impact soil bacterial communities in a rubber plantation on Hainan Island, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.147
– ident: ref_37
  doi: 10.1186/s40537-016-0043-6
– ident: ref_49
  doi: 10.1371/journal.pone.0211392
– ident: ref_4
  doi: 10.3390/rs11020198
– volume: 154
  start-page: 378
  year: 2014
  ident: ref_11
  article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.044
– volume: 7
  start-page: 1419
  year: 2016
  ident: ref_31
  article-title: Using Deep Learning for Image-Based Plant Disease Detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 14
  start-page: 2360
  year: 2017
  ident: ref_52
  article-title: Tree Classification in Complex Forest Point Clouds Based on Deep Learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2764938
– ident: ref_33
  doi: 10.3390/rs8060501
– volume: 99
  start-page: 9
  year: 2018
  ident: ref_48
  article-title: Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.007
– volume: 10
  start-page: 774
  year: 2017
  ident: ref_20
  article-title: Segmentation of Individual Trees From TLS and MLS Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2565519
– volume: 108
  start-page: 219
  year: 2015
  ident: ref_13
  article-title: An efficient approach to 3D single tree-crown delineation in LiDAR data
  publication-title: Isprs J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.08.004
– volume: 70
  start-page: 88
  year: 2012
  ident: ref_16
  article-title: An individual tree crown delineation method based on multi-scale segmentation of imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.04.003
– volume: 144
  start-page: 400
  year: 2018
  ident: ref_46
  article-title: A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.08.010
– volume: 138
  start-page: 379
  year: 2019
  ident: ref_26
  article-title: Intelligent fault detection of high voltage line based on the Faster R-CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.072
– volume: 5
  start-page: 584
  year: 2013
  ident: ref_21
  article-title: A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data
  publication-title: Remote Sens.
  doi: 10.3390/rs5020584
– ident: ref_34
  doi: 10.3390/rs8110942
– volume: 126
  start-page: 1
  year: 2018
  ident: ref_3
  article-title: A robust method to estimate foliar phosphorus of rubber trees with hyperspectral reflectance
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.09.055
– ident: ref_47
  doi: 10.1016/j.rsase.2019.100242
– volume: 145
  start-page: 217
  year: 2018
  ident: ref_32
  article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.034
– volume: 78
  start-page: 75
  year: 2012
  ident: ref_7
  article-title: A new method for segmenting individual trees from the lidar point cloud
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.1.75
– volume: 274
  start-page: 222
  year: 2012
  ident: ref_2
  article-title: Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: A case study in Hainan Island, China
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.01.033
– volume: 94
  start-page: 1
  year: 2014
  ident: ref_17
  article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.014
– volume: 77
  start-page: 241
  year: 2011
  ident: ref_15
  article-title: A Multi-level Morphological Active Contour Algorithm for Delineating Tree Crowns in Mountainous Forest
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.77.3.241
– volume: 33
  start-page: 1701
  year: 2011
  ident: ref_23
  article-title: Three-level frame and RD-schematic algorithm for automatic detection of individual trees from MLS point clouds
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.599349
– ident: ref_8
  doi: 10.3390/rs9020148
– ident: ref_41
  doi: 10.1007/978-3-540-31865-1_25
– volume: 21
  start-page: 1169
  year: 2019
  ident: ref_55
  article-title: Learning Multi-View Representation With LSTM for 3-D Shape Recognition and Retrieval
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2875512
– volume: 6
  start-page: 4323
  year: 2014
  ident: ref_18
  article-title: Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm
  publication-title: Remote Sens.
  doi: 10.3390/rs6054323
– ident: ref_56
  doi: 10.1109/ISCID.2018.00072
– volume: 67
  start-page: 1
  year: 2017
  ident: ref_45
  article-title: Efficient tree modeling from airborne LiDAR point clouds
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2017.04.004
– volume: 39
  start-page: 969
  year: 2001
  ident: ref_6
  article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921414
– ident: ref_43
  doi: 10.3390/rs11010015
– ident: ref_12
  doi: 10.3990/2.388
– volume: 32
  start-page: 4725
  year: 2011
  ident: ref_10
  article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.494184
– volume: 10
  start-page: 2449
  year: 2018
  ident: ref_51
  article-title: Infinite norm large margin classifier
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0881-y
– volume: 38
  start-page: 3452
  year: 2018
  ident: ref_50
  article-title: Quantitative Inversion for Wind Injury Assessment of Rubber Trees by Using Mobile Laser Scanning
  publication-title: Spectrosc. Spectr. Anal.
– volume: 7
  start-page: 55649
  year: 2019
  ident: ref_53
  article-title: 3D Point Cloud Analysis and Classification in Large-Scale Scene Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909742
– volume: 257
  start-page: 97
  year: 2017
  ident: ref_36
  article-title: A model for fine-grained vehicle classification based on deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.116
– volume: 104
  start-page: 88
  year: 2015
  ident: ref_40
  article-title: Octree-based region growing for point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.011
– ident: ref_5
  doi: 10.1016/j.agrformet.2019.06.009
– volume: 131
  start-page: 1917
  year: 2012
  ident: ref_19
  article-title: Estimation of stem attributes using a combination of terrestrial and airborne laser scanning
  publication-title: Eur. J. For. Res.
  doi: 10.1007/s10342-012-0642-5
– volume: 56
  start-page: 4594
  year: 2018
  ident: ref_54
  article-title: A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2829625
– volume: 3
  start-page: 2346
  year: 2011
  ident: ref_9
  article-title: Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners
  publication-title: Remote Sens.
  doi: 10.3390/rs3112346
– volume: 6
  start-page: 1
  year: 2017
  ident: ref_27
  article-title: Deep machine learning provides state-of-the-art performance in image-based plant phenotyping
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix083
SSID ssj0000578924
Score 2.436259
Snippet Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 793
SubjectTerms Algorithms
Artificial neural networks
China
clones
Cloning
Data collection
Deep learning
Hevea brasiliensis
Hurricanes
Image segmentation
Inspection
Lasers
leaves
Lidar
Machine learning
Morphology
Natural disturbance
Neural networks
Object recognition
Rubber
Rubber trees
Training
tree crown
tree trunk
Trees
Typhoons
Wavelet transforms
Title Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning
URI https://www.proquest.com/docview/2548542720
https://www.proquest.com/docview/2335126199
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qQbyIT6wvonjwsrjZJPs4ifZBEVukKnhb8pgUQbe1tld_u5M2rQjiaXdJ2MMkmfm-SfINIRdFBjkzgAspy5CgQBxHKpYQOV4YyIQCN5PY6PbSzrO4e5EvIeH2GY5VLnzizFHbofE58iskMrkUftfwevQR-apRfnc1lNBYJTV0wTmSr9ptq_fQX2ZZEI3kyDDmkkIc-f2VY4gqvCrc70D02w_Pgkt7i2wGVEhv5sO4TVag2iHrvmymr8W2S3yFjXBvivanWsOYPo0B6CMM3sPloYreYkCyFF98Pqmy0fz7_rV506dNNVFUVZa2lVdGoP2o0evRoaNNgBENIquDPfLcbj01OlGokBAZnshJZB0iOGeSQma2kCYVKU8gxnijskJLwZxzxjjmEpvjE7FYAloxJRziagQHhu-TtWpYwQGhOrZSsSx1jGdCaJsjNeTaKJkKjTxN1cnlwlylCfLhvorFW4k0wlu2XFq2Ts6XXUdzzYy_Oh0vbF6GZfNZ_gxynZwtm3HC-10MVcFwin04R5CCvK84_P8XR2QD0c3sQBhjx2RtMp7CCSKIiT4N0-SUrHa_Wt9S1MYM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAgkLhY9Xp3_Tgg1DaNUppaKKRSb-4-Zisk6oQ0EeJP8RuZje2gSohbT7bl1R5mZ2e-bx_zAbwrMsy5RZpIWUYEBeM40rHCyIvCYiY1-nWJjdMyHZ3Jz-fqfAt-d3dhwrHKLiauA7Wb2bBGvkdEJlcy7Bp-mv-IgmpU2F3tJDQatzjBXz-Jsl1_PB7Q-L5PkuHR9HAUtaoCkRWJWkbOE-rxNilU5gplU5mKBGOK0TorjJLce2-t5z5xOT0JvyRoNNfSExalhGoF9XsHtqUgKtOD7YOj8stks6pD6CcnRtOUMBKiiPc8JxQTqtDdTHw34_46mQ0fwoMWhbL9xm0ewRbWj-FukOkM2m9PICh6tPe02GRlDC7YdIHIvuLlVXtZqWYHlAAdo5ewflW7qPkefxvsT9hALzXTtWNDHSoxsEl0WJZs5tkAcc7aoq6XT-HsVmz3DHr1rMbnwEzslOZZ6rnIpDQuJyoqjNUqlYZ4oe7Dh85clW3LlQfVjO8V0ZZg2Wpj2T683TSdNzU6_tVot7N51U7T6-qvU_XhzeY3TbCwa6JrnK2ojRAEiohnFjv_7-I13BtNT8fV-Lg8eQH3CVmtD6Nxvgu95WKFLwm9LM2r1mUYXNy2l_4Bu_sCRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qFYovolXxtOoqCr6EZrNJNnmQ0jY9WltDOVvoW9wfs6WgufN6h_iv-dd19rI5KRTf-pSELEuYzO58387uNwAfSokFN0gDSUoiKBjHkYozjJwoDcpUoVtKbHyt88Pz9MtFdrEGf_uzMH5bZT8nLidqOzF-jXybiEyRpT5ruO3CtojTarQz_RX5ClI-09qX0-hc5Bj__Cb6dv35qKJ__TFJRgdn-4dRqDAQGZFk88g6QkDOJGUmbZmZPM1FgjHN10qWOku5c84Yx11iC7oSlklQK65SR7iUgqsR1O8DWJfEiuIBrO8d1Kfj1QoPIaGC2E0nZyRESR_OCdF4RbrbQfB2DFgGttFjeBQQKdvtXOgJrGG7CRu-ZKevA_cUfHWPcGaLjRda44ydzRDZN7z8GQ4utWyPgqFldOPXslobdc8nV9XumFVqrphqLRspr8rAxtF-XbOJYxXilAWB18tncH4vtnsOg3bS4gtgOraZ4jJ3XMg01bYgWiq0UVmeauKIagifenM1JkiX-woaPxqiMN6yzcqyQ3i_ajrt9DruarTV27wJQ_a6-edgQ3i3ek2DzWdQVIuTBbURggAScc7y5f-7eAsb5J3NyVF9_AoeEsha7kvjfAsG89kCXxOQmes3wWMYfL9vJ70BgesGfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+Rubber+Tree+Segmentation+Based+on+Ground-Based+LiDAR+Data+and+Faster+R-CNN+of+Deep+Learning&rft.jtitle=Forests&rft.au=Wang%2C+Jiamin&rft.au=Chen%2C+Xinxin&rft.au=Cao%2C+Lin&rft.au=An%2C+Feng&rft.date=2019-09-11&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=10&rft.issue=9&rft.spage=793&rft_id=info:doi/10.3390%2Ff10090793&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_f10090793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon