Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning
Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of differe...
Saved in:
Published in | Forests Vol. 10; no. 9; p. 793 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
11.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data. |
---|---|
AbstractList | Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data. |
Author | Xue, Lianfeng Chen, Bangqian Wang, Jiamin Yun, Ting An, Feng Chen, Xinxin Cao, Lin |
Author_xml | – sequence: 1 givenname: Jiamin surname: Wang fullname: Wang, Jiamin – sequence: 2 givenname: Xinxin surname: Chen fullname: Chen, Xinxin – sequence: 3 givenname: Lin orcidid: 0000-0001-5195-0477 surname: Cao fullname: Cao, Lin – sequence: 4 givenname: Feng orcidid: 0000-0003-1545-2475 surname: An fullname: An, Feng – sequence: 5 givenname: Bangqian surname: Chen fullname: Chen, Bangqian – sequence: 6 givenname: Lianfeng surname: Xue fullname: Xue, Lianfeng – sequence: 7 givenname: Ting orcidid: 0000-0003-4294-8337 surname: Yun fullname: Yun, Ting |
BookMark | eNptkE9LAzEQxYNUsNYe_AYBL3pYmz-b7uZYW1sLS4Vaz0uanZSUbbYmu4Lf3khFRJzLmwe_NwzvEvVc4wCha0ruOZdkZCghkmSSn6E-lVImaXS9X_sFGoawJ3FElkuW9pFZusq-26pTNV532y14vPEA-AV2B3Ctam3j8IMKUOG4LHzTuSo5-cLOJms8U63CylV4rkIb0-tkulrhxuAZwBEXoLyzbneFzo2qAwy_dYBe54-b6VNSPC-W00mRaM5Em1SGUG40kyKrpNDjdMwZkDSjKpNbkVJjjNaGGlblUQXJGWwVVanJc0ZIpvkA3Z7uHn3z1kFoy4MNGupaOWi6UDLOBWXjWEhEb_6g-6bzLn5XMpHmImUZI5EanSjtmxA8mFLbUyutV7YuKSm_qi9_qo-Juz-Jo7cH5T_-YT8BxDiChw |
CitedBy_id | crossref_primary_10_3390_rs12244088 crossref_primary_10_3390_f15010061 crossref_primary_10_1016_j_compag_2021_106460 crossref_primary_10_1080_17538947_2022_2152882 crossref_primary_10_1109_ACCESS_2020_2998806 crossref_primary_10_1080_17538947_2023_2198261 crossref_primary_10_1016_j_isprsjprs_2020_04_020 crossref_primary_10_1109_JSTARS_2020_3046053 crossref_primary_10_3390_f15091627 crossref_primary_10_3390_f14061159 crossref_primary_10_1016_j_biosystemseng_2022_06_016 crossref_primary_10_1016_j_isprsjprs_2020_12_010 crossref_primary_10_1016_j_ecoinf_2023_102200 crossref_primary_10_1177_1550147720907038 crossref_primary_10_1016_j_jag_2021_102580 crossref_primary_10_1155_2021_5593435 crossref_primary_10_1093_forestry_cpac043 crossref_primary_10_1109_TGRS_2023_3327128 crossref_primary_10_3390_rs14153842 crossref_primary_10_1080_10095020_2024_2439399 crossref_primary_10_1007_s11676_021_01303_1 crossref_primary_10_1109_JSTARS_2024_3378167 crossref_primary_10_3389_fpls_2022_914974 crossref_primary_10_3390_rs14215537 crossref_primary_10_3390_f15010127 crossref_primary_10_1117_1_JRS_15_028503 crossref_primary_10_3390_rs13173444 crossref_primary_10_3390_rs16213920 crossref_primary_10_1016_j_ophoto_2021_100011 crossref_primary_10_1111_phor_12487 crossref_primary_10_1007_s12524_022_01654_0 crossref_primary_10_1016_j_jag_2022_103145 crossref_primary_10_12677_jisp_2025_142011 crossref_primary_10_3390_rs16040610 crossref_primary_10_3390_rs12081318 crossref_primary_10_1080_02827581_2020_1829029 crossref_primary_10_3390_rs16152807 crossref_primary_10_1007_s13369_024_09465_w crossref_primary_10_1016_j_jag_2024_103938 crossref_primary_10_1109_TGRS_2024_3391352 crossref_primary_10_1016_j_ophoto_2025_100083 crossref_primary_10_1109_JSTARS_2022_3212445 crossref_primary_10_3390_f13030431 crossref_primary_10_3390_agronomy13082059 crossref_primary_10_3390_f14020285 crossref_primary_10_1016_j_isprsjprs_2020_11_006 crossref_primary_10_1109_LRA_2023_3243498 crossref_primary_10_3390_rs14236116 crossref_primary_10_1016_j_ecoinf_2024_102888 crossref_primary_10_3390_rs14061346 crossref_primary_10_1186_s40663_021_00340_w crossref_primary_10_3390_rs15133334 |
Cites_doi | 10.1109/IMIS.2016.84 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2019.2892425 10.3390/rs11080903 10.1007/s00521-011-0546-1 10.3389/fpls.2018.00866 10.1109/TPAMI.2016.2577031 10.1109/ACCESS.2019.2902620 10.1109/ACCESS.2018.2879324 10.1016/j.scitotenv.2018.01.147 10.1186/s40537-016-0043-6 10.1371/journal.pone.0211392 10.3390/rs11020198 10.1016/j.rse.2013.07.044 10.3389/fpls.2016.01419 10.1109/LGRS.2017.2764938 10.3390/rs8060501 10.1016/j.compind.2018.03.007 10.1109/JSTARS.2016.2565519 10.1016/j.isprsjprs.2015.08.004 10.1016/j.isprsjprs.2012.04.003 10.1016/j.isprsjprs.2018.08.010 10.1016/j.measurement.2019.01.072 10.3390/rs5020584 10.3390/rs8110942 10.1016/j.indcrop.2018.09.055 10.1016/j.rsase.2019.100242 10.1016/j.compag.2017.12.034 10.14358/PERS.78.1.75 10.1016/j.foreco.2012.01.033 10.1016/j.isprsjprs.2014.03.014 10.14358/PERS.77.3.241 10.1080/01431161.2011.599349 10.3390/rs9020148 10.1007/978-3-540-31865-1_25 10.1109/TMM.2018.2875512 10.3390/rs6054323 10.1109/ISCID.2018.00072 10.1016/j.cag.2017.04.004 10.1109/36.921414 10.3390/rs11010015 10.3990/2.388 10.1080/01431161.2010.494184 10.1007/s13042-018-0881-y 10.1109/ACCESS.2019.2909742 10.1016/j.neucom.2016.09.116 10.1016/j.isprsjprs.2015.01.011 10.1016/j.agrformet.2019.06.009 10.1007/s10342-012-0642-5 10.1109/TGRS.2018.2829625 10.3390/rs3112346 10.1093/gigascience/gix083 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
DOI | 10.3390/f10090793 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Agricultural Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1999-4907 |
ExternalDocumentID | 10_3390_f10090793 |
GeographicLocations | China Hainan Island |
GeographicLocations_xml | – name: Hainan Island – name: China |
GroupedDBID | 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAO ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c325t-df013fc2957d95c64632e0471a79b541fffccf1f2d8ccf5082eba1a4f882007c3 |
IEDL.DBID | BENPR |
ISSN | 1999-4907 |
IngestDate | Fri Jul 11 00:08:23 EDT 2025 Mon Jun 30 05:48:17 EDT 2025 Tue Jul 01 02:07:06 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-df013fc2957d95c64632e0471a79b541fffccf1f2d8ccf5082eba1a4f882007c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4294-8337 0000-0001-5195-0477 0000-0003-1545-2475 |
OpenAccessLink | https://www.proquest.com/docview/2548542720?pq-origsite=%requestingapplication% |
PQID | 2548542720 |
PQPubID | 2032398 |
ParticipantIDs | proquest_miscellaneous_2335126199 proquest_journals_2548542720 crossref_citationtrail_10_3390_f10090793 crossref_primary_10_3390_f10090793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190911 |
PublicationDateYYYYMMDD | 2019-09-11 |
PublicationDate_xml | – month: 09 year: 2019 text: 20190911 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Forests |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Astrup (ref_32) 2018; 145 Liu (ref_48) 2018; 99 ref_12 ref_56 Guo (ref_3) 2018; 126 Jung (ref_9) 2011; 3 Wu (ref_44) 2016; 52 Wu (ref_21) 2013; 5 Mohanty (ref_31) 2016; 7 Zhang (ref_29) 2018; 6 Lan (ref_1) 2018; 626 Lei (ref_26) 2019; 138 Zhong (ref_20) 2017; 10 ref_22 Pound (ref_27) 2017; 6 Lin (ref_23) 2011; 33 Jing (ref_16) 2012; 70 Zou (ref_52) 2017; 14 Duncanson (ref_11) 2014; 154 Mongus (ref_13) 2015; 108 Ma (ref_55) 2019; 21 ref_28 Yang (ref_51) 2018; 10 Vo (ref_40) 2015; 104 Lu (ref_17) 2014; 94 Kim (ref_57) 2019; 7 ref_34 Jin (ref_30) 2018; 9 ref_33 Wang (ref_54) 2018; 56 Yang (ref_25) 2011; 21 ref_39 ref_38 Ke (ref_10) 2011; 32 ref_37 Yang (ref_24) 2019; 7 Chen (ref_2) 2012; 274 Lin (ref_15) 2011; 77 Olofsson (ref_18) 2014; 6 Maltamo (ref_14) 2004; 36 Dai (ref_46) 2018; 144 ref_47 Lindberg (ref_19) 2012; 131 ref_43 ref_42 ref_41 Ting (ref_50) 2018; 38 Hu (ref_45) 2017; 67 ref_49 Wang (ref_53) 2019; 7 Li (ref_7) 2012; 78 ref_8 Ren (ref_35) 2017; 39 Yu (ref_36) 2017; 257 ref_5 Kelle (ref_6) 2001; 39 ref_4 |
References_xml | – volume: 36 start-page: 187 year: 2004 ident: ref_14 article-title: Adaptive methods for individual tree detection on airborne laser based canopy height model publication-title: Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. – ident: ref_28 doi: 10.1109/IMIS.2016.84 – ident: ref_38 doi: 10.1109/CVPR.2009.5206848 – volume: 52 start-page: 82 year: 2016 ident: ref_44 article-title: Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 12415 year: 2019 ident: ref_57 article-title: Fast Pedestrian Detection in Surveillance Video Based on Soft Target Training of Shallow Random Forest publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892425 – ident: ref_22 doi: 10.3390/rs11080903 – ident: ref_39 – volume: 21 start-page: 305 year: 2011 ident: ref_25 article-title: Plane-Gaussian artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0546-1 – volume: 9 start-page: 866 year: 2018 ident: ref_30 article-title: Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00866 – volume: 39 start-page: 1137 year: 2017 ident: ref_35 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_42 – volume: 7 start-page: 29845 year: 2019 ident: ref_24 article-title: Piecewise Linear Regression Based on Plane Clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902620 – volume: 6 start-page: 67940 year: 2018 ident: ref_29 article-title: Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879324 – volume: 626 start-page: 826 year: 2018 ident: ref_1 article-title: Seasonal changes impact soil bacterial communities in a rubber plantation on Hainan Island, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.147 – ident: ref_37 doi: 10.1186/s40537-016-0043-6 – ident: ref_49 doi: 10.1371/journal.pone.0211392 – ident: ref_4 doi: 10.3390/rs11020198 – volume: 154 start-page: 378 year: 2014 ident: ref_11 article-title: An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.044 – volume: 7 start-page: 1419 year: 2016 ident: ref_31 article-title: Using Deep Learning for Image-Based Plant Disease Detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 14 start-page: 2360 year: 2017 ident: ref_52 article-title: Tree Classification in Complex Forest Point Clouds Based on Deep Learning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2764938 – ident: ref_33 doi: 10.3390/rs8060501 – volume: 99 start-page: 9 year: 2018 ident: ref_48 article-title: Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.03.007 – volume: 10 start-page: 774 year: 2017 ident: ref_20 article-title: Segmentation of Individual Trees From TLS and MLS Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2565519 – volume: 108 start-page: 219 year: 2015 ident: ref_13 article-title: An efficient approach to 3D single tree-crown delineation in LiDAR data publication-title: Isprs J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2015.08.004 – volume: 70 start-page: 88 year: 2012 ident: ref_16 article-title: An individual tree crown delineation method based on multi-scale segmentation of imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.04.003 – volume: 144 start-page: 400 year: 2018 ident: ref_46 article-title: A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.08.010 – volume: 138 start-page: 379 year: 2019 ident: ref_26 article-title: Intelligent fault detection of high voltage line based on the Faster R-CNN publication-title: Measurement doi: 10.1016/j.measurement.2019.01.072 – volume: 5 start-page: 584 year: 2013 ident: ref_21 article-title: A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data publication-title: Remote Sens. doi: 10.3390/rs5020584 – ident: ref_34 doi: 10.3390/rs8110942 – volume: 126 start-page: 1 year: 2018 ident: ref_3 article-title: A robust method to estimate foliar phosphorus of rubber trees with hyperspectral reflectance publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2018.09.055 – ident: ref_47 doi: 10.1016/j.rsase.2019.100242 – volume: 145 start-page: 217 year: 2018 ident: ref_32 article-title: Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.12.034 – volume: 78 start-page: 75 year: 2012 ident: ref_7 article-title: A new method for segmenting individual trees from the lidar point cloud publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.1.75 – volume: 274 start-page: 222 year: 2012 ident: ref_2 article-title: Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: A case study in Hainan Island, China publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.01.033 – volume: 94 start-page: 1 year: 2014 ident: ref_17 article-title: A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.03.014 – volume: 77 start-page: 241 year: 2011 ident: ref_15 article-title: A Multi-level Morphological Active Contour Algorithm for Delineating Tree Crowns in Mountainous Forest publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.77.3.241 – volume: 33 start-page: 1701 year: 2011 ident: ref_23 article-title: Three-level frame and RD-schematic algorithm for automatic detection of individual trees from MLS point clouds publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.599349 – ident: ref_8 doi: 10.3390/rs9020148 – ident: ref_41 doi: 10.1007/978-3-540-31865-1_25 – volume: 21 start-page: 1169 year: 2019 ident: ref_55 article-title: Learning Multi-View Representation With LSTM for 3-D Shape Recognition and Retrieval publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2875512 – volume: 6 start-page: 4323 year: 2014 ident: ref_18 article-title: Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm publication-title: Remote Sens. doi: 10.3390/rs6054323 – ident: ref_56 doi: 10.1109/ISCID.2018.00072 – volume: 67 start-page: 1 year: 2017 ident: ref_45 article-title: Efficient tree modeling from airborne LiDAR point clouds publication-title: Comput. Graph. doi: 10.1016/j.cag.2017.04.004 – volume: 39 start-page: 969 year: 2001 ident: ref_6 article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921414 – ident: ref_43 doi: 10.3390/rs11010015 – ident: ref_12 doi: 10.3990/2.388 – volume: 32 start-page: 4725 year: 2011 ident: ref_10 article-title: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.494184 – volume: 10 start-page: 2449 year: 2018 ident: ref_51 article-title: Infinite norm large margin classifier publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0881-y – volume: 38 start-page: 3452 year: 2018 ident: ref_50 article-title: Quantitative Inversion for Wind Injury Assessment of Rubber Trees by Using Mobile Laser Scanning publication-title: Spectrosc. Spectr. Anal. – volume: 7 start-page: 55649 year: 2019 ident: ref_53 article-title: 3D Point Cloud Analysis and Classification in Large-Scale Scene Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909742 – volume: 257 start-page: 97 year: 2017 ident: ref_36 article-title: A model for fine-grained vehicle classification based on deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.116 – volume: 104 start-page: 88 year: 2015 ident: ref_40 article-title: Octree-based region growing for point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.011 – ident: ref_5 doi: 10.1016/j.agrformet.2019.06.009 – volume: 131 start-page: 1917 year: 2012 ident: ref_19 article-title: Estimation of stem attributes using a combination of terrestrial and airborne laser scanning publication-title: Eur. J. For. Res. doi: 10.1007/s10342-012-0642-5 – volume: 56 start-page: 4594 year: 2018 ident: ref_54 article-title: A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2829625 – volume: 3 start-page: 2346 year: 2011 ident: ref_9 article-title: Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners publication-title: Remote Sens. doi: 10.3390/rs3112346 – volume: 6 start-page: 1 year: 2017 ident: ref_27 article-title: Deep machine learning provides state-of-the-art performance in image-based plant phenotyping publication-title: Gigascience doi: 10.1093/gigascience/gix083 |
SSID | ssj0000578924 |
Score | 2.436259 |
Snippet | Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 793 |
SubjectTerms | Algorithms Artificial neural networks China clones Cloning Data collection Deep learning Hevea brasiliensis Hurricanes Image segmentation Inspection Lasers leaves Lidar Machine learning Morphology Natural disturbance Neural networks Object recognition Rubber Rubber trees Training tree crown tree trunk Trees Typhoons Wavelet transforms |
Title | Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning |
URI | https://www.proquest.com/docview/2548542720 https://www.proquest.com/docview/2335126199 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qQbyIT6wvonjwsrjZJPs4ifZBEVukKnhb8pgUQbe1tld_u5M2rQjiaXdJ2MMkmfm-SfINIRdFBjkzgAspy5CgQBxHKpYQOV4YyIQCN5PY6PbSzrO4e5EvIeH2GY5VLnzizFHbofE58iskMrkUftfwevQR-apRfnc1lNBYJTV0wTmSr9ptq_fQX2ZZEI3kyDDmkkIc-f2VY4gqvCrc70D02w_Pgkt7i2wGVEhv5sO4TVag2iHrvmymr8W2S3yFjXBvivanWsOYPo0B6CMM3sPloYreYkCyFF98Pqmy0fz7_rV506dNNVFUVZa2lVdGoP2o0evRoaNNgBENIquDPfLcbj01OlGokBAZnshJZB0iOGeSQma2kCYVKU8gxnijskJLwZxzxjjmEpvjE7FYAloxJRziagQHhu-TtWpYwQGhOrZSsSx1jGdCaJsjNeTaKJkKjTxN1cnlwlylCfLhvorFW4k0wlu2XFq2Ts6XXUdzzYy_Oh0vbF6GZfNZ_gxynZwtm3HC-10MVcFwin04R5CCvK84_P8XR2QD0c3sQBhjx2RtMp7CCSKIiT4N0-SUrHa_Wt9S1MYM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAgkLhY9Xp3_Tgg1DaNUppaKKRSb-4-Zisk6oQ0EeJP8RuZje2gSohbT7bl1R5mZ2e-bx_zAbwrMsy5RZpIWUYEBeM40rHCyIvCYiY1-nWJjdMyHZ3Jz-fqfAt-d3dhwrHKLiauA7Wb2bBGvkdEJlcy7Bp-mv-IgmpU2F3tJDQatzjBXz-Jsl1_PB7Q-L5PkuHR9HAUtaoCkRWJWkbOE-rxNilU5gplU5mKBGOK0TorjJLce2-t5z5xOT0JvyRoNNfSExalhGoF9XsHtqUgKtOD7YOj8stks6pD6CcnRtOUMBKiiPc8JxQTqtDdTHw34_46mQ0fwoMWhbL9xm0ewRbWj-FukOkM2m9PICh6tPe02GRlDC7YdIHIvuLlVXtZqWYHlAAdo5ewflW7qPkefxvsT9hALzXTtWNDHSoxsEl0WJZs5tkAcc7aoq6XT-HsVmz3DHr1rMbnwEzslOZZ6rnIpDQuJyoqjNUqlYZ4oe7Dh85clW3LlQfVjO8V0ZZg2Wpj2T683TSdNzU6_tVot7N51U7T6-qvU_XhzeY3TbCwa6JrnK2ojRAEiohnFjv_7-I13BtNT8fV-Lg8eQH3CVmtD6Nxvgu95WKFLwm9LM2r1mUYXNy2l_4Bu_sCRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7qFYovolXxtOoqCr6EZrNJNnmQ0jY9WltDOVvoW9wfs6WgufN6h_iv-dd19rI5KRTf-pSELEuYzO58387uNwAfSokFN0gDSUoiKBjHkYozjJwoDcpUoVtKbHyt88Pz9MtFdrEGf_uzMH5bZT8nLidqOzF-jXybiEyRpT5ruO3CtojTarQz_RX5ClI-09qX0-hc5Bj__Cb6dv35qKJ__TFJRgdn-4dRqDAQGZFk88g6QkDOJGUmbZmZPM1FgjHN10qWOku5c84Yx11iC7oSlklQK65SR7iUgqsR1O8DWJfEiuIBrO8d1Kfj1QoPIaGC2E0nZyRESR_OCdF4RbrbQfB2DFgGttFjeBQQKdvtXOgJrGG7CRu-ZKevA_cUfHWPcGaLjRda44ydzRDZN7z8GQ4utWyPgqFldOPXslobdc8nV9XumFVqrphqLRspr8rAxtF-XbOJYxXilAWB18tncH4vtnsOg3bS4gtgOraZ4jJ3XMg01bYgWiq0UVmeauKIagifenM1JkiX-woaPxqiMN6yzcqyQ3i_ajrt9DruarTV27wJQ_a6-edgQ3i3ek2DzWdQVIuTBbURggAScc7y5f-7eAsb5J3NyVF9_AoeEsha7kvjfAsG89kCXxOQmes3wWMYfL9vJ70BgesGfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual+Rubber+Tree+Segmentation+Based+on+Ground-Based+LiDAR+Data+and+Faster+R-CNN+of+Deep+Learning&rft.jtitle=Forests&rft.au=Wang%2C+Jiamin&rft.au=Chen%2C+Xinxin&rft.au=Cao%2C+Lin&rft.au=An%2C+Feng&rft.date=2019-09-11&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=10&rft.issue=9&rft.spage=793&rft_id=info:doi/10.3390%2Ff10090793&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_f10090793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |