Learning to rank implicit entities on Twitter
Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated cont...
Saved in:
Published in | Information processing & management Vol. 58; no. 3; p. 102503 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0306-4573 1873-5371 |
DOI | 10.1016/j.ipm.2021.102503 |
Cover
Loading…
Abstract | Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric.
•Introduction and systematic classification of features for identifying implicitly mentioned entities in tweets.•The examination of features in the context of both explicit and implicit entity linking tasks.•Qualitative and quantitative assessment of the performance of the features, individually and collectively.•Root cause analysis for why certain types of features perform better (or worse) for the task of implicit entity linking. |
---|---|
AbstractList | Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric. Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric. •Introduction and systematic classification of features for identifying implicitly mentioned entities in tweets.•The examination of features in the context of both explicit and implicit entity linking tasks.•Qualitative and quantitative assessment of the performance of the features, individually and collectively.•Root cause analysis for why certain types of features perform better (or worse) for the task of implicit entity linking. |
ArticleNumber | 102503 |
Author | Bagheri, Ebrahim Hosseini, Hawre |
Author_xml | – sequence: 1 givenname: Hawre surname: Hosseini fullname: Hosseini, Hawre email: hawre.hosseini@ryerson.ca – sequence: 2 givenname: Ebrahim surname: Bagheri fullname: Bagheri, Ebrahim email: bagheri@ryerson.ca |
BookMark | eNp9kMtKAzEUhoNUsK0-gLsB11NznczgSoo3KLip65BmzsgZ22RMUsW3d0pduejqcOD_zuWbkYkPHgi5ZnTBKKtu-wUOuwWnnI09V1SckSmrtSiV0GxCplTQqpRKiwsyS6mnlErF-JSUK7DRo38vciii9R8F7oYtOswF-IwZIRXBF-tvzBniJTnv7DbB1V-dk7fHh_XyuVy9Pr0s71elE1zlsm2haYAx23abSiuqrFAaQGx0pUFy2VlXda5uaqs0hwakBSl5q5WtQQjRiTm5Oc4dYvjcQ8qmD_vox5WGK6aY4JWSY0ofUy6GlCJ0ZjzbZgw-R4tbw6g5uDG9Gd2YgxtzdDOS7B85RNzZ-HOSuTsyMD7-hRBNcgjeQYsRXDZtwBP0L5rMfR8 |
CitedBy_id | crossref_primary_10_1016_j_ipm_2023_103366 crossref_primary_10_1007_s11770_023_1017_z crossref_primary_10_1016_j_ipm_2023_103463 crossref_primary_10_1016_j_ipm_2022_102957 crossref_primary_10_1016_j_eswa_2023_119880 |
Cites_doi | 10.3115/v1/P14-1036 10.1145/1076034.1076115 10.1016/j.ipm.2019.05.005 10.3233/AO-190215 10.1145/2554850.2555128 10.1016/j.ipm.2016.06.002 10.1145/2872427.2883068 10.1145/2663712.2666185 10.1145/2600428.2609628 10.1145/2505515.2505711 10.1109/TKDE.2017.2754499 10.1145/3397271.3401067 10.14257/ijdta.2014.7.1.01 10.1145/2723372.2751522 10.1016/j.ipm.2018.10.011 10.1145/3132847.3133048 10.1007/s13278-018-0523-0 10.18653/v1/D15-1010 10.1162/tacl_a_00181 10.1162/tacl_a_00141 10.1016/j.ipm.2018.04.007 10.1109/TKDE.2014.2327028 10.1007/978-3-319-34129-3_8 10.1145/2488388.2488411 10.1016/j.artint.2012.04.005 10.1145/3018661.3018692 10.1016/j.ipm.2014.10.006 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Pergamon Press Inc. May 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Pergamon Press Inc. May 2021 |
DBID | AAYXX CITATION E3H F2A |
DOI | 10.1016/j.ipm.2021.102503 |
DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
ExternalDocumentID | 10_1016_j_ipm_2021_102503 S0306457321000145 |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABMYL ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH E3H EFKBS F2A |
ID | FETCH-LOGICAL-c325t-dde99e11adfb67505a357ee3b767e424fac6fc898a572e9e4ae442d75a8e333f3 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Fri Jul 25 04:32:59 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Sat Mar 23 16:29:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Entity linking DBpedia Knowledge graph Learn to rank |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-dde99e11adfb67505a357ee3b767e424fac6fc898a572e9e4ae442d75a8e333f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2515132654 |
PQPubID | 46166 |
ParticipantIDs | proquest_journals_2515132654 crossref_citationtrail_10_1016_j_ipm_2021_102503 crossref_primary_10_1016_j_ipm_2021_102503 elsevier_sciencedirect_doi_10_1016_j_ipm_2021_102503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | (pp. 17–19). Masud, Chen, Khan, Aggarwal, Gao, Han (b33) 2010 Sarmento, Kehlenbeck, Oliveira, Ungar (b39) 2009 (pp. 1761–1775). Dalton, J., Dietz, L., & Allan, J. (2014). Entity query feature expansion using knowledge base links. In Li, Y., Tan, S., Sun, H., Han, J., Roth, D., & Yan, X. (2016). Entity disambiguation with linkless knowledge bases. In Shen, Wang, Han (b40) 2014; 27 (pp. 249–260). Esquivel, Albakour, Martinez, Corney, Moussa (b12) 2017 Hachey, Radford, Nothman, Honnibal, Curran (b18) 2013; 194 (pp. 472–479). (pp. 118–132). Ibrahim, Y., Amir Yosef, M., & Weikum, G. (2014). Aida-social: Entity linking on the social stream. In Yu, Zheng, Yang, Jin (b47) 2014; 7 Wang, Mao, Wang, Guo (b44) 2017; 29 Charton, E., Meurs, M.-J., Jean-Louis, L., & Gagnon, M. (2014). Improving entity linking using surface form refinement. In Hasibi, Balog, Bratsberg (b19) 2017 Ensan, F., & Bagheri, E. (2017). Document retrieval model through semantic linking. In Nikolaev, Kotov (b36) 2020 Audeh, B., Beaune, P., & Beigbeder, M. (2014). Exploring query reformulation for named entity expansion in information retrieval. In Zhao, Jiang, Weng, He, Lim, Yan (b48) 2011 Habib, M. B., & Van Keulen, M. (2012). Unsupervised improvement of named entity extraction in short informal context using disambiguation clues. In Honnibal, Johnson (b20) 2015 Hosseini, Nguyen, Bagheri (b21) 2018 Zou, Sun, Sun, Liu, Lin (b50) 2014 Anastácio, I., Martins, B., & Calado, P., et al. (2011). Supervised learning for linking named entities to knowledge base entries. In Ensan, Al-Obeidat (b10) 2019; 56 . Bagheri, Ensan, Al-Obeidat (b4) 2018; 54 Zhao, Wu, Wang, Li (b49) 2016; 52 (pp. 2391–2394). Hua, W., Zheng, K., & Zhou, X. (2015). Microblog entity linking with social temporal context. In Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. (2016). Joint embedding of hierarchical categories and entities for concept categorization and dataless classification. In Bagheri, Arabzadeh, Zarrinkalam, Jovanovic, Al-Obeidat (b3) 2020; 57 Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In Huang, Cautis, Cheng, Zheng, Mamoulis, Yan (b25) 2018; 12 (pp. 1304–1311). Fang, Chang (b13) 2014; 2 Tran, T., Tran, N. K., Asmelash, T. H., & Jäschke, R. (2015). Semantic annotation for microblog topics using wikipedia temporal information. In Ran, Shen, Wang (b38) 2018 (pp. 929–930). Huang, L., Yuan, B., Zhang, R., & Lu, Q. (2020). Towards linking camouflaged descriptions to implicit products in E-commerce. In Xiong, C., Liu, Z., Callan, J., & Hovy, E. (2017). JointSem: Combining query entity linking and entity based document ranking. In (pp. 97–106). Meij, Weerkamp, De Rijke (b34) 2012 Vo, Bagheri (b43) 2019; 56 Perera, S., Mendes, P. N., Alex, A., Sheth, A. P., & Thirunarayan, K. (2016). Implicit entity linking in tweets. In Huang, H., Cao, Y., Huang, X., Ji, H., & Lin, C.-Y. (2014). Collective tweet wikification based on semi-supervised graph regularization. In Ferragina, Scaiella (b15) 2010 (pp. 1261–1270). (pp. 901–910). (pp. 1020–1030). (pp. 139–148). Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., & Trani, S. (2013). Learning relatedness measures for entity linking. In (pp. 1–10). (pp. 4609–4615). Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies.In Shen, Wang, Luo, Wang (b41) 2013 Feng, Zarrinkalam, Bagheri, Fani, Al-Obeidat (b14) 2018; 8 Guo, S., Chang, M.-W., & Kiciman, E. (2013). To link or not to link? a study on end-to-end tweet entity linking. In Ling, Singh, Weld (b31) 2015; 3 (pp. 365–374). (pp. 181–190). Derczynski, Maynard, Rizzo, Van Erp, Gorrell, Troncy (b9) 2015; 51 (pp. 380–390). Liu, X., Li, Y., Wu, H., Zhou, M., Wei, F., & Lu, Y. (2013). Entity linking for tweets. In Wu, Palmer (b45) 1994 Hosseini, Nguyen, Wu, Bagheri (b22) 2019; 14 Leacock, Chodorow, Miller (b28) 1998; 24 10.1016/j.ipm.2021.102503_b29 10.1016/j.ipm.2021.102503_b23 10.1016/j.ipm.2021.102503_b24 Vo (10.1016/j.ipm.2021.102503_b43) 2019; 56 Wu (10.1016/j.ipm.2021.102503_b45) 1994 Ferragina (10.1016/j.ipm.2021.102503_b15) 2010 10.1016/j.ipm.2021.102503_b27 10.1016/j.ipm.2021.102503_b26 Ling (10.1016/j.ipm.2021.102503_b31) 2015; 3 Nikolaev (10.1016/j.ipm.2021.102503_b36) 2020 Ensan (10.1016/j.ipm.2021.102503_b10) 2019; 56 Leacock (10.1016/j.ipm.2021.102503_b28) 1998; 24 Ran (10.1016/j.ipm.2021.102503_b38) 2018 10.1016/j.ipm.2021.102503_b11 10.1016/j.ipm.2021.102503_b16 10.1016/j.ipm.2021.102503_b17 Zou (10.1016/j.ipm.2021.102503_b50) 2014 Huang (10.1016/j.ipm.2021.102503_b25) 2018; 12 Shen (10.1016/j.ipm.2021.102503_b40) 2014; 27 Hachey (10.1016/j.ipm.2021.102503_b18) 2013; 194 Esquivel (10.1016/j.ipm.2021.102503_b12) 2017 Masud (10.1016/j.ipm.2021.102503_b33) 2010 Bagheri (10.1016/j.ipm.2021.102503_b3) 2020; 57 Bagheri (10.1016/j.ipm.2021.102503_b4) 2018; 54 10.1016/j.ipm.2021.102503_b2 Hosseini (10.1016/j.ipm.2021.102503_b21) 2018 10.1016/j.ipm.2021.102503_b1 10.1016/j.ipm.2021.102503_b46 10.1016/j.ipm.2021.102503_b6 Feng (10.1016/j.ipm.2021.102503_b14) 2018; 8 10.1016/j.ipm.2021.102503_b5 10.1016/j.ipm.2021.102503_b8 10.1016/j.ipm.2021.102503_b7 Meij (10.1016/j.ipm.2021.102503_b34) 2012 Yu (10.1016/j.ipm.2021.102503_b47) 2014; 7 10.1016/j.ipm.2021.102503_b42 Fang (10.1016/j.ipm.2021.102503_b13) 2014; 2 Derczynski (10.1016/j.ipm.2021.102503_b9) 2015; 51 Zhao (10.1016/j.ipm.2021.102503_b49) 2016; 52 Shen (10.1016/j.ipm.2021.102503_b41) 2013 10.1016/j.ipm.2021.102503_b35 10.1016/j.ipm.2021.102503_b32 Sarmento (10.1016/j.ipm.2021.102503_b39) 2009 10.1016/j.ipm.2021.102503_b37 Hosseini (10.1016/j.ipm.2021.102503_b22) 2019; 14 10.1016/j.ipm.2021.102503_b30 Zhao (10.1016/j.ipm.2021.102503_b48) 2011 Hasibi (10.1016/j.ipm.2021.102503_b19) 2017 Honnibal (10.1016/j.ipm.2021.102503_b20) 2015 Wang (10.1016/j.ipm.2021.102503_b44) 2017; 29 |
References_xml | – volume: 51 start-page: 32 year: 2015 end-page: 49 ident: b9 article-title: Analysis of named entity recognition and linking for tweets publication-title: Information Processing & Management – reference: (pp. 1261–1270). – start-page: 689 year: 2009 end-page: 703 ident: b39 article-title: An approach to web-scale named-entity disambiguation publication-title: International workshop on machine learning and data mining in pattern recognition – reference: (pp. 118–132). – start-page: 1373 year: 2015 end-page: 1378 ident: b20 article-title: An improved non-monotonic transition system for dependency parsing publication-title: Proceedings of the 2015 conference on empirical methods in natural language processing – reference: (pp. 929–930). – reference: Guo, S., Chang, M.-W., & Kiciman, E. (2013). To link or not to link? a study on end-to-end tweet entity linking. In – reference: Perera, S., Mendes, P. N., Alex, A., Sheth, A. P., & Thirunarayan, K. (2016). Implicit entity linking in tweets. In – volume: 2 start-page: 259 year: 2014 end-page: 272 ident: b13 article-title: Entity linking on microblogs with spatial and temporal signals publication-title: Transactions of the Association for Computational Linguistics – volume: 24 start-page: 147 year: 1998 end-page: 165 ident: b28 article-title: Using corpus statistics and wordnet relations for sense identification publication-title: Computational Linguistics – start-page: 68 year: 2013 end-page: 76 ident: b41 article-title: Linking named entities in tweets with knowledge base via user interest modeling publication-title: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining – volume: 56 start-page: 424 year: 2019 end-page: 444 ident: b43 article-title: Feature-enriched matrix factorization for relation extraction publication-title: Information Processing & Management – reference: (pp. 901–910). – reference: (pp. 249–260). – start-page: 338 year: 2011 end-page: 349 ident: b48 article-title: Comparing twitter and traditional media using topic models publication-title: European conference on information retrieval – volume: 56 start-page: 1645 year: 2019 end-page: 1666 ident: b10 article-title: Relevance-based entity selection for ad hoc retrieval publication-title: Information Processing & Management – volume: 54 start-page: 657 year: 2018 end-page: 673 ident: b4 article-title: Neural word and entity embeddings for ad hoc retrieval publication-title: Information Processing & Management – reference: Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In – reference: Xiong, C., Liu, Z., Callan, J., & Hovy, E. (2017). JointSem: Combining query entity linking and entity based document ranking. In – reference: Habib, M. B., & Van Keulen, M. (2012). Unsupervised improvement of named entity extraction in short informal context using disambiguation clues. In – reference: Huang, L., Yuan, B., Zhang, R., & Lu, Q. (2020). Towards linking camouflaged descriptions to implicit products in E-commerce. In – reference: (pp. 380–390). – reference: (pp. 4609–4615). – reference: (pp. 139–148). – reference: Huang, H., Cao, Y., Huang, X., Ji, H., & Lin, C.-Y. (2014). Collective tweet wikification based on semi-supervised graph regularization. In – volume: 52 start-page: 1247 year: 2016 end-page: 1257 ident: b49 article-title: Entity disambiguation to wikipedia using collective ranking publication-title: Information Processing & Management – start-page: 691 year: 2017 end-page: 697 ident: b12 article-title: On the long-tail entities in news publication-title: European conference on information retrieval – volume: 3 start-page: 315 year: 2015 end-page: 328 ident: b31 article-title: Design challenges for entity linking publication-title: Transactions of the Association for Computational Linguistics – reference: Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., & Trani, S. (2013). Learning relatedness measures for entity linking. In – volume: 194 start-page: 130 year: 2013 end-page: 150 ident: b18 article-title: Evaluating entity linking with wikipedia publication-title: Artificial Intelligence – volume: 27 start-page: 443 year: 2014 end-page: 460 ident: b40 article-title: Entity linking with a knowledge base: Issues, techniques, and solutions publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: (pp. 1–10). – start-page: 563 year: 2012 end-page: 572 ident: b34 publication-title: Proceedings of the fifth ACM international conference on web search and data mining – reference: (pp. 472–479). – reference: Liu, X., Li, Y., Wu, H., Zhou, M., Wei, F., & Lu, Y. (2013). Entity linking for tweets. In – reference: Audeh, B., Beaune, P., & Beigbeder, M. (2014). Exploring query reformulation for named entity expansion in information retrieval. In – reference: Tran, T., Tran, N. K., Asmelash, T. H., & Jäschke, R. (2015). Semantic annotation for microblog topics using wikipedia temporal information. In – reference: Ensan, F., & Bagheri, E. (2017). Document retrieval model through semantic linking. In – start-page: 1135 year: 2018 end-page: 1144 ident: b38 article-title: An attention factor graph model for tweet entity linking publication-title: Proceedings of the 2018 world wide web conference – start-page: 929 year: 2010 end-page: 934 ident: b33 article-title: Addressing concept-evolution in concept-drifting data streams publication-title: Data mining (ICDM), 2010 IEEE 10th international conference on – reference: Ibrahim, Y., Amir Yosef, M., & Weikum, G. (2014). Aida-social: Entity linking on the social stream. In – reference: (pp. 97–106). – reference: (pp. 17–19). – volume: 12 start-page: 1 year: 2018 end-page: 24 ident: b25 article-title: Entity-based query recommendation for long-tail queries publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – reference: Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. (2016). Joint embedding of hierarchical categories and entities for concept categorization and dataless classification. In – reference: (pp. 181–190). – reference: Anastácio, I., Martins, B., & Calado, P., et al. (2011). Supervised learning for linking named entities to knowledge base entries. In – year: 1994 ident: b45 article-title: Verb semantics and lexical selection – reference: (pp. 1020–1030). – volume: 57 year: 2020 ident: b3 article-title: Neural embedding-based specificity metrics for pre-retrieval query performance prediction publication-title: Information Processing & Management – reference: Dalton, J., Dietz, L., & Allan, J. (2014). Entity query feature expansion using knowledge base links. In – volume: 8 start-page: 46 year: 2018 ident: b14 article-title: Entity linking of tweets based on dominant entity candidates publication-title: Social Network Analysis and Mining – volume: 14 start-page: 451 year: 2019 end-page: 477 ident: b22 article-title: Implicit entity linking in tweets: An ad-hoc retrieval approach publication-title: Applied Ontology – reference: (pp. 2391–2394). – volume: 7 start-page: 1 year: 2014 end-page: 10 ident: b47 article-title: Named entity linking based on wikipedia publication-title: International Journal of Database Theory and Application – reference: . – start-page: 141 year: 2020 end-page: 155 ident: b36 article-title: Joint word and entity embeddings for entity retrieval from a knowledge graph publication-title: European conference on information retrieval – reference: Hua, W., Zheng, K., & Zhou, X. (2015). Microblog entity linking with social temporal context. In – start-page: 1625 year: 2010 end-page: 1628 ident: b15 article-title: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities) publication-title: Proceedings of the 19th ACM international conference on information and knowledge management – start-page: 368 year: 2014 end-page: 378 ident: b50 article-title: Linking entities in tweets to wikipedia knowledge base publication-title: Natural language processing and Chinese computing – reference: Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies.In – reference: Charton, E., Meurs, M.-J., Jean-Louis, L., & Gagnon, M. (2014). Improving entity linking using surface form refinement. In – start-page: 326 year: 2018 end-page: 329 ident: b21 article-title: Implicit entity linking through ad-hoc retrieval publication-title: 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM) – volume: 29 start-page: 2724 year: 2017 end-page: 2743 ident: b44 article-title: Knowledge graph embedding: A survey of approaches and applications publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 40 year: 2017 end-page: 53 ident: b19 article-title: Entity linking in queries: Efficiency vs. effectiveness publication-title: European conference on information retrieval – reference: (pp. 365–374). – reference: (pp. 1761–1775). – reference: Li, Y., Tan, S., Sun, H., Han, J., Roth, D., & Yan, X. (2016). Entity disambiguation with linkless knowledge bases. In – reference: (pp. 1304–1311). – ident: 10.1016/j.ipm.2021.102503_b24 doi: 10.3115/v1/P14-1036 – ident: 10.1016/j.ipm.2021.102503_b35 doi: 10.1145/1076034.1076115 – year: 1994 ident: 10.1016/j.ipm.2021.102503_b45 – volume: 56 start-page: 1645 issue: 5 year: 2019 ident: 10.1016/j.ipm.2021.102503_b10 article-title: Relevance-based entity selection for ad hoc retrieval publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.05.005 – volume: 14 start-page: 451 issue: 4 year: 2019 ident: 10.1016/j.ipm.2021.102503_b22 article-title: Implicit entity linking in tweets: An ad-hoc retrieval approach publication-title: Applied Ontology doi: 10.3233/AO-190215 – ident: 10.1016/j.ipm.2021.102503_b17 – ident: 10.1016/j.ipm.2021.102503_b2 doi: 10.1145/2554850.2555128 – volume: 52 start-page: 1247 issue: 6 year: 2016 ident: 10.1016/j.ipm.2021.102503_b49 article-title: Entity disambiguation to wikipedia using collective ranking publication-title: Information Processing & Management doi: 10.1016/j.ipm.2016.06.002 – ident: 10.1016/j.ipm.2021.102503_b29 doi: 10.1145/2872427.2883068 – ident: 10.1016/j.ipm.2021.102503_b27 doi: 10.1145/2663712.2666185 – ident: 10.1016/j.ipm.2021.102503_b8 doi: 10.1145/2600428.2609628 – ident: 10.1016/j.ipm.2021.102503_b5 doi: 10.1145/2505515.2505711 – ident: 10.1016/j.ipm.2021.102503_b32 – volume: 29 start-page: 2724 issue: 12 year: 2017 ident: 10.1016/j.ipm.2021.102503_b44 article-title: Knowledge graph embedding: A survey of approaches and applications publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2754499 – ident: 10.1016/j.ipm.2021.102503_b6 – ident: 10.1016/j.ipm.2021.102503_b26 doi: 10.1145/3397271.3401067 – volume: 7 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ipm.2021.102503_b47 article-title: Named entity linking based on wikipedia publication-title: International Journal of Database Theory and Application doi: 10.14257/ijdta.2014.7.1.01 – ident: 10.1016/j.ipm.2021.102503_b23 doi: 10.1145/2723372.2751522 – volume: 56 start-page: 424 issue: 3 year: 2019 ident: 10.1016/j.ipm.2021.102503_b43 article-title: Feature-enriched matrix factorization for relation extraction publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.10.011 – start-page: 141 year: 2020 ident: 10.1016/j.ipm.2021.102503_b36 article-title: Joint word and entity embeddings for entity retrieval from a knowledge graph – start-page: 1135 year: 2018 ident: 10.1016/j.ipm.2021.102503_b38 article-title: An attention factor graph model for tweet entity linking – start-page: 68 year: 2013 ident: 10.1016/j.ipm.2021.102503_b41 article-title: Linking named entities in tweets with knowledge base via user interest modeling – start-page: 689 year: 2009 ident: 10.1016/j.ipm.2021.102503_b39 article-title: An approach to web-scale named-entity disambiguation – ident: 10.1016/j.ipm.2021.102503_b46 doi: 10.1145/3132847.3133048 – volume: 8 start-page: 46 issue: 1 year: 2018 ident: 10.1016/j.ipm.2021.102503_b14 article-title: Entity linking of tweets based on dominant entity candidates publication-title: Social Network Analysis and Mining doi: 10.1007/s13278-018-0523-0 – ident: 10.1016/j.ipm.2021.102503_b1 – start-page: 40 year: 2017 ident: 10.1016/j.ipm.2021.102503_b19 article-title: Entity linking in queries: Efficiency vs. effectiveness – start-page: 1373 year: 2015 ident: 10.1016/j.ipm.2021.102503_b20 article-title: An improved non-monotonic transition system for dependency parsing – start-page: 326 year: 2018 ident: 10.1016/j.ipm.2021.102503_b21 article-title: Implicit entity linking through ad-hoc retrieval – start-page: 563 year: 2012 ident: 10.1016/j.ipm.2021.102503_b34 – ident: 10.1016/j.ipm.2021.102503_b42 doi: 10.18653/v1/D15-1010 – volume: 2 start-page: 259 year: 2014 ident: 10.1016/j.ipm.2021.102503_b13 article-title: Entity linking on microblogs with spatial and temporal signals publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00181 – volume: 3 start-page: 315 year: 2015 ident: 10.1016/j.ipm.2021.102503_b31 article-title: Design challenges for entity linking publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00141 – start-page: 338 year: 2011 ident: 10.1016/j.ipm.2021.102503_b48 article-title: Comparing twitter and traditional media using topic models – volume: 54 start-page: 657 issue: 4 year: 2018 ident: 10.1016/j.ipm.2021.102503_b4 article-title: Neural word and entity embeddings for ad hoc retrieval publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.04.007 – start-page: 1625 year: 2010 ident: 10.1016/j.ipm.2021.102503_b15 article-title: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities) – volume: 27 start-page: 443 issue: 2 year: 2014 ident: 10.1016/j.ipm.2021.102503_b40 article-title: Entity linking with a knowledge base: Issues, techniques, and solutions publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2327028 – ident: 10.1016/j.ipm.2021.102503_b30 – volume: 12 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.ipm.2021.102503_b25 article-title: Entity-based query recommendation for long-tail queries publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 24 start-page: 147 issue: 1 year: 1998 ident: 10.1016/j.ipm.2021.102503_b28 article-title: Using corpus statistics and wordnet relations for sense identification publication-title: Computational Linguistics – ident: 10.1016/j.ipm.2021.102503_b37 doi: 10.1007/978-3-319-34129-3_8 – start-page: 691 year: 2017 ident: 10.1016/j.ipm.2021.102503_b12 article-title: On the long-tail entities in news – start-page: 929 year: 2010 ident: 10.1016/j.ipm.2021.102503_b33 article-title: Addressing concept-evolution in concept-drifting data streams – ident: 10.1016/j.ipm.2021.102503_b7 doi: 10.1145/2488388.2488411 – ident: 10.1016/j.ipm.2021.102503_b16 – volume: 57 issue: 4 year: 2020 ident: 10.1016/j.ipm.2021.102503_b3 article-title: Neural embedding-based specificity metrics for pre-retrieval query performance prediction publication-title: Information Processing & Management – volume: 194 start-page: 130 year: 2013 ident: 10.1016/j.ipm.2021.102503_b18 article-title: Evaluating entity linking with wikipedia publication-title: Artificial Intelligence doi: 10.1016/j.artint.2012.04.005 – ident: 10.1016/j.ipm.2021.102503_b11 doi: 10.1145/3018661.3018692 – volume: 51 start-page: 32 issue: 2 year: 2015 ident: 10.1016/j.ipm.2021.102503_b9 article-title: Analysis of named entity recognition and linking for tweets publication-title: Information Processing & Management doi: 10.1016/j.ipm.2014.10.006 – start-page: 368 year: 2014 ident: 10.1016/j.ipm.2021.102503_b50 article-title: Linking entities in tweets to wikipedia knowledge base |
SSID | ssj0004512 |
Score | 2.3538997 |
Snippet | Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102503 |
SubjectTerms | DBpedia Entity linking Information management Knowledge graph Knowledge representation Learn to rank Qualitative analysis Semantics Social networks User generated content |
Title | Learning to rank implicit entities on Twitter |
URI | https://dx.doi.org/10.1016/j.ipm.2021.102503 https://www.proquest.com/docview/2515132654 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXryInzjdRg7iQahb89GmxzEcU3EXN9gtJG0iFZlDK978281rE_EDdvDYkoTye3kfad7vPYTOrHNJ3BbaaZrII5Y7WWgm4kgYpZlRdkgK-A95N0umC3az5MsWGgcuDKRVetvf2PTaWvs3A4_mYF2Wg3uIdhlPgYQCgT4QzRlLYZdffsTfKobH_iYhiWB0uNmsc7zKNZDRSQwFDHjom_XXN_2y0rXrmeyiHR8z4lHzWXuoZVb7qOcZB_gce0oRQIy9rh6gyFdOfcDVM4bO7Lisk8fLCoc6qtiNn7-XwOc5RIvJ1Xw8jXxvhCinhFeRs0pZZuJYFVa7mH_IFeWpMVSnSWoYYVblic1FJhRPickMU4YxUqRcCUMptfQItVfPK3OMMCNmyC2npKaVauVOTIWwTjO1YZQq0UHDgIrMfeFw6F_xJEOG2KN0QEoAUjZAdtDF15R1UzVj02AWoJY_RC-dVd80rRvEIr3evUoXrXF3vk44O_nfqqdoG56alMYualcvb6bnwo5K9-t91Udbo-vb6ewTh4jUnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoAF8RSFFjwgBqSoSWznMVYVVUsfC63UzbITGwWhtoIg_j52YiMeEgNrYkfRd7nzOb7vO4BrpZckqnKhPS3JPJJpWwiSBF4iuSCSKz_MzX_I2TwaLcn9iq4aMHBcGFNWaWN_HdOraG2v9CyavW1R9B5MtktobEgoJtGnO9Ay6lS0Ca3-eDKafxEND-xhQuSZCe5wsyrzKraGjx4GRsOAutZZv5enH4G6Wn2GB7Bv00bUr9_sEBpyfQRdSzpAN8iyigzKyLrrMXhWPPURlRtkmrOjoqofL0rkpFSRHr94Lwyl5wSWw7vFYOTZ9ghehkNaejowpakMAp4rodN-n3JMYymxiKNYkpAonkUqS9KE0ziUqSRcEhLmMeWJxBgrfArN9WYtzwCRUPpUURxWzFLB9aYpT5R2TiEJxjxpg-9QYZnVDjctLJ6ZKxJ7YhpIZoBkNZBtuP2csq2FM_4aTBzU7Jv1mQ7sf03rOLMw63qvTCdsVG-xI0rO__fUK9gdLWZTNh3PJxewZ-7UFY4daJYvb7Krs5BSXNqv7APmq9dO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+rank+implicit+entities+on+Twitter&rft.jtitle=Information+processing+%26+management&rft.au=Hosseini%2C+Hawre&rft.au=Bagheri%2C+Ebrahim&rft.date=2021-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=58&rft.issue=3&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ipm.2021.102503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |