Learning to rank implicit entities on Twitter

Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated cont...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 58; no. 3; p. 102503
Main Authors Hosseini, Hawre, Bagheri, Ebrahim
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0306-4573
1873-5371
DOI10.1016/j.ipm.2021.102503

Cover

Loading…
Abstract Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric. •Introduction and systematic classification of features for identifying implicitly mentioned entities in tweets.•The examination of features in the context of both explicit and implicit entity linking tasks.•Qualitative and quantitative assessment of the performance of the features, individually and collectively.•Root cause analysis for why certain types of features perform better (or worse) for the task of implicit entity linking.
AbstractList Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric.
Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of entities, e.g., terms or phrases, are disambiguated and linked to appropriate entities. This allows textual content, e.g., social user-generated content, to be interpreted and reasoned on at a higher semantic level. However, recent research has shown that at least 15% of social user-generated content do not have explicit surface form representation of entities that they discuss. In other words, the subject of the content is only implied. For such cases, existing entity linking methods, known as explicit entity linking, cannot perform linking because entity surface form is missing. In this paper, we investigate how implicit entities within social content can be identified and linked. The contributions of our work include (1) modeling the problem of implicit entity linking as a learn to rank problem where knowledge graph entities are ranked based on their relevance to the input tweet, (2) the introduction and systematic classification of appropriate features for identifying implicit entities, (3) extensive evaluation of the proposed approach in comparison with existing state of the art as well as performing feature analysis over proposed features, and (4) the qualitative assessment of the root causes for mislabeled instances in our experiments and careful discussion on how mislabeled entity links can be addressed as a part of future work. In our experiments, we show that our proposed features are able to improve the state of the art over the standard Precision at 1 (P@1) metric. •Introduction and systematic classification of features for identifying implicitly mentioned entities in tweets.•The examination of features in the context of both explicit and implicit entity linking tasks.•Qualitative and quantitative assessment of the performance of the features, individually and collectively.•Root cause analysis for why certain types of features perform better (or worse) for the task of implicit entity linking.
ArticleNumber 102503
Author Bagheri, Ebrahim
Hosseini, Hawre
Author_xml – sequence: 1
  givenname: Hawre
  surname: Hosseini
  fullname: Hosseini, Hawre
  email: hawre.hosseini@ryerson.ca
– sequence: 2
  givenname: Ebrahim
  surname: Bagheri
  fullname: Bagheri, Ebrahim
  email: bagheri@ryerson.ca
BookMark eNp9kMtKAzEUhoNUsK0-gLsB11NznczgSoo3KLip65BmzsgZ22RMUsW3d0pduejqcOD_zuWbkYkPHgi5ZnTBKKtu-wUOuwWnnI09V1SckSmrtSiV0GxCplTQqpRKiwsyS6mnlErF-JSUK7DRo38vciii9R8F7oYtOswF-IwZIRXBF-tvzBniJTnv7DbB1V-dk7fHh_XyuVy9Pr0s71elE1zlsm2haYAx23abSiuqrFAaQGx0pUFy2VlXda5uaqs0hwakBSl5q5WtQQjRiTm5Oc4dYvjcQ8qmD_vox5WGK6aY4JWSY0ofUy6GlCJ0ZjzbZgw-R4tbw6g5uDG9Gd2YgxtzdDOS7B85RNzZ-HOSuTsyMD7-hRBNcgjeQYsRXDZtwBP0L5rMfR8
CitedBy_id crossref_primary_10_1016_j_ipm_2023_103366
crossref_primary_10_1007_s11770_023_1017_z
crossref_primary_10_1016_j_ipm_2023_103463
crossref_primary_10_1016_j_ipm_2022_102957
crossref_primary_10_1016_j_eswa_2023_119880
Cites_doi 10.3115/v1/P14-1036
10.1145/1076034.1076115
10.1016/j.ipm.2019.05.005
10.3233/AO-190215
10.1145/2554850.2555128
10.1016/j.ipm.2016.06.002
10.1145/2872427.2883068
10.1145/2663712.2666185
10.1145/2600428.2609628
10.1145/2505515.2505711
10.1109/TKDE.2017.2754499
10.1145/3397271.3401067
10.14257/ijdta.2014.7.1.01
10.1145/2723372.2751522
10.1016/j.ipm.2018.10.011
10.1145/3132847.3133048
10.1007/s13278-018-0523-0
10.18653/v1/D15-1010
10.1162/tacl_a_00181
10.1162/tacl_a_00141
10.1016/j.ipm.2018.04.007
10.1109/TKDE.2014.2327028
10.1007/978-3-319-34129-3_8
10.1145/2488388.2488411
10.1016/j.artint.2012.04.005
10.1145/3018661.3018692
10.1016/j.ipm.2014.10.006
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Pergamon Press Inc. May 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. May 2021
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2021.102503
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2021_102503
S0306457321000145
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABMYL
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
E3H
EFKBS
F2A
ID FETCH-LOGICAL-c325t-dde99e11adfb67505a357ee3b767e424fac6fc898a572e9e4ae442d75a8e333f3
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Fri Jul 25 04:32:59 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Sat Mar 23 16:29:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Entity linking
DBpedia
Knowledge graph
Learn to rank
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-dde99e11adfb67505a357ee3b767e424fac6fc898a572e9e4ae442d75a8e333f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2515132654
PQPubID 46166
ParticipantIDs proquest_journals_2515132654
crossref_citationtrail_10_1016_j_ipm_2021_102503
crossref_primary_10_1016_j_ipm_2021_102503
elsevier_sciencedirect_doi_10_1016_j_ipm_2021_102503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References (pp. 17–19).
Masud, Chen, Khan, Aggarwal, Gao, Han (b33) 2010
Sarmento, Kehlenbeck, Oliveira, Ungar (b39) 2009
(pp. 1761–1775).
Dalton, J., Dietz, L., & Allan, J. (2014). Entity query feature expansion using knowledge base links. In
Li, Y., Tan, S., Sun, H., Han, J., Roth, D., & Yan, X. (2016). Entity disambiguation with linkless knowledge bases. In
Shen, Wang, Han (b40) 2014; 27
(pp. 249–260).
Esquivel, Albakour, Martinez, Corney, Moussa (b12) 2017
Hachey, Radford, Nothman, Honnibal, Curran (b18) 2013; 194
(pp. 472–479).
(pp. 118–132).
Ibrahim, Y., Amir Yosef, M., & Weikum, G. (2014). Aida-social: Entity linking on the social stream. In
Yu, Zheng, Yang, Jin (b47) 2014; 7
Wang, Mao, Wang, Guo (b44) 2017; 29
Charton, E., Meurs, M.-J., Jean-Louis, L., & Gagnon, M. (2014). Improving entity linking using surface form refinement. In
Hasibi, Balog, Bratsberg (b19) 2017
Ensan, F., & Bagheri, E. (2017). Document retrieval model through semantic linking. In
Nikolaev, Kotov (b36) 2020
Audeh, B., Beaune, P., & Beigbeder, M. (2014). Exploring query reformulation for named entity expansion in information retrieval. In
Zhao, Jiang, Weng, He, Lim, Yan (b48) 2011
Habib, M. B., & Van Keulen, M. (2012). Unsupervised improvement of named entity extraction in short informal context using disambiguation clues. In
Honnibal, Johnson (b20) 2015
Hosseini, Nguyen, Bagheri (b21) 2018
Zou, Sun, Sun, Liu, Lin (b50) 2014
Anastácio, I., Martins, B., & Calado, P., et al. (2011). Supervised learning for linking named entities to knowledge base entries. In
Ensan, Al-Obeidat (b10) 2019; 56
.
Bagheri, Ensan, Al-Obeidat (b4) 2018; 54
Zhao, Wu, Wang, Li (b49) 2016; 52
(pp. 2391–2394).
Hua, W., Zheng, K., & Zhou, X. (2015). Microblog entity linking with social temporal context. In
Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. (2016). Joint embedding of hierarchical categories and entities for concept categorization and dataless classification. In
Bagheri, Arabzadeh, Zarrinkalam, Jovanovic, Al-Obeidat (b3) 2020; 57
Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In
Huang, Cautis, Cheng, Zheng, Mamoulis, Yan (b25) 2018; 12
(pp. 1304–1311).
Fang, Chang (b13) 2014; 2
Tran, T., Tran, N. K., Asmelash, T. H., & Jäschke, R. (2015). Semantic annotation for microblog topics using wikipedia temporal information. In
Ran, Shen, Wang (b38) 2018
(pp. 929–930).
Huang, L., Yuan, B., Zhang, R., & Lu, Q. (2020). Towards linking camouflaged descriptions to implicit products in E-commerce. In
Xiong, C., Liu, Z., Callan, J., & Hovy, E. (2017). JointSem: Combining query entity linking and entity based document ranking. In
(pp. 97–106).
Meij, Weerkamp, De Rijke (b34) 2012
Vo, Bagheri (b43) 2019; 56
Perera, S., Mendes, P. N., Alex, A., Sheth, A. P., & Thirunarayan, K. (2016). Implicit entity linking in tweets. In
Huang, H., Cao, Y., Huang, X., Ji, H., & Lin, C.-Y. (2014). Collective tweet wikification based on semi-supervised graph regularization. In
Ferragina, Scaiella (b15) 2010
(pp. 1261–1270).
(pp. 901–910).
(pp. 1020–1030).
(pp. 139–148).
Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., & Trani, S. (2013). Learning relatedness measures for entity linking. In
(pp. 1–10).
(pp. 4609–4615).
Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies.In
Shen, Wang, Luo, Wang (b41) 2013
Feng, Zarrinkalam, Bagheri, Fani, Al-Obeidat (b14) 2018; 8
Guo, S., Chang, M.-W., & Kiciman, E. (2013). To link or not to link? a study on end-to-end tweet entity linking. In
Ling, Singh, Weld (b31) 2015; 3
(pp. 365–374).
(pp. 181–190).
Derczynski, Maynard, Rizzo, Van Erp, Gorrell, Troncy (b9) 2015; 51
(pp. 380–390).
Liu, X., Li, Y., Wu, H., Zhou, M., Wei, F., & Lu, Y. (2013). Entity linking for tweets. In
Wu, Palmer (b45) 1994
Hosseini, Nguyen, Wu, Bagheri (b22) 2019; 14
Leacock, Chodorow, Miller (b28) 1998; 24
10.1016/j.ipm.2021.102503_b29
10.1016/j.ipm.2021.102503_b23
10.1016/j.ipm.2021.102503_b24
Vo (10.1016/j.ipm.2021.102503_b43) 2019; 56
Wu (10.1016/j.ipm.2021.102503_b45) 1994
Ferragina (10.1016/j.ipm.2021.102503_b15) 2010
10.1016/j.ipm.2021.102503_b27
10.1016/j.ipm.2021.102503_b26
Ling (10.1016/j.ipm.2021.102503_b31) 2015; 3
Nikolaev (10.1016/j.ipm.2021.102503_b36) 2020
Ensan (10.1016/j.ipm.2021.102503_b10) 2019; 56
Leacock (10.1016/j.ipm.2021.102503_b28) 1998; 24
Ran (10.1016/j.ipm.2021.102503_b38) 2018
10.1016/j.ipm.2021.102503_b11
10.1016/j.ipm.2021.102503_b16
10.1016/j.ipm.2021.102503_b17
Zou (10.1016/j.ipm.2021.102503_b50) 2014
Huang (10.1016/j.ipm.2021.102503_b25) 2018; 12
Shen (10.1016/j.ipm.2021.102503_b40) 2014; 27
Hachey (10.1016/j.ipm.2021.102503_b18) 2013; 194
Esquivel (10.1016/j.ipm.2021.102503_b12) 2017
Masud (10.1016/j.ipm.2021.102503_b33) 2010
Bagheri (10.1016/j.ipm.2021.102503_b3) 2020; 57
Bagheri (10.1016/j.ipm.2021.102503_b4) 2018; 54
10.1016/j.ipm.2021.102503_b2
Hosseini (10.1016/j.ipm.2021.102503_b21) 2018
10.1016/j.ipm.2021.102503_b1
10.1016/j.ipm.2021.102503_b46
10.1016/j.ipm.2021.102503_b6
Feng (10.1016/j.ipm.2021.102503_b14) 2018; 8
10.1016/j.ipm.2021.102503_b5
10.1016/j.ipm.2021.102503_b8
10.1016/j.ipm.2021.102503_b7
Meij (10.1016/j.ipm.2021.102503_b34) 2012
Yu (10.1016/j.ipm.2021.102503_b47) 2014; 7
10.1016/j.ipm.2021.102503_b42
Fang (10.1016/j.ipm.2021.102503_b13) 2014; 2
Derczynski (10.1016/j.ipm.2021.102503_b9) 2015; 51
Zhao (10.1016/j.ipm.2021.102503_b49) 2016; 52
Shen (10.1016/j.ipm.2021.102503_b41) 2013
10.1016/j.ipm.2021.102503_b35
10.1016/j.ipm.2021.102503_b32
Sarmento (10.1016/j.ipm.2021.102503_b39) 2009
10.1016/j.ipm.2021.102503_b37
Hosseini (10.1016/j.ipm.2021.102503_b22) 2019; 14
10.1016/j.ipm.2021.102503_b30
Zhao (10.1016/j.ipm.2021.102503_b48) 2011
Hasibi (10.1016/j.ipm.2021.102503_b19) 2017
Honnibal (10.1016/j.ipm.2021.102503_b20) 2015
Wang (10.1016/j.ipm.2021.102503_b44) 2017; 29
References_xml – volume: 51
  start-page: 32
  year: 2015
  end-page: 49
  ident: b9
  article-title: Analysis of named entity recognition and linking for tweets
  publication-title: Information Processing & Management
– reference: (pp. 1261–1270).
– start-page: 689
  year: 2009
  end-page: 703
  ident: b39
  article-title: An approach to web-scale named-entity disambiguation
  publication-title: International workshop on machine learning and data mining in pattern recognition
– reference: (pp. 118–132).
– start-page: 1373
  year: 2015
  end-page: 1378
  ident: b20
  article-title: An improved non-monotonic transition system for dependency parsing
  publication-title: Proceedings of the 2015 conference on empirical methods in natural language processing
– reference: (pp. 929–930).
– reference: Guo, S., Chang, M.-W., & Kiciman, E. (2013). To link or not to link? a study on end-to-end tweet entity linking. In
– reference: Perera, S., Mendes, P. N., Alex, A., Sheth, A. P., & Thirunarayan, K. (2016). Implicit entity linking in tweets. In
– volume: 2
  start-page: 259
  year: 2014
  end-page: 272
  ident: b13
  article-title: Entity linking on microblogs with spatial and temporal signals
  publication-title: Transactions of the Association for Computational Linguistics
– volume: 24
  start-page: 147
  year: 1998
  end-page: 165
  ident: b28
  article-title: Using corpus statistics and wordnet relations for sense identification
  publication-title: Computational Linguistics
– start-page: 68
  year: 2013
  end-page: 76
  ident: b41
  article-title: Linking named entities in tweets with knowledge base via user interest modeling
  publication-title: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 56
  start-page: 424
  year: 2019
  end-page: 444
  ident: b43
  article-title: Feature-enriched matrix factorization for relation extraction
  publication-title: Information Processing & Management
– reference: (pp. 901–910).
– reference: (pp. 249–260).
– start-page: 338
  year: 2011
  end-page: 349
  ident: b48
  article-title: Comparing twitter and traditional media using topic models
  publication-title: European conference on information retrieval
– volume: 56
  start-page: 1645
  year: 2019
  end-page: 1666
  ident: b10
  article-title: Relevance-based entity selection for ad hoc retrieval
  publication-title: Information Processing & Management
– volume: 54
  start-page: 657
  year: 2018
  end-page: 673
  ident: b4
  article-title: Neural word and entity embeddings for ad hoc retrieval
  publication-title: Information Processing & Management
– reference: Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In
– reference: Xiong, C., Liu, Z., Callan, J., & Hovy, E. (2017). JointSem: Combining query entity linking and entity based document ranking. In
– reference: Habib, M. B., & Van Keulen, M. (2012). Unsupervised improvement of named entity extraction in short informal context using disambiguation clues. In
– reference: Huang, L., Yuan, B., Zhang, R., & Lu, Q. (2020). Towards linking camouflaged descriptions to implicit products in E-commerce. In
– reference: (pp. 380–390).
– reference: (pp. 4609–4615).
– reference: (pp. 139–148).
– reference: Huang, H., Cao, Y., Huang, X., Ji, H., & Lin, C.-Y. (2014). Collective tweet wikification based on semi-supervised graph regularization. In
– volume: 52
  start-page: 1247
  year: 2016
  end-page: 1257
  ident: b49
  article-title: Entity disambiguation to wikipedia using collective ranking
  publication-title: Information Processing & Management
– start-page: 691
  year: 2017
  end-page: 697
  ident: b12
  article-title: On the long-tail entities in news
  publication-title: European conference on information retrieval
– volume: 3
  start-page: 315
  year: 2015
  end-page: 328
  ident: b31
  article-title: Design challenges for entity linking
  publication-title: Transactions of the Association for Computational Linguistics
– reference: Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., & Trani, S. (2013). Learning relatedness measures for entity linking. In
– volume: 194
  start-page: 130
  year: 2013
  end-page: 150
  ident: b18
  article-title: Evaluating entity linking with wikipedia
  publication-title: Artificial Intelligence
– volume: 27
  start-page: 443
  year: 2014
  end-page: 460
  ident: b40
  article-title: Entity linking with a knowledge base: Issues, techniques, and solutions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 1–10).
– start-page: 563
  year: 2012
  end-page: 572
  ident: b34
  publication-title: Proceedings of the fifth ACM international conference on web search and data mining
– reference: (pp. 472–479).
– reference: Liu, X., Li, Y., Wu, H., Zhou, M., Wei, F., & Lu, Y. (2013). Entity linking for tweets. In
– reference: Audeh, B., Beaune, P., & Beigbeder, M. (2014). Exploring query reformulation for named entity expansion in information retrieval. In
– reference: Tran, T., Tran, N. K., Asmelash, T. H., & Jäschke, R. (2015). Semantic annotation for microblog topics using wikipedia temporal information. In
– reference: Ensan, F., & Bagheri, E. (2017). Document retrieval model through semantic linking. In
– start-page: 1135
  year: 2018
  end-page: 1144
  ident: b38
  article-title: An attention factor graph model for tweet entity linking
  publication-title: Proceedings of the 2018 world wide web conference
– start-page: 929
  year: 2010
  end-page: 934
  ident: b33
  article-title: Addressing concept-evolution in concept-drifting data streams
  publication-title: Data mining (ICDM), 2010 IEEE 10th international conference on
– reference: Ibrahim, Y., Amir Yosef, M., & Weikum, G. (2014). Aida-social: Entity linking on the social stream. In
– reference: (pp. 97–106).
– reference: (pp. 17–19).
– volume: 12
  start-page: 1
  year: 2018
  end-page: 24
  ident: b25
  article-title: Entity-based query recommendation for long-tail queries
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– reference: Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. (2016). Joint embedding of hierarchical categories and entities for concept categorization and dataless classification. In
– reference: (pp. 181–190).
– reference: Anastácio, I., Martins, B., & Calado, P., et al. (2011). Supervised learning for linking named entities to knowledge base entries. In
– year: 1994
  ident: b45
  article-title: Verb semantics and lexical selection
– reference: (pp. 1020–1030).
– volume: 57
  year: 2020
  ident: b3
  article-title: Neural embedding-based specificity metrics for pre-retrieval query performance prediction
  publication-title: Information Processing & Management
– reference: Dalton, J., Dietz, L., & Allan, J. (2014). Entity query feature expansion using knowledge base links. In
– volume: 8
  start-page: 46
  year: 2018
  ident: b14
  article-title: Entity linking of tweets based on dominant entity candidates
  publication-title: Social Network Analysis and Mining
– volume: 14
  start-page: 451
  year: 2019
  end-page: 477
  ident: b22
  article-title: Implicit entity linking in tweets: An ad-hoc retrieval approach
  publication-title: Applied Ontology
– reference: (pp. 2391–2394).
– volume: 7
  start-page: 1
  year: 2014
  end-page: 10
  ident: b47
  article-title: Named entity linking based on wikipedia
  publication-title: International Journal of Database Theory and Application
– reference: .
– start-page: 141
  year: 2020
  end-page: 155
  ident: b36
  article-title: Joint word and entity embeddings for entity retrieval from a knowledge graph
  publication-title: European conference on information retrieval
– reference: Hua, W., Zheng, K., & Zhou, X. (2015). Microblog entity linking with social temporal context. In
– start-page: 1625
  year: 2010
  end-page: 1628
  ident: b15
  article-title: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities)
  publication-title: Proceedings of the 19th ACM international conference on information and knowledge management
– start-page: 368
  year: 2014
  end-page: 378
  ident: b50
  article-title: Linking entities in tweets to wikipedia knowledge base
  publication-title: Natural language processing and Chinese computing
– reference: Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies.In
– reference: Charton, E., Meurs, M.-J., Jean-Louis, L., & Gagnon, M. (2014). Improving entity linking using surface form refinement. In
– start-page: 326
  year: 2018
  end-page: 329
  ident: b21
  article-title: Implicit entity linking through ad-hoc retrieval
  publication-title: 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM)
– volume: 29
  start-page: 2724
  year: 2017
  end-page: 2743
  ident: b44
  article-title: Knowledge graph embedding: A survey of approaches and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 40
  year: 2017
  end-page: 53
  ident: b19
  article-title: Entity linking in queries: Efficiency vs. effectiveness
  publication-title: European conference on information retrieval
– reference: (pp. 365–374).
– reference: (pp. 1761–1775).
– reference: Li, Y., Tan, S., Sun, H., Han, J., Roth, D., & Yan, X. (2016). Entity disambiguation with linkless knowledge bases. In
– reference: (pp. 1304–1311).
– ident: 10.1016/j.ipm.2021.102503_b24
  doi: 10.3115/v1/P14-1036
– ident: 10.1016/j.ipm.2021.102503_b35
  doi: 10.1145/1076034.1076115
– year: 1994
  ident: 10.1016/j.ipm.2021.102503_b45
– volume: 56
  start-page: 1645
  issue: 5
  year: 2019
  ident: 10.1016/j.ipm.2021.102503_b10
  article-title: Relevance-based entity selection for ad hoc retrieval
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.05.005
– volume: 14
  start-page: 451
  issue: 4
  year: 2019
  ident: 10.1016/j.ipm.2021.102503_b22
  article-title: Implicit entity linking in tweets: An ad-hoc retrieval approach
  publication-title: Applied Ontology
  doi: 10.3233/AO-190215
– ident: 10.1016/j.ipm.2021.102503_b17
– ident: 10.1016/j.ipm.2021.102503_b2
  doi: 10.1145/2554850.2555128
– volume: 52
  start-page: 1247
  issue: 6
  year: 2016
  ident: 10.1016/j.ipm.2021.102503_b49
  article-title: Entity disambiguation to wikipedia using collective ranking
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2016.06.002
– ident: 10.1016/j.ipm.2021.102503_b29
  doi: 10.1145/2872427.2883068
– ident: 10.1016/j.ipm.2021.102503_b27
  doi: 10.1145/2663712.2666185
– ident: 10.1016/j.ipm.2021.102503_b8
  doi: 10.1145/2600428.2609628
– ident: 10.1016/j.ipm.2021.102503_b5
  doi: 10.1145/2505515.2505711
– ident: 10.1016/j.ipm.2021.102503_b32
– volume: 29
  start-page: 2724
  issue: 12
  year: 2017
  ident: 10.1016/j.ipm.2021.102503_b44
  article-title: Knowledge graph embedding: A survey of approaches and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2754499
– ident: 10.1016/j.ipm.2021.102503_b6
– ident: 10.1016/j.ipm.2021.102503_b26
  doi: 10.1145/3397271.3401067
– volume: 7
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.ipm.2021.102503_b47
  article-title: Named entity linking based on wikipedia
  publication-title: International Journal of Database Theory and Application
  doi: 10.14257/ijdta.2014.7.1.01
– ident: 10.1016/j.ipm.2021.102503_b23
  doi: 10.1145/2723372.2751522
– volume: 56
  start-page: 424
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2021.102503_b43
  article-title: Feature-enriched matrix factorization for relation extraction
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.10.011
– start-page: 141
  year: 2020
  ident: 10.1016/j.ipm.2021.102503_b36
  article-title: Joint word and entity embeddings for entity retrieval from a knowledge graph
– start-page: 1135
  year: 2018
  ident: 10.1016/j.ipm.2021.102503_b38
  article-title: An attention factor graph model for tweet entity linking
– start-page: 68
  year: 2013
  ident: 10.1016/j.ipm.2021.102503_b41
  article-title: Linking named entities in tweets with knowledge base via user interest modeling
– start-page: 689
  year: 2009
  ident: 10.1016/j.ipm.2021.102503_b39
  article-title: An approach to web-scale named-entity disambiguation
– ident: 10.1016/j.ipm.2021.102503_b46
  doi: 10.1145/3132847.3133048
– volume: 8
  start-page: 46
  issue: 1
  year: 2018
  ident: 10.1016/j.ipm.2021.102503_b14
  article-title: Entity linking of tweets based on dominant entity candidates
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-018-0523-0
– ident: 10.1016/j.ipm.2021.102503_b1
– start-page: 40
  year: 2017
  ident: 10.1016/j.ipm.2021.102503_b19
  article-title: Entity linking in queries: Efficiency vs. effectiveness
– start-page: 1373
  year: 2015
  ident: 10.1016/j.ipm.2021.102503_b20
  article-title: An improved non-monotonic transition system for dependency parsing
– start-page: 326
  year: 2018
  ident: 10.1016/j.ipm.2021.102503_b21
  article-title: Implicit entity linking through ad-hoc retrieval
– start-page: 563
  year: 2012
  ident: 10.1016/j.ipm.2021.102503_b34
– ident: 10.1016/j.ipm.2021.102503_b42
  doi: 10.18653/v1/D15-1010
– volume: 2
  start-page: 259
  year: 2014
  ident: 10.1016/j.ipm.2021.102503_b13
  article-title: Entity linking on microblogs with spatial and temporal signals
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00181
– volume: 3
  start-page: 315
  year: 2015
  ident: 10.1016/j.ipm.2021.102503_b31
  article-title: Design challenges for entity linking
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00141
– start-page: 338
  year: 2011
  ident: 10.1016/j.ipm.2021.102503_b48
  article-title: Comparing twitter and traditional media using topic models
– volume: 54
  start-page: 657
  issue: 4
  year: 2018
  ident: 10.1016/j.ipm.2021.102503_b4
  article-title: Neural word and entity embeddings for ad hoc retrieval
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.04.007
– start-page: 1625
  year: 2010
  ident: 10.1016/j.ipm.2021.102503_b15
  article-title: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities)
– volume: 27
  start-page: 443
  issue: 2
  year: 2014
  ident: 10.1016/j.ipm.2021.102503_b40
  article-title: Entity linking with a knowledge base: Issues, techniques, and solutions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2327028
– ident: 10.1016/j.ipm.2021.102503_b30
– volume: 12
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.ipm.2021.102503_b25
  article-title: Entity-based query recommendation for long-tail queries
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 24
  start-page: 147
  issue: 1
  year: 1998
  ident: 10.1016/j.ipm.2021.102503_b28
  article-title: Using corpus statistics and wordnet relations for sense identification
  publication-title: Computational Linguistics
– ident: 10.1016/j.ipm.2021.102503_b37
  doi: 10.1007/978-3-319-34129-3_8
– start-page: 691
  year: 2017
  ident: 10.1016/j.ipm.2021.102503_b12
  article-title: On the long-tail entities in news
– start-page: 929
  year: 2010
  ident: 10.1016/j.ipm.2021.102503_b33
  article-title: Addressing concept-evolution in concept-drifting data streams
– ident: 10.1016/j.ipm.2021.102503_b7
  doi: 10.1145/2488388.2488411
– ident: 10.1016/j.ipm.2021.102503_b16
– volume: 57
  issue: 4
  year: 2020
  ident: 10.1016/j.ipm.2021.102503_b3
  article-title: Neural embedding-based specificity metrics for pre-retrieval query performance prediction
  publication-title: Information Processing & Management
– volume: 194
  start-page: 130
  year: 2013
  ident: 10.1016/j.ipm.2021.102503_b18
  article-title: Evaluating entity linking with wikipedia
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2012.04.005
– ident: 10.1016/j.ipm.2021.102503_b11
  doi: 10.1145/3018661.3018692
– volume: 51
  start-page: 32
  issue: 2
  year: 2015
  ident: 10.1016/j.ipm.2021.102503_b9
  article-title: Analysis of named entity recognition and linking for tweets
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2014.10.006
– start-page: 368
  year: 2014
  ident: 10.1016/j.ipm.2021.102503_b50
  article-title: Linking entities in tweets to wikipedia knowledge base
SSID ssj0004512
Score 2.3538997
Snippet Linking textual content to entities from the knowledge graph has received increasing attention in the context of which surface form representations of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102503
SubjectTerms DBpedia
Entity linking
Information management
Knowledge graph
Knowledge representation
Learn to rank
Qualitative analysis
Semantics
Social networks
User generated content
Title Learning to rank implicit entities on Twitter
URI https://dx.doi.org/10.1016/j.ipm.2021.102503
https://www.proquest.com/docview/2515132654
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXryInzjdRg7iQahb89GmxzEcU3EXN9gtJG0iFZlDK978281rE_EDdvDYkoTye3kfad7vPYTOrHNJ3BbaaZrII5Y7WWgm4kgYpZlRdkgK-A95N0umC3az5MsWGgcuDKRVetvf2PTaWvs3A4_mYF2Wg3uIdhlPgYQCgT4QzRlLYZdffsTfKobH_iYhiWB0uNmsc7zKNZDRSQwFDHjom_XXN_2y0rXrmeyiHR8z4lHzWXuoZVb7qOcZB_gce0oRQIy9rh6gyFdOfcDVM4bO7Lisk8fLCoc6qtiNn7-XwOc5RIvJ1Xw8jXxvhCinhFeRs0pZZuJYFVa7mH_IFeWpMVSnSWoYYVblic1FJhRPickMU4YxUqRcCUMptfQItVfPK3OMMCNmyC2npKaVauVOTIWwTjO1YZQq0UHDgIrMfeFw6F_xJEOG2KN0QEoAUjZAdtDF15R1UzVj02AWoJY_RC-dVd80rRvEIr3evUoXrXF3vk44O_nfqqdoG56alMYualcvb6bnwo5K9-t91Udbo-vb6ewTh4jUnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoAF8RSFFjwgBqSoSWznMVYVVUsfC63UzbITGwWhtoIg_j52YiMeEgNrYkfRd7nzOb7vO4BrpZckqnKhPS3JPJJpWwiSBF4iuSCSKz_MzX_I2TwaLcn9iq4aMHBcGFNWaWN_HdOraG2v9CyavW1R9B5MtktobEgoJtGnO9Ay6lS0Ca3-eDKafxEND-xhQuSZCe5wsyrzKraGjx4GRsOAutZZv5enH4G6Wn2GB7Bv00bUr9_sEBpyfQRdSzpAN8iyigzKyLrrMXhWPPURlRtkmrOjoqofL0rkpFSRHr94Lwyl5wSWw7vFYOTZ9ghehkNaejowpakMAp4rodN-n3JMYymxiKNYkpAonkUqS9KE0ziUqSRcEhLmMeWJxBgrfArN9WYtzwCRUPpUURxWzFLB9aYpT5R2TiEJxjxpg-9QYZnVDjctLJ6ZKxJ7YhpIZoBkNZBtuP2csq2FM_4aTBzU7Jv1mQ7sf03rOLMw63qvTCdsVG-xI0rO__fUK9gdLWZTNh3PJxewZ-7UFY4daJYvb7Krs5BSXNqv7APmq9dO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+rank+implicit+entities+on+Twitter&rft.jtitle=Information+processing+%26+management&rft.au=Hosseini%2C+Hawre&rft.au=Bagheri%2C+Ebrahim&rft.date=2021-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=58&rft.issue=3&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ipm.2021.102503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon