Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring

A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time. [Display omitted] •PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This p...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 301; p. 111789
Main Authors Yang, Ye, Pan, Hong, Xie, Guangzhong, Jiang, Yadong, Chen, Chunxu, Su, Yuanjie, Wang, Yang, Tai, Huiling
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time. [Display omitted] •PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This pressure sensor was sensitive to various human motions. Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics.
AbstractList A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time. [Display omitted] •PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This pressure sensor was sensitive to various human motions. Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics.
Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics.
ArticleNumber 111789
Author Wang, Yang
Xie, Guangzhong
Chen, Chunxu
Jiang, Yadong
Yang, Ye
Su, Yuanjie
Pan, Hong
Tai, Huiling
Author_xml – sequence: 1
  givenname: Ye
  surname: Yang
  fullname: Yang, Ye
– sequence: 2
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
– sequence: 3
  givenname: Guangzhong
  surname: Xie
  fullname: Xie, Guangzhong
– sequence: 4
  givenname: Yadong
  surname: Jiang
  fullname: Jiang, Yadong
– sequence: 5
  givenname: Chunxu
  surname: Chen
  fullname: Chen, Chunxu
– sequence: 6
  givenname: Yuanjie
  surname: Su
  fullname: Su, Yuanjie
– sequence: 7
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
– sequence: 8
  givenname: Huiling
  surname: Tai
  fullname: Tai, Huiling
  email: taitai1980@uestc.edu.cn
BookMark eNp9kTtvFDEUhS0UJDaBH0BniXo2fsyMbVFBYAEpUigCreW1r-GuZuzBnkUE8ePxaqkoUp3inu8-zr0kFyknIOQlZ1vO-Hh92NbktoJxs-WcK22ekA3XSnaSjeaCbJgRfdeLXj0jl7UeGGNSKrUhf3YT_ML9BHRB-J1hAr8W9HQpUOuxAK2Qai507yoEmhNd8vQQ8uJmTNDNOWDEVnjr7vFOXn_--m5HfZ6XXHEFGnGaaWz09-PsEp3zivkkCddcMH17Tp5GN1V48U-vyJfd-_ubj93t3YdPN29uOy_FsHbBgxqjYdH0eghi8Mwzw4P2YmAiRC2ZcxpU1PswKGV0dL0OUXiuxzAMspdX5NW571LyjyPU1R7ysaQ20go5Gs1a37G51NnlS661QLQeV3daeS0OJ8uZPUVtD7ZFbU9R23PUjeT_kUvB2ZWHR5nXZwba4T8Riq0eIXkIWNoPbMj4CP0Xiyua4A
CitedBy_id crossref_primary_10_1007_s12221_024_00479_7
crossref_primary_10_1016_j_nanoen_2023_108276
crossref_primary_10_1016_j_compbiomed_2022_105827
crossref_primary_10_1039_D2NR04551F
crossref_primary_10_1002_mame_202100266
crossref_primary_10_1109_JSEN_2021_3131582
crossref_primary_10_1016_j_ijbiomac_2024_138106
crossref_primary_10_3390_polym14020331
crossref_primary_10_1002_admi_202400546
crossref_primary_10_1088_1361_6439_acbe4b
crossref_primary_10_1016_j_synthmet_2021_116697
crossref_primary_10_1002_admi_202000743
crossref_primary_10_1016_j_jallcom_2024_176038
crossref_primary_10_1016_j_sna_2022_113934
crossref_primary_10_1021_acsami_4c00529
crossref_primary_10_1088_1361_6528_ad5688
crossref_primary_10_1021_acsapm_4c03294
crossref_primary_10_1002_admt_202401160
crossref_primary_10_1007_s10854_021_07403_2
crossref_primary_10_1016_j_ceramint_2025_02_407
crossref_primary_10_1016_j_engfracmech_2022_108356
crossref_primary_10_1002_admt_202300347
crossref_primary_10_3390_ma17174196
crossref_primary_10_1016_j_measurement_2022_112274
crossref_primary_10_1016_j_jallcom_2022_164735
crossref_primary_10_1109_JFLEX_2024_3425812
crossref_primary_10_34133_bmef_0009
crossref_primary_10_1039_D2MA00559J
crossref_primary_10_1016_j_mssp_2024_109253
crossref_primary_10_1016_j_eurpolymj_2021_110956
crossref_primary_10_1016_j_sna_2025_116470
crossref_primary_10_1063_5_0107003
crossref_primary_10_1002_adsr_202400031
crossref_primary_10_1016_j_nanoen_2023_108600
crossref_primary_10_3389_femat_2023_1222691
crossref_primary_10_1016_j_rser_2024_115093
crossref_primary_10_1007_s10854_021_07622_7
crossref_primary_10_1016_j_cej_2023_147550
crossref_primary_10_3390_s22197390
crossref_primary_10_1002_adfm_202401311
crossref_primary_10_1021_acsami_2c12914
crossref_primary_10_3390_mi13020254
crossref_primary_10_1016_j_measurement_2022_111773
crossref_primary_10_1007_s12274_023_5869_6
crossref_primary_10_1002_admt_202201112
crossref_primary_10_1016_j_nanoen_2022_107921
crossref_primary_10_3390_bios13010113
crossref_primary_10_1021_acsanm_1c03777
crossref_primary_10_1002_admt_202200260
crossref_primary_10_1002_advs_202307693
crossref_primary_10_1021_acsaelm_4c00519
crossref_primary_10_1007_s12221_024_00806_y
crossref_primary_10_34133_2020_1085417
crossref_primary_10_1016_j_nanoen_2022_107487
crossref_primary_10_3390_nano12060934
crossref_primary_10_1016_j_jmat_2023_10_006
crossref_primary_10_1007_s10854_021_07590_y
crossref_primary_10_1002_admt_202001218
crossref_primary_10_3390_s22124460
crossref_primary_10_1002_admt_202100574
crossref_primary_10_1021_acsaelm_1c00165
crossref_primary_10_2139_ssrn_4076905
crossref_primary_10_1016_j_diamond_2023_109940
crossref_primary_10_1080_10667857_2021_1965702
crossref_primary_10_1021_acsami_2c00443
crossref_primary_10_1038_s41598_023_29812_5
crossref_primary_10_1016_j_nanoen_2024_110045
crossref_primary_10_1002_admi_202400633
crossref_primary_10_1021_acsomega_1c04998
crossref_primary_10_3390_mi11121076
crossref_primary_10_3390_nano12224018
crossref_primary_10_1021_acsami_2c15641
crossref_primary_10_1016_j_matpr_2021_04_579
crossref_primary_10_1002_adem_202100469
crossref_primary_10_1016_j_nanoen_2020_105251
crossref_primary_10_1016_j_compscitech_2022_109323
crossref_primary_10_1016_j_mtener_2020_100489
crossref_primary_10_1007_s10854_022_09536_4
crossref_primary_10_1016_j_nanoen_2024_109443
crossref_primary_10_3390_polym16243603
crossref_primary_10_1002_adfm_202309177
crossref_primary_10_1039_D3MH01355C
crossref_primary_10_1016_j_mtcomm_2023_105703
crossref_primary_10_1002_mame_202300009
crossref_primary_10_1039_D3DT02547K
crossref_primary_10_1108_SR_12_2021_0487
crossref_primary_10_1021_acsami_2c01914
crossref_primary_10_3390_ma17225535
crossref_primary_10_3390_mi12080933
crossref_primary_10_3390_bios12080630
crossref_primary_10_7498_aps_69_20200784
crossref_primary_10_1002_adfm_202412507
crossref_primary_10_3390_nano13192630
crossref_primary_10_1016_j_orgel_2021_106296
crossref_primary_10_1002_mame_202200520
crossref_primary_10_1088_1361_6528_ad0907
crossref_primary_10_1088_1361_6528_ad5d69
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_3390_coatings13050829
crossref_primary_10_1039_D4TC03512G
crossref_primary_10_3390_nano12071155
crossref_primary_10_1088_1361_6528_ad2f1d
crossref_primary_10_1007_s13391_024_00514_y
crossref_primary_10_1021_acsami_3c04290
crossref_primary_10_1021_acsami_4c12571
crossref_primary_10_3365_KJMM_2024_62_3_239
crossref_primary_10_1063_5_0167451
crossref_primary_10_1002_adma_202205609
crossref_primary_10_1007_s10854_021_06132_w
crossref_primary_10_1016_j_mtener_2021_100900
crossref_primary_10_1002_adem_202200500
crossref_primary_10_1002_admt_202101074
crossref_primary_10_1007_s10854_025_14498_4
crossref_primary_10_1002_nano_202100003
crossref_primary_10_1016_j_cej_2024_150997
crossref_primary_10_1016_j_esr_2023_101124
crossref_primary_10_1016_j_surfin_2024_104798
crossref_primary_10_1016_j_nanoen_2022_108095
crossref_primary_10_1109_JSEN_2021_3057222
crossref_primary_10_1007_s11431_021_2005_0
crossref_primary_10_1088_1361_665X_ac9767
crossref_primary_10_1016_j_jmrt_2022_01_100
crossref_primary_10_1016_j_cej_2023_141648
crossref_primary_10_1016_j_ijbiomac_2024_135258
crossref_primary_10_1039_D4GC05504G
crossref_primary_10_1016_j_polymer_2024_127398
crossref_primary_10_1039_D2NJ00002D
crossref_primary_10_1002_eem2_12837
crossref_primary_10_1021_acsaelm_4c00157
crossref_primary_10_3365_KJMM_2022_60_2_149
crossref_primary_10_1016_j_apenergy_2023_122005
crossref_primary_10_1109_JSEN_2021_3055035
crossref_primary_10_1002_pc_27596
crossref_primary_10_1002_pc_28448
crossref_primary_10_1002_pat_5914
crossref_primary_10_1016_j_sna_2020_112424
crossref_primary_10_3390_s20185214
crossref_primary_10_1016_j_cej_2022_138280
crossref_primary_10_1016_j_mechmat_2020_103436
crossref_primary_10_3390_inorganics10120222
crossref_primary_10_1007_s10854_024_13686_y
crossref_primary_10_35848_1347_4065_adb6ad
crossref_primary_10_1021_acsami_1c14777
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1016_j_sna_2023_114395
crossref_primary_10_3389_fmats_2020_593342
crossref_primary_10_3390_mi12070813
crossref_primary_10_3390_nano14141173
crossref_primary_10_1002_admt_202301377
crossref_primary_10_1088_1361_665X_ad0b91
crossref_primary_10_3390_s21113895
crossref_primary_10_1016_j_eml_2021_101279
crossref_primary_10_1016_j_cej_2024_154554
crossref_primary_10_1021_acsanm_0c01551
crossref_primary_10_1002_aisy_202300631
crossref_primary_10_1016_j_mtchem_2023_101609
crossref_primary_10_2139_ssrn_4071780
crossref_primary_10_1039_D1NR08168C
crossref_primary_10_1039_D4NR05200E
crossref_primary_10_3390_mi12060695
crossref_primary_10_1039_D2TA09687K
crossref_primary_10_3390_nano12172910
crossref_primary_10_1016_j_sna_2022_113770
crossref_primary_10_3390_s22072743
crossref_primary_10_1016_j_sna_2023_114585
crossref_primary_10_1007_s12274_022_4443_y
crossref_primary_10_1021_acsami_2c02491
crossref_primary_10_1016_j_nanoen_2024_109480
crossref_primary_10_3390_s24175808
crossref_primary_10_1021_acsami_2c00874
crossref_primary_10_1109_JFLEX_2024_3422258
crossref_primary_10_1109_TED_2020_3039760
crossref_primary_10_1080_15583724_2022_2059673
crossref_primary_10_1016_j_polymer_2025_128156
crossref_primary_10_3390_ma17102299
crossref_primary_10_1002_pc_28064
crossref_primary_10_1080_14484846_2024_2399381
crossref_primary_10_1007_s11220_021_00376_w
crossref_primary_10_1016_j_diamond_2022_109358
crossref_primary_10_1016_j_pmatsci_2024_101422
crossref_primary_10_7498_aps_69_20200987
crossref_primary_10_1039_D1RA06915B
crossref_primary_10_1016_j_sna_2022_113415
crossref_primary_10_3390_s22145089
crossref_primary_10_1016_j_jmbbm_2021_104669
crossref_primary_10_3390_s24041069
crossref_primary_10_1002_pssa_202300901
crossref_primary_10_1002_pat_5816
crossref_primary_10_1016_j_nanoen_2023_108682
crossref_primary_10_1038_s41528_024_00310_6
crossref_primary_10_1016_j_cej_2024_149513
crossref_primary_10_1016_j_sna_2023_114331
crossref_primary_10_1063_5_0064129
crossref_primary_10_1007_s11664_024_11699_1
crossref_primary_10_1002_admt_202301280
crossref_primary_10_1109_JSEN_2024_3452940
crossref_primary_10_1007_s10854_022_09415_y
crossref_primary_10_1002_adsr_202300025
crossref_primary_10_1007_s10971_022_06019_0
crossref_primary_10_3390_en17235896
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_3390_mi16010092
crossref_primary_10_1109_JSEN_2024_3430497
crossref_primary_10_3390_s22239131
crossref_primary_10_1002_pc_28976
crossref_primary_10_1002_adfm_202102983
crossref_primary_10_1002_wnan_1961
crossref_primary_10_1007_s12613_023_2773_8
crossref_primary_10_1002_mame_202300101
crossref_primary_10_3390_nano13060988
crossref_primary_10_1002_admt_202200309
crossref_primary_10_1007_s11431_021_1899_9
crossref_primary_10_1016_j_measurement_2022_111255
crossref_primary_10_1007_s10832_021_00266_3
crossref_primary_10_1016_j_memsci_2022_120962
crossref_primary_10_1021_acsaelm_3c01346
crossref_primary_10_1021_acsanm_3c01973
crossref_primary_10_3390_polym15204124
crossref_primary_10_1039_D3RA00604B
crossref_primary_10_1039_D4MH01618A
crossref_primary_10_1002_admi_202300670
crossref_primary_10_35848_1882_0786_acc569
crossref_primary_10_1080_00222348_2022_2030991
crossref_primary_10_3390_mi12060666
crossref_primary_10_1002_crat_202200130
crossref_primary_10_31613_ceramist_2024_27_1_03
crossref_primary_10_1021_acsami_4c19092
crossref_primary_10_1016_j_nanoen_2021_106232
crossref_primary_10_1021_acsami_3c15881
crossref_primary_10_1021_acs_biomac_4c00659
crossref_primary_10_1002_app_52338
crossref_primary_10_1016_j_nanoen_2023_108576
crossref_primary_10_1177_1045389X20966058
crossref_primary_10_1016_j_sna_2024_115503
crossref_primary_10_1016_j_optlastec_2023_109524
crossref_primary_10_1016_j_sna_2023_114478
crossref_primary_10_1142_S2010135X23400015
crossref_primary_10_2166_wst_2022_154
crossref_primary_10_1016_j_polymertesting_2022_107513
crossref_primary_10_3390_ma15186378
crossref_primary_10_1007_s00339_023_07080_4
crossref_primary_10_1109_TNANO_2024_3496487
crossref_primary_10_1007_s12274_022_5084_x
crossref_primary_10_1038_s41378_023_00509_z
crossref_primary_10_1002_admt_202100858
crossref_primary_10_1016_j_nanoen_2020_105414
crossref_primary_10_1021_acsami_3c12921
crossref_primary_10_1002_smll_202306655
crossref_primary_10_1016_j_sna_2024_116034
crossref_primary_10_3390_mi12091091
crossref_primary_10_1016_j_sna_2020_111940
crossref_primary_10_1007_s10854_024_13402_w
crossref_primary_10_3762_bjnano_13_14
crossref_primary_10_1002_mame_202200235
crossref_primary_10_1109_JSEN_2024_3476173
crossref_primary_10_3390_en17164066
crossref_primary_10_2139_ssrn_4111093
crossref_primary_10_1002_idm2_12175
crossref_primary_10_3390_mi14081638
crossref_primary_10_1002_pat_5613
crossref_primary_10_1007_s00289_020_03380_4
crossref_primary_10_1016_j_measurement_2022_111839
crossref_primary_10_1007_s42765_024_00461_1
crossref_primary_10_1016_j_mtcomm_2023_105541
crossref_primary_10_1109_JSEN_2020_2974096
crossref_primary_10_1016_j_sna_2025_116202
crossref_primary_10_1016_j_compscitech_2022_109478
crossref_primary_10_1016_j_nanoso_2023_100949
crossref_primary_10_1109_TIM_2025_3545524
crossref_primary_10_1039_D3DT02587J
crossref_primary_10_1016_j_cej_2025_159919
crossref_primary_10_2139_ssrn_4097424
crossref_primary_10_1016_j_biomaterials_2024_122528
crossref_primary_10_1016_j_mtphys_2024_101606
crossref_primary_10_1039_D1TA03505C
crossref_primary_10_1109_JSEN_2022_3230982
crossref_primary_10_1016_j_isci_2020_101987
crossref_primary_10_15541_jim20220549
crossref_primary_10_2139_ssrn_4113140
crossref_primary_10_1016_j_nanoen_2021_105809
crossref_primary_10_1088_1361_665X_abee34
crossref_primary_10_1002_mame_202100113
crossref_primary_10_3389_fbioe_2023_1303004
crossref_primary_10_1088_1361_6463_ad2b1f
crossref_primary_10_1088_1361_6528_ad0502
crossref_primary_10_1002_smll_202307689
crossref_primary_10_1002_adem_202400445
crossref_primary_10_1002_advs_202105738
crossref_primary_10_1007_s10854_023_11848_y
crossref_primary_10_1016_j_nanoen_2025_110897
crossref_primary_10_1002_adem_202201678
crossref_primary_10_1016_j_sna_2022_113393
crossref_primary_10_1007_s11664_022_09825_y
crossref_primary_10_1007_s10570_021_04343_2
crossref_primary_10_1021_acsami_3c13818
crossref_primary_10_3390_ijms25031564
crossref_primary_10_1002_aelm_202400980
crossref_primary_10_1021_acssensors_4c00375
crossref_primary_10_1016_j_heliyon_2024_e25021
crossref_primary_10_1088_1361_6439_ace268
crossref_primary_10_1109_JSEN_2024_3481309
crossref_primary_10_7498_aps_70_20210023
crossref_primary_10_1016_j_surfin_2021_101005
crossref_primary_10_1016_j_coco_2024_102166
crossref_primary_10_1002_inf2_12552
crossref_primary_10_1016_j_nanoen_2021_106319
crossref_primary_10_3390_s24020468
crossref_primary_10_1016_j_jallcom_2020_158545
crossref_primary_10_1088_1361_6463_ac8687
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1002_admt_202101460
crossref_primary_10_1021_acsaem_4c02247
crossref_primary_10_3390_s24123812
crossref_primary_10_1016_j_nanoen_2024_109496
crossref_primary_10_1016_j_sna_2023_114553
crossref_primary_10_1016_j_cej_2023_141598
crossref_primary_10_1039_D4DT01761G
crossref_primary_10_1021_acsami_2c01611
crossref_primary_10_1021_acs_jpcb_2c03151
crossref_primary_10_3390_catal13061019
crossref_primary_10_1016_j_mtsust_2023_100318
crossref_primary_10_1016_j_polymer_2023_126399
crossref_primary_10_1016_j_cej_2024_148729
crossref_primary_10_1016_j_bspc_2025_107598
crossref_primary_10_3390_polym13183112
crossref_primary_10_1002_adsr_202300168
crossref_primary_10_1007_s40843_022_2281_9
crossref_primary_10_1002_adfm_202008729
crossref_primary_10_1007_s12200_023_00058_3
crossref_primary_10_1016_j_nanoen_2021_106320
crossref_primary_10_1038_s41378_021_00248_z
crossref_primary_10_3390_nano13192692
crossref_primary_10_3390_app14083356
crossref_primary_10_1080_07315171_2022_2122414
crossref_primary_10_1016_j_apmt_2025_102614
Cites_doi 10.1002/pola.27485
10.1109/LED.2018.2846184
10.1039/C8NR00379C
10.1039/C8TC02946F
10.1002/adfm.201404087
10.1002/adma.201200105
10.1039/C8NR05292A
10.1166/sam.2019.3447
10.1021/am500375n
10.1109/TDEI.2002.1038664
10.1021/acsami.5b04669
10.1039/C5NR02067K
10.3390/polym9100479
10.1016/j.jcis.2016.02.011
10.1016/j.nanoen.2016.10.034
10.1002/adma.201502470
10.1021/nn9006412
10.1002/polb.20223
10.1039/c3cp52799a
10.1021/acsami.8b14514
10.1002/admt.201700053
10.1002/adma.201401310
10.1126/science.1147241
10.1021/acsami.7b08664
10.1016/j.compscitech.2017.06.013
10.1021/acssuschemeng.8b04627
10.1002/adfm.201504755
10.1021/am4048267
10.1002/adma.201606425
10.1002/adma.201504299
10.1016/j.jeurceramsoc.2014.12.019
10.1039/C4MH00147H
10.1039/c2jm32579a
10.1016/j.compscitech.2018.10.021
10.1039/C4NR02246G
10.1016/j.nanoen.2018.10.049
10.1016/j.matlet.2018.10.014
10.1021/acsami.5b09502
10.1002/pat.4096
10.1007/s00339-016-0161-1
10.1021/acsami.6b14166
10.1002/smll.201604245
10.1016/j.nanoen.2019.03.013
10.1039/C7DT03389C
10.1021/acsnano.7b04898
10.1016/j.compositesb.2014.12.001
10.1021/acsami.5b05344
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Jan 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 1, 2020
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2019.111789
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2019_111789
S0924424719311215
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-dce76f90f9485d25c0c091d8c2502df830aa8e7f8bd57798fa48df2c186d55343
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Mon Jul 14 09:41:21 EDT 2025
Tue Jul 01 01:05:30 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Fri Feb 23 02:49:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion monitoring
Flexible
PDA@BTO/PVDF
Pressure sensor
Piezoelectric
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-dce76f90f9485d25c0c091d8c2502df830aa8e7f8bd57798fa48df2c186d55343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2369804856
PQPubID 2045401
ParticipantIDs proquest_journals_2369804856
crossref_citationtrail_10_1016_j_sna_2019_111789
crossref_primary_10_1016_j_sna_2019_111789
elsevier_sciencedirect_doi_10_1016_j_sna_2019_111789
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wang, Wang, Wang, Xiao, Jing, Cui, Pu (bib0160) 2017; 9
Amjadi, Kyung, Park, Sitti (bib0025) 2016; 26
Yi, Yang, Tian, Dong, Liu, Yang (bib0095) 2018; 39
Hu, Yan, Zhao, Zhang, Niu (bib0210) 2018; 168
Chen, Li, Shao, An, Tian, Wang, Han, Wang, Lu (bib0110) 2017; 13
Guo, Tan, Shi, Li, Wang, Sun, Huang, Long, Jiang (bib0050) 2018; 10
Huang, Jiang (bib0145) 2015; 27
Xie, Huang, Li, Zhi, Tanaka, Jiang (bib0175) 2013; 15
Salimi, Yousefi (bib0205) 2004; 42
Bhavanasi, Kumar, Parida, Wang, Lee (bib0075) 2015; 8
Siddiqui, Kim, Roh, Duy, Trung, Nguyen, Lee (bib0125) 2016; 30
Fan, Tang, Wang (bib0070) 2016; 28
Li, Zhang, Dai, Tong, Zhou, Zhao, An (bib0130) 2018; 10
Li, Luo, Pang, Ding, Wang, Ke, Huang, Wei (bib0200) 2014; 6
Park, Bae, Yang, Lee, Lee, Lee (bib0220) 2014; 6
Yan, Deng, Jin, Yang, Wang, Chu, Su, Chen, Yang (bib0065) 2018; 10
Kim, Doss, Tillotson, Hotchkiss, Pan, Marder, Li, Calame, Perry (bib0155) 2009; 3
Singh, Singh, Khare (bib0245) 2018; 29
Qian, Qin, He, Niu, Qian, Geng, Mu, Hou, Chou (bib0090) 2019; 236
Najjar, Luo, Jao, Brennan, Xue, Beachley, Hu, Xue (bib0080) 2017; 9
Liu, Fu, Wang, Yan, Xin, Cai, Xu (bib0195) 2016; 469
Nunes-Pereira, Sencadas, Correia, Cardoso, Han, Rocha, Lanceros-Mendez (bib0120) 2015; 72
Li, Bao, Tao, Peng, Pan (bib0015) 2018; 6
Sultana, Alam, Garain, Sinha, Middya, Mandal (bib0135) 2015; 7
Huang, Lin, Xu, Zhou, Duan, Hu, Zhou (bib0045) 2019
Zhong, Zhong, Hu, Wu, Li, Wang, Hu, Zhou (bib0040) 2015; 25
Liu, Pharr, Salvatore (bib0020) 2017; 11
Suchanicz, Swierczek, Nogas-Cwikiel, Konieczny, Sitko (bib0190) 2015; 35
Song, Shen, Liu, Lin, Li, Nan (bib0170) 2012; 22
Zang, Zhang, Di, Zhu (bib0010) 2015; 2
Dickey (bib0030) 2017; 29
Lee, Dellatore, Miller, Messersmith (bib0165) 2007; 318
Rahman, Lee, Phan, Chung (bib0240) 2013; 22
Yang, Huang, Zhu, Xie, Tanaka, Jiang (bib0140) 2014; 6
Mao, Zhang, Wang, Guan, Liu, Wang, Sun, Xing, Chen, Xue (bib0105) 2019; 11
Ejaz, Puli, Elupula, Adireddy, Riggs, Chrisey, Grayson (bib0150) 2015; 53
Xie, Yu, Feng, Jiang, Zhang (bib0180) 2017; 9
Singh, Singh, Khare (bib0235) 2017; 149
Deng, Yang, Jin, Yan, Huang, Chu, Wang, Xiong, Tian, Gao, Zhang, Yang (bib0055) 2019; 55
Fu, Hou, Zheng, Wei, Zhu, Yan (bib0215) 2015; 7
Niu, Jia, Qian, Zhu, Zhang, Hou, Mu, Geng, Cho, He, Chou (bib0085) 2018; 7
Tuncer, Serdyuk, Gubanski (bib0225) 2002; 9
Park, Lee, Liu, Moon, Hwang, Zhu, Kim, Kim, Kim, Wang, Lee (bib0115) 2012; 24
Mayeen, Kala, Jayalakshmy, Thomas, Rouxel, Philip, Howmik, Kalarikkal (bib0185) 2018; 47
Bhunia, Das, Dalui, Hussain, Paul, Bhar, Pal (bib0100) 2016; 122
Karan, Mandal, Khatua (bib0230) 2015; 7
Tian, Deng, Gao, Xiong, Yan, He, Yang, Jin, Chu, Zhang, Yan, Yang (bib0060) 2019
Lee, Kim, Joo, Raj, Ghaffari, Kim (bib0005) 2017; 2
Zhong, Zhong, Cheng, Yao, Wang, Li, Wu, Liu, Hu, Zhou (bib0035) 2015; 27
Lee (10.1016/j.sna.2019.111789_bib0165) 2007; 318
Zang (10.1016/j.sna.2019.111789_bib0010) 2015; 2
Wang (10.1016/j.sna.2019.111789_bib0160) 2017; 9
Deng (10.1016/j.sna.2019.111789_bib0055) 2019; 55
Li (10.1016/j.sna.2019.111789_bib0130) 2018; 10
Liu (10.1016/j.sna.2019.111789_bib0195) 2016; 469
Bhavanasi (10.1016/j.sna.2019.111789_bib0075) 2015; 8
Rahman (10.1016/j.sna.2019.111789_bib0240) 2013; 22
Bhunia (10.1016/j.sna.2019.111789_bib0100) 2016; 122
Chen (10.1016/j.sna.2019.111789_bib0110) 2017; 13
Hu (10.1016/j.sna.2019.111789_bib0210) 2018; 168
Ejaz (10.1016/j.sna.2019.111789_bib0150) 2015; 53
Yan (10.1016/j.sna.2019.111789_bib0065) 2018; 10
Karan (10.1016/j.sna.2019.111789_bib0230) 2015; 7
Sultana (10.1016/j.sna.2019.111789_bib0135) 2015; 7
Mao (10.1016/j.sna.2019.111789_bib0105) 2019; 11
Amjadi (10.1016/j.sna.2019.111789_bib0025) 2016; 26
Fan (10.1016/j.sna.2019.111789_bib0070) 2016; 28
Li (10.1016/j.sna.2019.111789_bib0200) 2014; 6
Tuncer (10.1016/j.sna.2019.111789_bib0225) 2002; 9
Liu (10.1016/j.sna.2019.111789_bib0020) 2017; 11
Kim (10.1016/j.sna.2019.111789_bib0155) 2009; 3
Mayeen (10.1016/j.sna.2019.111789_bib0185) 2018; 47
Huang (10.1016/j.sna.2019.111789_bib0145) 2015; 27
Zhong (10.1016/j.sna.2019.111789_bib0040) 2015; 25
Qian (10.1016/j.sna.2019.111789_bib0090) 2019; 236
Dickey (10.1016/j.sna.2019.111789_bib0030) 2017; 29
Singh (10.1016/j.sna.2019.111789_bib0245) 2018; 29
Yi (10.1016/j.sna.2019.111789_bib0095) 2018; 39
Nunes-Pereira (10.1016/j.sna.2019.111789_bib0120) 2015; 72
Xie (10.1016/j.sna.2019.111789_bib0175) 2013; 15
Salimi (10.1016/j.sna.2019.111789_bib0205) 2004; 42
Suchanicz (10.1016/j.sna.2019.111789_bib0190) 2015; 35
Najjar (10.1016/j.sna.2019.111789_bib0080) 2017; 9
Song (10.1016/j.sna.2019.111789_bib0170) 2012; 22
Guo (10.1016/j.sna.2019.111789_bib0050) 2018; 10
Xie (10.1016/j.sna.2019.111789_bib0180) 2017; 9
Li (10.1016/j.sna.2019.111789_bib0015) 2018; 6
Tian (10.1016/j.sna.2019.111789_bib0060) 2019
Park (10.1016/j.sna.2019.111789_bib0115) 2012; 24
Park (10.1016/j.sna.2019.111789_bib0220) 2014; 6
Huang (10.1016/j.sna.2019.111789_bib0045) 2019
Fu (10.1016/j.sna.2019.111789_bib0215) 2015; 7
Siddiqui (10.1016/j.sna.2019.111789_bib0125) 2016; 30
Niu (10.1016/j.sna.2019.111789_bib0085) 2018; 7
Yang (10.1016/j.sna.2019.111789_bib0140) 2014; 6
Singh (10.1016/j.sna.2019.111789_bib0235) 2017; 149
Lee (10.1016/j.sna.2019.111789_bib0005) 2017; 2
Zhong (10.1016/j.sna.2019.111789_bib0035) 2015; 27
References_xml – volume: 6
  start-page: 5144
  year: 2014
  end-page: 5151
  ident: bib0200
  article-title: Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1812
  year: 2014
  end-page: 1822
  ident: bib0140
  article-title: Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 17751
  year: 2018
  end-page: 17760
  ident: bib0050
  article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO
  publication-title: Nanoscale
– volume: 9
  start-page: 479
  year: 2017
  ident: bib0080
  article-title: Biocompatible silk/polymer energy harvesters using stretched poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers
  publication-title: Polymers
– volume: 25
  start-page: 1798
  year: 2015
  end-page: 1803
  ident: bib0040
  article-title: Stretchable self-powered fiber-based strain sensor
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 546
  year: 2015
  end-page: 554
  ident: bib0145
  article-title: Core–shell structured high‐k polymer nanocomposites for energy storage and dielectric applications
  publication-title: Adv. Mater.
– volume: 10
  start-page: 5489
  year: 2018
  end-page: 5495
  ident: bib0130
  article-title: A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light
  publication-title: Nanoscale
– volume: 6
  start-page: 8962
  year: 2014
  end-page: 8968
  ident: bib0220
  article-title: Lead-free BaTiO
  publication-title: Nanoscale
– volume: 13
  year: 2017
  ident: bib0110
  article-title: High‐performance piezoelectric nanogenerators with imprinted P (VDF‐TrFE)/BaTiO
  publication-title: Small
– volume: 11
  start-page: 9614
  year: 2017
  end-page: 9635
  ident: bib0020
  article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring
  publication-title: ACS Nano
– volume: 24
  start-page: 2999
  year: 2012
  end-page: 3004
  ident: bib0115
  article-title: Flexible nanocomposite generator made of BaTiO
  publication-title: Adv. Mater
– volume: 2
  start-page: 1700053
  year: 2017
  ident: bib0005
  article-title: Wearable sensing systems with mechanically soft assemblies of nanoscale materials
  publication-title: Int. J. Adv. Mater. Technol.
– volume: 9
  start-page: 809
  year: 2002
  end-page: 828
  ident: bib0225
  article-title: Dielectric mixtures: electrical properties and modeling
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 72
  start-page: 130
  year: 2015
  end-page: 136
  ident: bib0120
  article-title: Energy harvesting performance of BaTiO
  publication-title: Compos. Pt. B-Eng.
– volume: 469
  start-page: 69
  year: 2016
  end-page: 77
  ident: bib0195
  article-title: Magnetically separable and recyclable Fe
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 2581
  year: 2009
  end-page: 2592
  ident: bib0155
  article-title: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer
  publication-title: ACS Nano
– volume: 7
  start-page: 19091
  year: 2015
  end-page: 19097
  ident: bib0135
  article-title: An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 10655
  year: 2015
  end-page: 10666
  ident: bib0230
  article-title: Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester
  publication-title: Nanoscale
– volume: 168
  start-page: 327
  year: 2018
  end-page: 335
  ident: bib0210
  article-title: Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property
  publication-title: Compos. Sci. Technol.
– volume: 28
  start-page: 4283
  year: 2016
  end-page: 4305
  ident: bib0070
  article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics
  publication-title: Adv. Mater
– volume: 22
  year: 2013
  ident: bib0240
  article-title: Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites
  publication-title: Smart Mater. Struct.
– volume: 7
  start-page: 979
  year: 2018
  end-page: 985
  ident: bib0085
  article-title: High-performance PZT-Based stretchable piezoelectric nanogenerator
  publication-title: ACS Sustain. Chem. Eng.
– volume: 30
  start-page: 434
  year: 2016
  end-page: 442
  ident: bib0125
  article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system
  publication-title: Nano Energy
– volume: 15
  start-page: 17560
  year: 2013
  end-page: 17569
  ident: bib0175
  article-title: Core–satellite Ag@ BaTiO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 521
  year: 2015
  end-page: 529
  ident: bib0075
  article-title: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 1777
  year: 2015
  end-page: 1783
  ident: bib0190
  article-title: PbMg
  publication-title: J. Eur. Ceram. Soc.
– volume: 39
  start-page: 1226
  year: 2018
  end-page: 1229
  ident: bib0095
  article-title: Self-powered force sensor based on thinned bulk PZT for real-time cutaneous activities monitoring
  publication-title: IEEE Electron Device Lett.
– volume: 55
  start-page: 516
  year: 2019
  end-page: 525
  ident: bib0055
  article-title: Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures
  publication-title: Nano Energy
– volume: 122
  start-page: 637
  year: 2016
  ident: bib0100
  article-title: Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester
  publication-title: Appl. Phys. A-Mater. Sci. Process.
– volume: 7
  start-page: 24480
  year: 2015
  end-page: 24491
  ident: bib0215
  article-title: Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 41070
  year: 2018
  end-page: 41075
  ident: bib0065
  article-title: Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 2039
  year: 2018
  end-page: 2051
  ident: bib0185
  article-title: Dopamine functionalization of BaTiO
  publication-title: Dalton Trans.
– volume: 29
  start-page: 143
  year: 2018
  end-page: 150
  ident: bib0245
  article-title: Polym. Enhanced
  publication-title: Adv. Technol.
– volume: 236
  start-page: 96
  year: 2019
  end-page: 100
  ident: bib0090
  article-title: A stretchable piezoelectric elastic composite
  publication-title: Mater. Lett.
– volume: 11
  start-page: 351
  year: 2019
  end-page: 359
  ident: bib0105
  article-title: Self-powered wearable athletics monitoring nanodevice based on ZnO nanowire piezoelectric-biosensing unit arrays
  publication-title: Adv. Mater. Sci.
– volume: 9
  start-page: 29130
  year: 2017
  end-page: 29139
  ident: bib0160
  article-title: Poly (vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba (Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 318
  start-page: 426
  year: 2007
  end-page: 430
  ident: bib0165
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
– volume: 27
  start-page: 7130
  year: 2015
  end-page: 7136
  ident: bib0035
  article-title: Paper-based active tactile sensor array
  publication-title: Adv. Mater.
– volume: 22
  start-page: 16491
  year: 2012
  end-page: 16498
  ident: bib0170
  article-title: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO
  publication-title: J. Mater. Chem.
– year: 2019
  ident: bib0060
  article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training
  publication-title: Nano Energy
– volume: 53
  start-page: 719
  year: 2015
  end-page: 728
  ident: bib0150
  article-title: Core‐shell structured poly (glycidyl methacrylate)/BaTiO
  publication-title: J. Polym. Sci. Pol. Chem.
– volume: 6
  start-page: 11878
  year: 2018
  end-page: 11892
  ident: bib0015
  article-title: Recent progress in flexible pressure sensor arrays: from design to applications
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 2995
  year: 2017
  end-page: 3005
  ident: bib0180
  article-title: Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 140
  year: 2015
  end-page: 156
  ident: bib0010
  article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications
  publication-title: Mater. Horizons
– volume: 26
  start-page: 1678
  year: 2016
  end-page: 1698
  ident: bib0025
  article-title: Stretchable, skin mountable, and wearable strain sensors and their potential applications: a review
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2017
  ident: bib0030
  article-title: Stretchable and soft electronics using liquid metals
  publication-title: Adv.
– volume: 149
  start-page: 127
  year: 2017
  end-page: 133
  ident: bib0235
  article-title: Design of flexible PVDF/NaNbO
  publication-title: Compos. Sci. Technol.
– start-page: 1902034
  year: 2019
  ident: bib0045
  article-title: Fiber-based energy conversion devices for human-body energy harvesting
  publication-title: Adv. Mater.
– volume: 42
  start-page: 3487
  year: 2004
  end-page: 3495
  ident: bib0205
  article-title: Conformational changes and phase transformation mechanisms in PVDF solution‐cast films
  publication-title: J. Polym. Sci. Pt. B-Polym. Phys.
– volume: 53
  start-page: 719
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0150
  article-title: Core‐shell structured poly (glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface‐initiated atom transfer radical polymerization: a novel material for high energy density dielectric storage
  publication-title: J. Polym. Sci. Pol. Chem.
  doi: 10.1002/pola.27485
– volume: 39
  start-page: 1226
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0095
  article-title: Self-powered force sensor based on thinned bulk PZT for real-time cutaneous activities monitoring
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2846184
– volume: 10
  start-page: 5489
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0130
  article-title: A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light
  publication-title: Nanoscale
  doi: 10.1039/C8NR00379C
– volume: 6
  start-page: 11878
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0015
  article-title: Recent progress in flexible pressure sensor arrays: from design to applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02946F
– volume: 25
  start-page: 1798
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0040
  article-title: Stretchable self-powered fiber-based strain sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404087
– volume: 24
  start-page: 2999
  year: 2012
  ident: 10.1016/j.sna.2019.111789_bib0115
  article-title: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons
  publication-title: Adv. Mater
  doi: 10.1002/adma.201200105
– volume: 10
  start-page: 17751
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0050
  article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring
  publication-title: Nanoscale
  doi: 10.1039/C8NR05292A
– volume: 11
  start-page: 351
  year: 2019
  ident: 10.1016/j.sna.2019.111789_bib0105
  article-title: Self-powered wearable athletics monitoring nanodevice based on ZnO nanowire piezoelectric-biosensing unit arrays
  publication-title: Adv. Mater. Sci.
  doi: 10.1166/sam.2019.3447
– volume: 6
  start-page: 5144
  year: 2014
  ident: 10.1016/j.sna.2019.111789_bib0200
  article-title: Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500375n
– volume: 9
  start-page: 809
  year: 2002
  ident: 10.1016/j.sna.2019.111789_bib0225
  article-title: Dielectric mixtures: electrical properties and modeling
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2002.1038664
– volume: 7
  start-page: 19091
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0135
  article-title: An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04669
– volume: 7
  start-page: 10655
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0230
  article-title: Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester
  publication-title: Nanoscale
  doi: 10.1039/C5NR02067K
– volume: 9
  start-page: 479
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0080
  article-title: Biocompatible silk/polymer energy harvesters using stretched poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers
  publication-title: Polymers
  doi: 10.3390/polym9100479
– volume: 22
  year: 2013
  ident: 10.1016/j.sna.2019.111789_bib0240
  article-title: Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites
  publication-title: Smart Mater. Struct.
– volume: 469
  start-page: 69
  year: 2016
  ident: 10.1016/j.sna.2019.111789_bib0195
  article-title: Magnetically separable and recyclable Fe3O4–polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.02.011
– volume: 30
  start-page: 434
  year: 2016
  ident: 10.1016/j.sna.2019.111789_bib0125
  article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.034
– volume: 27
  start-page: 7130
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0035
  article-title: Paper-based active tactile sensor array
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502470
– volume: 3
  start-page: 2581
  year: 2009
  ident: 10.1016/j.sna.2019.111789_bib0155
  article-title: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer
  publication-title: ACS Nano
  doi: 10.1021/nn9006412
– start-page: 1902034
  year: 2019
  ident: 10.1016/j.sna.2019.111789_bib0045
  article-title: Fiber-based energy conversion devices for human-body energy harvesting
  publication-title: Adv. Mater.
– volume: 42
  start-page: 3487
  year: 2004
  ident: 10.1016/j.sna.2019.111789_bib0205
  article-title: Conformational changes and phase transformation mechanisms in PVDF solution‐cast films
  publication-title: J. Polym. Sci. Pt. B-Polym. Phys.
  doi: 10.1002/polb.20223
– volume: 15
  start-page: 17560
  year: 2013
  ident: 10.1016/j.sna.2019.111789_bib0175
  article-title: Core–satellite Ag@ BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52799a
– volume: 10
  start-page: 41070
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0065
  article-title: Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14514
– volume: 2
  start-page: 1700053
  issue: 9
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0005
  article-title: Wearable sensing systems with mechanically soft assemblies of nanoscale materials
  publication-title: Int. J. Adv. Mater. Technol.
  doi: 10.1002/admt.201700053
– volume: 27
  start-page: 546
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0145
  article-title: Core–shell structured high‐k polymer nanocomposites for energy storage and dielectric applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401310
– volume: 318
  start-page: 426
  issue: 5849
  year: 2007
  ident: 10.1016/j.sna.2019.111789_bib0165
  article-title: Mussel-inspired surface chemistry for multifunctional coatings
  publication-title: Science
  doi: 10.1126/science.1147241
– volume: 9
  start-page: 29130
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0160
  article-title: Poly (vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba (Fe0. 5Ta0. 5) O3, for high energy-storage density at low electric field
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08664
– volume: 149
  start-page: 127
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0235
  article-title: Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.06.013
– volume: 7
  start-page: 979
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0085
  article-title: High-performance PZT-Based stretchable piezoelectric nanogenerator
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04627
– volume: 26
  start-page: 1678
  year: 2016
  ident: 10.1016/j.sna.2019.111789_bib0025
  article-title: Stretchable, skin mountable, and wearable strain sensors and their potential applications: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 6
  start-page: 1812
  year: 2014
  ident: 10.1016/j.sna.2019.111789_bib0140
  article-title: Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4048267
– volume: 29
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0030
  article-title: Stretchable and soft electronics using liquid metals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606425
– volume: 28
  start-page: 4283
  year: 2016
  ident: 10.1016/j.sna.2019.111789_bib0070
  article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics
  publication-title: Adv. Mater
  doi: 10.1002/adma.201504299
– volume: 35
  start-page: 1777
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0190
  article-title: PbMg1/3Nb2/3O3-doping effects on structural, thermal, Raman, dielectric and ferroelectric properties of BaTiO3 ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.12.019
– volume: 2
  start-page: 140
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0010
  article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications
  publication-title: Mater. Horizons
  doi: 10.1039/C4MH00147H
– volume: 22
  start-page: 16491
  year: 2012
  ident: 10.1016/j.sna.2019.111789_bib0170
  article-title: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32579a
– volume: 168
  start-page: 327
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0210
  article-title: Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.10.021
– volume: 6
  start-page: 8962
  year: 2014
  ident: 10.1016/j.sna.2019.111789_bib0220
  article-title: Lead-free BaTiO3 nanowires-based flexible nanocomposite generator
  publication-title: Nanoscale
  doi: 10.1039/C4NR02246G
– volume: 55
  start-page: 516
  year: 2019
  ident: 10.1016/j.sna.2019.111789_bib0055
  article-title: Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.049
– volume: 236
  start-page: 96
  year: 2019
  ident: 10.1016/j.sna.2019.111789_bib0090
  article-title: A stretchable piezoelectric elastic composite
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.10.014
– volume: 8
  start-page: 521
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0075
  article-title: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09502
– volume: 29
  start-page: 143
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0245
  article-title: Polym. Enhanced β‐phase in PVDF polymer nanocomposite and its application for nanogenerator
  publication-title: Adv. Technol.
  doi: 10.1002/pat.4096
– volume: 122
  start-page: 637
  year: 2016
  ident: 10.1016/j.sna.2019.111789_bib0100
  article-title: Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester
  publication-title: Appl. Phys. A-Mater. Sci. Process.
  doi: 10.1007/s00339-016-0161-1
– volume: 9
  start-page: 2995
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0180
  article-title: Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14166
– volume: 13
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0110
  article-title: High‐performance piezoelectric nanogenerators with imprinted P (VDF‐TrFE)/BaTiO3 nanocomposite micropillars for self‐powered flexible sensors
  publication-title: Small
  doi: 10.1002/smll.201604245
– year: 2019
  ident: 10.1016/j.sna.2019.111789_bib0060
  article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.013
– volume: 47
  start-page: 2039
  year: 2018
  ident: 10.1016/j.sna.2019.111789_bib0185
  article-title: Dopamine functionalization of BaTiO3: an effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT03389C
– volume: 11
  start-page: 9614
  year: 2017
  ident: 10.1016/j.sna.2019.111789_bib0020
  article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04898
– volume: 72
  start-page: 130
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0120
  article-title: Energy harvesting performance of BaTiO3/poly (vinylidene fluoride–trifluoroethylene) spin coated nanocomposites
  publication-title: Compos. Pt. B-Eng.
  doi: 10.1016/j.compositesb.2014.12.001
– volume: 7
  start-page: 24480
  year: 2015
  ident: 10.1016/j.sna.2019.111789_bib0215
  article-title: Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05344
SSID ssj0003377
Score 2.678405
Snippet A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time. [Display omitted] •PDA-modified...
Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111789
SubjectTerms Barium
Barium titanates
Composite materials
Cracks
Dispersion
Electronics
Flaw detection
Flexible
Hole defects
Human motion
Load resistance
Maximum power
Motion monitoring
PDA@BTO/PVDF
Piezoelectric
Piezoelectricity
Polyvinylidene fluorides
Pressure casting
Pressure sensor
Pressure sensors
Sensors
Vinylidene fluoride
Wearable computers
Wearable technology
Title Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring
URI https://dx.doi.org/10.1016/j.sna.2019.111789
https://www.proquest.com/docview/2369804856
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcKGHCgqovFY-9ISUbja2E-dIaVcLFQ-pUHGzHD-koN1ktbscQKi_nRkngVIhDj1Fimwn8ud8840zniHkCyhszWPvotQaF_GCs0gKnQMZ-sxKsBhZOCR2dp6Or_npjbjpkePuLAyGVbbc33B6YOv2zqCdzcGsLAe_YnAdeALkmrMh5kjAE-w8w1X-9c9LmAdjofoiNo6wdfdnM8R4LSpMPTTMkTgyrPT-tm36h6WD6Rmtk4-tZqRHzWttkJ6rPpEPf2US3CSPI0xsWUwcnZXuoW6K25SGhjDXu7mjC3BX6zlFo2VpXdFZPbm34DBPYYxoWtvSgxal3_RVecEGl7-_jygGm2NEl6O-nEwpiFsaCvrRpvAPXJAN8PFb5Hr04-p4HLWFFSLDErGMAJYs9XnsMTWMTYSJDcgGKw3oocR6yWKtpcu8LKzIslx6zaX1iRnK1ArBONsmK1Vduc-E5rEurI-LPBUAhhlqblIrAQ3rBUu03CFxN6XKtFnHsfjFRHXhZbcKUFCIgmpQ2CGHz11mTcqN9xrzDif1at0oMAnvddvvMFXtR7tQCUtzCYwm0t3_G3WPrCXojocdmn2yspzfuQPQLMuiHxZln6wenfwcnz8B2-_r9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAeEG2peNeHnpDCZmM7cY4UWG1bHpW6IG6W44eUajdZ7S4HEOK3d8ZJgFYVh54iRbYT-bO_mUnG8xHyGTxszWPvotQaF_GCs0gKnQMZ-sxKsBhZOCR2dp4OL_m3a3G9RI66szCYVtlyf8Ppga3bO712NnvTsuz9jCF04AmQa876WCPhFXnNYfuijMHBw1OeB2NBfhFbR9i8-7UZkrzmFdYe6ufIHBlKvf_bOP1F08H2DNbIaus00sPmvd6RJVe9J2-flRL8QO4HWNmyGDs6Ld1d3ajblIaGPNebmaNziFfrGUWrZWld0Wk9vrUQMU9gjGhS29KDM0q_6FF5wXo_ro4HFLPNMaXLUV-OJxS8WxoU_Wij_AMXpAN8_Dq5HJyMjoZRq6wQGZaIRQS4ZKnPY4-1YWwiTGzAb7DSgEOUWC9ZrLV0mZeFFVmWS6-5tD4xfZlaIRhnH8lyVVdug9A81oX1cZGnAtAwfc1NaiXAYb1giZabJO6mVJm27DiqX4xVl1_2SwEKClFQDQqbZP-xy7SpufFSY97hpP5YOApswkvddjpMVbtr5yphaS6B0kS69X-jfiIrw9HZqTr9ev59m7xJMDYPn2t2yPJiduN2wYFZFHthgf4GSl7thA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+piezoelectric+pressure+sensor+based+on+polydopamine-modified+BaTiO3%2FPVDF+composite+film+for+human+motion+monitoring&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Yang%2C+Ye&rft.au=Pan%2C+Hong&rft.au=Xie%2C+Guangzhong&rft.au=Jiang%2C+Yadong&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=301&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2019.111789&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon