Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring
A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time. [Display omitted] •PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This p...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 301; p. 111789 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time.
[Display omitted]
•PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This pressure sensor was sensitive to various human motions.
Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics. |
---|---|
AbstractList | A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time.
[Display omitted]
•PDA-modified BTO/PVDF piezoelectric film for pressure sensor was prepared.•The fabricated sensor exhibited excellent performance and fast response time.•This pressure sensor was sensitive to various human motions.
Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics. Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However, traditional films based on inorganic/organic composite piezoelectric materials face the bottleneck of defects and cracks or poor dispersion, which hinders the performance of pressure sensors. Herein, polydopamine (PDA) was introduced as a surface modification agent to modify barium titanate (BaTiO3, BTO), which was then blended with poly(vinylidene fluoride) (PVDF) matrix in different ratios to form uniform and homogeneous PDA@BTO/PVDF composites. Afterwards, the flexible piezoelectric pressure sensor was fabricated by a facial solution-casting method. This PDA-modification strategy can improve the dispersion of BTO into PVDF matrix, as well as reduce the interface hole defects and cracks between the two components. As a result, the 17 wt% PDA@BTO/PVDF sensor exhibited a fast response of 61 ms and a remarkable piezoelectric output voltage of 9.3 V, which showed obvious improvement as compared to the pristine PVDF and BTO/PVDF composite counterparts. In addition, as an energy supplier, the sensor could produce a maximum power of 0.122 μW/cm2 even with high load resistance of 70 MΩ. This pressure sensor was sensitive to various human motions, showing great potential in the applications of wearable electronics. |
ArticleNumber | 111789 |
Author | Wang, Yang Xie, Guangzhong Chen, Chunxu Jiang, Yadong Yang, Ye Su, Yuanjie Pan, Hong Tai, Huiling |
Author_xml | – sequence: 1 givenname: Ye surname: Yang fullname: Yang, Ye – sequence: 2 givenname: Hong surname: Pan fullname: Pan, Hong – sequence: 3 givenname: Guangzhong surname: Xie fullname: Xie, Guangzhong – sequence: 4 givenname: Yadong surname: Jiang fullname: Jiang, Yadong – sequence: 5 givenname: Chunxu surname: Chen fullname: Chen, Chunxu – sequence: 6 givenname: Yuanjie surname: Su fullname: Su, Yuanjie – sequence: 7 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 8 givenname: Huiling surname: Tai fullname: Tai, Huiling email: taitai1980@uestc.edu.cn |
BookMark | eNp9kTtvFDEUhS0UJDaBH0BniXo2fsyMbVFBYAEpUigCreW1r-GuZuzBnkUE8ePxaqkoUp3inu8-zr0kFyknIOQlZ1vO-Hh92NbktoJxs-WcK22ekA3XSnaSjeaCbJgRfdeLXj0jl7UeGGNSKrUhf3YT_ML9BHRB-J1hAr8W9HQpUOuxAK2Qai507yoEmhNd8vQQ8uJmTNDNOWDEVnjr7vFOXn_--m5HfZ6XXHEFGnGaaWz09-PsEp3zivkkCddcMH17Tp5GN1V48U-vyJfd-_ubj93t3YdPN29uOy_FsHbBgxqjYdH0eghi8Mwzw4P2YmAiRC2ZcxpU1PswKGV0dL0OUXiuxzAMspdX5NW571LyjyPU1R7ysaQ20go5Gs1a37G51NnlS661QLQeV3daeS0OJ8uZPUVtD7ZFbU9R23PUjeT_kUvB2ZWHR5nXZwba4T8Riq0eIXkIWNoPbMj4CP0Xiyua4A |
CitedBy_id | crossref_primary_10_1007_s12221_024_00479_7 crossref_primary_10_1016_j_nanoen_2023_108276 crossref_primary_10_1016_j_compbiomed_2022_105827 crossref_primary_10_1039_D2NR04551F crossref_primary_10_1002_mame_202100266 crossref_primary_10_1109_JSEN_2021_3131582 crossref_primary_10_1016_j_ijbiomac_2024_138106 crossref_primary_10_3390_polym14020331 crossref_primary_10_1002_admi_202400546 crossref_primary_10_1088_1361_6439_acbe4b crossref_primary_10_1016_j_synthmet_2021_116697 crossref_primary_10_1002_admi_202000743 crossref_primary_10_1016_j_jallcom_2024_176038 crossref_primary_10_1016_j_sna_2022_113934 crossref_primary_10_1021_acsami_4c00529 crossref_primary_10_1088_1361_6528_ad5688 crossref_primary_10_1021_acsapm_4c03294 crossref_primary_10_1002_admt_202401160 crossref_primary_10_1007_s10854_021_07403_2 crossref_primary_10_1016_j_ceramint_2025_02_407 crossref_primary_10_1016_j_engfracmech_2022_108356 crossref_primary_10_1002_admt_202300347 crossref_primary_10_3390_ma17174196 crossref_primary_10_1016_j_measurement_2022_112274 crossref_primary_10_1016_j_jallcom_2022_164735 crossref_primary_10_1109_JFLEX_2024_3425812 crossref_primary_10_34133_bmef_0009 crossref_primary_10_1039_D2MA00559J crossref_primary_10_1016_j_mssp_2024_109253 crossref_primary_10_1016_j_eurpolymj_2021_110956 crossref_primary_10_1016_j_sna_2025_116470 crossref_primary_10_1063_5_0107003 crossref_primary_10_1002_adsr_202400031 crossref_primary_10_1016_j_nanoen_2023_108600 crossref_primary_10_3389_femat_2023_1222691 crossref_primary_10_1016_j_rser_2024_115093 crossref_primary_10_1007_s10854_021_07622_7 crossref_primary_10_1016_j_cej_2023_147550 crossref_primary_10_3390_s22197390 crossref_primary_10_1002_adfm_202401311 crossref_primary_10_1021_acsami_2c12914 crossref_primary_10_3390_mi13020254 crossref_primary_10_1016_j_measurement_2022_111773 crossref_primary_10_1007_s12274_023_5869_6 crossref_primary_10_1002_admt_202201112 crossref_primary_10_1016_j_nanoen_2022_107921 crossref_primary_10_3390_bios13010113 crossref_primary_10_1021_acsanm_1c03777 crossref_primary_10_1002_admt_202200260 crossref_primary_10_1002_advs_202307693 crossref_primary_10_1021_acsaelm_4c00519 crossref_primary_10_1007_s12221_024_00806_y crossref_primary_10_34133_2020_1085417 crossref_primary_10_1016_j_nanoen_2022_107487 crossref_primary_10_3390_nano12060934 crossref_primary_10_1016_j_jmat_2023_10_006 crossref_primary_10_1007_s10854_021_07590_y crossref_primary_10_1002_admt_202001218 crossref_primary_10_3390_s22124460 crossref_primary_10_1002_admt_202100574 crossref_primary_10_1021_acsaelm_1c00165 crossref_primary_10_2139_ssrn_4076905 crossref_primary_10_1016_j_diamond_2023_109940 crossref_primary_10_1080_10667857_2021_1965702 crossref_primary_10_1021_acsami_2c00443 crossref_primary_10_1038_s41598_023_29812_5 crossref_primary_10_1016_j_nanoen_2024_110045 crossref_primary_10_1002_admi_202400633 crossref_primary_10_1021_acsomega_1c04998 crossref_primary_10_3390_mi11121076 crossref_primary_10_3390_nano12224018 crossref_primary_10_1021_acsami_2c15641 crossref_primary_10_1016_j_matpr_2021_04_579 crossref_primary_10_1002_adem_202100469 crossref_primary_10_1016_j_nanoen_2020_105251 crossref_primary_10_1016_j_compscitech_2022_109323 crossref_primary_10_1016_j_mtener_2020_100489 crossref_primary_10_1007_s10854_022_09536_4 crossref_primary_10_1016_j_nanoen_2024_109443 crossref_primary_10_3390_polym16243603 crossref_primary_10_1002_adfm_202309177 crossref_primary_10_1039_D3MH01355C crossref_primary_10_1016_j_mtcomm_2023_105703 crossref_primary_10_1002_mame_202300009 crossref_primary_10_1039_D3DT02547K crossref_primary_10_1108_SR_12_2021_0487 crossref_primary_10_1021_acsami_2c01914 crossref_primary_10_3390_ma17225535 crossref_primary_10_3390_mi12080933 crossref_primary_10_3390_bios12080630 crossref_primary_10_7498_aps_69_20200784 crossref_primary_10_1002_adfm_202412507 crossref_primary_10_3390_nano13192630 crossref_primary_10_1016_j_orgel_2021_106296 crossref_primary_10_1002_mame_202200520 crossref_primary_10_1088_1361_6528_ad0907 crossref_primary_10_1088_1361_6528_ad5d69 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_3390_coatings13050829 crossref_primary_10_1039_D4TC03512G crossref_primary_10_3390_nano12071155 crossref_primary_10_1088_1361_6528_ad2f1d crossref_primary_10_1007_s13391_024_00514_y crossref_primary_10_1021_acsami_3c04290 crossref_primary_10_1021_acsami_4c12571 crossref_primary_10_3365_KJMM_2024_62_3_239 crossref_primary_10_1063_5_0167451 crossref_primary_10_1002_adma_202205609 crossref_primary_10_1007_s10854_021_06132_w crossref_primary_10_1016_j_mtener_2021_100900 crossref_primary_10_1002_adem_202200500 crossref_primary_10_1002_admt_202101074 crossref_primary_10_1007_s10854_025_14498_4 crossref_primary_10_1002_nano_202100003 crossref_primary_10_1016_j_cej_2024_150997 crossref_primary_10_1016_j_esr_2023_101124 crossref_primary_10_1016_j_surfin_2024_104798 crossref_primary_10_1016_j_nanoen_2022_108095 crossref_primary_10_1109_JSEN_2021_3057222 crossref_primary_10_1007_s11431_021_2005_0 crossref_primary_10_1088_1361_665X_ac9767 crossref_primary_10_1016_j_jmrt_2022_01_100 crossref_primary_10_1016_j_cej_2023_141648 crossref_primary_10_1016_j_ijbiomac_2024_135258 crossref_primary_10_1039_D4GC05504G crossref_primary_10_1016_j_polymer_2024_127398 crossref_primary_10_1039_D2NJ00002D crossref_primary_10_1002_eem2_12837 crossref_primary_10_1021_acsaelm_4c00157 crossref_primary_10_3365_KJMM_2022_60_2_149 crossref_primary_10_1016_j_apenergy_2023_122005 crossref_primary_10_1109_JSEN_2021_3055035 crossref_primary_10_1002_pc_27596 crossref_primary_10_1002_pc_28448 crossref_primary_10_1002_pat_5914 crossref_primary_10_1016_j_sna_2020_112424 crossref_primary_10_3390_s20185214 crossref_primary_10_1016_j_cej_2022_138280 crossref_primary_10_1016_j_mechmat_2020_103436 crossref_primary_10_3390_inorganics10120222 crossref_primary_10_1007_s10854_024_13686_y crossref_primary_10_35848_1347_4065_adb6ad crossref_primary_10_1021_acsami_1c14777 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1016_j_sna_2023_114395 crossref_primary_10_3389_fmats_2020_593342 crossref_primary_10_3390_mi12070813 crossref_primary_10_3390_nano14141173 crossref_primary_10_1002_admt_202301377 crossref_primary_10_1088_1361_665X_ad0b91 crossref_primary_10_3390_s21113895 crossref_primary_10_1016_j_eml_2021_101279 crossref_primary_10_1016_j_cej_2024_154554 crossref_primary_10_1021_acsanm_0c01551 crossref_primary_10_1002_aisy_202300631 crossref_primary_10_1016_j_mtchem_2023_101609 crossref_primary_10_2139_ssrn_4071780 crossref_primary_10_1039_D1NR08168C crossref_primary_10_1039_D4NR05200E crossref_primary_10_3390_mi12060695 crossref_primary_10_1039_D2TA09687K crossref_primary_10_3390_nano12172910 crossref_primary_10_1016_j_sna_2022_113770 crossref_primary_10_3390_s22072743 crossref_primary_10_1016_j_sna_2023_114585 crossref_primary_10_1007_s12274_022_4443_y crossref_primary_10_1021_acsami_2c02491 crossref_primary_10_1016_j_nanoen_2024_109480 crossref_primary_10_3390_s24175808 crossref_primary_10_1021_acsami_2c00874 crossref_primary_10_1109_JFLEX_2024_3422258 crossref_primary_10_1109_TED_2020_3039760 crossref_primary_10_1080_15583724_2022_2059673 crossref_primary_10_1016_j_polymer_2025_128156 crossref_primary_10_3390_ma17102299 crossref_primary_10_1002_pc_28064 crossref_primary_10_1080_14484846_2024_2399381 crossref_primary_10_1007_s11220_021_00376_w crossref_primary_10_1016_j_diamond_2022_109358 crossref_primary_10_1016_j_pmatsci_2024_101422 crossref_primary_10_7498_aps_69_20200987 crossref_primary_10_1039_D1RA06915B crossref_primary_10_1016_j_sna_2022_113415 crossref_primary_10_3390_s22145089 crossref_primary_10_1016_j_jmbbm_2021_104669 crossref_primary_10_3390_s24041069 crossref_primary_10_1002_pssa_202300901 crossref_primary_10_1002_pat_5816 crossref_primary_10_1016_j_nanoen_2023_108682 crossref_primary_10_1038_s41528_024_00310_6 crossref_primary_10_1016_j_cej_2024_149513 crossref_primary_10_1016_j_sna_2023_114331 crossref_primary_10_1063_5_0064129 crossref_primary_10_1007_s11664_024_11699_1 crossref_primary_10_1002_admt_202301280 crossref_primary_10_1109_JSEN_2024_3452940 crossref_primary_10_1007_s10854_022_09415_y crossref_primary_10_1002_adsr_202300025 crossref_primary_10_1007_s10971_022_06019_0 crossref_primary_10_3390_en17235896 crossref_primary_10_1039_D1CS00858G crossref_primary_10_3390_mi16010092 crossref_primary_10_1109_JSEN_2024_3430497 crossref_primary_10_3390_s22239131 crossref_primary_10_1002_pc_28976 crossref_primary_10_1002_adfm_202102983 crossref_primary_10_1002_wnan_1961 crossref_primary_10_1007_s12613_023_2773_8 crossref_primary_10_1002_mame_202300101 crossref_primary_10_3390_nano13060988 crossref_primary_10_1002_admt_202200309 crossref_primary_10_1007_s11431_021_1899_9 crossref_primary_10_1016_j_measurement_2022_111255 crossref_primary_10_1007_s10832_021_00266_3 crossref_primary_10_1016_j_memsci_2022_120962 crossref_primary_10_1021_acsaelm_3c01346 crossref_primary_10_1021_acsanm_3c01973 crossref_primary_10_3390_polym15204124 crossref_primary_10_1039_D3RA00604B crossref_primary_10_1039_D4MH01618A crossref_primary_10_1002_admi_202300670 crossref_primary_10_35848_1882_0786_acc569 crossref_primary_10_1080_00222348_2022_2030991 crossref_primary_10_3390_mi12060666 crossref_primary_10_1002_crat_202200130 crossref_primary_10_31613_ceramist_2024_27_1_03 crossref_primary_10_1021_acsami_4c19092 crossref_primary_10_1016_j_nanoen_2021_106232 crossref_primary_10_1021_acsami_3c15881 crossref_primary_10_1021_acs_biomac_4c00659 crossref_primary_10_1002_app_52338 crossref_primary_10_1016_j_nanoen_2023_108576 crossref_primary_10_1177_1045389X20966058 crossref_primary_10_1016_j_sna_2024_115503 crossref_primary_10_1016_j_optlastec_2023_109524 crossref_primary_10_1016_j_sna_2023_114478 crossref_primary_10_1142_S2010135X23400015 crossref_primary_10_2166_wst_2022_154 crossref_primary_10_1016_j_polymertesting_2022_107513 crossref_primary_10_3390_ma15186378 crossref_primary_10_1007_s00339_023_07080_4 crossref_primary_10_1109_TNANO_2024_3496487 crossref_primary_10_1007_s12274_022_5084_x crossref_primary_10_1038_s41378_023_00509_z crossref_primary_10_1002_admt_202100858 crossref_primary_10_1016_j_nanoen_2020_105414 crossref_primary_10_1021_acsami_3c12921 crossref_primary_10_1002_smll_202306655 crossref_primary_10_1016_j_sna_2024_116034 crossref_primary_10_3390_mi12091091 crossref_primary_10_1016_j_sna_2020_111940 crossref_primary_10_1007_s10854_024_13402_w crossref_primary_10_3762_bjnano_13_14 crossref_primary_10_1002_mame_202200235 crossref_primary_10_1109_JSEN_2024_3476173 crossref_primary_10_3390_en17164066 crossref_primary_10_2139_ssrn_4111093 crossref_primary_10_1002_idm2_12175 crossref_primary_10_3390_mi14081638 crossref_primary_10_1002_pat_5613 crossref_primary_10_1007_s00289_020_03380_4 crossref_primary_10_1016_j_measurement_2022_111839 crossref_primary_10_1007_s42765_024_00461_1 crossref_primary_10_1016_j_mtcomm_2023_105541 crossref_primary_10_1109_JSEN_2020_2974096 crossref_primary_10_1016_j_sna_2025_116202 crossref_primary_10_1016_j_compscitech_2022_109478 crossref_primary_10_1016_j_nanoso_2023_100949 crossref_primary_10_1109_TIM_2025_3545524 crossref_primary_10_1039_D3DT02587J crossref_primary_10_1016_j_cej_2025_159919 crossref_primary_10_2139_ssrn_4097424 crossref_primary_10_1016_j_biomaterials_2024_122528 crossref_primary_10_1016_j_mtphys_2024_101606 crossref_primary_10_1039_D1TA03505C crossref_primary_10_1109_JSEN_2022_3230982 crossref_primary_10_1016_j_isci_2020_101987 crossref_primary_10_15541_jim20220549 crossref_primary_10_2139_ssrn_4113140 crossref_primary_10_1016_j_nanoen_2021_105809 crossref_primary_10_1088_1361_665X_abee34 crossref_primary_10_1002_mame_202100113 crossref_primary_10_3389_fbioe_2023_1303004 crossref_primary_10_1088_1361_6463_ad2b1f crossref_primary_10_1088_1361_6528_ad0502 crossref_primary_10_1002_smll_202307689 crossref_primary_10_1002_adem_202400445 crossref_primary_10_1002_advs_202105738 crossref_primary_10_1007_s10854_023_11848_y crossref_primary_10_1016_j_nanoen_2025_110897 crossref_primary_10_1002_adem_202201678 crossref_primary_10_1016_j_sna_2022_113393 crossref_primary_10_1007_s11664_022_09825_y crossref_primary_10_1007_s10570_021_04343_2 crossref_primary_10_1021_acsami_3c13818 crossref_primary_10_3390_ijms25031564 crossref_primary_10_1002_aelm_202400980 crossref_primary_10_1021_acssensors_4c00375 crossref_primary_10_1016_j_heliyon_2024_e25021 crossref_primary_10_1088_1361_6439_ace268 crossref_primary_10_1109_JSEN_2024_3481309 crossref_primary_10_7498_aps_70_20210023 crossref_primary_10_1016_j_surfin_2021_101005 crossref_primary_10_1016_j_coco_2024_102166 crossref_primary_10_1002_inf2_12552 crossref_primary_10_1016_j_nanoen_2021_106319 crossref_primary_10_3390_s24020468 crossref_primary_10_1016_j_jallcom_2020_158545 crossref_primary_10_1088_1361_6463_ac8687 crossref_primary_10_1002_adma_202004832 crossref_primary_10_1002_admt_202101460 crossref_primary_10_1021_acsaem_4c02247 crossref_primary_10_3390_s24123812 crossref_primary_10_1016_j_nanoen_2024_109496 crossref_primary_10_1016_j_sna_2023_114553 crossref_primary_10_1016_j_cej_2023_141598 crossref_primary_10_1039_D4DT01761G crossref_primary_10_1021_acsami_2c01611 crossref_primary_10_1021_acs_jpcb_2c03151 crossref_primary_10_3390_catal13061019 crossref_primary_10_1016_j_mtsust_2023_100318 crossref_primary_10_1016_j_polymer_2023_126399 crossref_primary_10_1016_j_cej_2024_148729 crossref_primary_10_1016_j_bspc_2025_107598 crossref_primary_10_3390_polym13183112 crossref_primary_10_1002_adsr_202300168 crossref_primary_10_1007_s40843_022_2281_9 crossref_primary_10_1002_adfm_202008729 crossref_primary_10_1007_s12200_023_00058_3 crossref_primary_10_1016_j_nanoen_2021_106320 crossref_primary_10_1038_s41378_021_00248_z crossref_primary_10_3390_nano13192692 crossref_primary_10_3390_app14083356 crossref_primary_10_1080_07315171_2022_2122414 crossref_primary_10_1016_j_apmt_2025_102614 |
Cites_doi | 10.1002/pola.27485 10.1109/LED.2018.2846184 10.1039/C8NR00379C 10.1039/C8TC02946F 10.1002/adfm.201404087 10.1002/adma.201200105 10.1039/C8NR05292A 10.1166/sam.2019.3447 10.1021/am500375n 10.1109/TDEI.2002.1038664 10.1021/acsami.5b04669 10.1039/C5NR02067K 10.3390/polym9100479 10.1016/j.jcis.2016.02.011 10.1016/j.nanoen.2016.10.034 10.1002/adma.201502470 10.1021/nn9006412 10.1002/polb.20223 10.1039/c3cp52799a 10.1021/acsami.8b14514 10.1002/admt.201700053 10.1002/adma.201401310 10.1126/science.1147241 10.1021/acsami.7b08664 10.1016/j.compscitech.2017.06.013 10.1021/acssuschemeng.8b04627 10.1002/adfm.201504755 10.1021/am4048267 10.1002/adma.201606425 10.1002/adma.201504299 10.1016/j.jeurceramsoc.2014.12.019 10.1039/C4MH00147H 10.1039/c2jm32579a 10.1016/j.compscitech.2018.10.021 10.1039/C4NR02246G 10.1016/j.nanoen.2018.10.049 10.1016/j.matlet.2018.10.014 10.1021/acsami.5b09502 10.1002/pat.4096 10.1007/s00339-016-0161-1 10.1021/acsami.6b14166 10.1002/smll.201604245 10.1016/j.nanoen.2019.03.013 10.1039/C7DT03389C 10.1021/acsnano.7b04898 10.1016/j.compositesb.2014.12.001 10.1021/acsami.5b05344 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Jan 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Jan 1, 2020 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2019.111789 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2019_111789 S0924424719311215 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-dce76f90f9485d25c0c091d8c2502df830aa8e7f8bd57798fa48df2c186d55343 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Mon Jul 14 09:41:21 EDT 2025 Tue Jul 01 01:05:30 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Fri Feb 23 02:49:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Motion monitoring Flexible PDA@BTO/PVDF Pressure sensor Piezoelectric |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-dce76f90f9485d25c0c091d8c2502df830aa8e7f8bd57798fa48df2c186d55343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2369804856 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2369804856 crossref_citationtrail_10_1016_j_sna_2019_111789 crossref_primary_10_1016_j_sna_2019_111789 elsevier_sciencedirect_doi_10_1016_j_sna_2019_111789 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wang, Wang, Wang, Xiao, Jing, Cui, Pu (bib0160) 2017; 9 Amjadi, Kyung, Park, Sitti (bib0025) 2016; 26 Yi, Yang, Tian, Dong, Liu, Yang (bib0095) 2018; 39 Hu, Yan, Zhao, Zhang, Niu (bib0210) 2018; 168 Chen, Li, Shao, An, Tian, Wang, Han, Wang, Lu (bib0110) 2017; 13 Guo, Tan, Shi, Li, Wang, Sun, Huang, Long, Jiang (bib0050) 2018; 10 Huang, Jiang (bib0145) 2015; 27 Xie, Huang, Li, Zhi, Tanaka, Jiang (bib0175) 2013; 15 Salimi, Yousefi (bib0205) 2004; 42 Bhavanasi, Kumar, Parida, Wang, Lee (bib0075) 2015; 8 Siddiqui, Kim, Roh, Duy, Trung, Nguyen, Lee (bib0125) 2016; 30 Fan, Tang, Wang (bib0070) 2016; 28 Li, Zhang, Dai, Tong, Zhou, Zhao, An (bib0130) 2018; 10 Li, Luo, Pang, Ding, Wang, Ke, Huang, Wei (bib0200) 2014; 6 Park, Bae, Yang, Lee, Lee, Lee (bib0220) 2014; 6 Yan, Deng, Jin, Yang, Wang, Chu, Su, Chen, Yang (bib0065) 2018; 10 Kim, Doss, Tillotson, Hotchkiss, Pan, Marder, Li, Calame, Perry (bib0155) 2009; 3 Singh, Singh, Khare (bib0245) 2018; 29 Qian, Qin, He, Niu, Qian, Geng, Mu, Hou, Chou (bib0090) 2019; 236 Najjar, Luo, Jao, Brennan, Xue, Beachley, Hu, Xue (bib0080) 2017; 9 Liu, Fu, Wang, Yan, Xin, Cai, Xu (bib0195) 2016; 469 Nunes-Pereira, Sencadas, Correia, Cardoso, Han, Rocha, Lanceros-Mendez (bib0120) 2015; 72 Li, Bao, Tao, Peng, Pan (bib0015) 2018; 6 Sultana, Alam, Garain, Sinha, Middya, Mandal (bib0135) 2015; 7 Huang, Lin, Xu, Zhou, Duan, Hu, Zhou (bib0045) 2019 Zhong, Zhong, Hu, Wu, Li, Wang, Hu, Zhou (bib0040) 2015; 25 Liu, Pharr, Salvatore (bib0020) 2017; 11 Suchanicz, Swierczek, Nogas-Cwikiel, Konieczny, Sitko (bib0190) 2015; 35 Song, Shen, Liu, Lin, Li, Nan (bib0170) 2012; 22 Zang, Zhang, Di, Zhu (bib0010) 2015; 2 Dickey (bib0030) 2017; 29 Lee, Dellatore, Miller, Messersmith (bib0165) 2007; 318 Rahman, Lee, Phan, Chung (bib0240) 2013; 22 Yang, Huang, Zhu, Xie, Tanaka, Jiang (bib0140) 2014; 6 Mao, Zhang, Wang, Guan, Liu, Wang, Sun, Xing, Chen, Xue (bib0105) 2019; 11 Ejaz, Puli, Elupula, Adireddy, Riggs, Chrisey, Grayson (bib0150) 2015; 53 Xie, Yu, Feng, Jiang, Zhang (bib0180) 2017; 9 Singh, Singh, Khare (bib0235) 2017; 149 Deng, Yang, Jin, Yan, Huang, Chu, Wang, Xiong, Tian, Gao, Zhang, Yang (bib0055) 2019; 55 Fu, Hou, Zheng, Wei, Zhu, Yan (bib0215) 2015; 7 Niu, Jia, Qian, Zhu, Zhang, Hou, Mu, Geng, Cho, He, Chou (bib0085) 2018; 7 Tuncer, Serdyuk, Gubanski (bib0225) 2002; 9 Park, Lee, Liu, Moon, Hwang, Zhu, Kim, Kim, Kim, Wang, Lee (bib0115) 2012; 24 Mayeen, Kala, Jayalakshmy, Thomas, Rouxel, Philip, Howmik, Kalarikkal (bib0185) 2018; 47 Bhunia, Das, Dalui, Hussain, Paul, Bhar, Pal (bib0100) 2016; 122 Karan, Mandal, Khatua (bib0230) 2015; 7 Tian, Deng, Gao, Xiong, Yan, He, Yang, Jin, Chu, Zhang, Yan, Yang (bib0060) 2019 Lee, Kim, Joo, Raj, Ghaffari, Kim (bib0005) 2017; 2 Zhong, Zhong, Cheng, Yao, Wang, Li, Wu, Liu, Hu, Zhou (bib0035) 2015; 27 Lee (10.1016/j.sna.2019.111789_bib0165) 2007; 318 Zang (10.1016/j.sna.2019.111789_bib0010) 2015; 2 Wang (10.1016/j.sna.2019.111789_bib0160) 2017; 9 Deng (10.1016/j.sna.2019.111789_bib0055) 2019; 55 Li (10.1016/j.sna.2019.111789_bib0130) 2018; 10 Liu (10.1016/j.sna.2019.111789_bib0195) 2016; 469 Bhavanasi (10.1016/j.sna.2019.111789_bib0075) 2015; 8 Rahman (10.1016/j.sna.2019.111789_bib0240) 2013; 22 Bhunia (10.1016/j.sna.2019.111789_bib0100) 2016; 122 Chen (10.1016/j.sna.2019.111789_bib0110) 2017; 13 Hu (10.1016/j.sna.2019.111789_bib0210) 2018; 168 Ejaz (10.1016/j.sna.2019.111789_bib0150) 2015; 53 Yan (10.1016/j.sna.2019.111789_bib0065) 2018; 10 Karan (10.1016/j.sna.2019.111789_bib0230) 2015; 7 Sultana (10.1016/j.sna.2019.111789_bib0135) 2015; 7 Mao (10.1016/j.sna.2019.111789_bib0105) 2019; 11 Amjadi (10.1016/j.sna.2019.111789_bib0025) 2016; 26 Fan (10.1016/j.sna.2019.111789_bib0070) 2016; 28 Li (10.1016/j.sna.2019.111789_bib0200) 2014; 6 Tuncer (10.1016/j.sna.2019.111789_bib0225) 2002; 9 Liu (10.1016/j.sna.2019.111789_bib0020) 2017; 11 Kim (10.1016/j.sna.2019.111789_bib0155) 2009; 3 Mayeen (10.1016/j.sna.2019.111789_bib0185) 2018; 47 Huang (10.1016/j.sna.2019.111789_bib0145) 2015; 27 Zhong (10.1016/j.sna.2019.111789_bib0040) 2015; 25 Qian (10.1016/j.sna.2019.111789_bib0090) 2019; 236 Dickey (10.1016/j.sna.2019.111789_bib0030) 2017; 29 Singh (10.1016/j.sna.2019.111789_bib0245) 2018; 29 Yi (10.1016/j.sna.2019.111789_bib0095) 2018; 39 Nunes-Pereira (10.1016/j.sna.2019.111789_bib0120) 2015; 72 Xie (10.1016/j.sna.2019.111789_bib0175) 2013; 15 Salimi (10.1016/j.sna.2019.111789_bib0205) 2004; 42 Suchanicz (10.1016/j.sna.2019.111789_bib0190) 2015; 35 Najjar (10.1016/j.sna.2019.111789_bib0080) 2017; 9 Song (10.1016/j.sna.2019.111789_bib0170) 2012; 22 Guo (10.1016/j.sna.2019.111789_bib0050) 2018; 10 Xie (10.1016/j.sna.2019.111789_bib0180) 2017; 9 Li (10.1016/j.sna.2019.111789_bib0015) 2018; 6 Tian (10.1016/j.sna.2019.111789_bib0060) 2019 Park (10.1016/j.sna.2019.111789_bib0115) 2012; 24 Park (10.1016/j.sna.2019.111789_bib0220) 2014; 6 Huang (10.1016/j.sna.2019.111789_bib0045) 2019 Fu (10.1016/j.sna.2019.111789_bib0215) 2015; 7 Siddiqui (10.1016/j.sna.2019.111789_bib0125) 2016; 30 Niu (10.1016/j.sna.2019.111789_bib0085) 2018; 7 Yang (10.1016/j.sna.2019.111789_bib0140) 2014; 6 Singh (10.1016/j.sna.2019.111789_bib0235) 2017; 149 Lee (10.1016/j.sna.2019.111789_bib0005) 2017; 2 Zhong (10.1016/j.sna.2019.111789_bib0035) 2015; 27 |
References_xml | – volume: 6 start-page: 5144 year: 2014 end-page: 5151 ident: bib0200 article-title: Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1812 year: 2014 end-page: 1822 ident: bib0140 article-title: Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 17751 year: 2018 end-page: 17760 ident: bib0050 article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO publication-title: Nanoscale – volume: 9 start-page: 479 year: 2017 ident: bib0080 article-title: Biocompatible silk/polymer energy harvesters using stretched poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers publication-title: Polymers – volume: 25 start-page: 1798 year: 2015 end-page: 1803 ident: bib0040 article-title: Stretchable self-powered fiber-based strain sensor publication-title: Adv. Funct. Mater. – volume: 27 start-page: 546 year: 2015 end-page: 554 ident: bib0145 article-title: Core–shell structured high‐k polymer nanocomposites for energy storage and dielectric applications publication-title: Adv. Mater. – volume: 10 start-page: 5489 year: 2018 end-page: 5495 ident: bib0130 article-title: A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light publication-title: Nanoscale – volume: 6 start-page: 8962 year: 2014 end-page: 8968 ident: bib0220 article-title: Lead-free BaTiO publication-title: Nanoscale – volume: 13 year: 2017 ident: bib0110 article-title: High‐performance piezoelectric nanogenerators with imprinted P (VDF‐TrFE)/BaTiO publication-title: Small – volume: 11 start-page: 9614 year: 2017 end-page: 9635 ident: bib0020 article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring publication-title: ACS Nano – volume: 24 start-page: 2999 year: 2012 end-page: 3004 ident: bib0115 article-title: Flexible nanocomposite generator made of BaTiO publication-title: Adv. Mater – volume: 2 start-page: 1700053 year: 2017 ident: bib0005 article-title: Wearable sensing systems with mechanically soft assemblies of nanoscale materials publication-title: Int. J. Adv. Mater. Technol. – volume: 9 start-page: 809 year: 2002 end-page: 828 ident: bib0225 article-title: Dielectric mixtures: electrical properties and modeling publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 72 start-page: 130 year: 2015 end-page: 136 ident: bib0120 article-title: Energy harvesting performance of BaTiO publication-title: Compos. Pt. B-Eng. – volume: 469 start-page: 69 year: 2016 end-page: 77 ident: bib0195 article-title: Magnetically separable and recyclable Fe publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 2581 year: 2009 end-page: 2592 ident: bib0155 article-title: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer publication-title: ACS Nano – volume: 7 start-page: 19091 year: 2015 end-page: 19097 ident: bib0135 article-title: An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 10655 year: 2015 end-page: 10666 ident: bib0230 article-title: Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester publication-title: Nanoscale – volume: 168 start-page: 327 year: 2018 end-page: 335 ident: bib0210 article-title: Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property publication-title: Compos. Sci. Technol. – volume: 28 start-page: 4283 year: 2016 end-page: 4305 ident: bib0070 article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics publication-title: Adv. Mater – volume: 22 year: 2013 ident: bib0240 article-title: Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites publication-title: Smart Mater. Struct. – volume: 7 start-page: 979 year: 2018 end-page: 985 ident: bib0085 article-title: High-performance PZT-Based stretchable piezoelectric nanogenerator publication-title: ACS Sustain. Chem. Eng. – volume: 30 start-page: 434 year: 2016 end-page: 442 ident: bib0125 article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system publication-title: Nano Energy – volume: 15 start-page: 17560 year: 2013 end-page: 17569 ident: bib0175 article-title: Core–satellite Ag@ BaTiO publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 521 year: 2015 end-page: 529 ident: bib0075 article-title: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 1777 year: 2015 end-page: 1783 ident: bib0190 article-title: PbMg publication-title: J. Eur. Ceram. Soc. – volume: 39 start-page: 1226 year: 2018 end-page: 1229 ident: bib0095 article-title: Self-powered force sensor based on thinned bulk PZT for real-time cutaneous activities monitoring publication-title: IEEE Electron Device Lett. – volume: 55 start-page: 516 year: 2019 end-page: 525 ident: bib0055 article-title: Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures publication-title: Nano Energy – volume: 122 start-page: 637 year: 2016 ident: bib0100 article-title: Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester publication-title: Appl. Phys. A-Mater. Sci. Process. – volume: 7 start-page: 24480 year: 2015 end-page: 24491 ident: bib0215 article-title: Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 41070 year: 2018 end-page: 41075 ident: bib0065 article-title: Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 2039 year: 2018 end-page: 2051 ident: bib0185 article-title: Dopamine functionalization of BaTiO publication-title: Dalton Trans. – volume: 29 start-page: 143 year: 2018 end-page: 150 ident: bib0245 article-title: Polym. Enhanced publication-title: Adv. Technol. – volume: 236 start-page: 96 year: 2019 end-page: 100 ident: bib0090 article-title: A stretchable piezoelectric elastic composite publication-title: Mater. Lett. – volume: 11 start-page: 351 year: 2019 end-page: 359 ident: bib0105 article-title: Self-powered wearable athletics monitoring nanodevice based on ZnO nanowire piezoelectric-biosensing unit arrays publication-title: Adv. Mater. Sci. – volume: 9 start-page: 29130 year: 2017 end-page: 29139 ident: bib0160 article-title: Poly (vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba (Fe publication-title: ACS Appl. Mater. Interfaces – volume: 318 start-page: 426 year: 2007 end-page: 430 ident: bib0165 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science – volume: 27 start-page: 7130 year: 2015 end-page: 7136 ident: bib0035 article-title: Paper-based active tactile sensor array publication-title: Adv. Mater. – volume: 22 start-page: 16491 year: 2012 end-page: 16498 ident: bib0170 article-title: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO publication-title: J. Mater. Chem. – year: 2019 ident: bib0060 article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training publication-title: Nano Energy – volume: 53 start-page: 719 year: 2015 end-page: 728 ident: bib0150 article-title: Core‐shell structured poly (glycidyl methacrylate)/BaTiO publication-title: J. Polym. Sci. Pol. Chem. – volume: 6 start-page: 11878 year: 2018 end-page: 11892 ident: bib0015 article-title: Recent progress in flexible pressure sensor arrays: from design to applications publication-title: J. Mater. Chem. C – volume: 9 start-page: 2995 year: 2017 end-page: 3005 ident: bib0180 article-title: Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 140 year: 2015 end-page: 156 ident: bib0010 article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications publication-title: Mater. Horizons – volume: 26 start-page: 1678 year: 2016 end-page: 1698 ident: bib0025 article-title: Stretchable, skin mountable, and wearable strain sensors and their potential applications: a review publication-title: Adv. Funct. Mater. – volume: 29 year: 2017 ident: bib0030 article-title: Stretchable and soft electronics using liquid metals publication-title: Adv. – volume: 149 start-page: 127 year: 2017 end-page: 133 ident: bib0235 article-title: Design of flexible PVDF/NaNbO publication-title: Compos. Sci. Technol. – start-page: 1902034 year: 2019 ident: bib0045 article-title: Fiber-based energy conversion devices for human-body energy harvesting publication-title: Adv. Mater. – volume: 42 start-page: 3487 year: 2004 end-page: 3495 ident: bib0205 article-title: Conformational changes and phase transformation mechanisms in PVDF solution‐cast films publication-title: J. Polym. Sci. Pt. B-Polym. Phys. – volume: 53 start-page: 719 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0150 article-title: Core‐shell structured poly (glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface‐initiated atom transfer radical polymerization: a novel material for high energy density dielectric storage publication-title: J. Polym. Sci. Pol. Chem. doi: 10.1002/pola.27485 – volume: 39 start-page: 1226 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0095 article-title: Self-powered force sensor based on thinned bulk PZT for real-time cutaneous activities monitoring publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2846184 – volume: 10 start-page: 5489 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0130 article-title: A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light publication-title: Nanoscale doi: 10.1039/C8NR00379C – volume: 6 start-page: 11878 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0015 article-title: Recent progress in flexible pressure sensor arrays: from design to applications publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02946F – volume: 25 start-page: 1798 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0040 article-title: Stretchable self-powered fiber-based strain sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404087 – volume: 24 start-page: 2999 year: 2012 ident: 10.1016/j.sna.2019.111789_bib0115 article-title: Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons publication-title: Adv. Mater doi: 10.1002/adma.201200105 – volume: 10 start-page: 17751 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0050 article-title: Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring publication-title: Nanoscale doi: 10.1039/C8NR05292A – volume: 11 start-page: 351 year: 2019 ident: 10.1016/j.sna.2019.111789_bib0105 article-title: Self-powered wearable athletics monitoring nanodevice based on ZnO nanowire piezoelectric-biosensing unit arrays publication-title: Adv. Mater. Sci. doi: 10.1166/sam.2019.3447 – volume: 6 start-page: 5144 year: 2014 ident: 10.1016/j.sna.2019.111789_bib0200 article-title: Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500375n – volume: 9 start-page: 809 year: 2002 ident: 10.1016/j.sna.2019.111789_bib0225 article-title: Dielectric mixtures: electrical properties and modeling publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2002.1038664 – volume: 7 start-page: 19091 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0135 article-title: An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04669 – volume: 7 start-page: 10655 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0230 article-title: Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester publication-title: Nanoscale doi: 10.1039/C5NR02067K – volume: 9 start-page: 479 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0080 article-title: Biocompatible silk/polymer energy harvesters using stretched poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers publication-title: Polymers doi: 10.3390/polym9100479 – volume: 22 year: 2013 ident: 10.1016/j.sna.2019.111789_bib0240 article-title: Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites publication-title: Smart Mater. Struct. – volume: 469 start-page: 69 year: 2016 ident: 10.1016/j.sna.2019.111789_bib0195 article-title: Magnetically separable and recyclable Fe3O4–polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.02.011 – volume: 30 start-page: 434 year: 2016 ident: 10.1016/j.sna.2019.111789_bib0125 article-title: A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.034 – volume: 27 start-page: 7130 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0035 article-title: Paper-based active tactile sensor array publication-title: Adv. Mater. doi: 10.1002/adma.201502470 – volume: 3 start-page: 2581 year: 2009 ident: 10.1016/j.sna.2019.111789_bib0155 article-title: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer publication-title: ACS Nano doi: 10.1021/nn9006412 – start-page: 1902034 year: 2019 ident: 10.1016/j.sna.2019.111789_bib0045 article-title: Fiber-based energy conversion devices for human-body energy harvesting publication-title: Adv. Mater. – volume: 42 start-page: 3487 year: 2004 ident: 10.1016/j.sna.2019.111789_bib0205 article-title: Conformational changes and phase transformation mechanisms in PVDF solution‐cast films publication-title: J. Polym. Sci. Pt. B-Polym. Phys. doi: 10.1002/polb.20223 – volume: 15 start-page: 17560 year: 2013 ident: 10.1016/j.sna.2019.111789_bib0175 article-title: Core–satellite Ag@ BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52799a – volume: 10 start-page: 41070 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0065 article-title: Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14514 – volume: 2 start-page: 1700053 issue: 9 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0005 article-title: Wearable sensing systems with mechanically soft assemblies of nanoscale materials publication-title: Int. J. Adv. Mater. Technol. doi: 10.1002/admt.201700053 – volume: 27 start-page: 546 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0145 article-title: Core–shell structured high‐k polymer nanocomposites for energy storage and dielectric applications publication-title: Adv. Mater. doi: 10.1002/adma.201401310 – volume: 318 start-page: 426 issue: 5849 year: 2007 ident: 10.1016/j.sna.2019.111789_bib0165 article-title: Mussel-inspired surface chemistry for multifunctional coatings publication-title: Science doi: 10.1126/science.1147241 – volume: 9 start-page: 29130 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0160 article-title: Poly (vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba (Fe0. 5Ta0. 5) O3, for high energy-storage density at low electric field publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08664 – volume: 149 start-page: 127 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0235 article-title: Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.06.013 – volume: 7 start-page: 979 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0085 article-title: High-performance PZT-Based stretchable piezoelectric nanogenerator publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04627 – volume: 26 start-page: 1678 year: 2016 ident: 10.1016/j.sna.2019.111789_bib0025 article-title: Stretchable, skin mountable, and wearable strain sensors and their potential applications: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 6 start-page: 1812 year: 2014 ident: 10.1016/j.sna.2019.111789_bib0140 article-title: Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4048267 – volume: 29 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0030 article-title: Stretchable and soft electronics using liquid metals publication-title: Adv. Mater. doi: 10.1002/adma.201606425 – volume: 28 start-page: 4283 year: 2016 ident: 10.1016/j.sna.2019.111789_bib0070 article-title: Flexible nanogenerators for energy harvesting and self‐powered electronics publication-title: Adv. Mater doi: 10.1002/adma.201504299 – volume: 35 start-page: 1777 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0190 article-title: PbMg1/3Nb2/3O3-doping effects on structural, thermal, Raman, dielectric and ferroelectric properties of BaTiO3 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.12.019 – volume: 2 start-page: 140 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0010 article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications publication-title: Mater. Horizons doi: 10.1039/C4MH00147H – volume: 22 start-page: 16491 year: 2012 ident: 10.1016/j.sna.2019.111789_bib0170 article-title: Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix publication-title: J. Mater. Chem. doi: 10.1039/c2jm32579a – volume: 168 start-page: 327 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0210 article-title: Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.10.021 – volume: 6 start-page: 8962 year: 2014 ident: 10.1016/j.sna.2019.111789_bib0220 article-title: Lead-free BaTiO3 nanowires-based flexible nanocomposite generator publication-title: Nanoscale doi: 10.1039/C4NR02246G – volume: 55 start-page: 516 year: 2019 ident: 10.1016/j.sna.2019.111789_bib0055 article-title: Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.049 – volume: 236 start-page: 96 year: 2019 ident: 10.1016/j.sna.2019.111789_bib0090 article-title: A stretchable piezoelectric elastic composite publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.10.014 – volume: 8 start-page: 521 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0075 article-title: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09502 – volume: 29 start-page: 143 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0245 article-title: Polym. Enhanced β‐phase in PVDF polymer nanocomposite and its application for nanogenerator publication-title: Adv. Technol. doi: 10.1002/pat.4096 – volume: 122 start-page: 637 year: 2016 ident: 10.1016/j.sna.2019.111789_bib0100 article-title: Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester publication-title: Appl. Phys. A-Mater. Sci. Process. doi: 10.1007/s00339-016-0161-1 – volume: 9 start-page: 2995 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0180 article-title: Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14166 – volume: 13 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0110 article-title: High‐performance piezoelectric nanogenerators with imprinted P (VDF‐TrFE)/BaTiO3 nanocomposite micropillars for self‐powered flexible sensors publication-title: Small doi: 10.1002/smll.201604245 – year: 2019 ident: 10.1016/j.sna.2019.111789_bib0060 article-title: Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.013 – volume: 47 start-page: 2039 year: 2018 ident: 10.1016/j.sna.2019.111789_bib0185 article-title: Dopamine functionalization of BaTiO3: an effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites publication-title: Dalton Trans. doi: 10.1039/C7DT03389C – volume: 11 start-page: 9614 year: 2017 ident: 10.1016/j.sna.2019.111789_bib0020 article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring publication-title: ACS Nano doi: 10.1021/acsnano.7b04898 – volume: 72 start-page: 130 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0120 article-title: Energy harvesting performance of BaTiO3/poly (vinylidene fluoride–trifluoroethylene) spin coated nanocomposites publication-title: Compos. Pt. B-Eng. doi: 10.1016/j.compositesb.2014.12.001 – volume: 7 start-page: 24480 year: 2015 ident: 10.1016/j.sna.2019.111789_bib0215 article-title: Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05344 |
SSID | ssj0003377 |
Score | 2.678405 |
Snippet | A novel PDA-modified BTO/PVDF film based piezoelectric pressure sensor with excellent performance and fast response time.
[Display omitted]
•PDA-modified... Flexible pressure sensors based on piezoelectric materials have been intensively investigated for their wide applications in wearable electronics. However,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111789 |
SubjectTerms | Barium Barium titanates Composite materials Cracks Dispersion Electronics Flaw detection Flexible Hole defects Human motion Load resistance Maximum power Motion monitoring PDA@BTO/PVDF Piezoelectric Piezoelectricity Polyvinylidene fluorides Pressure casting Pressure sensor Pressure sensors Sensors Vinylidene fluoride Wearable computers Wearable technology |
Title | Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring |
URI | https://dx.doi.org/10.1016/j.sna.2019.111789 https://www.proquest.com/docview/2369804856 |
Volume | 301 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcKGHCgqovFY-9ISUbja2E-dIaVcLFQ-pUHGzHD-koN1ktbscQKi_nRkngVIhDj1Fimwn8ud8840zniHkCyhszWPvotQaF_GCs0gKnQMZ-sxKsBhZOCR2dp6Or_npjbjpkePuLAyGVbbc33B6YOv2zqCdzcGsLAe_YnAdeALkmrMh5kjAE-w8w1X-9c9LmAdjofoiNo6wdfdnM8R4LSpMPTTMkTgyrPT-tm36h6WD6Rmtk4-tZqRHzWttkJ6rPpEPf2US3CSPI0xsWUwcnZXuoW6K25SGhjDXu7mjC3BX6zlFo2VpXdFZPbm34DBPYYxoWtvSgxal3_RVecEGl7-_jygGm2NEl6O-nEwpiFsaCvrRpvAPXJAN8PFb5Hr04-p4HLWFFSLDErGMAJYs9XnsMTWMTYSJDcgGKw3oocR6yWKtpcu8LKzIslx6zaX1iRnK1ArBONsmK1Vduc-E5rEurI-LPBUAhhlqblIrAQ3rBUu03CFxN6XKtFnHsfjFRHXhZbcKUFCIgmpQ2CGHz11mTcqN9xrzDif1at0oMAnvddvvMFXtR7tQCUtzCYwm0t3_G3WPrCXojocdmn2yspzfuQPQLMuiHxZln6wenfwcnz8B2-_r9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAeEG2peNeHnpDCZmM7cY4UWG1bHpW6IG6W44eUajdZ7S4HEOK3d8ZJgFYVh54iRbYT-bO_mUnG8xHyGTxszWPvotQaF_GCs0gKnQMZ-sxKsBhZOCR2dp4OL_m3a3G9RI66szCYVtlyf8Ppga3bO712NnvTsuz9jCF04AmQa876WCPhFXnNYfuijMHBw1OeB2NBfhFbR9i8-7UZkrzmFdYe6ufIHBlKvf_bOP1F08H2DNbIaus00sPmvd6RJVe9J2-flRL8QO4HWNmyGDs6Ld1d3ajblIaGPNebmaNziFfrGUWrZWld0Wk9vrUQMU9gjGhS29KDM0q_6FF5wXo_ro4HFLPNMaXLUV-OJxS8WxoU_Wij_AMXpAN8_Dq5HJyMjoZRq6wQGZaIRQS4ZKnPY4-1YWwiTGzAb7DSgEOUWC9ZrLV0mZeFFVmWS6-5tD4xfZlaIRhnH8lyVVdug9A81oX1cZGnAtAwfc1NaiXAYb1giZabJO6mVJm27DiqX4xVl1_2SwEKClFQDQqbZP-xy7SpufFSY97hpP5YOApswkvddjpMVbtr5yphaS6B0kS69X-jfiIrw9HZqTr9ev59m7xJMDYPn2t2yPJiduN2wYFZFHthgf4GSl7thA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+piezoelectric+pressure+sensor+based+on+polydopamine-modified+BaTiO3%2FPVDF+composite+film+for+human+motion+monitoring&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Yang%2C+Ye&rft.au=Pan%2C+Hong&rft.au=Xie%2C+Guangzhong&rft.au=Jiang%2C+Yadong&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=301&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2019.111789&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |