A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection

Health monitoring in plants is vital for agricultural sustainability. Currently, the number of techniques able to detect plant stress and disease at an early stage is limited. Prevention of diseases and stress, while the plants are still in an asymptomatic stage could lead to better crop management...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 338; p. 113468
Main Authors Zahir, Siti Anis Dalila Muhammad, Omar, Ahmad Fairuz, Jamlos, Mohd Faizal, Azmi, Mohd Azraie Mohd, Muncan, Jelena
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2022.113468

Cover

Loading…
Abstract Health monitoring in plants is vital for agricultural sustainability. Currently, the number of techniques able to detect plant stress and disease at an early stage is limited. Prevention of diseases and stress, while the plants are still in an asymptomatic stage could lead to better crop management in agricultural industries. This review focuses on the applications of visible and near-infrared (Vis-NIR) spectroscopy in disease detection and the implications of stress in various species of plants. It is a rapid and non-destructive technique that doesn’t require or requires only minimal sample processing before measurements and data analysis. The visible and near-infrared region can detect almost all functional groups and compounds making it a promising tool for data analysis. A brief overview of the methods used and the absorption bands in the Vis-NIR range related to plant disease and stress will be discussed. The comprehensive review of the application of the visible and near-infrared range regions according to different types of disease and stress including the methods used for the data analysis is being addressed. [Display omitted]
AbstractList Health monitoring in plants is vital for agricultural sustainability. Currently, the number of techniques able to detect plant stress and disease at an early stage is limited. Prevention of diseases and stress, while the plants are still in an asymptomatic stage could lead to better crop management in agricultural industries. This review focuses on the applications of visible and near-infrared (Vis-NIR) spectroscopy in disease detection and the implications of stress in various species of plants. It is a rapid and non-destructive technique that doesn't require or requires only minimal sample processing before measurements and data analysis. The visible and near-infrared region can detect almost all functional groups and compounds making it a promising tool for data analysis. A brief overview of the methods used and the absorption bands in the Vis-NIR range related to plant disease and stress will be discussed. The comprehensive review of the application of the visible and near-infrared range regions according to different types of disease and stress including the methods used for the data analysis is being addressed.
Health monitoring in plants is vital for agricultural sustainability. Currently, the number of techniques able to detect plant stress and disease at an early stage is limited. Prevention of diseases and stress, while the plants are still in an asymptomatic stage could lead to better crop management in agricultural industries. This review focuses on the applications of visible and near-infrared (Vis-NIR) spectroscopy in disease detection and the implications of stress in various species of plants. It is a rapid and non-destructive technique that doesn’t require or requires only minimal sample processing before measurements and data analysis. The visible and near-infrared region can detect almost all functional groups and compounds making it a promising tool for data analysis. A brief overview of the methods used and the absorption bands in the Vis-NIR range related to plant disease and stress will be discussed. The comprehensive review of the application of the visible and near-infrared range regions according to different types of disease and stress including the methods used for the data analysis is being addressed. [Display omitted]
ArticleNumber 113468
Author Jamlos, Mohd Faizal
Muncan, Jelena
Omar, Ahmad Fairuz
Zahir, Siti Anis Dalila Muhammad
Azmi, Mohd Azraie Mohd
Author_xml – sequence: 1
  givenname: Siti Anis Dalila Muhammad
  surname: Zahir
  fullname: Zahir, Siti Anis Dalila Muhammad
  organization: College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Malaysia
– sequence: 2
  givenname: Ahmad Fairuz
  surname: Omar
  fullname: Omar, Ahmad Fairuz
  email: fairuz_omar@usm.my
  organization: School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
– sequence: 3
  givenname: Mohd Faizal
  surname: Jamlos
  fullname: Jamlos, Mohd Faizal
  organization: College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Malaysia
– sequence: 4
  givenname: Mohd Azraie Mohd
  surname: Azmi
  fullname: Azmi, Mohd Azraie Mohd
  organization: Multidiciplinary Nanotechnology Centre (MNC), Universiti Kuala Lumpur British Malaysian Institute, Jalan Sungai Pusu, Gombak, Selangor Darul Ehsan 53100, Malaysia
– sequence: 5
  givenname: Jelena
  surname: Muncan
  fullname: Muncan, Jelena
  organization: Aquaphotomics Research Department, Faculty of Agriculture, Kobe University, Kobe, Japan
BookMark eNp9kE1LAzEQhoMo2FZ_gLeAFz1sTTbJZhdPpfgFRUHUa8gms5CyZtckrfjvjdaTh57mMO8zw_tM0aEfPCB0RsmcElpdrefR63lJynJOKeNVfYAmtJasYKRqDtGENCUveMnlMZrGuCaEMCblBLULHGDr4BMPHd666NoesPYWe9ChcL4LOoDFF28uFo8Pz5c4jmBSGKIZxi-sx7F3Ric3eOw8HnvtE44pQIzYQsrJvDlBR53uI5z-zRl6vb15Wd4Xq6e7h-ViVRhWilRYU_GaMA5UdNLWgucSTNRENpUQXSsroYXhZUtZC7qrLW1FWQmpecs7Qq1hM3S-uzuG4WMDMan1sAk-v1Q52FSN4ETklNylTC4RA3TKuPTbIAXtekWJ-hGq1ioLVT9C1U5oJuk_cgzuXYevvcz1joFcPGsOKhoH3oB1IdtRdnB76G-Cpo9v
CitedBy_id crossref_primary_10_1007_s11540_023_09674_0
crossref_primary_10_3390_rs15102513
crossref_primary_10_1016_j_fbio_2024_104821
crossref_primary_10_3390_agronomy14102390
crossref_primary_10_1080_01431161_2024_2305626
crossref_primary_10_1109_TGRS_2024_3459652
crossref_primary_10_1080_15592324_2024_2345413
crossref_primary_10_1016_j_jfca_2023_105849
crossref_primary_10_1016_j_foodchem_2023_136169
crossref_primary_10_1016_j_jag_2022_103124
crossref_primary_10_3390_drones9040235
crossref_primary_10_3390_agronomy13030923
crossref_primary_10_1016_j_compag_2024_109017
crossref_primary_10_1016_j_aiia_2025_02_004
crossref_primary_10_3390_agriculture14112002
crossref_primary_10_3390_rs15245657
crossref_primary_10_1016_j_rsase_2023_100981
crossref_primary_10_3390_drones7040277
crossref_primary_10_1016_j_saa_2024_124820
crossref_primary_10_1039_D3AY01329D
crossref_primary_10_1016_j_isprsjprs_2024_07_027
crossref_primary_10_34133_plantphenomics_0204
crossref_primary_10_3390_plants12081698
crossref_primary_10_1016_j_atech_2023_100325
crossref_primary_10_1016_j_biosystemseng_2025_01_009
crossref_primary_10_1016_j_atech_2025_100850
crossref_primary_10_3390_f15081309
crossref_primary_10_1016_j_agrformet_2024_110116
crossref_primary_10_3390_s23249678
crossref_primary_10_1080_07388551_2024_2409124
crossref_primary_10_1016_j_infrared_2025_105732
crossref_primary_10_1016_j_saa_2024_124113
crossref_primary_10_3389_fpls_2024_1442225
crossref_primary_10_3389_fpls_2023_1168732
crossref_primary_10_17660_ActaHortic_2024_1395_27
crossref_primary_10_1016_j_ecoinf_2025_103088
crossref_primary_10_3390_agriculture13040844
crossref_primary_10_3389_fpls_2023_1121287
crossref_primary_10_1051_jeos_2024024
crossref_primary_10_1007_s42853_024_00236_x
crossref_primary_10_1016_j_sciaf_2023_e01877
crossref_primary_10_1007_s41348_024_01031_8
crossref_primary_10_1021_acsapm_4c03872
crossref_primary_10_1002_ps_8528
crossref_primary_10_1038_s41598_024_71220_w
crossref_primary_10_3389_fpls_2024_1461855
crossref_primary_10_1016_j_csite_2023_103326
crossref_primary_10_3390_agriculture12070897
crossref_primary_10_3390_agriculture13122215
crossref_primary_10_1016_j_aca_2023_341763
crossref_primary_10_3390_s23125366
crossref_primary_10_1016_j_jhydrol_2024_130672
crossref_primary_10_1016_j_cropro_2024_106804
crossref_primary_10_3390_horticulturae10040336
crossref_primary_10_3390_agriengineering6010020
crossref_primary_10_3390_foods13142306
crossref_primary_10_1038_s41598_025_92155_w
crossref_primary_10_3390_horticulturae9111229
crossref_primary_10_1016_j_infrared_2023_104984
crossref_primary_10_3390_molecules28010004
crossref_primary_10_3390_plants14060907
crossref_primary_10_1016_j_microc_2024_110347
crossref_primary_10_1016_j_compag_2025_110281
crossref_primary_10_1016_j_compag_2024_109176
crossref_primary_10_1021_acsami_4c08862
crossref_primary_10_1016_j_jafr_2024_101303
crossref_primary_10_1016_j_foodres_2024_115161
crossref_primary_10_3390_agronomy15010213
crossref_primary_10_3390_app122312097
crossref_primary_10_1007_s11104_025_07306_9
crossref_primary_10_1016_j_microc_2022_107797
crossref_primary_10_7235_HORT_20250028
crossref_primary_10_3390_f15030556
crossref_primary_10_1016_j_microc_2024_111447
crossref_primary_10_1111_1750_3841_17593
crossref_primary_10_3390_agronomy13041045
crossref_primary_10_1016_j_agwat_2024_108957
crossref_primary_10_1093_hr_uhae007
crossref_primary_10_1007_s11947_023_03005_4
crossref_primary_10_1016_j_scitotenv_2024_176355
crossref_primary_10_3389_fpls_2025_1546373
crossref_primary_10_3390_f14081663
crossref_primary_10_1021_acsfoodscitech_4c01001
crossref_primary_10_1111_pbr_13228
crossref_primary_10_1016_j_microc_2024_111854
crossref_primary_10_3390_agriculture15030307
crossref_primary_10_1080_14498596_2023_2229274
crossref_primary_10_3390_nano13020322
crossref_primary_10_1016_j_meatsci_2022_108975
crossref_primary_10_1080_17480272_2022_2130822
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_jpba_2024_116015
crossref_primary_10_1038_s41598_024_53122_z
crossref_primary_10_1002_advs_202415238
crossref_primary_10_3390_chemosensors10110471
crossref_primary_10_3390_agriengineering6030177
crossref_primary_10_1016_j_rsase_2025_101461
crossref_primary_10_34133_plantphenomics_0180
crossref_primary_10_1111_pce_15393
Cites_doi 10.1038/s41598-020-73745-2
10.53671/pturj.v2i1.21
10.1366/0003702854248656
10.1016/j.compag.2016.07.016
10.1016/j.trac.2019.05.022
10.1016/j.aca.2015.03.018
10.1016/j.saa.2020.119104
10.1016/j.scienta.2015.03.012
10.1366/0003702001950571
10.1088/1755-1315/644/1/012001
10.1016/j.chemolab.2021.104273
10.1007/s00425-019-03216-0
10.1080/01431161.2020.1826065
10.1016/j.saa.2019.117202
10.14358/PERS.69.6.647
10.1016/j.compag.2017.11.012
10.1007/s10123-003-0143-y
10.1016/j.postharvbio.2020.111246
10.1016/j.mimet.2019.05.010
10.1080/01431161.2014.903353
10.1016/j.compag.2020.105388
10.1016/j.jviromet.2008.09.008
10.1080/10408398.2010.543495
10.1016/j.compag.2019.02.022
10.1146/annurev.phyto.43.113004.133839
10.5897/AJB2013.13604
10.1021/ac60214a047
10.1039/C6AY00381H
10.1186/s13007-017-0190-6
10.1364/OE.25.007251
10.1016/j.compag.2019.104860
10.1186/1999-3110-55-11
10.1016/j.compag.2008.11.007
10.1016/j.biosystemseng.2018.09.018
10.17660/ActaHortic.2018.1197.16
10.1146/annurev.phyto.41.121702.103726
10.1016/j.jfoodeng.2020.110417
10.1016/S0034-4257(00)00197-8
10.1080/05704928.2012.705800
10.13031/2013.41241
10.1007/s13313-019-00642-2
10.3390/plants10010101
10.1016/j.biosystemseng.2007.11.007
10.1016/0034-4257(81)90029-8
10.1016/j.bbrc.2010.06.007
10.17221/33/2019-PPS
10.3390/rs9070745
10.1016/j.compag.2010.02.007
10.1080/00387010.2016.1212897
10.15575/biodjati.v4i1.4389
10.1016/S0034-4257(02)00010-X
10.1016/j.biosystemseng.2016.12.008
10.1016/j.eja.2012.04.003
10.1109/TGRS.2013.2257604
10.3390/plants9050623
10.1080/05704928.2017.1352510
10.2307/2657068
10.1186/s13007-017-0233-z
10.1038/s41598-021-83847-0
10.1007/s10681-019-2481-7
10.1016/j.plantsci.2019.110316
10.1016/j.sjbs.2021.01.031
10.1094/PDIS-01-19-0017-PDN
10.1255/jnirs.869
10.1016/j.postharvbio.2013.07.032
10.1016/j.geoderma.2008.06.011
10.53671/pturj.v3i1.35
10.1007/s12161-020-01853-w
10.1016/j.jspr.2012.12.005
10.2136/sssaj2002.9880
10.1016/S0034-4257(02)00151-7
10.1016/j.engappai.2013.07.010
10.1007/s00299-019-02386-1
10.1016/j.trac.2009.07.007
10.48044/jauf.2008.001
10.1023/A:1020835304842
10.15666/aeer/1801_141157
10.1002/slct.201600064
10.3390/s21020611
10.3390/plants9030368
10.3390/agriculture6040056
10.1255/jnirs.886
10.1038/s41598-019-39443-4
10.1016/j.compag.2010.12.006
10.13031/2013.41369
10.1007/s00425-018-3060-1
10.1071/FP16127
10.1016/j.biosystemseng.2021.03.006
10.1016/j.pce.2017.02.011
10.1016/j.powtec.2017.07.003
10.1155/2012/276795
10.3390/rs13040641
10.1073/pnas.1701328114
10.1016/j.tifs.2015.10.006
10.1016/j.sjbs.2019.05.007
10.1080/0954898X.2018.1562247
10.3390/rs12121920
10.1016/j.pisc.2016.06.056
10.1016/j.compag.2011.04.001
10.1366/0003702894202201
10.3389/fpls.2019.00645
10.1016/j.jfoodeng.2017.02.012
10.1016/j.compag.2019.105056
10.1016/j.biosystemseng.2016.10.003
10.1016/j.biosystemseng.2017.11.019
10.1016/j.compag.2010.06.009
10.1094/PDIS-11-18-1959-PDN
10.1186/s13007-020-00649-7
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV May 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV May 1, 2022
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2022.113468
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2022_113468
S0924424722001066
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-dc648034e15f7d854468358079655fb765a5c42b13beaf8d1b52657a4b4f01dc3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 04:18:03 EDT 2025
Tue Jul 01 02:24:52 EDT 2025
Thu Apr 24 23:10:09 EDT 2025
Fri Feb 23 02:39:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vis-NIR spectroscopy
Non-destructive
Aquaphotomics
Plant disease
Plant stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-dc648034e15f7d854468358079655fb765a5c42b13beaf8d1b52657a4b4f01dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2659695405
PQPubID 2045401
ParticipantIDs proquest_journals_2659695405
crossref_citationtrail_10_1016_j_sna_2022_113468
crossref_primary_10_1016_j_sna_2022_113468
elsevier_sciencedirect_doi_10_1016_j_sna_2022_113468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Strange, Scott (bib114) 2005; 43
Carvalho, Moros, Santos, Krug, Laserna (bib20) 2015; 876
Ihuoma, Madramootoo (bib48) 2019; 163
Abdulridha, Ehsani, de Castro (bib2) 2016; 6
Sankaran, Mishra, Ehsani, Davis (bib103) 2010; 72
Bauriegel, Giebel, Geyer, Schmidt, Herppich (bib14) 2011; 75
Rumpf, Mahlein, Steiner, Oerke, Dehne, Plumer (bib101) 2010; 74
Abu-Khalaf, Salman (bib5) 2014; 2
Tjandra Nugraha, Zinia Zaukuu, Aguinaga Bósquez, Bodor, Vitalis, Kovacs (bib119) 2021; 21
Gold, Townsend, Herrmann, Gevens (bib34) 2020; 295
Giovenzana, Beghi, Civelli, Guidetti (bib33) 2015; 46
Li, Huang, Tian, Wang, Fan, Zhao (bib63) 2016; 127
Zhang, Zhang, Yang, Hu, Ge, Liu, Cao (bib135) 2021; 181
Mahajan, Das, Murgaokar, Herrmann, Berger, Sahoo, Patel, Desai, Morajkar, Kulkarni (bib76) 2021; 13
Savitzky, Golay (bib105) 1964; 36
N. Katsoulas, A. Elvanidi, T. Bartzanas, K.P. Ferentinos, C. Kittas, Sensing crop reflectance for water stress detection in greenhouses, in: Proceedings of the International Symposium on Sensing Plant Water Status-Methods and Applications in Horticultural Science, 1197, 2016, pp. 117–126.
Acharya, Rani, Agarwal, Singh (bib6) 2016; 8
Zhang, Zhou, Zhang, Meng, Chen, Wang (bib138) 2012; 41
Neto, Lopes, Pinto, Zolnier (bib88) 2017; 155
Kusumiyati, Hadiwijaya, Putri (bib62) 2019; 4
.
Luana, Fabiano, Fabio, Paolo (bib74) 2015; 88
S. Mubarok, W. Sutari, Y. Hadiwijaya, Application of spectra pre-treatments on firmness assessment of intact sapodilla using VIS-NIR spectroscopy, IOP Conf. Ser. Earth Environ. Sci., 644(1), 2021, 012001.
Naidu, Perry, Pierce, Mekuria (bib87) 2009; 66
Das, Sahoo, Pargal, Krishna, Verma, Viswanathan, Sehgal, Gupta (bib24) 2021; 247
Liang, Haff, Hua, Munyaneza, Mustafa, Sarreal (bib70) 2018; 166
Jackson, Jones, Uehara, Santo (bib49) 1981; 11
Kuroki, Tsenkova, Moyankova, Muncan, Morita, Atanassova, Djilianov (bib61) 2019; 9
Zhang, Slaughter (bib139) 2011; 77
Khaled, Abd Aziz, Bejo, Nawi, Seman (bib56) 2018; 144
Farber, Shires, Ong, Byrne, Kurouski (bib29) 2019; 250
Guidi, Tattini, Landi (bib38) 2017
Gerontakos, Casteleijn, Shikov, Wardle (bib32) 2020; 93
Basic Knowledge About VIS NIR Spectroscopy, Senorics.
Yu, Fang, Zhao (bib134) 2020; 245
Kunz, Voronine, Lee, Sokolov, Scully (bib60) 2017; 25
Gull, Lone, Wani (bib39) 2019
Sims, Gamon (bib109) 2003; 84
Yamashita, Sonobe, Hirono, Morita, Ikka (bib131) 2021; 11
Oguis, Gilding, Jackson, Craik (bib93) 2019; 10
Bienkowski, Aitkenhead, Lees, Gallagher, Neilson (bib16) 2019; 167
Elmasry, Kamruzzaman, Sun, Allen (bib27) 2012; 52
Zhang, Li, Zhang (bib137) 2012; 27
Katsoulas, Elvanidi, Ferentinos, Kacira, Bartzanas, Kittas (bib53) 2016; 151
Barnes, Dhanoa, Lister (bib13) 1989; 43
Sonobe, Sano, Horie (bib113) 2018; 175
Gomez, Rossel, McBratney (bib35) 2008; 146
Beghi, Giovenzana, Brancadoro, Guidetti (bib15) 2017; 204
González-Fernández, Rodríguez-Pérez, Marabel, ÁlvarezTaboada (bib36) 2015; 188
Lowe, Harrison, French (bib73) 2017; 13
Al-Shudifat, Al-Shahwan, Al-Saleh, Abdalla, Amer (bib8) 2021
Yamashita, Sonobe, Hirono, Morita, Ikka (bib132) 2020; 10
Arivazhagan, Shebiah, Ananthi, Varthini (bib10) 2013; 15
Li, Qiu, Yang, Liu, Wan, Zhu (bib65) 2014; 27
Altangerel, Ariunbold, Gorman, Alkahtani, Borrego, Bohlmeyer, Hemmer, Kolomiets, Yuan, Scully (bib9) 2017; 114
Ling, Tian, Gurung, Salati, Gilliard (bib71) 2019; 103
Moslemkhani, Hassani, Azar, Khelgatibana (bib83) 2019; 8
Skolik, McAinsh, Martin (bib110) 2019; 249
Rinnan, Van Den Berg, Engelsen (bib99) 2009; 28
Wang, Huang, Xu, Wang (bib122) 2008; 28
Tunsagool, Jutidamrongphan, Phaonakrop, Jaresitthikunchai, Roytrakul, Leelasuphakul (bib118) 2019; 38
Gaspar, Franck, Bisbis, Kevers, Jouve, Hausman, Dommes (bib30) 2002; 37
Sankaran, Ehsani (bib102) 2012; 55
Abu-Khalaf (bib4) 2015; 3
Li, Mock, Huang, Abad, Hartung, Kinard (bib64) 2008; 154
Liaghat, Ehsani, Mansor, Shafri, Meon, Sankaran, Azam (bib69) 2014; 35
Naes, Isaksson, Fearn, Davies (bib86) 2017
G. Poole, W. Windham, G. Heitschmidt, B. Park, T. Gottwald, Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves, in: Proceedings of the International Research Conference on Huanglongbing, St. Paul, Minn.: Plant Management Network, 2008.
Carter, Knapp (bib19) 2001; 88
Khaled, Abd Aziz, Bejo, Nawi, Seman, Onwude (bib55) 2018; 53
Handegard (bib41) 2020
Walsh, Blasco, Zude-Sasse, Sun (bib121) 2020; 168
Xiong, Ohashi, Nakano, Jiang, Takizawa, Iijima, Maniwara (bib129) 2021
Marín-Ortiz, Gutierrez-Toro, Botero-Fernández, Hoyos-Carvajal (bib78) 2020; 27
Broge, Leblanc (bib17) 2001; 76
Hamzeh, Naseri, AlaviPanah, Mojaradi, Bartholomeus, Clevers, Behzad (bib40) 2013; 21
Wang, Allison (bib124) 2008; 34
Dale, Thewis, Boudry, Rotar, Dardenne, Baeten, Pierna (bib23) 2013; 48
Maimaitiyiming, Ghulam, Bozzolo, Wilkins, Kwasniewski (bib77) 2017; 9
El-Hendawy, Elsayed, Al-Suhaibani, Alotaibi, Tahir, Mubushar, Attia, Hassan (bib26) 2021; 10
Tsenkova (bib120) 2009; 17
Svanberg (bib115) 2012
Liu, Han, Chen, Shi, Zhang (bib68) 2019; 222
Madihah, Idris, Rafidah (bib75) 2014; 13
Geladi, MacDougal, Martens (bib31) 1985; 39
M. Kuhn, S. Weston, C. Keefer, N. Coulter, Cubist Models for Regression, R Package Vignette R Package Version 0.0, 2021, p. 18.
Koc, Fidan, Sari, Çalis (bib58) 2020; 18
Chang, Liu (bib21) 2014; 52
Norris (bib91) 1983
Huang, Romero-Torres, Moshgbar (bib47) 2010; 13
Jinendra, Tamaki, Kuroki, Vassileva, Yoshida, Tsenkova (bib50) 2010; 397
Thomas, Wahabzada, Kuska, Rascher, Mahlein (bib117) 2016; 44
J. Abdulridha, A. de Castro, R. Ehsani, Differentiate Laurel wilt disease and nutrient deficiency in avocado trees using Vis–NIR spectroscopy, in: Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 2015.
Huang, Dong, Sanaeifar, Wang, Luo, Zhan, Liu, Li, Zhang, Li (bib44) 2020; 173
Jinendra (bib51) 2011
Kaliramesh, Chelladurai, Jayas, Alagusundaram, White, Fields (bib52) 2013; 52
Newby, Murphy, Guest, Ramp, Liew (bib89) 2019; 48
Huang, Ren, Li, Liu (bib45) 2020; 6
Pinter, Hatfield, Schepers, Barnes, Moran, Daughtry, Upchurchm (bib95) 2003; 69
Brown, Vega-Montoto, Wentzell (bib18) 2000; 54
Wei, Li, He (bib126) 2021; 205
Zhang, Feng, Wang, Liu, He, Zhou (bib136) 2017; 13
Guidetti, Beghi, Giovenzana (bib37) 2012
Martens, Jensen, Geladi (bib79) 1983
Aboughanem-Sabanadzovic, Allen, Wilkerson, Conner, Sikora, Nichols, Sabanadzovic (bib3) 2019; 103
Li, Rong, Li (bib66) 2014
He, Xu, Liu, Zheng (bib42) 2018; 29
Dupas, Legendre, Olivier, Poliakoff, Manceau, Cunty (bib25) 2019; 162
Mosa, Ismail, Helmy (bib84) 2017
Xia, Cao, Yang, Zhang, Wan, Xu, Ge, Zhang, Ke, Huang (bib128) 2019; 159
Saranwong, Thanapase, Suttiwijitpukdee, Rittiron, Kasemsumran, Kawano (bib104) 2010; 18
Wang, Wang, Wang (bib125) 2020
Pospieszny, Borodynko-Filas, Hasiow-Jaroszewska, Czerwonka, Elena (bib98) 2019; 56
Sonobe, Hirono, Oi (bib112) 2020; 9
Morellos, Tziotzios, Orfanidou, Pantazi, Sarantaris, Maliogka, Alexandridis, Moshou (bib82) 2020; 12
D. Pelliccia, Two Scatter Correction Techniques for NIR Spectroscopy in Python, 2018.
Nezami, Feizbakhsh, Garmarudi (bib90) 2021
Farber, Mahnke, Sanchez, Kurouski (bib28) 2019; 118
T. Mestrovic, What is Spectroscopy, News Medical, 2019.
Shepherd, Walsh (bib107) 2002; 66
O.K.M. Yahaya, A.F. Omar, Spectroscopy of Tropical Fruits: Sala Mango and B10 Carambola (Penerbit USM), Penerbit USM, 2017.
Mishra, Karimi, Ehsani, Lee (bib81) 2012; 55
Sims, Gamon (bib108) 2002; 81
Al-Hiary, Bani-Ahmad, Reyalat, Braik, Al-Rahamneh (bib7) 2011; 17
Asachi, Hassanpour, Ghadiri, Bayly (bib11) 2017; 320
Sharma, Uttam (bib106) 2016; 49
Wang, Li (bib123) 2013; 86
Hemrattrakun, Nakano, Boonyakiat, Ohashi, Maniwara, Theanjumpol, Seehanam (bib43) 2020; 14
Klap, Luria, Smith, Bakelman, Belausov, Laskar, Lachman, Gal-On, Dombrovsky (bib57) 2020; 9
Li, He (bib67) 2008; 99
Yeturu, Jentzsch, Ciobota, Guerrero, Garrido, Ramos (bib133) 2016; 8
Norris, Williams (bib92) 1984; 61
Chemura, Mutanga, Dube (bib22) 2017; 100
Rubio, Salazar, Dicenta, Ruiz, Martinez-Gomez, Martínez-García (bib100) 2019; 215
West, Bravo, Oberti, Lemaire, Moshou, McCartney (bib127) 2003; 41
Huang, Lin, Hsu, Huang, Yang, Chao, Yang (bib46) 2014; 55
Lo´pez, Bertolini, Olmos, Caruso, Gorris, Llop, Penyalver, Cambra (bib72) 2003; 6
Sonobe, Yamashita, Mihara, Morita, Ikka (bib111) 2021; 42
Pontes, Ohashi, Brasil, Filgueiras, Espı´ndola, Silva, Poppi, Coletta-Filho, Tasic (bib96) 2016; 1
Thiel, Sauwen, Khamiakova, Maes, Govaerts (bib116) 2021; 211
Brown (10.1016/j.sna.2022.113468_bib18) 2000; 54
Elmasry (10.1016/j.sna.2022.113468_bib27) 2012; 52
Al-Hiary (10.1016/j.sna.2022.113468_bib7) 2011; 17
Guidetti (10.1016/j.sna.2022.113468_bib37) 2012
Mosa (10.1016/j.sna.2022.113468_bib84) 2017
Kusumiyati (10.1016/j.sna.2022.113468_bib62) 2019; 4
Oguis (10.1016/j.sna.2022.113468_bib93) 2019; 10
Xia (10.1016/j.sna.2022.113468_bib128) 2019; 159
Huang (10.1016/j.sna.2022.113468_bib45) 2020; 6
Morellos (10.1016/j.sna.2022.113468_bib82) 2020; 12
Neto (10.1016/j.sna.2022.113468_bib88) 2017; 155
He (10.1016/j.sna.2022.113468_bib42) 2018; 29
Li (10.1016/j.sna.2022.113468_bib66) 2014
Mishra (10.1016/j.sna.2022.113468_bib81) 2012; 55
Thiel (10.1016/j.sna.2022.113468_bib116) 2021; 211
Abu-Khalaf (10.1016/j.sna.2022.113468_bib4) 2015; 3
Madihah (10.1016/j.sna.2022.113468_bib75) 2014; 13
Abdulridha (10.1016/j.sna.2022.113468_bib2) 2016; 6
10.1016/j.sna.2022.113468_bib54
Giovenzana (10.1016/j.sna.2022.113468_bib33) 2015; 46
Wang (10.1016/j.sna.2022.113468_bib124) 2008; 34
Wei (10.1016/j.sna.2022.113468_bib126) 2021; 205
Aboughanem-Sabanadzovic (10.1016/j.sna.2022.113468_bib3) 2019; 103
Gull (10.1016/j.sna.2022.113468_bib39) 2019
Guidi (10.1016/j.sna.2022.113468_bib38) 2017
Walsh (10.1016/j.sna.2022.113468_bib121) 2020; 168
West (10.1016/j.sna.2022.113468_bib127) 2003; 41
Huang (10.1016/j.sna.2022.113468_bib44) 2020; 173
10.1016/j.sna.2022.113468_bib59
Thomas (10.1016/j.sna.2022.113468_bib117) 2016; 44
Zhang (10.1016/j.sna.2022.113468_bib137) 2012; 27
Kunz (10.1016/j.sna.2022.113468_bib60) 2017; 25
Li (10.1016/j.sna.2022.113468_bib67) 2008; 99
10.1016/j.sna.2022.113468_bib130
Strange (10.1016/j.sna.2022.113468_bib114) 2005; 43
Carter (10.1016/j.sna.2022.113468_bib19) 2001; 88
Zhang (10.1016/j.sna.2022.113468_bib136) 2017; 13
Li (10.1016/j.sna.2022.113468_bib63) 2016; 127
Wang (10.1016/j.sna.2022.113468_bib125) 2020
Rubio (10.1016/j.sna.2022.113468_bib100) 2019; 215
Maimaitiyiming (10.1016/j.sna.2022.113468_bib77) 2017; 9
Norris (10.1016/j.sna.2022.113468_bib92) 1984; 61
Rinnan (10.1016/j.sna.2022.113468_bib99) 2009; 28
Sankaran (10.1016/j.sna.2022.113468_bib103) 2010; 72
Carvalho (10.1016/j.sna.2022.113468_bib20) 2015; 876
Jinendra (10.1016/j.sna.2022.113468_bib51) 2011
Arivazhagan (10.1016/j.sna.2022.113468_bib10) 2013; 15
Tsenkova (10.1016/j.sna.2022.113468_bib120) 2009; 17
Nezami (10.1016/j.sna.2022.113468_bib90) 2021
Liaghat (10.1016/j.sna.2022.113468_bib69) 2014; 35
Moslemkhani (10.1016/j.sna.2022.113468_bib83) 2019; 8
Saranwong (10.1016/j.sna.2022.113468_bib104) 2010; 18
Yu (10.1016/j.sna.2022.113468_bib134) 2020; 245
Kaliramesh (10.1016/j.sna.2022.113468_bib52) 2013; 52
Sharma (10.1016/j.sna.2022.113468_bib106) 2016; 49
Gold (10.1016/j.sna.2022.113468_bib34) 2020; 295
Svanberg (10.1016/j.sna.2022.113468_bib115) 2012
Liang (10.1016/j.sna.2022.113468_bib70) 2018; 166
Xiong (10.1016/j.sna.2022.113468_bib129) 2021
Naidu (10.1016/j.sna.2022.113468_bib87) 2009; 66
Tjandra Nugraha (10.1016/j.sna.2022.113468_bib119) 2021; 21
Farber (10.1016/j.sna.2022.113468_bib29) 2019; 250
Pospieszny (10.1016/j.sna.2022.113468_bib98) 2019; 56
Zhang (10.1016/j.sna.2022.113468_bib139) 2011; 77
Broge (10.1016/j.sna.2022.113468_bib17) 2001; 76
Beghi (10.1016/j.sna.2022.113468_bib15) 2017; 204
Geladi (10.1016/j.sna.2022.113468_bib31) 1985; 39
Marín-Ortiz (10.1016/j.sna.2022.113468_bib78) 2020; 27
Pontes (10.1016/j.sna.2022.113468_bib96) 2016; 1
Sonobe (10.1016/j.sna.2022.113468_bib111) 2021; 42
Chemura (10.1016/j.sna.2022.113468_bib22) 2017; 100
10.1016/j.sna.2022.113468_bib85
Chang (10.1016/j.sna.2022.113468_bib21) 2014; 52
Klap (10.1016/j.sna.2022.113468_bib57) 2020; 9
Lowe (10.1016/j.sna.2022.113468_bib73) 2017; 13
Shepherd (10.1016/j.sna.2022.113468_bib107) 2002; 66
Yeturu (10.1016/j.sna.2022.113468_bib133) 2016; 8
Farber (10.1016/j.sna.2022.113468_bib28) 2019; 118
Hamzeh (10.1016/j.sna.2022.113468_bib40) 2013; 21
Mahajan (10.1016/j.sna.2022.113468_bib76) 2021; 13
Abu-Khalaf (10.1016/j.sna.2022.113468_bib5) 2014; 2
Wang (10.1016/j.sna.2022.113468_bib123) 2013; 86
Das (10.1016/j.sna.2022.113468_bib24) 2021; 247
10.1016/j.sna.2022.113468_bib97
Sonobe (10.1016/j.sna.2022.113468_bib113) 2018; 175
Rumpf (10.1016/j.sna.2022.113468_bib101) 2010; 74
10.1016/j.sna.2022.113468_bib94
Gerontakos (10.1016/j.sna.2022.113468_bib32) 2020; 93
Sonobe (10.1016/j.sna.2022.113468_bib112) 2020; 9
Gomez (10.1016/j.sna.2022.113468_bib35) 2008; 146
Li (10.1016/j.sna.2022.113468_bib65) 2014; 27
10.1016/j.sna.2022.113468_bib12
González-Fernández (10.1016/j.sna.2022.113468_bib36) 2015; 188
Ling (10.1016/j.sna.2022.113468_bib71) 2019; 103
Al-Shudifat (10.1016/j.sna.2022.113468_bib8) 2021
Jackson (10.1016/j.sna.2022.113468_bib49) 1981; 11
Barnes (10.1016/j.sna.2022.113468_bib13) 1989; 43
Norris (10.1016/j.sna.2022.113468_bib91) 1983
Tunsagool (10.1016/j.sna.2022.113468_bib118) 2019; 38
Huang (10.1016/j.sna.2022.113468_bib46) 2014; 55
Sims (10.1016/j.sna.2022.113468_bib108) 2002; 81
Zhang (10.1016/j.sna.2022.113468_bib135) 2021; 181
Acharya (10.1016/j.sna.2022.113468_bib6) 2016; 8
Huang (10.1016/j.sna.2022.113468_bib47) 2010; 13
10.1016/j.sna.2022.113468_bib1
Hemrattrakun (10.1016/j.sna.2022.113468_bib43) 2020; 14
Wang (10.1016/j.sna.2022.113468_bib122) 2008; 28
Khaled (10.1016/j.sna.2022.113468_bib55) 2018; 53
Altangerel (10.1016/j.sna.2022.113468_bib9) 2017; 114
Yamashita (10.1016/j.sna.2022.113468_bib131) 2021; 11
Martens (10.1016/j.sna.2022.113468_bib79) 1983
Jinendra (10.1016/j.sna.2022.113468_bib50) 2010; 397
Yamashita (10.1016/j.sna.2022.113468_bib132) 2020; 10
Naes (10.1016/j.sna.2022.113468_bib86) 2017
Kuroki (10.1016/j.sna.2022.113468_bib61) 2019; 9
Khaled (10.1016/j.sna.2022.113468_bib56) 2018; 144
Li (10.1016/j.sna.2022.113468_bib64) 2008; 154
Asachi (10.1016/j.sna.2022.113468_bib11) 2017; 320
Dale (10.1016/j.sna.2022.113468_bib23) 2013; 48
Bauriegel (10.1016/j.sna.2022.113468_bib14) 2011; 75
Dupas (10.1016/j.sna.2022.113468_bib25) 2019; 162
Bienkowski (10.1016/j.sna.2022.113468_bib16) 2019; 167
Zhang (10.1016/j.sna.2022.113468_bib138) 2012; 41
El-Hendawy (10.1016/j.sna.2022.113468_bib26) 2021; 10
Savitzky (10.1016/j.sna.2022.113468_bib105) 1964; 36
Liu (10.1016/j.sna.2022.113468_bib68) 2019; 222
Luana (10.1016/j.sna.2022.113468_bib74) 2015; 88
Pinter (10.1016/j.sna.2022.113468_bib95) 2003; 69
Skolik (10.1016/j.sna.2022.113468_bib110) 2019; 249
Handegard (10.1016/j.sna.2022.113468_bib41) 2020
Katsoulas (10.1016/j.sna.2022.113468_bib53) 2016; 151
Newby (10.1016/j.sna.2022.113468_bib89) 2019; 48
Lo´pez (10.1016/j.sna.2022.113468_bib72) 2003; 6
Sims (10.1016/j.sna.2022.113468_bib109) 2003; 84
Ihuoma (10.1016/j.sna.2022.113468_bib48) 2019; 163
Koc (10.1016/j.sna.2022.113468_bib58) 2020; 18
10.1016/j.sna.2022.113468_bib80
Gaspar (10.1016/j.sna.2022.113468_bib30) 2002; 37
Sankaran (10.1016/j.sna.2022.113468_bib102) 2012; 55
References_xml – volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib5
  article-title: Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA) for identification and quantification of olive leaf spot (OLS) disease
  publication-title: Palest. Tech. Univ. Res. J.
– volume: 76
  start-page: 156
  year: 2001
  end-page: 172
  ident: bib17
  article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 3393
  year: 2017
  end-page: 3396
  ident: bib9
  article-title: In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy
  publication-title: PNAS
– volume: 250
  start-page: 1247
  year: 2019
  end-page: 1254
  ident: bib29
  article-title: Raman spectroscopy as an early detection tool for rose rosette infection
  publication-title: Planta
– volume: 61
  start-page: 158
  year: 1984
  end-page: 165
  ident: bib92
  article-title: Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat: I. Influence of particle size
  publication-title: Cereal Chem.
– reference: D. Pelliccia, Two Scatter Correction Techniques for NIR Spectroscopy in Python, 2018. 〈
– volume: 188
  start-page: 15
  year: 2015
  end-page: 22
  ident: bib36
  article-title: Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression
  publication-title: Sci. Hortic.
– volume: 69
  start-page: 647
  year: 2003
  end-page: 664
  ident: bib95
  article-title: Remote sensing for crop management
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bib105
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 42
  start-page: 1311
  year: 2021
  end-page: 1329
  ident: bib111
  article-title: Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms
  publication-title: Int. J. Remote Sens.
– volume: 162
  start-page: 86
  year: 2019
  end-page: 95
  ident: bib25
  article-title: Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants
  publication-title: J. Microbiol. Methods
– year: 2012
  ident: bib115
  publication-title: Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. Atomic, Optical and Plasma Physics
– volume: 103
  start-page: 1798
  year: 2019
  ident: bib3
  article-title: First report of Cotton leafroll dwarf virus in upland cotton (Gossypium hirsutum) in Mississippi
  publication-title: Plant Dis.
– volume: 9
  start-page: 3049
  year: 2019
  ident: bib61
  article-title: Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis
  publication-title: Sci. Rep.
– volume: 44
  start-page: 23
  year: 2016
  end-page: 34
  ident: bib117
  article-title: Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements
  publication-title: Funct. Plant Biol.
– volume: 13
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib136
  article-title: Mid-infared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape
  publication-title: Plant Methods
– volume: 34
  start-page: 1
  year: 2008
  end-page: 4
  ident: bib124
  article-title: Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling
  publication-title: Arboric. Urban For.
– year: 2020
  ident: bib41
  article-title: Identifying Old Norway Spruce and Scots Pine Trees by Visual Inspection: an Analysis of the Relationship between Age, Spatial Distribution, and Morphological Traits in Trees (Master’s thesis)
– volume: 27
  start-page: 88
  year: 2020
  end-page: 99
  ident: bib78
  article-title: Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
  publication-title: Saudi J. Biol. Sci.
– volume: 48
  start-page: 142
  year: 2013
  end-page: 159
  ident: bib23
  article-title: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review
  publication-title: Appl. Spectrosc. Rev.
– reference: T. Mestrovic, What is Spectroscopy, News Medical, 2019. 〈
– volume: 4
  start-page: 89
  year: 2019
  end-page: 95
  ident: bib62
  article-title: Non-destructive classification of fruits based on vis-nir spectroscopy and principal component analysis
  publication-title: J. Biodjati
– volume: 21
  start-page: 282
  year: 2013
  end-page: 290
  ident: bib40
  article-title: Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 151
  start-page: 374
  year: 2016
  end-page: 398
  ident: bib53
  article-title: Crop reflectance monitoring as a tool for water stress detection in greenhouses: a review
  publication-title: Biosyst. Eng.
– volume: 77
  start-page: 95
  year: 2011
  end-page: 104
  ident: bib139
  article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress
  publication-title: Comput. Electron. Agric.
– volume: 397
  start-page: 685
  year: 2010
  end-page: 690
  ident: bib50
  article-title: Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of virus infected soybean
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 6
  start-page: 233
  year: 2003
  end-page: 243
  ident: bib72
  article-title: Innovative tools for detection of plant pathogenic viruses and bacteria
  publication-title: Int. Microbiol.
– volume: 8
  start-page: 3450
  year: 2016
  end-page: 3457
  ident: bib133
  article-title: Handheld Raman spectroscopy for the early detection of plant diseases: abutilon mosaic virus infecting Abutilon sp
  publication-title: Anal. Methods
– volume: 25
  start-page: 7251
  year: 2017
  ident: bib60
  article-title: Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy
  publication-title: Opt. Express
– volume: 9
  start-page: 623
  year: 2020
  ident: bib57
  article-title: The potential risk of plant-virus disease initiation by infected tomatoes
  publication-title: Plants
– volume: 52
  start-page: 2002
  year: 2014
  end-page: 2017
  ident: bib21
  article-title: Progressive band selection of spectral unmixing for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: bib107
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 163
  year: 2019
  ident: bib48
  article-title: Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants
  publication-title: Comput. Electron. Agric.
– volume: 66
  start-page: 38
  year: 2009
  end-page: 45
  ident: bib87
  article-title: The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars
  publication-title: Comput. Electron. Agric.
– volume: 99
  start-page: 313
  year: 2008
  end-page: 321
  ident: bib67
  article-title: Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks
  publication-title: Biosyst. Eng.
– volume: 53
  start-page: 36
  year: 2018
  end-page: 64
  ident: bib55
  article-title: Early detection of diseases in plant tissues using spectroscopy – applications and limitations
  publication-title: Appl. Spectrosc. Rev.
– volume: 9
  start-page: 368
  year: 2020
  ident: bib112
  article-title: Non-destructive detection of tea leaf chlorophyll content using hyperspectral reflectance and machine learning algorithms
  publication-title: Plants
– volume: 46
  start-page: 331
  year: 2015
  end-page: 338
  ident: bib33
  article-title: Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain
  publication-title: Trends Food Sci. Technol.
– volume: 222
  year: 2019
  ident: bib68
  article-title: Non-destructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– reference: N. Katsoulas, A. Elvanidi, T. Bartzanas, K.P. Ferentinos, C. Kittas, Sensing crop reflectance for water stress detection in greenhouses, in: Proceedings of the International Symposium on Sensing Plant Water Status-Methods and Applications in Horticultural Science, 1197, 2016, pp. 117–126.
– start-page: 21
  year: 2017
  ident: bib38
  article-title: How does chloroplast protect chlorophyll against excessive light?
  publication-title: Chlorophyll
– volume: 8
  start-page: 143
  year: 2019
  end-page: 151
  ident: bib83
  article-title: Potential of spectroscopy for differentiation between PVY infected and healthy potato plants
  publication-title: J. Crop Prot.
– volume: 154
  start-page: 48
  year: 2008
  end-page: 55
  ident: bib64
  article-title: A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens
  publication-title: J. Virol. Methods
– volume: 74
  start-page: 91
  year: 2010
  end-page: 99
  ident: bib101
  article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
  publication-title: Comput. Electron. Agric.
– volume: 1
  start-page: 1176
  year: 2016
  end-page: 1178
  ident: bib96
  article-title: Metabolomics by NMR spectroscopy in plant disease diagnostic: Huanglongbing as a case study
  publication-title: ChemistrySelect
– reference: G. Poole, W. Windham, G. Heitschmidt, B. Park, T. Gottwald, Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves, in: Proceedings of the International Research Conference on Huanglongbing, St. Paul, Minn.: Plant Management Network, 2008.
– volume: 10
  start-page: 645
  year: 2019
  ident: bib93
  article-title: Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine
  publication-title: Front. Plant Sci.
– year: 2021
  ident: bib8
  article-title: Identification of Tomato black ring virus from tomato plants grown in greenhouses in Saudi Arabia
  publication-title: Saudi J. Biol. Sci.
– volume: 93
  start-page: 327
  year: 2020
  ident: bib32
  article-title: Focus: plant-based medicine and pharmacology: a critical review to identify the domains used to measure the effect and outcome of adaptogenic herbal medicines
  publication-title: Yale J. Biol. Med.
– volume: 13
  start-page: 641
  year: 2021
  ident: bib76
  article-title: Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models
  publication-title: Remote Sens.
– volume: 118
  start-page: 43
  year: 2019
  end-page: 49
  ident: bib28
  article-title: Advanced spectroscopic techniques for plant disease diagnostics. A review
  publication-title: TrAC Trends Anal. Chem.
– volume: 37
  start-page: 263
  year: 2002
  end-page: 285
  ident: bib30
  article-title: Concepts in plant stress physiology. Application to plant tissue cultures
  publication-title: Plant Growth Regul.
– volume: 127
  start-page: 582
  year: 2016
  end-page: 592
  ident: bib63
  article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 9
  start-page: 745
  year: 2017
  ident: bib77
  article-title: Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy
  publication-title: Remote Sens.
– reference: S. Mubarok, W. Sutari, Y. Hadiwijaya, Application of spectra pre-treatments on firmness assessment of intact sapodilla using VIS-NIR spectroscopy, IOP Conf. Ser. Earth Environ. Sci., 644(1), 2021, 012001.
– volume: 17
  start-page: 31
  year: 2011
  end-page: 38
  ident: bib7
  article-title: Fast and accurate detection and classification of plant diseases
  publication-title: Int. J. Comput. Appl.
– year: 2011
  ident: bib51
  article-title: Near Infrared Spectroscopy and Aquaphotomics: Novel Tool for Biotic and Abiotic Stress Diagnosis of Soybean (Ph.D. thesis)
– volume: 249
  start-page: 925
  year: 2019
  end-page: 939
  ident: bib110
  article-title: ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit
  publication-title: Planta
– volume: 18
  start-page: 271
  year: 2010
  end-page: 280
  ident: bib104
  article-title: Applying near infrared spectroscopy to the detection of fruit fly eggs and larvae in intact fruit
  publication-title: J. Infrared Spectrosc.
– volume: 159
  start-page: 59
  year: 2019
  end-page: 68
  ident: bib128
  article-title: Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.)
  publication-title: Comput. Electron. Agric.
– volume: 6
  start-page: 107
  year: 2020
  ident: bib45
  article-title: Phenotypic techniques and applications in fruit trees: a review
  publication-title: Plant Methods
– year: 2020
  ident: bib125
  article-title: Apoplastic proteases-powerful weapons against pathogen infection in plants
  publication-title: Plant Commun.
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: bib13
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
– volume: 103
  start-page: 1439
  year: 2019
  ident: bib71
  article-title: First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States
  publication-title: Plant Dis.
– volume: 876
  start-page: 26
  year: 2015
  end-page: 38
  ident: bib20
  article-title: Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy
  publication-title: Anal. Chim. Acta
– year: 2021
  ident: bib129
  article-title: Application of the radial basis function neural networks to improve the non-destructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces
  publication-title: J. Food Eng.
– volume: 35
  start-page: 3427
  year: 2014
  end-page: 3439
  ident: bib69
  article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithm
  publication-title: Int. J. Remote Sens.
– volume: 28
  start-page: 1098
  year: 2008
  end-page: 1101
  ident: bib122
  article-title: Wavebands selection for rice information extraction based on spectral bands inter-correlation
  publication-title: Spectrosc. Spectr. Anal.
– reference: O.K.M. Yahaya, A.F. Omar, Spectroscopy of Tropical Fruits: Sala Mango and B10 Carambola (Penerbit USM), Penerbit USM, 2017.
– reference: Basic Knowledge About VIS NIR Spectroscopy, Senorics. 〈
– volume: 75
  start-page: 304
  year: 2011
  end-page: 312
  ident: bib14
  article-title: Early detection of Fusarium infection in wheat using hyper-spectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib132
  article-title: Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms
  publication-title: Sci. Rep.
– reference: 〉.
– volume: 10
  start-page: 101
  year: 2021
  ident: bib26
  article-title: Use of hyperspectral reflectance sensing for assessing growth and chlorophyll content of spring wheat grown under simulated saline field conditions
  publication-title: Plants
– volume: 38
  start-page: 559
  year: 2019
  end-page: 575
  ident: bib118
  article-title: Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection
  publication-title: Plant Cell Rep.
– volume: 41
  start-page: 103
  year: 2012
  end-page: 117
  ident: bib138
  article-title: Monitoring the leaf water content and specific leaf weight of cotton (Gossypium hirsutum L.) in saline soil using leaf spectral reflectance
  publication-title: Eur. J. Agron.
– volume: 166
  start-page: 161
  year: 2018
  end-page: 169
  ident: bib70
  article-title: Non-destructive detection of zebra chip disease in potatoes using near-infrared spectroscopy
  publication-title: Biosyst. Eng.
– volume: 175
  start-page: 168
  year: 2018
  end-page: 182
  ident: bib113
  article-title: Using spectral reflectance to estimate leaf chlorophyll content of tea with shading treatments
  publication-title: Biosyst. Eng.
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: bib35
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
– volume: 295
  year: 2020
  ident: bib34
  article-title: Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning
  publication-title: Plant Sci.
– start-page: 217
  year: 2012
  end-page: 252
  ident: bib37
  article-title: Chemometrics in food technology
  publication-title: Chemometrics
– volume: 173
  year: 2020
  ident: bib44
  article-title: Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 155
  start-page: 124
  year: 2017
  end-page: 133
  ident: bib88
  article-title: Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves
  publication-title: Biosyst. Eng.
– volume: 55
  start-page: 711
  year: 2012
  end-page: 720
  ident: bib81
  article-title: Identification if citrus greening (HLB) using a VIS-NIR spectroscopy technique
  publication-title: Trans. ASABE
– volume: 247
  year: 2021
  ident: bib24
  article-title: Evaluation of different water absorption bands, indices and multivariate models for water-deficit stress monitoring in rice using visible-near infrared spectroscopy
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 3
  start-page: 12
  year: 2015
  end-page: 22
  ident: bib4
  article-title: Sensing tomato’s pathogen using Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA)
  publication-title: Palest. Tech. Univ. Res. J.
– volume: 13
  start-page: 3455
  year: 2014
  end-page: 3463
  ident: bib75
  article-title: Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease
  publication-title: Afr. J. Biotechnol.
– volume: 81
  start-page: 337
  year: 2002
  end-page: 354
  ident: bib108
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 141
  year: 2020
  end-page: 157
  ident: bib58
  article-title: A comparative study on Apple Chlorotic Leafspot Virus (ACLSV) isolates from different hosts in the East Mediterranean region of Turkey
  publication-title: Appl. Ecol. Environ. Res.
– volume: 88
  start-page: 677
  year: 2001
  end-page: 684
  ident: bib19
  article-title: Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration
  publication-title: Am. J. Bot.
– volume: 14
  start-page: 117
  year: 2020
  end-page: 126
  ident: bib43
  article-title: Comparison of reflectance and interactance modes of visible and near-infrared spectroscopy for predicting persimmon fruit quality
  publication-title: Food Anal. Methods
– start-page: 1
  year: 2021
  end-page: 9
  ident: bib90
  article-title: Detection of soybean powder and rice flour adulterations in premature formula by ATR-FTIR spectroscopy and chemometrics
  publication-title: Iran. J. Sci. Technol. Trans. A Sci.
– volume: 100
  start-page: 317
  year: 2017
  end-page: 324
  ident: bib22
  article-title: Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests
  publication-title: Phys. Chem. Earth Parts A/B/C.
– volume: 52
  start-page: 107
  year: 2013
  end-page: 111
  ident: bib52
  article-title: Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging
  publication-title: J. Stored Prod. Res.
– start-page: 95
  year: 1983
  end-page: 114
  ident: bib91
  article-title: Extraction information from spectrophotometric curves. Predicting chemical composition from visible and near-infrared spectra
  publication-title: Food Research and Data Analysis
– reference: M. Kuhn, S. Weston, C. Keefer, N. Coulter, Cubist Models for Regression, R Package Vignette R Package Version 0.0, 2021, p. 18.
– volume: 29
  start-page: 70
  year: 2018
  end-page: 80
  ident: bib42
  article-title: A fast kernel extreme learning machine based on conjugate gradient
  publication-title: Netw. Comput. Neural Syst.
– volume: 84
  start-page: 526
  year: 2003
  end-page: 537
  ident: bib109
  article-title: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 999
  year: 2012
  end-page: 1023
  ident: bib27
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 168
  start-page: 11246
  year: 2020
  ident: bib121
  article-title: Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: the science behind three decades of commercial use
  publication-title: Postharvest Biol. Technol.
– reference: J. Abdulridha, A. de Castro, R. Ehsani, Differentiate Laurel wilt disease and nutrient deficiency in avocado trees using Vis–NIR spectroscopy, in: Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 2015.
– volume: 55
  start-page: 11
  year: 2014
  ident: bib46
  article-title: Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves
  publication-title: Bot. Stud.
– volume: 181
  year: 2021
  ident: bib135
  article-title: A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress
  publication-title: Comput. Electron. Agric.
– volume: 49
  start-page: 520
  year: 2016
  end-page: 528
  ident: bib106
  article-title: Investigation of the Manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy
  publication-title: Spectrosc. Lett.
– volume: 86
  start-page: 494
  year: 2013
  end-page: 501
  ident: bib123
  article-title: Measurement of the light absorption and scattering properties of onion skin and flesh at 633 nm
  publication-title: Postharvest Biol. Technol.
– volume: 205
  start-page: 174
  year: 2021
  end-page: 186
  ident: bib126
  article-title: Generalisation of tea moisture content models based on VNIR spectra subjected to fractional differential treatment
  publication-title: Biosyst. Eng.
– volume: 27
  start-page: 241
  year: 2014
  end-page: 250
  ident: bib65
  article-title: A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search
  publication-title: Eng. Appl. Artif. Intell.
– volume: 13
  start-page: 116
  year: 2010
  end-page: 127
  ident: bib47
  article-title: Practical considerations in data pre-treatment for NIR and Raman spectroscopy
  publication-title: Am. Pharm. Rev.
– year: 2017
  ident: bib86
  publication-title: A User-Friendly Guide to Multivariate Calibration and Classification
– volume: 215
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib100
  article-title: Identification of quantitative trait loci (QTLs) linked to Apple chlorotic leaf spot virus (ACLSV) resistance in apricot
  publication-title: Euphytica
– volume: 15
  start-page: 211
  year: 2013
  end-page: 217
  ident: bib10
  article-title: Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features
  publication-title: Agric. Eng. Int. CIGR J.
– volume: 144
  start-page: 297
  year: 2018
  end-page: 309
  ident: bib56
  article-title: Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy
  publication-title: Comput. Electron. Agric.
– start-page: 1
  year: 2017
  end-page: 19
  ident: bib84
  article-title: Introduction to plant stresses
  publication-title: Plant Stress Toler.
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: bib99
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
– volume: 6
  start-page: 56
  year: 2016
  ident: bib2
  article-title: Detection and differentiation between Laurel wilt disease, Phytophthora disease, and salinity damage using a hyperspectral sensing technique
  publication-title: Agriculture
– volume: 54
  start-page: 1055
  year: 2000
  end-page: 1068
  ident: bib18
  article-title: Derivative pre-processing and optimal corrections for baseline drift in multivariate calibration
  publication-title: Appl. Spectrosc.
– volume: 11
  start-page: 327
  year: 1981
  end-page: 331
  ident: bib49
  article-title: Remote detection of nutrient and water deficiencies in sugarcane under variable cloudiness
  publication-title: Rem. Sens. Environ.
– volume: 55
  start-page: 313
  year: 2012
  end-page: 320
  ident: bib102
  article-title: Detection of Huanglongbing disease in citrus using fluorescence spectroscopy
  publication-title: Trans. ASABE
– volume: 88
  start-page: 465
  year: 2015
  end-page: 470
  ident: bib74
  article-title: Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi
  publication-title: For. Int. J. For. Res.
– volume: 211
  year: 2021
  ident: bib116
  article-title: Comparison of chemometrics strategies for the spectroscopic monitoring of active pharmaceutical ingredients in chemical reactions
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 204
  start-page: 46
  year: 2017
  end-page: 54
  ident: bib15
  article-title: Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy
  publication-title: J. Food Eng.
– volume: 48
  start-page: 409
  year: 2019
  end-page: 424
  ident: bib89
  article-title: Detecting symptoms of Phytophthora cinnamomi infection in Australian native vegetation using reflectance spectrometry: complex effects of water stress and species susceptibility
  publication-title: Australas. Plant Pathol.
– volume: 39
  start-page: 491
  year: 1985
  end-page: 500
  ident: bib31
  article-title: Linearization and scatter correction for near-infrared reflectance spectra of meat
  publication-title: Appl. Spectrosc.
– volume: 72
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib103
  article-title: A review of advance techniques for detecting plant disease
  publication-title: Comput. Electron. Agric.
– volume: 17
  start-page: 303
  year: 2009
  end-page: 314
  ident: bib120
  article-title: Aquaphotomics: dynamic spectroscopy of aqueous and biological systems describes peculiarities of water
  publication-title: J. Infrared Spectrosc.
– volume: 56
  start-page: 9
  year: 2019
  end-page: 12
  ident: bib98
  article-title: An assessment of the transmission rate of Tomato black ring virus through tomato seeds
  publication-title: Plant Prot. Sci.
– volume: 41
  start-page: 593
  year: 2003
  end-page: 614
  ident: bib127
  article-title: The potential of optical canopy measurement for targeted measurement for targeted control of field crop diseases
  publication-title: Annu. Rev. Phytopathol.
– volume: 27
  start-page: 93
  year: 2012
  end-page: 105
  ident: bib137
  article-title: Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection
  publication-title: Spectrosc. Int. J.
– start-page: 205
  year: 1983
  end-page: 234
  ident: bib79
  article-title: Multivariate linearity transformations for near-infrared reflectance spectroscopy
  publication-title: Proceedings of the Nordic Symposium on Applied Statistics
– volume: 245
  year: 2020
  ident: bib134
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 43
  start-page: 83
  year: 2005
  end-page: 116
  ident: bib114
  article-title: Plant disease: a threat to global food security
  publication-title: Annu. Rev. Phytopathol.
– start-page: 1
  year: 2019
  end-page: 19
  ident: bib39
  article-title: Biotic and abiotic stresses in plants
  publication-title: Abiot. Biot. Stress Plants
– volume: 167
  year: 2019
  ident: bib16
  article-title: Detection and differentiation between potato (Solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data
  publication-title: Comput. Electron. Agric.
– start-page: 2014
  year: 2014
  ident: bib66
  article-title: An improved kernel based extreme learning machine for robot execution failures
  publication-title: Sci. World J.
– volume: 12
  start-page: 1920
  year: 2020
  ident: bib82
  article-title: Non-destructive early detection and quantitative severity stage classification of Tomato Chlorosis Virus (ToCV) infection in young tomato plants using Vis-NIR spectroscopy
  publication-title: Remote Sens.
– volume: 8
  start-page: 677
  year: 2016
  end-page: 679
  ident: bib6
  article-title: Application of adaptive Savitzky–Golay filter for EEG signal processing
  publication-title: Perspect. Sci.
– volume: 21
  start-page: 611
  year: 2021
  ident: bib119
  article-title: Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (Vigna radiata) sprout growth and validation of ascorbic acid content
  publication-title: Sensors
– volume: 11
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib131
  article-title: Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves
  publication-title: Sci. Rep.
– volume: 320
  start-page: 143
  year: 2017
  end-page: 154
  ident: bib11
  article-title: Assessment of near-Infrared (NIR) spectroscopy for segregation measurement of low content level ingredients
  publication-title: Powder Technol.
– volume: 13
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib73
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
– volume: 28
  start-page: 1098
  issue: 5
  year: 2008
  ident: 10.1016/j.sna.2022.113468_bib122
  article-title: Wavebands selection for rice information extraction based on spectral bands inter-correlation
  publication-title: Spectrosc. Spectr. Anal.
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib132
  article-title: Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73745-2
– year: 2017
  ident: 10.1016/j.sna.2022.113468_bib86
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib5
  article-title: Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA) for identification and quantification of olive leaf spot (OLS) disease
  publication-title: Palest. Tech. Univ. Res. J.
  doi: 10.53671/pturj.v2i1.21
– volume: 39
  start-page: 491
  year: 1985
  ident: 10.1016/j.sna.2022.113468_bib31
  article-title: Linearization and scatter correction for near-infrared reflectance spectra of meat
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702854248656
– start-page: 2014
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib66
  article-title: An improved kernel based extreme learning machine for robot execution failures
  publication-title: Sci. World J.
– start-page: 95
  year: 1983
  ident: 10.1016/j.sna.2022.113468_bib91
  article-title: Extraction information from spectrophotometric curves. Predicting chemical composition from visible and near-infrared spectra
– volume: 127
  start-page: 582
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib63
  article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.07.016
– volume: 118
  start-page: 43
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib28
  article-title: Advanced spectroscopic techniques for plant disease diagnostics. A review
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.05.022
– volume: 876
  start-page: 26
  year: 2015
  ident: 10.1016/j.sna.2022.113468_bib20
  article-title: Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.03.018
– volume: 88
  start-page: 465
  issue: 4
  year: 2015
  ident: 10.1016/j.sna.2022.113468_bib74
  article-title: Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi
  publication-title: For. Int. J. For. Res.
– volume: 247
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib24
  article-title: Evaluation of different water absorption bands, indices and multivariate models for water-deficit stress monitoring in rice using visible-near infrared spectroscopy
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.119104
– volume: 188
  start-page: 15
  year: 2015
  ident: 10.1016/j.sna.2022.113468_bib36
  article-title: Spectroscopic estimation of leaf water content in commercial vineyards using continuum removal and partial least squares regression
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.03.012
– volume: 54
  start-page: 1055
  issue: 7
  year: 2000
  ident: 10.1016/j.sna.2022.113468_bib18
  article-title: Derivative pre-processing and optimal corrections for baseline drift in multivariate calibration
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001950571
– ident: 10.1016/j.sna.2022.113468_bib59
– ident: 10.1016/j.sna.2022.113468_bib85
  doi: 10.1088/1755-1315/644/1/012001
– volume: 211
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib116
  article-title: Comparison of chemometrics strategies for the spectroscopic monitoring of active pharmaceutical ingredients in chemical reactions
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104273
– volume: 250
  start-page: 1247
  issue: 4
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib29
  article-title: Raman spectroscopy as an early detection tool for rose rosette infection
  publication-title: Planta
  doi: 10.1007/s00425-019-03216-0
– volume: 42
  start-page: 1311
  issue: 4
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib111
  article-title: Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1826065
– volume: 222
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib68
  article-title: Non-destructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117202
– volume: 69
  start-page: 647
  issue: 6
  year: 2003
  ident: 10.1016/j.sna.2022.113468_bib95
  article-title: Remote sensing for crop management
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.69.6.647
– volume: 21
  start-page: 282
  year: 2013
  ident: 10.1016/j.sna.2022.113468_bib40
  article-title: Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 144
  start-page: 297
  year: 2018
  ident: 10.1016/j.sna.2022.113468_bib56
  article-title: Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.11.012
– volume: 6
  start-page: 233
  issue: 4
  year: 2003
  ident: 10.1016/j.sna.2022.113468_bib72
  article-title: Innovative tools for detection of plant pathogenic viruses and bacteria
  publication-title: Int. Microbiol.
  doi: 10.1007/s10123-003-0143-y
– volume: 168
  start-page: 11246
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib121
  article-title: Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: the science behind three decades of commercial use
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111246
– volume: 162
  start-page: 86
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib25
  article-title: Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2019.05.010
– volume: 35
  start-page: 3427
  issue: 10
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib69
  article-title: Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithm
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.903353
– volume: 173
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib44
  article-title: Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105388
– volume: 154
  start-page: 48
  issue: 1
  year: 2008
  ident: 10.1016/j.sna.2022.113468_bib64
  article-title: A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2008.09.008
– volume: 52
  start-page: 999
  issue: 11
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib27
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2010.543495
– volume: 159
  start-page: 59
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib128
  article-title: Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.02.022
– volume: 43
  start-page: 83
  year: 2005
  ident: 10.1016/j.sna.2022.113468_bib114
  article-title: Plant disease: a threat to global food security
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.43.113004.133839
– volume: 93
  start-page: 327
  issue: 2
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib32
  article-title: Focus: plant-based medicine and pharmacology: a critical review to identify the domains used to measure the effect and outcome of adaptogenic herbal medicines
  publication-title: Yale J. Biol. Med.
– volume: 13
  start-page: 3455
  issue: 34
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib75
  article-title: Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB2013.13604
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.sna.2022.113468_bib105
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 8
  start-page: 3450
  issue: 17
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib133
  article-title: Handheld Raman spectroscopy for the early detection of plant diseases: abutilon mosaic virus infecting Abutilon sp
  publication-title: Anal. Methods
  doi: 10.1039/C6AY00381H
– volume: 13
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib136
  article-title: Mid-infared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0190-6
– volume: 25
  start-page: 7251
  issue: 7
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib60
  article-title: Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.25.007251
– ident: 10.1016/j.sna.2022.113468_bib97
– volume: 163
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib48
  article-title: Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104860
– ident: 10.1016/j.sna.2022.113468_bib12
– volume: 55
  start-page: 11
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib46
  article-title: Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves
  publication-title: Bot. Stud.
  doi: 10.1186/1999-3110-55-11
– volume: 66
  start-page: 38
  year: 2009
  ident: 10.1016/j.sna.2022.113468_bib87
  article-title: The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.11.007
– volume: 175
  start-page: 168
  year: 2018
  ident: 10.1016/j.sna.2022.113468_bib113
  article-title: Using spectral reflectance to estimate leaf chlorophyll content of tea with shading treatments
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.09.018
– ident: 10.1016/j.sna.2022.113468_bib54
  doi: 10.17660/ActaHortic.2018.1197.16
– start-page: 205
  year: 1983
  ident: 10.1016/j.sna.2022.113468_bib79
  article-title: Multivariate linearity transformations for near-infrared reflectance spectroscopy
– volume: 41
  start-page: 593
  issue: 1
  year: 2003
  ident: 10.1016/j.sna.2022.113468_bib127
  article-title: The potential of optical canopy measurement for targeted measurement for targeted control of field crop diseases
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.41.121702.103726
– year: 2021
  ident: 10.1016/j.sna.2022.113468_bib129
  article-title: Application of the radial basis function neural networks to improve the non-destructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110417
– volume: 76
  start-page: 156
  issue: 2
  year: 2001
  ident: 10.1016/j.sna.2022.113468_bib17
  article-title: Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00197-8
– volume: 48
  start-page: 142
  issue: 2
  year: 2013
  ident: 10.1016/j.sna.2022.113468_bib23
  article-title: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2012.705800
– volume: 55
  start-page: 313
  issue: 1
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib102
  article-title: Detection of Huanglongbing disease in citrus using fluorescence spectroscopy
  publication-title: Trans. ASABE
  doi: 10.13031/2013.41241
– ident: 10.1016/j.sna.2022.113468_bib94
– volume: 48
  start-page: 409
  issue: 4
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib89
  article-title: Detecting symptoms of Phytophthora cinnamomi infection in Australian native vegetation using reflectance spectrometry: complex effects of water stress and species susceptibility
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-019-00642-2
– volume: 10
  start-page: 101
  issue: 1
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib26
  article-title: Use of hyperspectral reflectance sensing for assessing growth and chlorophyll content of spring wheat grown under simulated saline field conditions
  publication-title: Plants
  doi: 10.3390/plants10010101
– volume: 99
  start-page: 313
  issue: 3
  year: 2008
  ident: 10.1016/j.sna.2022.113468_bib67
  article-title: Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2007.11.007
– volume: 11
  start-page: 327
  issue: 1981
  year: 1981
  ident: 10.1016/j.sna.2022.113468_bib49
  article-title: Remote detection of nutrient and water deficiencies in sugarcane under variable cloudiness
  publication-title: Rem. Sens. Environ.
  doi: 10.1016/0034-4257(81)90029-8
– volume: 397
  start-page: 685
  issue: 4
  year: 2010
  ident: 10.1016/j.sna.2022.113468_bib50
  article-title: Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of virus infected soybean
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.06.007
– ident: 10.1016/j.sna.2022.113468_bib80
– volume: 56
  start-page: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib98
  article-title: An assessment of the transmission rate of Tomato black ring virus through tomato seeds
  publication-title: Plant Prot. Sci.
  doi: 10.17221/33/2019-PPS
– volume: 9
  start-page: 745
  issue: 7
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib77
  article-title: Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy
  publication-title: Remote Sens.
  doi: 10.3390/rs9070745
– volume: 72
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.sna.2022.113468_bib103
  article-title: A review of advance techniques for detecting plant disease
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.02.007
– volume: 49
  start-page: 520
  issue: 8
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib106
  article-title: Investigation of the Manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2016.1212897
– start-page: 1
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib39
  article-title: Biotic and abiotic stresses in plants
  publication-title: Abiot. Biot. Stress Plants
– volume: 4
  start-page: 89
  issue: 1
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib62
  article-title: Non-destructive classification of fruits based on vis-nir spectroscopy and principal component analysis
  publication-title: J. Biodjati
  doi: 10.15575/biodjati.v4i1.4389
– volume: 81
  start-page: 337
  issue: 2–3
  year: 2002
  ident: 10.1016/j.sna.2022.113468_bib108
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00010-X
– volume: 155
  start-page: 124
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib88
  article-title: Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.12.008
– ident: 10.1016/j.sna.2022.113468_bib130
– volume: 41
  start-page: 103
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib138
  article-title: Monitoring the leaf water content and specific leaf weight of cotton (Gossypium hirsutum L.) in saline soil using leaf spectral reflectance
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2012.04.003
– volume: 52
  start-page: 2002
  issue: 4
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib21
  article-title: Progressive band selection of spectral unmixing for hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2257604
– volume: 181
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib135
  article-title: A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress
  publication-title: Comput. Electron. Agric.
– volume: 9
  start-page: 623
  issue: 5
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib57
  article-title: The potential risk of plant-virus disease initiation by infected tomatoes
  publication-title: Plants
  doi: 10.3390/plants9050623
– volume: 53
  start-page: 36
  issue: 1
  year: 2018
  ident: 10.1016/j.sna.2022.113468_bib55
  article-title: Early detection of diseases in plant tissues using spectroscopy – applications and limitations
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2017.1352510
– ident: 10.1016/j.sna.2022.113468_bib1
– volume: 88
  start-page: 677
  issue: 4
  year: 2001
  ident: 10.1016/j.sna.2022.113468_bib19
  article-title: Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration
  publication-title: Am. J. Bot.
  doi: 10.2307/2657068
– volume: 13
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib73
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0233-z
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib131
  article-title: Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83847-0
– volume: 215
  start-page: 1
  issue: 10
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib100
  article-title: Identification of quantitative trait loci (QTLs) linked to Apple chlorotic leaf spot virus (ACLSV) resistance in apricot
  publication-title: Euphytica
  doi: 10.1007/s10681-019-2481-7
– volume: 295
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib34
  article-title: Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110316
– year: 2021
  ident: 10.1016/j.sna.2022.113468_bib8
  article-title: Identification of Tomato black ring virus from tomato plants grown in greenhouses in Saudi Arabia
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2021.01.031
– volume: 103
  start-page: 1798
  issue: 7
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib3
  article-title: First report of Cotton leafroll dwarf virus in upland cotton (Gossypium hirsutum) in Mississippi
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-01-19-0017-PDN
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib84
  article-title: Introduction to plant stresses
  publication-title: Plant Stress Toler.
– year: 2020
  ident: 10.1016/j.sna.2022.113468_bib125
  article-title: Apoplastic proteases-powerful weapons against pathogen infection in plants
  publication-title: Plant Commun.
– volume: 17
  start-page: 303
  year: 2009
  ident: 10.1016/j.sna.2022.113468_bib120
  article-title: Aquaphotomics: dynamic spectroscopy of aqueous and biological systems describes peculiarities of water
  publication-title: J. Infrared Spectrosc.
  doi: 10.1255/jnirs.869
– start-page: 1
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib90
  article-title: Detection of soybean powder and rice flour adulterations in premature formula by ATR-FTIR spectroscopy and chemometrics
  publication-title: Iran. J. Sci. Technol. Trans. A Sci.
– volume: 86
  start-page: 494
  year: 2013
  ident: 10.1016/j.sna.2022.113468_bib123
  article-title: Measurement of the light absorption and scattering properties of onion skin and flesh at 633 nm
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.07.032
– volume: 146
  start-page: 403
  issue: 3–4
  year: 2008
  ident: 10.1016/j.sna.2022.113468_bib35
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 13
  start-page: 116
  year: 2010
  ident: 10.1016/j.sna.2022.113468_bib47
  article-title: Practical considerations in data pre-treatment for NIR and Raman spectroscopy
  publication-title: Am. Pharm. Rev.
– volume: 3
  start-page: 12
  issue: 1
  year: 2015
  ident: 10.1016/j.sna.2022.113468_bib4
  article-title: Sensing tomato’s pathogen using Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA)
  publication-title: Palest. Tech. Univ. Res. J.
  doi: 10.53671/pturj.v3i1.35
– volume: 14
  start-page: 117
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib43
  article-title: Comparison of reflectance and interactance modes of visible and near-infrared spectroscopy for predicting persimmon fruit quality
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-020-01853-w
– volume: 8
  start-page: 143
  issue: 2
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib83
  article-title: Potential of spectroscopy for differentiation between PVY infected and healthy potato plants
  publication-title: J. Crop Prot.
– volume: 15
  start-page: 211
  issue: 1
  year: 2013
  ident: 10.1016/j.sna.2022.113468_bib10
  article-title: Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features
  publication-title: Agric. Eng. Int. CIGR J.
– volume: 52
  start-page: 107
  year: 2013
  ident: 10.1016/j.sna.2022.113468_bib52
  article-title: Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging
  publication-title: J. Stored Prod. Res.
  doi: 10.1016/j.jspr.2012.12.005
– volume: 66
  start-page: 988
  issue: 3
  year: 2002
  ident: 10.1016/j.sna.2022.113468_bib107
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.9880
– volume: 84
  start-page: 526
  issue: 4
  year: 2003
  ident: 10.1016/j.sna.2022.113468_bib109
  article-title: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00151-7
– volume: 27
  start-page: 241
  year: 2014
  ident: 10.1016/j.sna.2022.113468_bib65
  article-title: A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.07.010
– volume: 38
  start-page: 559
  issue: 5
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib118
  article-title: Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-019-02386-1
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: 10.1016/j.sna.2022.113468_bib99
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– year: 2011
  ident: 10.1016/j.sna.2022.113468_bib51
– volume: 34
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.sna.2022.113468_bib124
  article-title: Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling
  publication-title: Arboric. Urban For.
  doi: 10.48044/jauf.2008.001
– volume: 37
  start-page: 263
  year: 2002
  ident: 10.1016/j.sna.2022.113468_bib30
  article-title: Concepts in plant stress physiology. Application to plant tissue cultures
  publication-title: Plant Growth Regul.
  doi: 10.1023/A:1020835304842
– volume: 18
  start-page: 141
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib58
  article-title: A comparative study on Apple Chlorotic Leafspot Virus (ACLSV) isolates from different hosts in the East Mediterranean region of Turkey
  publication-title: Appl. Ecol. Environ. Res.
  doi: 10.15666/aeer/1801_141157
– volume: 1
  start-page: 1176
  issue: 6
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib96
  article-title: Metabolomics by NMR spectroscopy in plant disease diagnostic: Huanglongbing as a case study
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600064
– volume: 21
  start-page: 611
  issue: 2
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib119
  article-title: Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (Vigna radiata) sprout growth and validation of ascorbic acid content
  publication-title: Sensors
  doi: 10.3390/s21020611
– volume: 9
  start-page: 368
  issue: 3
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib112
  article-title: Non-destructive detection of tea leaf chlorophyll content using hyperspectral reflectance and machine learning algorithms
  publication-title: Plants
  doi: 10.3390/plants9030368
– volume: 6
  start-page: 56
  issue: 4
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib2
  article-title: Detection and differentiation between Laurel wilt disease, Phytophthora disease, and salinity damage using a hyperspectral sensing technique
  publication-title: Agriculture
  doi: 10.3390/agriculture6040056
– volume: 18
  start-page: 271
  issue: 4
  year: 2010
  ident: 10.1016/j.sna.2022.113468_bib104
  article-title: Applying near infrared spectroscopy to the detection of fruit fly eggs and larvae in intact fruit
  publication-title: J. Infrared Spectrosc.
  doi: 10.1255/jnirs.886
– year: 2012
  ident: 10.1016/j.sna.2022.113468_bib115
– volume: 9
  start-page: 3049
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib61
  article-title: Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39443-4
– volume: 75
  start-page: 304
  issue: 2
  year: 2011
  ident: 10.1016/j.sna.2022.113468_bib14
  article-title: Early detection of Fusarium infection in wheat using hyper-spectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.12.006
– volume: 55
  start-page: 711
  issue: 2
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib81
  article-title: Identification if citrus greening (HLB) using a VIS-NIR spectroscopy technique
  publication-title: Trans. ASABE
  doi: 10.13031/2013.41369
– volume: 245
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib134
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 249
  start-page: 925
  issue: 3
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib110
  article-title: ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit
  publication-title: Planta
  doi: 10.1007/s00425-018-3060-1
– volume: 44
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib117
  article-title: Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP16127
– volume: 205
  start-page: 174
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib126
  article-title: Generalisation of tea moisture content models based on VNIR spectra subjected to fractional differential treatment
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.03.006
– volume: 100
  start-page: 317
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib22
  article-title: Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests
  publication-title: Phys. Chem. Earth Parts A/B/C.
  doi: 10.1016/j.pce.2017.02.011
– volume: 320
  start-page: 143
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib11
  article-title: Assessment of near-Infrared (NIR) spectroscopy for segregation measurement of low content level ingredients
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.07.003
– year: 2020
  ident: 10.1016/j.sna.2022.113468_bib41
– volume: 27
  start-page: 93
  issue: 2
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib137
  article-title: Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection
  publication-title: Spectrosc. Int. J.
  doi: 10.1155/2012/276795
– volume: 13
  start-page: 641
  issue: 4
  year: 2021
  ident: 10.1016/j.sna.2022.113468_bib76
  article-title: Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs13040641
– volume: 17
  start-page: 31
  issue: 1
  year: 2011
  ident: 10.1016/j.sna.2022.113468_bib7
  article-title: Fast and accurate detection and classification of plant diseases
  publication-title: Int. J. Comput. Appl.
– volume: 61
  start-page: 158
  year: 1984
  ident: 10.1016/j.sna.2022.113468_bib92
  article-title: Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat: I. Influence of particle size
  publication-title: Cereal Chem.
– volume: 114
  start-page: 3393
  issue: 13
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib9
  article-title: In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy
  publication-title: PNAS
  doi: 10.1073/pnas.1701328114
– volume: 46
  start-page: 331
  issue: 2
  year: 2015
  ident: 10.1016/j.sna.2022.113468_bib33
  article-title: Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2015.10.006
– volume: 27
  start-page: 88
  issue: 1
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib78
  article-title: Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.05.007
– volume: 29
  start-page: 70
  issue: 1–4
  year: 2018
  ident: 10.1016/j.sna.2022.113468_bib42
  article-title: A fast kernel extreme learning machine based on conjugate gradient
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1080/0954898X.2018.1562247
– volume: 12
  start-page: 1920
  issue: 12
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib82
  article-title: Non-destructive early detection and quantitative severity stage classification of Tomato Chlorosis Virus (ToCV) infection in young tomato plants using Vis-NIR spectroscopy
  publication-title: Remote Sens.
  doi: 10.3390/rs12121920
– volume: 8
  start-page: 677
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib6
  article-title: Application of adaptive Savitzky–Golay filter for EEG signal processing
  publication-title: Perspect. Sci.
  doi: 10.1016/j.pisc.2016.06.056
– volume: 77
  start-page: 95
  issue: 1
  year: 2011
  ident: 10.1016/j.sna.2022.113468_bib139
  article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.04.001
– volume: 43
  start-page: 772
  year: 1989
  ident: 10.1016/j.sna.2022.113468_bib13
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702894202201
– volume: 10
  start-page: 645
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib93
  article-title: Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00645
– volume: 204
  start-page: 46
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib15
  article-title: Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2017.02.012
– volume: 167
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib16
  article-title: Detection and differentiation between potato (Solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105056
– start-page: 21
  year: 2017
  ident: 10.1016/j.sna.2022.113468_bib38
  article-title: How does chloroplast protect chlorophyll against excessive light?
  publication-title: Chlorophyll
– volume: 151
  start-page: 374
  year: 2016
  ident: 10.1016/j.sna.2022.113468_bib53
  article-title: Crop reflectance monitoring as a tool for water stress detection in greenhouses: a review
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.10.003
– volume: 166
  start-page: 161
  year: 2018
  ident: 10.1016/j.sna.2022.113468_bib70
  article-title: Non-destructive detection of zebra chip disease in potatoes using near-infrared spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.11.019
– volume: 74
  start-page: 91
  issue: 1
  year: 2010
  ident: 10.1016/j.sna.2022.113468_bib101
  article-title: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.06.009
– volume: 103
  start-page: 1439
  issue: 6
  year: 2019
  ident: 10.1016/j.sna.2022.113468_bib71
  article-title: First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-11-18-1959-PDN
– start-page: 217
  year: 2012
  ident: 10.1016/j.sna.2022.113468_bib37
  article-title: Chemometrics in food technology
– volume: 6
  start-page: 107
  issue: 16
  year: 2020
  ident: 10.1016/j.sna.2022.113468_bib45
  article-title: Phenotypic techniques and applications in fruit trees: a review
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00649-7
SSID ssj0003377
Score 2.6595297
SecondaryResourceType review_article
Snippet Health monitoring in plants is vital for agricultural sustainability. Currently, the number of techniques able to detect plant stress and disease at an early...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113468
SubjectTerms Absorption spectra
Aquaphotomics
Cardiovascular disease
Data analysis
Functional groups
Infrared analysis
Infrared spectroscopy
Monitoring systems
Near infrared radiation
Non-destructive
Nondestructive testing
Plant disease
Plant diseases
Plant stress
Stress
Sustainability
Vis-NIR spectroscopy
Title A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection
URI https://dx.doi.org/10.1016/j.sna.2022.113468
https://www.proquest.com/docview/2659695405
Volume 338
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaSw4eVIjdR5LdHkuxtIo9qJXeQl4LlbIt7Xrw4m83sw-tIj143CVZsl8mkxnyzReELsIwolT7MbEuGCI0DhSRknEiOeVWGcMDBfXODyM-GNO7CZvUUK-qhQFaZen7C5-ee-vyTbtEs72YTttPnksdaABih3liA7LboF7nbPrm45vm4QaTl0y7xgRaVyebOcdrlYL0UBDAzSYU1Fb_3pt-eel86-nvod0yZsTdYlj7qGbTA7SzpiR4iFQXF0UoeJ5gqBdXM4tlanDqLJk4K1oC0RxfvkxXZDR8vMJ5hSUoWc4X73jtFBtPU7yYObhxUUWCjc1ytlZ6hMb92-fegJTXJxAdBiwjRnMaeyG1PksiEzOX-MVw6Bl1OGOJijiTTNNA-aGyMomNr0AqP5JU0cTzjQ6PUT2dp_YE4cRIyjxu_UQayrWOmaIuq_a10Z500DWQVwEndKktDldczERFInsVDmsBWIsC6wa6_uqyKIQ1NjWm1WyIH9YhnOPf1K1ZzZwol-ZKuH_s8A4Eqqf_--oZ2oangvXYRPVs-WbPXWSSqVZuei201R3eD0afsvvhUw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6F5FB6qAoFAaXFBw4tkpV9jL2bY4SKkgI5QIK4WX6tFBRtIpIe-Pf17ANRhDj0umuvvJ_H4xl5vs8Ap2maIdo45z4EQxzzxHCtheRaovTGOZkY4jtfT-Rohr_vxX0HzlsuDJVVNr6_9umVt26e9Bs0-6v5vH8bhdQBExI7rBIbuQU9UqfCLvSG48vR5Nkhh_FUrOnQnlOH9nCzKvNal6Q-lCR0uQmS4Orb29MrR13tPhef4VMTNrJhPbId6PhyFz6-EBP8AmbIah4KWxaMKONm4ZkuHSuDMfNgSI9Ua85-3M3XfDK--ckqkiWJWS5XT-zFQTabl2y1CIizmkjCnN9UBVvlHswufk3PR7y5QYHbNBEb7qzEPErRx6LIXC5C7pfTuWc2kEIUJpNCC4uJiVPjdZG72JBafqbRYBHFzqb70C2XpT8AVjiNIpI-LrRDaW0uDIbEOrbORjpAdwhRC5yyjbw43XKxUG0d2YMKWCvCWtVYH8LZc5dVra3xXmNsZ0P9YyAq-P73uh23M6ea1blW4R8HckCx6tH_ffUEPoym11fqajy5_Arb9KYugjyG7ubxj_8WApWN-d4Y4l94quQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+visible+and+near-infrared+%28Vis-NIR%29+spectroscopy+application+in+plant+stress+detection&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Zahir%2C+Siti+Anis+Dalila+Muhammad&rft.au=Omar%2C+Ahmad+Fairuz&rft.au=Jamlos%2C+Mohd+Faizal&rft.au=Azmi%2C+Mohd+Azraie&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=338&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2022.113468&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon