New classification of weed development stages using machine learning methods: radiomics parameters

Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Weed Science Vol. 43; p. e020250014
Main Authors Gülbandilar, Eyyüp, Uludağ, Ahmet, Çiçek, Yasin
Format Journal Article
LanguageEnglish
Published Londrina Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia 01.01.2025
Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD
Subjects
Online AccessGet full text
ISSN2675-9462
2675-9462
DOI10.51694/AdvWeedSci/2025;43:00018

Cover

Loading…
Abstract Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for weed development stages with better accuracy reduced workload by incorporating Region of Interest (ROI) into existing classification models.Methods: Weeds were grown and photographed in several development stages for the dataset. Using the ROI technique, commonly utilized in medicine, the leaf image features were digitized, and a total of 448 sample records were obtained. Of these image features, 9 were identified as the most important variables using the linear regression model. SMOTE analysis was applied to balance the distribution in our data. The data were randomly divided into 70% for training, 15% for testing, and 15% for validation groups. The models were developed by using artificial intelligence methods such as ANFIS, MLPNN, SVM, kNN, Naive Bayes, Decision Tree, Random Forest, Deep Learning, and Logistic Regression.Results: Accuracy, Precision, Recall, and F1-score parameters were used to evaluate the performance of the models. NB, ANFIS, and LR models failed to produce results within acceptable limits. However, RF, MLPNN, DT, Keras, and SVM models were successful. kNN models results were not far off but a failure nonetheless.Conclusions: Based on these results, we demonstrated that our RF, MLPNN, DT, Keras, SVM, and kNN models with ROI implementation can successfully determine the development stages of weeds.
AbstractList Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for weed development stages with better accuracy reduced workload by incorporating Region of Interest (ROI) into existing classification models.Methods: Weeds were grown and photographed in several development stages for the dataset. Using the ROI technique, commonly utilized in medicine, the leaf image features were digitized, and a total of 448 sample records were obtained. Of these image features, 9 were identified as the most important variables using the linear regression model. SMOTE analysis was applied to balance the distribution in our data. The data were randomly divided into 70% for training, 15% for testing, and 15% for validation groups. The models were developed by using artificial intelligence methods such as ANFIS, MLPNN, SVM, kNN, Naive Bayes, Decision Tree, Random Forest, Deep Learning, and Logistic Regression.Results: Accuracy, Precision, Recall, and F1-score parameters were used to evaluate the performance of the models. NB, ANFIS, and LR models failed to produce results within acceptable limits. However, RF, MLPNN, DT, Keras, and SVM models were successful. kNN models results were not far off but a failure nonetheless.Conclusions: Based on these results, we demonstrated that our RF, MLPNN, DT, Keras, SVM, and kNN models with ROI implementation can successfully determine the development stages of weeds.
Author Çiçek, Yasin
Uludağ, Ahmet
Gülbandilar, Eyyüp
AuthorAffiliation Çanakkale Onsekiz Mart University
Eskişehir Osmangazi University
AuthorAffiliation_xml – name: Çanakkale Onsekiz Mart University
– name: Eskişehir Osmangazi University
Author_xml – sequence: 1
  givenname: Eyyüp
  orcidid: 0000-0001-5559-5281
  surname: Gülbandilar
  fullname: Gülbandilar, Eyyüp
– sequence: 2
  givenname: Ahmet
  orcidid: 0000-0002-7137-2616
  surname: Uludağ
  fullname: Uludağ, Ahmet
– sequence: 3
  givenname: Yasin
  orcidid: 0000-0003-3151-5288
  surname: Çiçek
  fullname: Çiçek, Yasin
BookMark eNpNUU1PAjEQbQwmIvIfajwD_Vx28USIX4nRAxqPTbedhRLYYrtA_Pd2wQRPM5nMe_PmvWvUqX0NCN1SMpQ0K8RoavdfAHZu3IgRJu8FnxBCaH6Buiwby0EhMtb511-hfoyrtMLyMedUdlH5Bgds1jpGVzmjG-dr7Ct8SKzYwh7WfruBusGx0QuIeBddvcAbbZauBrwGHerjAJqlt3GCg7bOb5yJeKuDTmMI8QZdVnodof9Xe-jz8eFj9jx4fX96mU1fB4Yz2Qwss4yTHGhJiOU0LwothahgnEuihTAZK1kmDBeklNTm0ppcZmOeQAKkZgXvoeGJNxqXdKuV34U6HVTz9n_V_t-a1BqUDKBZAtydANvgv3cQmzOEs6Qpl1y2tMVpywQfY4BKbYPb6PCjKFHHGNQ5BtVeUIKrYwz8F4VtfX0
Cites_doi 10.1556/034.65.2023.3-4.10
10.1016/j.procs.2023.01.212
10.1007/s12525-021-00475-2
10.3389/fpls.2020.611622
10.3390/agriculture11050387
10.1201/9781315155913
10.1016/j.eja.2019.01.004
10.1007/s10100-017-0479-6
10.1016/S0019-9958(65)90241-X
10.1201/9781315155913-14
10.1111/wre.12526
10.3390/agriculture13010175
10.1109/CSCI46756.2018.00065
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
3V.
7SN
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
GPN
DOI 10.51694/AdvWeedSci/2025;43:00018
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SciELO
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2675-9462
ExternalDocumentID S2675_94622025000100216
10_51694_AdvWeedSci_2025_43_00018
GroupedDBID 7X2
AAYXX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
M0K
M7P
M~E
PHGZM
PHGZT
PIMPY
PQGLB
RSC
3V.
7SN
8FE
8FH
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
GPN
ID FETCH-LOGICAL-c325t-d2d2308e1b00d31899a544fe7850a44c62b264c340b51d85dc85673d234e5a293
IEDL.DBID BENPR
ISSN 2675-9462
IngestDate Tue Aug 19 14:46:40 EDT 2025
Mon Jul 28 20:10:43 EDT 2025
Tue Aug 05 12:02:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Weed Development Stage
Weed
ROI
Classification
Radiomics
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-d2d2308e1b00d31899a544fe7850a44c62b264c340b51d85dc85673d234e5a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5559-5281
0000-0003-3151-5288
0000-0002-7137-2616
OpenAccessLink https://www.proquest.com/docview/3232585359?pq-origsite=%requestingapplication%
PQID 3232585359
PQPubID 2037514
ParticipantIDs scielo_journals_S2675_94622025000100216
proquest_journals_3232585359
crossref_primary_10_51694_AdvWeedSci_2025_43_00018
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Londrina
PublicationPlace_xml – name: Londrina
PublicationTitle Advances in Weed Science
PublicationTitleAlternate Adv. Weed Sci
PublicationYear 2025
Publisher Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia
Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD
Publisher_xml – name: Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia
– name: Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD
References Razfar (key20250618182241_B24) 2022; 8
Li (key20250618182241_B16) 2021; 11
Torun (key20250618182241_B26) 2023; 65
Zadeh (key20250618182241_B29) 1965; 8
Gerhards (key20250618182241_B9) 2022; 62
Ong (key20250618182241_B21) 2023; 4
Ali (key20250618182241_B2) 2014; 1
Janiesch (key20250618182241_B13) 2021; 31
Nioche (key20250618182241_B20) 2024
Luo (key20250618182241_B18) 2023; 10
Pathak (key20250618182241_B22) 2023; 5
Islam (key20250618182241_B11) 2021; 11
Espejo-Garcia (key20250618182241_B7) 2020
Jabran (key20250618182241_B12) 2018
Dai (key20250618182241_B6) 2023
Zhang (key20250618182241_B30) 2023; 13
Meena (key20250618182241_B19) 2023; 218
Kamiński (key20250618182241_B14) 2017; 26
Yang (key20250618182241_B27) 2018
Korres (key20250618182241_B15) 2018
Potena (key20250618182241_B23) 2017
Chityala (key20250618182241_B4) 2004; 5368
Cicek (key20250618182241_B5) 2022; 3
Lottes (key20250618182241_B17) 2016
Sugumar (key20250618182241_B25) 2023
Alam (key20250618182241_B1) 2020
Bircan (key20250618182241_B3) 2004
Guzel (key20250618182241_B10) 2024; 9
Yu (key20250618182241_B28) 2019; 104
Fernandez (key20250618182241_B8) 2018; 61
Islam, N; Rashid, MM; Wibowo, S; Xu, C-Y; Morshed, A; Wasimi, SA 2021; 11
Janiesch, C; Zschech, P; Heinrich, K 2021; 31
Meena, SD; Susank, M; Guttula, T; Chandana, SH; Sheela, J 2023; 218
Fernandez, A; Garcia, S; Herrera, F; Chawla, NV 2018; 61
Nioche, C; Orlhac, F; Buvat, I 2024
Cicek, Y; Uludag, A; ve Gulbandılar, E 2022; 3
Chityala, RN; Hoffmann, KR; Bednarek, DR; Rudin, S 2004; 5368
Pathak, H; Igathinathane, C; Howatt, K; Zhang, Z 2023; 5
Ong, P; Teo, KS; Sia, CK 2023; 4
Jabran, K; Uludag, A; Chauhan, BS; Korres, NE; Burgos, NR; Duke, SO 2018
Espejo-Garcia, B; Mylonas, N; Athanasakos, L; Fountas, S 2020
Alam, M; Alam, MS; Roman, M; Tufail, M; Khan, MU; Khan, MT 2020
Yang, FJ 2018
Zhang, X; Cui, J; Liu, H; Han, Y; Ai, H; Dong, C 2023; 13
Razfar, N; True, J; Bassiouny, R; Venkatesh, V; Kashef, R 2022; 8
Sugumar, R; Suganya, D 2023
Torun, H; Ozkil, M; Aksoy, N; Uremiş, İ; Uludağ, A 2023; 65
Ali, PJM; Faraj, RH; Koya, E; Ali, PJM; Faraj, RH 2014; 1
Dai, X; Lai, W; Yin, N; Tao, Q; Huang, Y 2023
Potena, C; Nardi, D; Pretto, A; Chen, W; Hosoda, K; Menegatti, E; Shimizu, M; Wang, H 2017
Yu, J; Sharpe, SM; Schumann, AW; Boyd, NS 2019; 104
Lottes, P; Hoeferlin, M; Sander, S; Müter, M; Schulze, P; Stachniss, LC 2016
Korres, NE; Burgos, NR; Duke, SO 2018
Zadeh, LA 1965; 8
Gerhards, R; Andujar Sanchez, D; Hamouz, P; Peteinatos, GG; Christensen, S; Fernandez-Quintanilla, C 2022; 62
Luo, T; Zhao, J; Gu, Y; Zhang, S; Qiao, X; Tian, W 2023; 10
Bircan, H 2004
Guzel, M; Turan, B; Kadioglu, I; Basturk, A; Sin, B; Sadeghpour, A 2024; 9
Kamiński, B; Jakubczyk, M; Szufel, P 2017; 26
Li, Y; Al-Sarayreh, M; Irie, K; Hackell, D; Bourdot, G; Reis, MM; Ghamkhar, K 2021; 11
References_xml – volume: 65
  start-page: 399
  issue: 3-4
  year: 2023
  ident: key20250618182241_B26
  article-title: Cardamine occulta: a new weed and alien plant species in banana production greenhouses in Turkey
  publication-title: Acta Bot Hungar
  doi: 10.1556/034.65.2023.3-4.10
– volume: 3
  start-page: 54
  issue: 2
  year: 2022
  ident: key20250618182241_B5
  article-title: [Artificial intelligence techniques used in sugar beet production]
  publication-title: Esk Turk World Appl Res Center Inf TechnolJ
– volume: 4
  start-page: 1
  year: 2023
  ident: key20250618182241_B21
  article-title: UAV-based weed detection in Chinese cabbage using deep learning
  publication-title: Smart Agric Technol
– start-page: 175
  year: 2020
  ident: key20250618182241_B7
  article-title: Improving weeds identification with a repository of agricultural pre-trained deep neural networks
  publication-title: Comp Electr Agric
– volume: 218
  start-page: 2369
  year: 2023
  ident: key20250618182241_B19
  article-title: Crop yield improvement with weeds, pest and disease detection
  publication-title: Proc Comp Sci
  doi: 10.1016/j.procs.2023.01.212
– volume: 10
  start-page: 40
  issue: 1
  year: 2023
  ident: key20250618182241_B18
  article-title: Classification of weed seeds based on visual images and deep learning
  publication-title: Inf Proc Agric
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: key20250618182241_B13
  article-title: Machine learning and deep learning
  publication-title: Electr Markets
  doi: 10.1007/s12525-021-00475-2
– volume: 11
  start-page: 1
  year: 2021
  ident: key20250618182241_B16
  article-title: Identification of weeds based on hyperspectral imaging and machine learning
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.611622
– volume: 11
  start-page: 1
  issue: 5
  year: 2021
  ident: key20250618182241_B11
  article-title: Early weed detection using image processing and machine learning techniques in an Australian Chilli Farm
  publication-title: Agriculture
  doi: 10.3390/agriculture11050387
– start-page: 31
  year: 2023
  ident: key20250618182241_B25
  article-title: A multi-spectral image-based high-level classification based on a modified SVM with enhanced PCA and hybrid metaheuristic algorithm
  publication-title: Rem Sens Appl Soc Envir
– volume: 5
  start-page: 1
  year: 2023
  ident: key20250618182241_B22
  article-title: Machine learning and handcrafted image processing methods for classifying common weeds in corn field
  publication-title: Smart Agric Technol
– volume-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide
  year: 2018
  ident: key20250618182241_B15
  doi: 10.1201/9781315155913
– volume: 104
  start-page: 78
  year: 2019
  ident: key20250618182241_B28
  article-title: Deep learning for image-based weed detection in turfgrass
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2019.01.004
– volume: 61
  start-page: 863
  year: 2018
  ident: key20250618182241_B8
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J Art Int Res
– volume: 26
  start-page: 135
  issue: 1
  year: 2017
  ident: key20250618182241_B14
  article-title: A framework for sensitivity analysis of decision trees
  publication-title: Cent Eur J Oper Res
  doi: 10.1007/s10100-017-0479-6
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: key20250618182241_B29
  article-title: Fuzzy sets
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– start-page: 276
  volume-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide
  year: 2018
  ident: key20250618182241_B12
  doi: 10.1201/9781315155913-14
– start-page: 105
  year: 2017
  ident: key20250618182241_B23
  publication-title: Fast and accurate crop and weed identification with summarized train sets for precision agriculture
– volume: 62
  start-page: 123
  issue: 2
  year: 2022
  ident: key20250618182241_B9
  article-title: Advances in site-specific weed management in agriculture: a review
  publication-title: Weed Res
  doi: 10.1111/wre.12526
– volume: 9
  start-page: 1
  year: 2024
  ident: key20250618182241_B10
  article-title: Deep learning for image-based detection of weeds from emergence to maturity in wheat fields
  publication-title: Smart Agric Technol
– year: 2024
  ident: key20250618182241_B20
  article-title: Texture: user guide: local image features extraction Lifex
  publication-title: Lifexsoft.org
– volume: 13
  start-page: 1
  issue: 1
  year: 2023
  ident: key20250618182241_B30
  article-title: Weed ıdentification in soybean seedling stage based on optimized faster R-CNN algorithm
  publication-title: Agriculture
  doi: 10.3390/agriculture13010175
– start-page: 428
  year: 2023
  ident: key20250618182241_B6
  article-title: Research on intelligent clearing of weeds in wheat fields using spectral imaging and machine learning
  publication-title: J Cleaner Prod
– volume: 8
  start-page: 1
  year: 2022
  ident: key20250618182241_B24
  article-title: Weed detection in soybean crops using custom lightweight deep learning models
  publication-title: J Agric Food Res
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: key20250618182241_B2
  article-title: Data normalization and standardization: a technical report
  publication-title: Mach Learn Tech Rep
– volume: 5368
  start-page: 534
  issue: 2
  year: 2004
  ident: key20250618182241_B4
  article-title: Region of interest (ROI) computed tomography
  publication-title: Proc SPIE Int Soc Opt Eng
– start-page: 185
  issue: 8
  year: 2004
  ident: key20250618182241_B3
  article-title: [Logistic regression analysis: an application on medical data]
  publication-title: Koc Univ J Soc Sci
– start-page: 5157
  volume-title: Proceeding of 2016 IEEE International Conference on Robotics and Automation (ICRA)
  year: 2016
  ident: key20250618182241_B17
– start-page: 301
  volume-title: Proceeding of 2018 International conference on computational science and computational intelligence (CSCI)
  year: 2018
  ident: key20250618182241_B27
  doi: 10.1109/CSCI46756.2018.00065
– start-page: 273
  volume-title: Proceeding of 2020 7th International Conference on Electrical and Electronics Engineering
  year: 2020
  ident: key20250618182241_B1
– start-page: 273
  year: 2020
  end-page: 280
  publication-title: Proceeding of 2020 7th International Conference on Electrical and Electronics Engineering
– volume: 62
  start-page: 123
  issue: 2
  year: 2022
  end-page: 133
  article-title: Advances in site-specific weed management in agriculture: a review
  publication-title: Weed Res
– start-page: 175
  year: 2020
  end-page: 175
  article-title: Improving weeds identification with a repository of agricultural pre-trained deep neural networks
  publication-title: Comp Electr Agric
– start-page: 185
  issue: 8
  year: 2004
  end-page: 208
  article-title: [Logistic regression analysis: an application on medical data]
  publication-title: Koc Univ J Soc Sci
– volume: 65
  start-page: 399
  issue: 3-4
  year: 2023
  end-page: 411
  article-title: Cardamine occulta: a new weed and alien plant species in banana production greenhouses in Turkey
  publication-title: Acta Bot Hungar
– volume: 4
  start-page: 1
  year: 2023
  end-page: 8
  article-title: UAV-based weed detection in Chinese cabbage using deep learning
  publication-title: Smart Agric Technol
– start-page: 301
  year: 2018
  end-page: 306
  publication-title: Proceeding of 2018 International conference on computational science and computational intelligence (CSCI)
– volume: 11
  start-page: 1
  issue: 5
  year: 2021
  end-page: 13
  article-title: Early weed detection using image processing and machine learning techniques in an Australian Chilli Farm
  publication-title: Agriculture
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  end-page: 695
  article-title: Machine learning and deep learning
  publication-title: Electr Markets
– start-page: 5157
  year: 2016
  end-page: 5163
  publication-title: Proceeding of 2016 IEEE International Conference on Robotics and Automation (ICRA)
– year: 2024
  article-title: Texture: user guide: local image features extraction Lifex
  publication-title: Lifexsoft.org
– start-page: 31
  year: 2023
  end-page: 31
  article-title: A multi-spectral image-based high-level classification based on a modified SVM with enhanced PCA and hybrid metaheuristic algorithm
  publication-title: Rem Sens Appl Soc Envir
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  article-title: Fuzzy sets
  publication-title: Inf Control
– volume: 5
  start-page: 1
  year: 2023
  end-page: 12
  article-title: Machine learning and handcrafted image processing methods for classifying common weeds in corn field
  publication-title: Smart Agric Technol
– volume: 26
  start-page: 135
  issue: 1
  year: 2017
  end-page: 159
  article-title: A framework for sensitivity analysis of decision trees
  publication-title: Cent Eur J Oper Res
– year: 2018
  publication-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide
– start-page: 105
  year: 2017
  end-page: 121
  publication-title: Fast and accurate crop and weed identification with summarized train sets for precision agriculture
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  end-page: 6
  article-title: Data normalization and standardization: a technical report
  publication-title: Mach Learn Tech Rep
– volume: 11
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Identification of weeds based on hyperspectral imaging and machine learning
  publication-title: Front Plant Sci
– volume: 10
  start-page: 40
  issue: 1
  year: 2023
  end-page: 51
  article-title: Classification of weed seeds based on visual images and deep learning
  publication-title: Inf Proc Agric
– volume: 61
  start-page: 863
  year: 2018
  end-page: 905
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J Art Int Res
– start-page: 276
  year: 2018
  end-page: 287
  publication-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide
– volume: 104
  start-page: 78
  year: 2019
  end-page: 84
  article-title: Deep learning for image-based weed detection in turfgrass
  publication-title: Eur J Agron
– volume: 9
  start-page: 1
  year: 2024
  end-page: 7
  article-title: Deep learning for image-based detection of weeds from emergence to maturity in wheat fields
  publication-title: Smart Agric Technol
– volume: 5368
  start-page: 534
  issue: 2
  year: 2004
  end-page: 541
  article-title: Region of interest (ROI) computed tomography
  publication-title: Proc SPIE Int Soc Opt Eng
– volume: 8
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Weed detection in soybean crops using custom lightweight deep learning models
  publication-title: J Agric Food Res
– volume: 13
  start-page: 1
  issue: 1
  year: 2023
  end-page: 16
  article-title: Weed ıdentification in soybean seedling stage based on optimized faster R-CNN algorithm
  publication-title: Agriculture
– start-page: 428
  year: 2023
  end-page: 428
  article-title: Research on intelligent clearing of weeds in wheat fields using spectral imaging and machine learning
  publication-title: J Cleaner Prod
– volume: 3
  start-page: 54
  issue: 2
  year: 2022
  end-page: 59
  article-title: [Artificial intelligence techniques used in sugar beet production]
  publication-title: Esk Turk World Appl Res Center Inf TechnolJ
– volume: 218
  start-page: 2369
  year: 2023
  end-page: 2382
  article-title: Crop yield improvement with weeds, pest and disease detection
  publication-title: Proc Comp Sci
SSID ssj0002873315
Score 2.279061
Snippet Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control....
SourceID scielo
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e020250014
SubjectTerms Accuracy
AGRONOMY
Artificial intelligence
Classification
Datasets
Decision trees
Deep learning
Developmental stages
Digitization
Herbicides
Image processing
Machine learning
Parameters
Radiomics
Regression models
Seeds
Software packages
Support vector machines
Weed control
Weeds
Workload
Workloads
Title New classification of weed development stages using machine learning methods: radiomics parameters
URI https://www.proquest.com/docview/3232585359
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2675-94622025000100216&lng=en&tlng=en
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60BfEiiorVWlYQPIUm2d1kUw9SpaUILaIWewvZR4pgHzZVb_52Z5LU1ouXHPLYwLc7M988doeQS4-JRICZdgzuU-aCa0cq7Tk2TCPtBsrw_LDn_iDoDfn9SIzKgFtWllWudGKuqM1MY4y8ycD0A7VlIrqZvzvYNQqzq2ULjW1SBRUsYZ1XbzuDh8ffKAv4A4x5YodcgHbAlBBvts3nCxgGEB10_MU1Zy0kOvKvYdpgm2iK3jatTnef7JV0kbaL-T0gW3Z6SBRoJqqR9mKdTw4tnaX0C_5HzboIiALxG9uMYmn7mE7yqklLyzYRcCPvHZ216CIxr7g3OaN4DvgE62OyIzLsdp7vek7ZK8HRgMvSMb4BZ0JaD8TIgJxGEUwBT20ohZtwrgNfAfXRjLtKeEYKo6UIQgYfcSsSsPnHpDKdTe0JocKEItBuAr6Tz62NVBqkbugnTCkgUzKqEX8FVDwvjsSIwZXI0Y3X6MaIbsxZnt6WNVJfQRqXUpLF6zmtkasC5vXDJx98mTjigY8D4SDIR4LT_wc6I7v4ehEkqZPKcvFhz4E2LFWjXBuN3O2Ga_-78wMjBcKD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5kBZMXUTRk49VCgk-DM33MoYh4skZdQqLEt870MSLorjqr4p_Kb0zVHK6-5M3XGbpmqK6u-qq6DoCvkVC5QjMdOKpTlkraIDU2CnxSZDaMjZNVs-fTftw7l98v1MUE_G1rYSitstWJlaJ2Q0sx8nWBph-hrVDZ9u1dQFOj6Ha1HaFRi8Wxf35Cl63cOtrH_f3G-eHB2V4vaKYKBBYpjALHHcLu1EcocA4lOsvwZ2Xhk1SFuZQ25gZBghUyNCpyqXI2VXEicJH0KufUfAlV_qSkitYOTO4e9H_8fInqoP8hRKSmYBW1EV1ByfUd9_gbDREeVQo0qE0pNghYpW8N4St0S6bv-rWVO5yB6Qaesp1anmZhwg_mwKAmZJZgNuUVVVvJhgV7wu8xN046Ygg0L33JKJX-kt1UWZqeNWMp8EE1q7rcYPe5u6Ja6JJR3_Ebyscp5-H8Xbj4CTqD4cB_BqZcomIb5uircel9Zoq4CBOeC2MQvKVZF3jLKH1bt-DQ6LpU3NVj7mrirpaiuk5Pu7DYslQ3p7LUYxnqwlrN5vHLXxx9J53JmBMhIkL4J_7yf0Ir8KF3dnqiT476xwvwkZbWAZpF6IzuH_wSQpaRWW7khMGf9xbNf-Y_-xY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5kBclFDFGyamIHDJ6GnenHPBQRE100JotoRG_t9GNEiLvqrIp_zV9n1Txcc_HmdYauGaq_rvqqu7oKYDUSKlfopgNH95SlkjZIjY0CnxSZDWPjZFXs-c8g3juRv87U2RQ8tXdhKK2ytYmVoXYjS3vkPYGuH6mtUFmvaNIiDnf6W9c3AXWQopPWtp1GDZED__iA4Vu5ub-Dc_2d8_7u3597QdNhILAobRw47pCCpz5C8DlEd5bhj8vCJ6kKcyltzA0SBitkaFTkUuVsquJE4CDpVc6pEBOa_-kEvaLswPSP3cHh0csOD8YiQkRqBr6hZaLjKNnbdven6JRw2dKmg9qQYp1IVvq_U3zFdMkN_nvt8fpzMNtQVbZdY-sjTPnhJzBoFZklyk05RtW0slHBHvB7zE0SkBiSzgtfMkqrv2BXVcamZ02LCnxQ9a0u19lt7i7pXnTJqAb5FeXmlPNw8i5aXIDOcDT0n4Epl6jYhjnGbVx6n5kiLsKE58IYJHJp1gXeKkpf1-U4NIYxlXb1RLuatKulqI7W0y4styrVzQot9QRPXVir1Tx5ecwxjtKZjDkJIiHEheLFtwWtwAxCUv_eHxwswQcaWe_VLENnfHvnvyB7GZuvDUwYnL83Mp8BY1X_Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+classification+of+weed+development+stages+using+machine+learning+methods%3A+radiomics+parameters&rft.jtitle=Advances+in+Weed+Science&rft.au=G%C3%BClbandilar%2C+Eyy%C3%BCp&rft.au=Uluda%C4%9F%2C+Ahmet&rft.au=%C3%87i%C3%A7ek%2C+Yasin&rft.date=2025-01-01&rft.issn=2675-9462&rft.eissn=2675-9462&rft.volume=43&rft_id=info:doi/10.51694%2FAdvWeedSci%2F2025%3B43%3A00018&rft.externalDBID=n%2Fa&rft.externalDocID=10_51694_AdvWeedSci_2025_43_00018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2675-9462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2675-9462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2675-9462&client=summon