New classification of weed development stages using machine learning methods: radiomics parameters
Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for...
Saved in:
Published in | Advances in Weed Science Vol. 43; p. e020250014 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Londrina
Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia
01.01.2025
Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD |
Subjects | |
Online Access | Get full text |
ISSN | 2675-9462 2675-9462 |
DOI | 10.51694/AdvWeedSci/2025;43:00018 |
Cover
Loading…
Abstract | Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for weed development stages with better accuracy reduced workload by incorporating Region of Interest (ROI) into existing classification models.Methods: Weeds were grown and photographed in several development stages for the dataset. Using the ROI technique, commonly utilized in medicine, the leaf image features were digitized, and a total of 448 sample records were obtained. Of these image features, 9 were identified as the most important variables using the linear regression model. SMOTE analysis was applied to balance the distribution in our data. The data were randomly divided into 70% for training, 15% for testing, and 15% for validation groups. The models were developed by using artificial intelligence methods such as ANFIS, MLPNN, SVM, kNN, Naive Bayes, Decision Tree, Random Forest, Deep Learning, and Logistic Regression.Results: Accuracy, Precision, Recall, and F1-score parameters were used to evaluate the performance of the models. NB, ANFIS, and LR models failed to produce results within acceptable limits. However, RF, MLPNN, DT, Keras, and SVM models were successful. kNN models results were not far off but a failure nonetheless.Conclusions: Based on these results, we demonstrated that our RF, MLPNN, DT, Keras, SVM, and kNN models with ROI implementation can successfully determine the development stages of weeds. |
---|---|
AbstractList | Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control. Image processing methods typically cause a heavy computer workload.Objective: The goal of this research was to create a classification model for weed development stages with better accuracy reduced workload by incorporating Region of Interest (ROI) into existing classification models.Methods: Weeds were grown and photographed in several development stages for the dataset. Using the ROI technique, commonly utilized in medicine, the leaf image features were digitized, and a total of 448 sample records were obtained. Of these image features, 9 were identified as the most important variables using the linear regression model. SMOTE analysis was applied to balance the distribution in our data. The data were randomly divided into 70% for training, 15% for testing, and 15% for validation groups. The models were developed by using artificial intelligence methods such as ANFIS, MLPNN, SVM, kNN, Naive Bayes, Decision Tree, Random Forest, Deep Learning, and Logistic Regression.Results: Accuracy, Precision, Recall, and F1-score parameters were used to evaluate the performance of the models. NB, ANFIS, and LR models failed to produce results within acceptable limits. However, RF, MLPNN, DT, Keras, and SVM models were successful. kNN models results were not far off but a failure nonetheless.Conclusions: Based on these results, we demonstrated that our RF, MLPNN, DT, Keras, SVM, and kNN models with ROI implementation can successfully determine the development stages of weeds. |
Author | Çiçek, Yasin Uludağ, Ahmet Gülbandilar, Eyyüp |
AuthorAffiliation | Çanakkale Onsekiz Mart University Eskişehir Osmangazi University |
AuthorAffiliation_xml | – name: Çanakkale Onsekiz Mart University – name: Eskişehir Osmangazi University |
Author_xml | – sequence: 1 givenname: Eyyüp orcidid: 0000-0001-5559-5281 surname: Gülbandilar fullname: Gülbandilar, Eyyüp – sequence: 2 givenname: Ahmet orcidid: 0000-0002-7137-2616 surname: Uludağ fullname: Uludağ, Ahmet – sequence: 3 givenname: Yasin orcidid: 0000-0003-3151-5288 surname: Çiçek fullname: Çiçek, Yasin |
BookMark | eNpNUU1PAjEQbQwmIvIfajwD_Vx28USIX4nRAxqPTbedhRLYYrtA_Pd2wQRPM5nMe_PmvWvUqX0NCN1SMpQ0K8RoavdfAHZu3IgRJu8FnxBCaH6Buiwby0EhMtb511-hfoyrtMLyMedUdlH5Bgds1jpGVzmjG-dr7Ct8SKzYwh7WfruBusGx0QuIeBddvcAbbZauBrwGHerjAJqlt3GCg7bOb5yJeKuDTmMI8QZdVnodof9Xe-jz8eFj9jx4fX96mU1fB4Yz2Qwss4yTHGhJiOU0LwothahgnEuihTAZK1kmDBeklNTm0ppcZmOeQAKkZgXvoeGJNxqXdKuV34U6HVTz9n_V_t-a1BqUDKBZAtydANvgv3cQmzOEs6Qpl1y2tMVpywQfY4BKbYPb6PCjKFHHGNQ5BtVeUIKrYwz8F4VtfX0 |
Cites_doi | 10.1556/034.65.2023.3-4.10 10.1016/j.procs.2023.01.212 10.1007/s12525-021-00475-2 10.3389/fpls.2020.611622 10.3390/agriculture11050387 10.1201/9781315155913 10.1016/j.eja.2019.01.004 10.1007/s10100-017-0479-6 10.1016/S0019-9958(65)90241-X 10.1201/9781315155913-14 10.1111/wre.12526 10.3390/agriculture13010175 10.1109/CSCI46756.2018.00065 |
ContentType | Journal Article |
Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This work is licensed under a Creative Commons Attribution 4.0 International License. |
Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
DBID | AAYXX CITATION 3V. 7SN 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS GPN |
DOI | 10.51694/AdvWeedSci/2025;43:00018 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SciELO |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2675-9462 |
ExternalDocumentID | S2675_94622025000100216 10_51694_AdvWeedSci_2025_43_00018 |
GroupedDBID | 7X2 AAYXX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ M0K M7P M~E PHGZM PHGZT PIMPY PQGLB RSC 3V. 7SN 8FE 8FH 8FK ABUWG AZQEC C1K DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS GPN |
ID | FETCH-LOGICAL-c325t-d2d2308e1b00d31899a544fe7850a44c62b264c340b51d85dc85673d234e5a293 |
IEDL.DBID | BENPR |
ISSN | 2675-9462 |
IngestDate | Tue Aug 19 14:46:40 EDT 2025 Mon Jul 28 20:10:43 EDT 2025 Tue Aug 05 12:02:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weed Development Stage Weed ROI Classification Radiomics |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-d2d2308e1b00d31899a544fe7850a44c62b264c340b51d85dc85673d234e5a293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5559-5281 0000-0003-3151-5288 0000-0002-7137-2616 |
OpenAccessLink | https://www.proquest.com/docview/3232585359?pq-origsite=%requestingapplication% |
PQID | 3232585359 |
PQPubID | 2037514 |
ParticipantIDs | scielo_journals_S2675_94622025000100216 proquest_journals_3232585359 crossref_primary_10_51694_AdvWeedSci_2025_43_00018 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Londrina |
PublicationPlace_xml | – name: Londrina |
PublicationTitle | Advances in Weed Science |
PublicationTitleAlternate | Adv. Weed Sci |
PublicationYear | 2025 |
Publisher | Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD |
Publisher_xml | – name: Sociedade Brasileira da Ciência das Plantas Daninhas, UFV - Depto de Fitotecnia – name: Sociedade Brasileira da Ciência das Plantas Daninhas - SBCPD |
References | Razfar (key20250618182241_B24) 2022; 8 Li (key20250618182241_B16) 2021; 11 Torun (key20250618182241_B26) 2023; 65 Zadeh (key20250618182241_B29) 1965; 8 Gerhards (key20250618182241_B9) 2022; 62 Ong (key20250618182241_B21) 2023; 4 Ali (key20250618182241_B2) 2014; 1 Janiesch (key20250618182241_B13) 2021; 31 Nioche (key20250618182241_B20) 2024 Luo (key20250618182241_B18) 2023; 10 Pathak (key20250618182241_B22) 2023; 5 Islam (key20250618182241_B11) 2021; 11 Espejo-Garcia (key20250618182241_B7) 2020 Jabran (key20250618182241_B12) 2018 Dai (key20250618182241_B6) 2023 Zhang (key20250618182241_B30) 2023; 13 Meena (key20250618182241_B19) 2023; 218 Kamiński (key20250618182241_B14) 2017; 26 Yang (key20250618182241_B27) 2018 Korres (key20250618182241_B15) 2018 Potena (key20250618182241_B23) 2017 Chityala (key20250618182241_B4) 2004; 5368 Cicek (key20250618182241_B5) 2022; 3 Lottes (key20250618182241_B17) 2016 Sugumar (key20250618182241_B25) 2023 Alam (key20250618182241_B1) 2020 Bircan (key20250618182241_B3) 2004 Guzel (key20250618182241_B10) 2024; 9 Yu (key20250618182241_B28) 2019; 104 Fernandez (key20250618182241_B8) 2018; 61 Islam, N; Rashid, MM; Wibowo, S; Xu, C-Y; Morshed, A; Wasimi, SA 2021; 11 Janiesch, C; Zschech, P; Heinrich, K 2021; 31 Meena, SD; Susank, M; Guttula, T; Chandana, SH; Sheela, J 2023; 218 Fernandez, A; Garcia, S; Herrera, F; Chawla, NV 2018; 61 Nioche, C; Orlhac, F; Buvat, I 2024 Cicek, Y; Uludag, A; ve Gulbandılar, E 2022; 3 Chityala, RN; Hoffmann, KR; Bednarek, DR; Rudin, S 2004; 5368 Pathak, H; Igathinathane, C; Howatt, K; Zhang, Z 2023; 5 Ong, P; Teo, KS; Sia, CK 2023; 4 Jabran, K; Uludag, A; Chauhan, BS; Korres, NE; Burgos, NR; Duke, SO 2018 Espejo-Garcia, B; Mylonas, N; Athanasakos, L; Fountas, S 2020 Alam, M; Alam, MS; Roman, M; Tufail, M; Khan, MU; Khan, MT 2020 Yang, FJ 2018 Zhang, X; Cui, J; Liu, H; Han, Y; Ai, H; Dong, C 2023; 13 Razfar, N; True, J; Bassiouny, R; Venkatesh, V; Kashef, R 2022; 8 Sugumar, R; Suganya, D 2023 Torun, H; Ozkil, M; Aksoy, N; Uremiş, İ; Uludağ, A 2023; 65 Ali, PJM; Faraj, RH; Koya, E; Ali, PJM; Faraj, RH 2014; 1 Dai, X; Lai, W; Yin, N; Tao, Q; Huang, Y 2023 Potena, C; Nardi, D; Pretto, A; Chen, W; Hosoda, K; Menegatti, E; Shimizu, M; Wang, H 2017 Yu, J; Sharpe, SM; Schumann, AW; Boyd, NS 2019; 104 Lottes, P; Hoeferlin, M; Sander, S; Müter, M; Schulze, P; Stachniss, LC 2016 Korres, NE; Burgos, NR; Duke, SO 2018 Zadeh, LA 1965; 8 Gerhards, R; Andujar Sanchez, D; Hamouz, P; Peteinatos, GG; Christensen, S; Fernandez-Quintanilla, C 2022; 62 Luo, T; Zhao, J; Gu, Y; Zhang, S; Qiao, X; Tian, W 2023; 10 Bircan, H 2004 Guzel, M; Turan, B; Kadioglu, I; Basturk, A; Sin, B; Sadeghpour, A 2024; 9 Kamiński, B; Jakubczyk, M; Szufel, P 2017; 26 Li, Y; Al-Sarayreh, M; Irie, K; Hackell, D; Bourdot, G; Reis, MM; Ghamkhar, K 2021; 11 |
References_xml | – volume: 65 start-page: 399 issue: 3-4 year: 2023 ident: key20250618182241_B26 article-title: Cardamine occulta: a new weed and alien plant species in banana production greenhouses in Turkey publication-title: Acta Bot Hungar doi: 10.1556/034.65.2023.3-4.10 – volume: 3 start-page: 54 issue: 2 year: 2022 ident: key20250618182241_B5 article-title: [Artificial intelligence techniques used in sugar beet production] publication-title: Esk Turk World Appl Res Center Inf TechnolJ – volume: 4 start-page: 1 year: 2023 ident: key20250618182241_B21 article-title: UAV-based weed detection in Chinese cabbage using deep learning publication-title: Smart Agric Technol – start-page: 175 year: 2020 ident: key20250618182241_B7 article-title: Improving weeds identification with a repository of agricultural pre-trained deep neural networks publication-title: Comp Electr Agric – volume: 218 start-page: 2369 year: 2023 ident: key20250618182241_B19 article-title: Crop yield improvement with weeds, pest and disease detection publication-title: Proc Comp Sci doi: 10.1016/j.procs.2023.01.212 – volume: 10 start-page: 40 issue: 1 year: 2023 ident: key20250618182241_B18 article-title: Classification of weed seeds based on visual images and deep learning publication-title: Inf Proc Agric – volume: 31 start-page: 685 issue: 3 year: 2021 ident: key20250618182241_B13 article-title: Machine learning and deep learning publication-title: Electr Markets doi: 10.1007/s12525-021-00475-2 – volume: 11 start-page: 1 year: 2021 ident: key20250618182241_B16 article-title: Identification of weeds based on hyperspectral imaging and machine learning publication-title: Front Plant Sci doi: 10.3389/fpls.2020.611622 – volume: 11 start-page: 1 issue: 5 year: 2021 ident: key20250618182241_B11 article-title: Early weed detection using image processing and machine learning techniques in an Australian Chilli Farm publication-title: Agriculture doi: 10.3390/agriculture11050387 – start-page: 31 year: 2023 ident: key20250618182241_B25 article-title: A multi-spectral image-based high-level classification based on a modified SVM with enhanced PCA and hybrid metaheuristic algorithm publication-title: Rem Sens Appl Soc Envir – volume: 5 start-page: 1 year: 2023 ident: key20250618182241_B22 article-title: Machine learning and handcrafted image processing methods for classifying common weeds in corn field publication-title: Smart Agric Technol – volume-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide year: 2018 ident: key20250618182241_B15 doi: 10.1201/9781315155913 – volume: 104 start-page: 78 year: 2019 ident: key20250618182241_B28 article-title: Deep learning for image-based weed detection in turfgrass publication-title: Eur J Agron doi: 10.1016/j.eja.2019.01.004 – volume: 61 start-page: 863 year: 2018 ident: key20250618182241_B8 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J Art Int Res – volume: 26 start-page: 135 issue: 1 year: 2017 ident: key20250618182241_B14 article-title: A framework for sensitivity analysis of decision trees publication-title: Cent Eur J Oper Res doi: 10.1007/s10100-017-0479-6 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: key20250618182241_B29 article-title: Fuzzy sets publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – start-page: 276 volume-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide year: 2018 ident: key20250618182241_B12 doi: 10.1201/9781315155913-14 – start-page: 105 year: 2017 ident: key20250618182241_B23 publication-title: Fast and accurate crop and weed identification with summarized train sets for precision agriculture – volume: 62 start-page: 123 issue: 2 year: 2022 ident: key20250618182241_B9 article-title: Advances in site-specific weed management in agriculture: a review publication-title: Weed Res doi: 10.1111/wre.12526 – volume: 9 start-page: 1 year: 2024 ident: key20250618182241_B10 article-title: Deep learning for image-based detection of weeds from emergence to maturity in wheat fields publication-title: Smart Agric Technol – year: 2024 ident: key20250618182241_B20 article-title: Texture: user guide: local image features extraction Lifex publication-title: Lifexsoft.org – volume: 13 start-page: 1 issue: 1 year: 2023 ident: key20250618182241_B30 article-title: Weed ıdentification in soybean seedling stage based on optimized faster R-CNN algorithm publication-title: Agriculture doi: 10.3390/agriculture13010175 – start-page: 428 year: 2023 ident: key20250618182241_B6 article-title: Research on intelligent clearing of weeds in wheat fields using spectral imaging and machine learning publication-title: J Cleaner Prod – volume: 8 start-page: 1 year: 2022 ident: key20250618182241_B24 article-title: Weed detection in soybean crops using custom lightweight deep learning models publication-title: J Agric Food Res – volume: 1 start-page: 1 issue: 1 year: 2014 ident: key20250618182241_B2 article-title: Data normalization and standardization: a technical report publication-title: Mach Learn Tech Rep – volume: 5368 start-page: 534 issue: 2 year: 2004 ident: key20250618182241_B4 article-title: Region of interest (ROI) computed tomography publication-title: Proc SPIE Int Soc Opt Eng – start-page: 185 issue: 8 year: 2004 ident: key20250618182241_B3 article-title: [Logistic regression analysis: an application on medical data] publication-title: Koc Univ J Soc Sci – start-page: 5157 volume-title: Proceeding of 2016 IEEE International Conference on Robotics and Automation (ICRA) year: 2016 ident: key20250618182241_B17 – start-page: 301 volume-title: Proceeding of 2018 International conference on computational science and computational intelligence (CSCI) year: 2018 ident: key20250618182241_B27 doi: 10.1109/CSCI46756.2018.00065 – start-page: 273 volume-title: Proceeding of 2020 7th International Conference on Electrical and Electronics Engineering year: 2020 ident: key20250618182241_B1 – start-page: 273 year: 2020 end-page: 280 publication-title: Proceeding of 2020 7th International Conference on Electrical and Electronics Engineering – volume: 62 start-page: 123 issue: 2 year: 2022 end-page: 133 article-title: Advances in site-specific weed management in agriculture: a review publication-title: Weed Res – start-page: 175 year: 2020 end-page: 175 article-title: Improving weeds identification with a repository of agricultural pre-trained deep neural networks publication-title: Comp Electr Agric – start-page: 185 issue: 8 year: 2004 end-page: 208 article-title: [Logistic regression analysis: an application on medical data] publication-title: Koc Univ J Soc Sci – volume: 65 start-page: 399 issue: 3-4 year: 2023 end-page: 411 article-title: Cardamine occulta: a new weed and alien plant species in banana production greenhouses in Turkey publication-title: Acta Bot Hungar – volume: 4 start-page: 1 year: 2023 end-page: 8 article-title: UAV-based weed detection in Chinese cabbage using deep learning publication-title: Smart Agric Technol – start-page: 301 year: 2018 end-page: 306 publication-title: Proceeding of 2018 International conference on computational science and computational intelligence (CSCI) – volume: 11 start-page: 1 issue: 5 year: 2021 end-page: 13 article-title: Early weed detection using image processing and machine learning techniques in an Australian Chilli Farm publication-title: Agriculture – volume: 31 start-page: 685 issue: 3 year: 2021 end-page: 695 article-title: Machine learning and deep learning publication-title: Electr Markets – start-page: 5157 year: 2016 end-page: 5163 publication-title: Proceeding of 2016 IEEE International Conference on Robotics and Automation (ICRA) – year: 2024 article-title: Texture: user guide: local image features extraction Lifex publication-title: Lifexsoft.org – start-page: 31 year: 2023 end-page: 31 article-title: A multi-spectral image-based high-level classification based on a modified SVM with enhanced PCA and hybrid metaheuristic algorithm publication-title: Rem Sens Appl Soc Envir – volume: 8 start-page: 338 issue: 3 year: 1965 end-page: 353 article-title: Fuzzy sets publication-title: Inf Control – volume: 5 start-page: 1 year: 2023 end-page: 12 article-title: Machine learning and handcrafted image processing methods for classifying common weeds in corn field publication-title: Smart Agric Technol – volume: 26 start-page: 135 issue: 1 year: 2017 end-page: 159 article-title: A framework for sensitivity analysis of decision trees publication-title: Cent Eur J Oper Res – year: 2018 publication-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide – start-page: 105 year: 2017 end-page: 121 publication-title: Fast and accurate crop and weed identification with summarized train sets for precision agriculture – volume: 1 start-page: 1 issue: 1 year: 2014 end-page: 6 article-title: Data normalization and standardization: a technical report publication-title: Mach Learn Tech Rep – volume: 11 start-page: 1 year: 2021 end-page: 13 article-title: Identification of weeds based on hyperspectral imaging and machine learning publication-title: Front Plant Sci – volume: 10 start-page: 40 issue: 1 year: 2023 end-page: 51 article-title: Classification of weed seeds based on visual images and deep learning publication-title: Inf Proc Agric – volume: 61 start-page: 863 year: 2018 end-page: 905 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J Art Int Res – start-page: 276 year: 2018 end-page: 287 publication-title: Weed control: sustainability, hazards, and risks in cropping systems worldwide – volume: 104 start-page: 78 year: 2019 end-page: 84 article-title: Deep learning for image-based weed detection in turfgrass publication-title: Eur J Agron – volume: 9 start-page: 1 year: 2024 end-page: 7 article-title: Deep learning for image-based detection of weeds from emergence to maturity in wheat fields publication-title: Smart Agric Technol – volume: 5368 start-page: 534 issue: 2 year: 2004 end-page: 541 article-title: Region of interest (ROI) computed tomography publication-title: Proc SPIE Int Soc Opt Eng – volume: 8 start-page: 1 year: 2022 end-page: 10 article-title: Weed detection in soybean crops using custom lightweight deep learning models publication-title: J Agric Food Res – volume: 13 start-page: 1 issue: 1 year: 2023 end-page: 16 article-title: Weed ıdentification in soybean seedling stage based on optimized faster R-CNN algorithm publication-title: Agriculture – start-page: 428 year: 2023 end-page: 428 article-title: Research on intelligent clearing of weeds in wheat fields using spectral imaging and machine learning publication-title: J Cleaner Prod – volume: 3 start-page: 54 issue: 2 year: 2022 end-page: 59 article-title: [Artificial intelligence techniques used in sugar beet production] publication-title: Esk Turk World Appl Res Center Inf TechnolJ – volume: 218 start-page: 2369 year: 2023 end-page: 2382 article-title: Crop yield improvement with weeds, pest and disease detection publication-title: Proc Comp Sci |
SSID | ssj0002873315 |
Score | 2.279061 |
Snippet | Background: In recent years, artificial intelligence methods based on image processing have been introduced for weed identification therefore weed control.... |
SourceID | scielo proquest crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e020250014 |
SubjectTerms | Accuracy AGRONOMY Artificial intelligence Classification Datasets Decision trees Deep learning Developmental stages Digitization Herbicides Image processing Machine learning Parameters Radiomics Regression models Seeds Software packages Support vector machines Weed control Weeds Workload Workloads |
Title | New classification of weed development stages using machine learning methods: radiomics parameters |
URI | https://www.proquest.com/docview/3232585359 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2675-94622025000100216&lng=en&tlng=en |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60BfEiiorVWlYQPIUm2d1kUw9SpaUILaIWewvZR4pgHzZVb_52Z5LU1ouXHPLYwLc7M988doeQS4-JRICZdgzuU-aCa0cq7Tk2TCPtBsrw_LDn_iDoDfn9SIzKgFtWllWudGKuqM1MY4y8ycD0A7VlIrqZvzvYNQqzq2ULjW1SBRUsYZ1XbzuDh8ffKAv4A4x5YodcgHbAlBBvts3nCxgGEB10_MU1Zy0kOvKvYdpgm2iK3jatTnef7JV0kbaL-T0gW3Z6SBRoJqqR9mKdTw4tnaX0C_5HzboIiALxG9uMYmn7mE7yqklLyzYRcCPvHZ216CIxr7g3OaN4DvgE62OyIzLsdp7vek7ZK8HRgMvSMb4BZ0JaD8TIgJxGEUwBT20ohZtwrgNfAfXRjLtKeEYKo6UIQgYfcSsSsPnHpDKdTe0JocKEItBuAr6Tz62NVBqkbugnTCkgUzKqEX8FVDwvjsSIwZXI0Y3X6MaIbsxZnt6WNVJfQRqXUpLF6zmtkasC5vXDJx98mTjigY8D4SDIR4LT_wc6I7v4ehEkqZPKcvFhz4E2LFWjXBuN3O2Ga_-78wMjBcKD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC5kBZMXUTRk49VCgk-DM33MoYh4skZdQqLEt870MSLorjqr4p_Kb0zVHK6-5M3XGbpmqK6u-qq6DoCvkVC5QjMdOKpTlkraIDU2CnxSZDaMjZNVs-fTftw7l98v1MUE_G1rYSitstWJlaJ2Q0sx8nWBph-hrVDZ9u1dQFOj6Ha1HaFRi8Wxf35Cl63cOtrH_f3G-eHB2V4vaKYKBBYpjALHHcLu1EcocA4lOsvwZ2Xhk1SFuZQ25gZBghUyNCpyqXI2VXEicJH0KufUfAlV_qSkitYOTO4e9H_8fInqoP8hRKSmYBW1EV1ByfUd9_gbDREeVQo0qE0pNghYpW8N4St0S6bv-rWVO5yB6Qaesp1anmZhwg_mwKAmZJZgNuUVVVvJhgV7wu8xN046Ygg0L33JKJX-kt1UWZqeNWMp8EE1q7rcYPe5u6Ja6JJR3_Ebyscp5-H8Xbj4CTqD4cB_BqZcomIb5uircel9Zoq4CBOeC2MQvKVZF3jLKH1bt-DQ6LpU3NVj7mrirpaiuk5Pu7DYslQ3p7LUYxnqwlrN5vHLXxx9J53JmBMhIkL4J_7yf0Ir8KF3dnqiT476xwvwkZbWAZpF6IzuH_wSQpaRWW7khMGf9xbNf-Y_-xY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5kBclFDFGyamIHDJ6GnenHPBQRE100JotoRG_t9GNEiLvqrIp_zV9n1Txcc_HmdYauGaq_rvqqu7oKYDUSKlfopgNH95SlkjZIjY0CnxSZDWPjZFXs-c8g3juRv87U2RQ8tXdhKK2ytYmVoXYjS3vkPYGuH6mtUFmvaNIiDnf6W9c3AXWQopPWtp1GDZED__iA4Vu5ub-Dc_2d8_7u3597QdNhILAobRw47pCCpz5C8DlEd5bhj8vCJ6kKcyltzA0SBitkaFTkUuVsquJE4CDpVc6pEBOa_-kEvaLswPSP3cHh0csOD8YiQkRqBr6hZaLjKNnbdven6JRw2dKmg9qQYp1IVvq_U3zFdMkN_nvt8fpzMNtQVbZdY-sjTPnhJzBoFZklyk05RtW0slHBHvB7zE0SkBiSzgtfMkqrv2BXVcamZ02LCnxQ9a0u19lt7i7pXnTJqAb5FeXmlPNw8i5aXIDOcDT0n4Epl6jYhjnGbVx6n5kiLsKE58IYJHJp1gXeKkpf1-U4NIYxlXb1RLuatKulqI7W0y4styrVzQot9QRPXVir1Tx5ecwxjtKZjDkJIiHEheLFtwWtwAxCUv_eHxwswQcaWe_VLENnfHvnvyB7GZuvDUwYnL83Mp8BY1X_Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+classification+of+weed+development+stages+using+machine+learning+methods%3A+radiomics+parameters&rft.jtitle=Advances+in+Weed+Science&rft.au=G%C3%BClbandilar%2C+Eyy%C3%BCp&rft.au=Uluda%C4%9F%2C+Ahmet&rft.au=%C3%87i%C3%A7ek%2C+Yasin&rft.date=2025-01-01&rft.issn=2675-9462&rft.eissn=2675-9462&rft.volume=43&rft_id=info:doi/10.51694%2FAdvWeedSci%2F2025%3B43%3A00018&rft.externalDBID=n%2Fa&rft.externalDocID=10_51694_AdvWeedSci_2025_43_00018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2675-9462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2675-9462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2675-9462&client=summon |