The dynamic characteristics of pure-quartic solitons and soliton molecules

•The one- and two-PQS solutions of the fourth-order nonlinear Schrödinger equation are obtained.•The PQS molecules are obtained by using the velocity resonance conditions.•The interaction states of PQSs and PQS molecules are analyzed respectively.•It is found that PQS molecules will interact with ea...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 102; pp. 305 - 312
Main Authors Liu, Xiaoyan, Zhang, Hongxin, Liu, Wenjun
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The one- and two-PQS solutions of the fourth-order nonlinear Schrödinger equation are obtained.•The PQS molecules are obtained by using the velocity resonance conditions.•The interaction states of PQSs and PQS molecules are analyzed respectively.•It is found that PQS molecules will interact with each other to transfer like threesolitons under certain parameter.•By means of parameter control, the soliton-asymmetric soliton molecule is obtained. Pure-quartic solitons (PQSs) with higher energy in short pulse width have been generated in the mode-locked fiber laser recently, and soliton molecules have been found as a means to improve the communication capacity of the optical fiber, which has attracted much attention. In this paper, we consider the fourth-order nonlinear Schrödinger equation (FNLSE) derived from Lakshmanan-Porsezian-Daniel equation which is describing the propagation of PQS in optical fiber systems. Through the Hirota’s bilinear method, the bilinear forms and the one- and two-PQS solutions of the FNLSE are obtained. Then, the dynamic characteristics of the PQSs are discussed by using parameter control. Besides, through the velocity resonance conditions, the static and non-static PQS molecules are obtained. Under the condition of different parameters, the dynamic characteristics of the PQS molecules transmission process are analyzed. An interesting phenomenon of the PQS molecular interaction is found. We find that under the certain conditions, the PQS molecule composed of two solitons can evolve into the stable new form. Moreover, the soliton-asymmetric soliton molecule are obtained by the parameters control.
AbstractList Pure-quartic solitons (PQSs) with higher energy in short pulse width have been generated in the mode-locked fiber laser recently, and soliton molecules have been found as a means to improve the communication capacity of the optical fiber, which has attracted much attention. In this paper, we consider the fourth-order nonlinear Schrödinger equation (FNLSE) derived from Lakshmanan-Porsezian-Daniel equation which is describing the propagation of PQS in optical fiber systems. Through the Hirota's bilinear method, the bilinear forms and the one- and two-PQS solutions of the FNLSE are obtained. Then, the dynamic characteristics of the PQSs are discussed by using parameter control. Besides, through the velocity resonance conditions, the static and non-static PQS molecules are obtained. Under the condition of different parameters, the dynamic characteristics of the PQS molecules transmission process are analyzed. An interesting phenomenon of the PQS molecular interaction is found. We find that under the certain conditions, the PQS molecule composed of two solitons can evolve into the stable new form. Moreover, the soliton-asymmetric soliton molecule are obtained by the parameters control.
•The one- and two-PQS solutions of the fourth-order nonlinear Schrödinger equation are obtained.•The PQS molecules are obtained by using the velocity resonance conditions.•The interaction states of PQSs and PQS molecules are analyzed respectively.•It is found that PQS molecules will interact with each other to transfer like threesolitons under certain parameter.•By means of parameter control, the soliton-asymmetric soliton molecule is obtained. Pure-quartic solitons (PQSs) with higher energy in short pulse width have been generated in the mode-locked fiber laser recently, and soliton molecules have been found as a means to improve the communication capacity of the optical fiber, which has attracted much attention. In this paper, we consider the fourth-order nonlinear Schrödinger equation (FNLSE) derived from Lakshmanan-Porsezian-Daniel equation which is describing the propagation of PQS in optical fiber systems. Through the Hirota’s bilinear method, the bilinear forms and the one- and two-PQS solutions of the FNLSE are obtained. Then, the dynamic characteristics of the PQSs are discussed by using parameter control. Besides, through the velocity resonance conditions, the static and non-static PQS molecules are obtained. Under the condition of different parameters, the dynamic characteristics of the PQS molecules transmission process are analyzed. An interesting phenomenon of the PQS molecular interaction is found. We find that under the certain conditions, the PQS molecule composed of two solitons can evolve into the stable new form. Moreover, the soliton-asymmetric soliton molecule are obtained by the parameters control.
Author Liu, Wenjun
Liu, Xiaoyan
Zhang, Hongxin
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
  organization: State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 2
  givenname: Hongxin
  surname: Zhang
  fullname: Zhang, Hongxin
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 3
  givenname: Wenjun
  orcidid: 0000-0001-9380-2990
  surname: Liu
  fullname: Liu, Wenjun
  email: jungliu@bupt.edu.cn
  organization: State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
BookMark eNp9kMtqwzAQRUVJoUnaD-jO0LXdkSy_6KqEPgl0k0J3QpbHRMa2Ekku5O-rkBZKF13N3OGeGeYuyGw0IxJyTSGhQPPbLpG7IWHAaAJVApydkTmkUMQV8I_Zr_6CLJzrACALak5eN1uMmsMoB60itZVWKo9WO6-Vi0wb7SaL8X6SNgwiZ3rtzegiOTY_IhpMj2rq0V2S81b2Dq--65K8Pz5sVs_x-u3pZXW_jlXKMh83NGc8rTlHkDmwtGjagqk0k5zSihU8lyUrGwQl87qqkSmZyrpUrIaMs0ql6ZLcnPburNlP6LzozGTHcFKwnAGHkpdlcBUnl7LGOYutUNpLr83ordS9oCCOwYlOhODEMTgBlQjBBZL-IXdWD9Ie_mXuTgyGxz81WuGUxlFhoy0qLxqj_6G_AHwIiHA
CitedBy_id crossref_primary_10_1016_j_rinp_2023_106393
crossref_primary_10_1016_j_rinp_2022_106032
crossref_primary_10_1016_j_aml_2022_108340
crossref_primary_10_1140_epjp_s13360_024_05630_0
crossref_primary_10_1007_s11082_021_03479_6
crossref_primary_10_3390_fractalfract7010038
crossref_primary_10_1016_j_ijleo_2023_170689
crossref_primary_10_1007_s11071_022_08138_3
crossref_primary_10_1016_j_ijleo_2021_168495
crossref_primary_10_1088_1402_4896_ad2bc2
crossref_primary_10_1007_s11082_023_05687_8
crossref_primary_10_1007_s11082_022_03794_6
crossref_primary_10_1007_s40819_022_01375_5
crossref_primary_10_1088_0256_307X_40_10_100503
crossref_primary_10_1016_j_padiff_2021_100238
crossref_primary_10_1016_j_rinp_2025_108203
crossref_primary_10_1088_1674_1056_ad6b87
crossref_primary_10_1016_j_ijleo_2023_170717
crossref_primary_10_1016_j_ijleo_2021_168510
crossref_primary_10_1007_s11082_024_06369_9
crossref_primary_10_1007_s40819_022_01477_0
crossref_primary_10_1016_j_ijleo_2022_169866
crossref_primary_10_1088_1674_1056_aceeec
crossref_primary_10_1016_j_ijleo_2022_168661
crossref_primary_10_1016_j_ijleo_2022_169350
crossref_primary_10_1016_j_aej_2023_04_046
crossref_primary_10_1007_s40509_023_00314_3
crossref_primary_10_1016_j_ijleo_2022_170457
crossref_primary_10_1016_j_rinp_2023_106544
crossref_primary_10_1088_1674_1056_acad6c
crossref_primary_10_1007_s40819_023_01547_x
crossref_primary_10_1007_s11082_022_04198_2
crossref_primary_10_1016_j_ijleo_2022_169839
crossref_primary_10_1016_j_ijleo_2021_168501
crossref_primary_10_1038_s41377_024_01451_z
crossref_primary_10_3390_photonics9030143
crossref_primary_10_1007_s11071_022_07305_w
crossref_primary_10_1016_j_ijleo_2022_170300
crossref_primary_10_1016_j_aej_2023_01_053
crossref_primary_10_1016_j_heliyon_2022_e10976
crossref_primary_10_7498_aps_72_20222430
crossref_primary_10_1142_S0217984925500769
crossref_primary_10_1007_s40819_022_01315_3
crossref_primary_10_3390_sym16111529
crossref_primary_10_1007_s11082_024_07271_0
crossref_primary_10_1142_S0217979224500863
crossref_primary_10_1016_j_chaos_2022_112895
crossref_primary_10_1016_j_ijleo_2022_169688
crossref_primary_10_1007_s11082_022_03956_6
crossref_primary_10_1088_1674_1056_ac2d22
crossref_primary_10_1364_OE_555042
crossref_primary_10_1088_1402_4896_ac758e
crossref_primary_10_1016_j_diamond_2022_109002
crossref_primary_10_1007_s11082_023_05699_4
crossref_primary_10_1364_OE_545988
crossref_primary_10_1016_j_chaos_2025_116094
crossref_primary_10_1016_j_ijleo_2022_168697
crossref_primary_10_1515_phys_2022_0043
crossref_primary_10_1088_1572_9494_ac6e5d
crossref_primary_10_1016_j_rinp_2022_105388
crossref_primary_10_1007_s11071_023_09099_x
crossref_primary_10_1007_s40819_022_01308_2
crossref_primary_10_1016_j_physa_2023_128599
crossref_primary_10_1063_5_0130950
crossref_primary_10_1007_s11082_023_04986_4
crossref_primary_10_1007_s11082_023_05482_5
crossref_primary_10_1088_0256_307X_40_8_080502
crossref_primary_10_1364_OE_502693
crossref_primary_10_1016_j_ijleo_2022_170138
crossref_primary_10_1007_s11071_022_07491_7
crossref_primary_10_1016_j_ijleo_2023_170752
crossref_primary_10_1088_1572_9494_aca51c
crossref_primary_10_1007_s40306_023_00495_4
crossref_primary_10_1088_1402_4896_ad3c72
crossref_primary_10_1142_S0217979224500656
crossref_primary_10_1088_0256_307X_39_11_114202
crossref_primary_10_1016_j_chaos_2024_115380
crossref_primary_10_1016_j_ijleo_2022_168788
crossref_primary_10_1016_j_aml_2022_108159
crossref_primary_10_1088_0256_307X_39_1_010501
crossref_primary_10_1007_s11082_024_07197_7
crossref_primary_10_1007_s11071_022_08058_2
crossref_primary_10_1007_s11082_022_04062_3
crossref_primary_10_1007_s12648_022_02451_8
crossref_primary_10_1007_s40819_022_01309_1
crossref_primary_10_1016_j_rinp_2022_106020
crossref_primary_10_1016_j_chaos_2022_112976
crossref_primary_10_1016_j_ijleo_2022_169928
crossref_primary_10_1142_S0218863523500066
crossref_primary_10_1063_5_0157082
crossref_primary_10_1007_s40819_023_01496_5
crossref_primary_10_1016_j_rinp_2022_106021
crossref_primary_10_1007_s11071_022_08195_8
crossref_primary_10_1007_s11082_024_06283_0
crossref_primary_10_1007_s40819_022_01472_5
crossref_primary_10_1016_j_chaos_2022_112172
crossref_primary_10_1016_j_cam_2024_116477
crossref_primary_10_1007_s11082_023_05560_8
crossref_primary_10_1016_j_physa_2023_128808
crossref_primary_10_1016_j_aej_2022_12_069
crossref_primary_10_1016_j_ijleo_2021_168541
crossref_primary_10_1364_OE_543788
Cites_doi 10.1103/PhysRevA.83.051605
10.1016/j.cnsns.2013.05.014
10.3390/app8020201
10.1103/PhysRevA.82.063834
10.7498/aps.69.20191347
10.1140/epjb/e2009-00356-3
10.1016/j.matcom.2021.05.020
10.1007/s11071-020-05649-9
10.1007/s11071-019-05356-0
10.1103/PhysRevE.70.031914
10.1126/science.aal5326
10.1007/s11082-020-02628-7
10.1063/1.529658
10.1103/PhysRevE.93.012214
10.1103/PhysRevLett.95.143902
10.1002/pssb.2220590212
10.1142/S0218863517500230
10.1016/j.aml.2020.106271
10.1016/j.cnsns.2016.08.023
10.1016/j.chaos.2017.11.021
10.1016/j.wavemoti.2021.102719
10.1016/j.camwa.2016.05.008
10.1038/s41566-020-0629-6
10.1103/PhysRevE.83.026603
10.1016/j.geomphys.2021.104191
10.1103/PhysRevE.55.3785
10.1364/AO.58.002745
10.1038/ncomms10427
10.1007/s11071-019-04817-w
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Feb 2022
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2021.09.042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 312
ExternalDocumentID 10_1016_j_apm_2021_09_042
S0307904X21004613
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-d16243b44e0a60237df72c35a41192746a828de0ca6b9be2ca3ab8c2b05429c33
IEDL.DBID .~1
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 07:48:41 EDT 2025
Tue Jul 01 04:24:04 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Fri Feb 23 02:43:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hirota’s bilinear method
Soliton molecules
Pure-quartic solitons
Bilinear forms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-d16243b44e0a60237df72c35a41192746a828de0ca6b9be2ca3ab8c2b05429c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9380-2990
PQID 2620408488
PQPubID 2045280
PageCount 8
ParticipantIDs proquest_journals_2620408488
crossref_citationtrail_10_1016_j_apm_2021_09_042
crossref_primary_10_1016_j_apm_2021_09_042
elsevier_sciencedirect_doi_10_1016_j_apm_2021_09_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Li, Huang, Su (bib0006) 2019; 58
Biyoghe, Ekogo, Moubissi (bib0012) 2017; 26
S.Y. Lou, Soliton molecules and asymmetric solitons in fluid systems via velocity resonance, 2019. 1909.03399
Chen, Luan, Zhou, Alzahrani, Biswas, Liu (bib0028) 2020; 100
Xu, Lou (bib0014) 2020; 69
Redondo, Sterke, Eggleton, Husko, Krauss, Sipe (bib0017) 2016; 7
Liu, Tian, Yan, Pan (bib0033) 2014; 19
Brizhik, Eremko, Piette (bib0002) 2004; 70
Liu, Zhang, Wazwaz, Zhou (bib0032) 2019; 361
Eskandar, Hoseini (bib0023) 2017; 45
Ma (bib0025) 2021; 190
Gui, Pan, Ding, Zhao, Bao, Xiao, Yang (bib0008) 2018; 8
Lei, Tian, Sun, Wu (bib0011) 2016; 72
Liu, Zhang, Luan, Zhou, Mirzazadeh, Ekici, Biswas (bib0034) 2019; 96
Ma, Yong, Lv (bib0027) 2021; 103
Stratmann, Pagel, Mitschke (bib0004) 2005; 95
Herink, Kurtz, Jalali, Solli, Ropers (bib0005) 2017; 356
Porsezian, M. Lakshmanan (bib0019) 1992; 33
Yang, Zhang, Li (bib0016) 2020; 2020
Wang, Zhang, Wang, Liu, Li, Qi, Guo (bib0021) 2016; 93
Yan, Lou (bib0015) 2020; 104
Ma (bib0026) 2021; 165
Yin, Berloff, Pérez-García, Novoa, Michinel (bib0010) 2011; 83
Ma (bib0030) 2020; 52
Runge, Hudson, Tam, Sterke, Redondo (bib0018) 2020; 14
Liu (bib0007) 2010; 82
Al-Marzoug, Al-Amoudi, Khawaja, Bahlouli, Baizakov (bib0009) 2011; 83
Davydov, Kislukha (bib0001) 1973; 59
Ma (bib0029) 2021
Porsezian (bib0020) 1997; 55
Eskandar, Hoseini (bib0024) 2018; 106
Yan, Liu, Zhou, Biswas (bib0031) 2020; 99
Zhang, Tian, Meng, Xing, Liu (bib0022) 2009; 72
Agrawal (bib0003) 2013
Xu (10.1016/j.apm.2021.09.042_bib0014) 2020; 69
Yan (10.1016/j.apm.2021.09.042_bib0015) 2020; 104
Liu (10.1016/j.apm.2021.09.042_bib0007) 2010; 82
Liu (10.1016/j.apm.2021.09.042_bib0033) 2014; 19
Al-Marzoug (10.1016/j.apm.2021.09.042_bib0009) 2011; 83
Brizhik (10.1016/j.apm.2021.09.042_bib0002) 2004; 70
Ma (10.1016/j.apm.2021.09.042_bib0027) 2021; 103
Wang (10.1016/j.apm.2021.09.042_bib0021) 2016; 93
Redondo (10.1016/j.apm.2021.09.042_bib0017) 2016; 7
Ma (10.1016/j.apm.2021.09.042_sbref0029) 2021
10.1016/j.apm.2021.09.042_bib0013
Yang (10.1016/j.apm.2021.09.042_bib0016) 2020; 2020
Herink (10.1016/j.apm.2021.09.042_bib0005) 2017; 356
Yin (10.1016/j.apm.2021.09.042_bib0010) 2011; 83
Davydov (10.1016/j.apm.2021.09.042_bib0001) 1973; 59
Li (10.1016/j.apm.2021.09.042_bib0006) 2019; 58
Lei (10.1016/j.apm.2021.09.042_bib0011) 2016; 72
Ma (10.1016/j.apm.2021.09.042_bib0026) 2021; 165
Yan (10.1016/j.apm.2021.09.042_bib0031) 2020; 99
Ma (10.1016/j.apm.2021.09.042_bib0030) 2020; 52
Agrawal (10.1016/j.apm.2021.09.042_bib0003) 2013
Liu (10.1016/j.apm.2021.09.042_bib0034) 2019; 96
Biyoghe (10.1016/j.apm.2021.09.042_bib0012) 2017; 26
Stratmann (10.1016/j.apm.2021.09.042_bib0004) 2005; 95
Zhang (10.1016/j.apm.2021.09.042_bib0022) 2009; 72
Gui (10.1016/j.apm.2021.09.042_bib0008) 2018; 8
Eskandar (10.1016/j.apm.2021.09.042_bib0024) 2018; 106
Porsezian (10.1016/j.apm.2021.09.042_bib0020) 1997; 55
Porsezian (10.1016/j.apm.2021.09.042_bib0019) 1992; 33
Eskandar (10.1016/j.apm.2021.09.042_bib0023) 2017; 45
Liu (10.1016/j.apm.2021.09.042_bib0032) 2019; 361
Runge (10.1016/j.apm.2021.09.042_bib0018) 2020; 14
Chen (10.1016/j.apm.2021.09.042_bib0028) 2020; 100
Ma (10.1016/j.apm.2021.09.042_bib0025) 2021; 190
References_xml – volume: 104
  start-page: 106271
  year: 2020
  ident: bib0015
  article-title: Soliton molecules in Sharma-Tasso-Olver-Burgers equation
  publication-title: Appl. Math. Lett.
– volume: 33
  start-page: 1807
  year: 1992
  end-page: 1816
  ident: bib0019
  article-title: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain
  publication-title: J. Math. Phys.
– volume: 361
  start-page: 325
  year: 2019
  end-page: 331
  ident: bib0032
  article-title: Analytic study on triple-s, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 026603
  year: 2011
  ident: bib0009
  article-title: Scattering of a matter-wave single soliton and a two-soliton molecule by an attractive potential
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 201
  year: 2018
  ident: bib0008
  article-title: Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic complexes in dissipative systems
  publication-title: Appl. Sci.
– volume: 103
  start-page: 102719
  year: 2021
  ident: bib0027
  article-title: Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations
  publication-title: Wave Motion
– volume: 69
  start-page: 014208
  year: 2020
  ident: bib0014
  article-title: Dark soliton molecules in nonlinear optics
  publication-title: Acta. Phys. Sin.
– volume: 7
  start-page: 10427
  year: 2016
  ident: bib0017
  article-title: Pure-quartic solitons
  publication-title: Nat. Commn.
– reference: S.Y. Lou, Soliton molecules and asymmetric solitons in fluid systems via velocity resonance, 2019. 1909.03399
– volume: 95
  start-page: 143902
  year: 2005
  ident: bib0004
  article-title: Experimental observation of temporal soliton molecules
  publication-title: Phys. Rev. Lett.
– volume: 356
  start-page: 50
  year: 2017
  end-page: 54
  ident: bib0005
  article-title: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules
  publication-title: Science
– volume: 55
  start-page: 3785
  year: 1997
  end-page: 3788
  ident: bib0020
  article-title: Completely integrable nonlinear Schrödinger type equations on moving space curves
  publication-title: Phys. Rev. E
– volume: 70
  year: 2004
  ident: bib0002
  article-title: Solitons in α-helical proteins
  publication-title: Phys. Rev. E
– volume: 72
  start-page: 233
  year: 2009
  end-page: 239
  ident: bib0022
  article-title: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. B
– volume: 58
  start-page: 2745
  year: 2019
  end-page: 2753
  ident: bib0006
  article-title: Various soliton molecules in fiber systems
  publication-title: Appl. Opt.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0016
  article-title: Soliton molecules and some novel types of hybrid solutions to (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation
  publication-title: Adv. Math. Phys.
– volume: 14
  start-page: 492
  year: 2020
  end-page: 497
  ident: bib0018
  article-title: The pure-quartic soliton laser
  publication-title: Nat. Photonics
– volume: 99
  start-page: 1313
  year: 2020
  end-page: 1319
  ident: bib0031
  article-title: Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain
  publication-title: Nonlinear Dyn.
– start-page: 129
  year: 2013
  end-page: 191
  ident: bib0003
  article-title: Chapter 5 - optical solitons
  publication-title: Nonlinear Fiber Optics
– volume: 165
  start-page: 104191
  year: 2021
  ident: bib0026
  article-title: N-soliton solution of a combined pKP-BKP equation
  publication-title: J. Geom. Phys.
– volume: 82
  year: 2010
  ident: bib0007
  article-title: Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers
  publication-title: Phys. Rev. A
– volume: 72
  start-page: 807
  year: 2016
  end-page: 819
  ident: bib0011
  article-title: Mixed-type soliton solutions for the N-coupled Hirota system in an optical fiber
  publication-title: Comput. Math. Appl.
– volume: 19
  start-page: 520
  year: 2014
  end-page: 529
  ident: bib0033
  article-title: Dark solitonic excitations and collisions from a fourth-order dispersive nonlinear Schördinger model for the alpha helical protein
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 59
  start-page: 465
  year: 1973
  end-page: 470
  ident: bib0001
  article-title: Solitary excitons in one-dimensional molecular chains
  publication-title: Phys. Stat. Sol.
– volume: 26
  start-page: 1750023
  year: 2017
  ident: bib0012
  article-title: Collective variable analysis of the nonlinear Schrödinger equation for soliton molecules in fibers
  publication-title: J. Nonlinear Opt. Phys.
– volume: 190
  start-page: 270
  year: 2021
  end-page: 279
  ident: bib0025
  article-title: N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation
  publication-title: Math. Comput. Simul.
– year: 2021
  ident: bib0029
  article-title: N-soliton solutions and the Hirota conditions in (1 + 1)-dimensions
  publication-title: Int. J. Nonlin. Sci. Num.
– volume: 83
  year: 2011
  ident: bib0010
  article-title: Coherent atomic soliton molecules for matter-wave switching
  publication-title: Phys. Rev. A
– volume: 52
  start-page: 511
  year: 2020
  ident: bib0030
  article-title: N-soliton solutions and the Hirota conditions in (2+1)-dimensions
  publication-title: Opt. Quant. Electron.
– volume: 45
  start-page: 55
  year: 2017
  end-page: 65
  ident: bib0023
  article-title: Weak interaction for higher-order nonlinear Schrödinger equation: an application of soliton perturbation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 93
  start-page: 012214
  year: 2016
  ident: bib0021
  article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
– volume: 100
  start-page: 2817
  year: 2020
  end-page: 2821
  ident: bib0028
  article-title: Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers
  publication-title: Nonlinear Dyn.
– volume: 106
  start-page: 289
  year: 2018
  end-page: 294
  ident: bib0024
  article-title: Soliton solutions and eigenfunctions of linearized operator for a higher-order nonlinear Schrödinger equation
  publication-title: Chaos Soliton Fract.
– volume: 96
  start-page: 729
  year: 2019
  end-page: 736
  ident: bib0034
  article-title: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers
  publication-title: Nonlinear Dyn.
– volume: 83
  year: 2011
  ident: 10.1016/j.apm.2021.09.042_bib0010
  article-title: Coherent atomic soliton molecules for matter-wave switching
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.051605
– volume: 19
  start-page: 520
  year: 2014
  ident: 10.1016/j.apm.2021.09.042_bib0033
  article-title: Dark solitonic excitations and collisions from a fourth-order dispersive nonlinear Schördinger model for the alpha helical protein
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.05.014
– volume: 8
  start-page: 201
  year: 2018
  ident: 10.1016/j.apm.2021.09.042_bib0008
  article-title: Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic complexes in dissipative systems
  publication-title: Appl. Sci.
  doi: 10.3390/app8020201
– volume: 82
  year: 2010
  ident: 10.1016/j.apm.2021.09.042_bib0007
  article-title: Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.063834
– volume: 69
  start-page: 014208
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0014
  article-title: Dark soliton molecules in nonlinear optics
  publication-title: Acta. Phys. Sin.
  doi: 10.7498/aps.69.20191347
– volume: 72
  start-page: 233
  year: 2009
  ident: 10.1016/j.apm.2021.09.042_bib0022
  article-title: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2009-00356-3
– volume: 190
  start-page: 270
  year: 2021
  ident: 10.1016/j.apm.2021.09.042_bib0025
  article-title: N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.05.020
– volume: 361
  start-page: 325
  year: 2019
  ident: 10.1016/j.apm.2021.09.042_bib0032
  article-title: Analytic study on triple-s, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber
  publication-title: Appl. Math. Comput.
– volume: 100
  start-page: 2817
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0028
  article-title: Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05649-9
– volume: 99
  start-page: 1313
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0031
  article-title: Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic-quintic Ginzburg-Landau equation influenced by higher-order effects and nonlinear gain
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05356-0
– volume: 70
  year: 2004
  ident: 10.1016/j.apm.2021.09.042_bib0002
  article-title: Solitons in α-helical proteins
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.031914
– volume: 356
  start-page: 50
  year: 2017
  ident: 10.1016/j.apm.2021.09.042_bib0005
  article-title: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules
  publication-title: Science
  doi: 10.1126/science.aal5326
– volume: 52
  start-page: 511
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0030
  article-title: N-soliton solutions and the Hirota conditions in (2+1)-dimensions
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02628-7
– start-page: 129
  year: 2013
  ident: 10.1016/j.apm.2021.09.042_bib0003
  article-title: Chapter 5 - optical solitons
– volume: 33
  start-page: 1807
  year: 1992
  ident: 10.1016/j.apm.2021.09.042_bib0019
  article-title: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529658
– volume: 93
  start-page: 012214
  year: 2016
  ident: 10.1016/j.apm.2021.09.042_bib0021
  article-title: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.012214
– volume: 95
  start-page: 143902
  year: 2005
  ident: 10.1016/j.apm.2021.09.042_bib0004
  article-title: Experimental observation of temporal soliton molecules
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.143902
– volume: 59
  start-page: 465
  year: 1973
  ident: 10.1016/j.apm.2021.09.042_bib0001
  article-title: Solitary excitons in one-dimensional molecular chains
  publication-title: Phys. Stat. Sol.
  doi: 10.1002/pssb.2220590212
– volume: 26
  start-page: 1750023
  year: 2017
  ident: 10.1016/j.apm.2021.09.042_bib0012
  article-title: Collective variable analysis of the nonlinear Schrödinger equation for soliton molecules in fibers
  publication-title: J. Nonlinear Opt. Phys.
  doi: 10.1142/S0218863517500230
– year: 2021
  ident: 10.1016/j.apm.2021.09.042_sbref0029
  article-title: N-soliton solutions and the Hirota conditions in (1 + 1)-dimensions
  publication-title: Int. J. Nonlin. Sci. Num.
– volume: 104
  start-page: 106271
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0015
  article-title: Soliton molecules in Sharma-Tasso-Olver-Burgers equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106271
– volume: 45
  start-page: 55
  year: 2017
  ident: 10.1016/j.apm.2021.09.042_bib0023
  article-title: Weak interaction for higher-order nonlinear Schrödinger equation: an application of soliton perturbation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.08.023
– ident: 10.1016/j.apm.2021.09.042_bib0013
– volume: 106
  start-page: 289
  year: 2018
  ident: 10.1016/j.apm.2021.09.042_bib0024
  article-title: Soliton solutions and eigenfunctions of linearized operator for a higher-order nonlinear Schrödinger equation
  publication-title: Chaos Soliton Fract.
  doi: 10.1016/j.chaos.2017.11.021
– volume: 103
  start-page: 102719
  year: 2021
  ident: 10.1016/j.apm.2021.09.042_bib0027
  article-title: Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2021.102719
– volume: 72
  start-page: 807
  year: 2016
  ident: 10.1016/j.apm.2021.09.042_bib0011
  article-title: Mixed-type soliton solutions for the N-coupled Hirota system in an optical fiber
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.05.008
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0016
  article-title: Soliton molecules and some novel types of hybrid solutions to (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation
  publication-title: Adv. Math. Phys.
– volume: 14
  start-page: 492
  year: 2020
  ident: 10.1016/j.apm.2021.09.042_bib0018
  article-title: The pure-quartic soliton laser
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-0629-6
– volume: 83
  start-page: 026603
  year: 2011
  ident: 10.1016/j.apm.2021.09.042_bib0009
  article-title: Scattering of a matter-wave single soliton and a two-soliton molecule by an attractive potential
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.026603
– volume: 165
  start-page: 104191
  year: 2021
  ident: 10.1016/j.apm.2021.09.042_bib0026
  article-title: N-soliton solution of a combined pKP-BKP equation
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2021.104191
– volume: 55
  start-page: 3785
  year: 1997
  ident: 10.1016/j.apm.2021.09.042_bib0020
  article-title: Completely integrable nonlinear Schrödinger type equations on moving space curves
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.55.3785
– volume: 58
  start-page: 2745
  year: 2019
  ident: 10.1016/j.apm.2021.09.042_bib0006
  article-title: Various soliton molecules in fiber systems
  publication-title: Appl. Opt.
  doi: 10.1364/AO.58.002745
– volume: 7
  start-page: 10427
  year: 2016
  ident: 10.1016/j.apm.2021.09.042_bib0017
  article-title: Pure-quartic solitons
  publication-title: Nat. Commn.
  doi: 10.1038/ncomms10427
– volume: 96
  start-page: 729
  year: 2019
  ident: 10.1016/j.apm.2021.09.042_bib0034
  article-title: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04817-w
SSID ssj0005904
ssj0012860
Score 2.6060925
Snippet •The one- and two-PQS solutions of the fourth-order nonlinear Schrödinger equation are obtained.•The PQS molecules are obtained by using the velocity resonance...
Pure-quartic solitons (PQSs) with higher energy in short pulse width have been generated in the mode-locked fiber laser recently, and soliton molecules have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms Bilinear forms
Dynamic characteristics
Fiber lasers
Hirota’s bilinear method
Laser mode locking
Molecular interactions
Optical communication
Optical fibers
Parameters
Pulse duration
Pure-quartic solitons
Schrodinger equation
Short pulses
Solitary waves
Soliton molecules
Title The dynamic characteristics of pure-quartic solitons and soliton molecules
URI https://dx.doi.org/10.1016/j.apm.2021.09.042
https://www.proquest.com/docview/2620408488
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sTpHDl4Eura9PXXcQxHnbiDbrBbSNIUJtrVdbv6t5ukzVDBHTyVlqS0L6_vvdDvfR9CN8pLMin9xIkT5mpSbXAYj6QTA2FJEIHMhAHITsJ0BuN5MG-hoe2F0bDKJvbXMd1E6-ZKv7Fmv1ws-i_aPRMX5kSTnoVGuRYg0l5-9_kN5pG4YMkQ9Wj7Z9NgvFipm9GJZ6hOgfyVm35FaZN6RkfosKkZ8aB-rGPUksUJOnjaEq5Wp2islhtntbo8Fj9JmPEyx-VmJZ2PjXkzXGnMm_I2zIrMnuD3WidXVmdoNrqfDlOnkUlwhE-CtZN5IQGfA0iXhSoFR1keEeEHDDxVvkUQMrWryqQrWMgTLolgPuOxINzVWlXC989Ru1gW8gJhL84jwTV_JJeQAyQMJGERD7QaBGdBB7nWQFQ0HOJayuKNWrDYK1U2pdqm1E2osmkH3W6nlDWBxq7BYK1Of3gBVQF-17SuXSHafIIVNUz7Wi0gvvzfXa_QPtG9Dgai3UXt9Wojr1UFsuY942I9tDd4eEwn6jh9HqfpF7_c23k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFMUCnhgQoqaOJeHx6qiSp8LrdTNsh1HKoI0NO3_x84DVCQ6MCbKRcn5cneRv_s-hJ50lMRKudQKKbcNqTZYXATKCoFw6gWgYlkAZGd-tIDR0ls2UL-ehTGwyir3lzm9yNbVmW7lzW62WnVfTXhSG5bEkJ75Rrm2ZdipvCZq9YbjaPaD9KA21HyIxqDe3CxgXjwz8-jEKdhOgfxVnn4l6qL6DM7QadU24l75ZOeoodILdDL95lzNL9FIrziOS4F5LPd5mPE6wdluo6zPXfFyODewNx1wmKdxfYA_SqlclV-hxeBl3o-sSinBki7xtlbs-ARcAaBs7usqHMRJQKTrcXB0BxeAz_WPVaxsyX1BhSKSu1yEkgjbyFVJ171GzXSdqhuEnTAJpDAUkkJBAkA5KMID4RlBCMG9NrJrBzFZ0YgbNYt3VuPF3pj2KTM-ZTZl2qdt9PxtkpUcGocuhtrrbC8QmM7xh8w69Qqx6ivMWUG2bwQDwtv_3fURHUXz6YRNhrPxHTomZvShQGx3UHO72al73ZBsxUMVcF9xBNyH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamic+characteristics+of+pure-quartic+solitons+and+soliton+molecules&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Liu%2C+Xiaoyan&rft.au=Zhang%2C+Hongxin&rft.au=Liu%2C+Wenjun&rft.date=2022-02-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=102&rft.spage=305&rft_id=info:doi/10.1016%2Fj.apm.2021.09.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon