Joint numerical ranges of operators in semi-Hilbertian spaces

In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, t...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 555; pp. 266 - 284
Main Authors Baklouti, Hamadi, Feki, Kais, Sid Ahmed, Ould Ahmed Mahmoud
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.10.2018
American Elsevier Company, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, this generalizes the well known Toeplitz–Hausdorff Theorem [24,16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d≥2.
AbstractList In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, this generalizes the well known Toeplitz–Hausdorff Theorem [24,16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d≥2.
In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d = 1, this generalizes the well known Toeplitz–Hausdorff Theorem [24], [16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d ≥ 2.
Author Feki, Kais
Baklouti, Hamadi
Sid Ahmed, Ould Ahmed Mahmoud
Author_xml – sequence: 1
  givenname: Hamadi
  orcidid: 0000-0002-8557-1229
  surname: Baklouti
  fullname: Baklouti, Hamadi
  email: h.baklouti@gmail.com
  organization: Sfax University, Tunisia
– sequence: 2
  givenname: Kais
  surname: Feki
  fullname: Feki, Kais
  email: kais.feki@hotmail.com
  organization: Sfax University, Tunisia
– sequence: 3
  givenname: Ould Ahmed Mahmoud
  surname: Sid Ahmed
  fullname: Sid Ahmed, Ould Ahmed Mahmoud
  email: sidahmed@ju.edu.sa
  organization: Aljouf University, Saudi Arabia
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnnfNx2Z3g3iQolYpeNFzyGYnkmWb1CQV_Pem1JOHnoaB95nhfRZo5rwDhK4Jrggmze1YTUpVFJOuwk2FKTlDc9K1rCQdb2ZojjGtS9YKfoEWMY4Y47rFdI7uX711qXD7LQSr1VQE5T4hFt4UfgdBJR9iYV0RYWvLtZ16CMmqvO-UhniJzo2aIlz9zSX6eHp8X63Lzdvzy-phU2pGeSoHbDgVfaMHzFoyAKPC1L1SqgEYOCMt5bwbaGdqLrAwqte66wRobkTPc4Qt0c3x7i74rz3EJEe_Dy6_lJSQmlImctclao8pHXyMAYzUNqlkvUtB2UkSLA-u5CizK3lwJXEjs6tMkn_kLtitCj8nmbsjA7n4t4Ugo7bgNAw2gE5y8PYE_QtqFYPL
CitedBy_id crossref_primary_10_1007_s43036_020_00099_x
crossref_primary_10_1080_09720502_2021_1936904
crossref_primary_10_2298_FIL2212173A
crossref_primary_10_3390_axioms12060522
crossref_primary_10_1007_s43036_020_00056_8
crossref_primary_10_1515_gmj_2022_2204
crossref_primary_10_1155_2022_3020449
crossref_primary_10_15672_hujms_1142554
crossref_primary_10_1186_s13660_024_03182_6
crossref_primary_10_1007_s00009_021_01927_x
crossref_primary_10_1007_s43037_022_00181_x
crossref_primary_10_1016_j_laa_2025_01_031
crossref_primary_10_1016_j_kjs_2025_100370
crossref_primary_10_1007_s40995_023_01545_0
crossref_primary_10_1007_s43036_020_00102_5
crossref_primary_10_3390_math11030685
crossref_primary_10_3390_math11102293
crossref_primary_10_1016_j_laa_2020_06_015
crossref_primary_10_3934_math_20241464
crossref_primary_10_1016_j_laa_2018_08_017
crossref_primary_10_1080_03081087_2024_2332607
crossref_primary_10_2298_FIL2320925T
crossref_primary_10_15672_hujms_1126384
crossref_primary_10_1007_s11785_020_01013_2
crossref_primary_10_3934_math_20241349
crossref_primary_10_1080_03081087_2023_2177248
crossref_primary_10_1186_s13660_024_03095_4
crossref_primary_10_1515_gmj_2023_2057
crossref_primary_10_3390_axioms12070638
crossref_primary_10_1016_j_jmaa_2024_128826
crossref_primary_10_1007_s00025_020_01220_5
crossref_primary_10_1080_03081087_2019_1698509
crossref_primary_10_1007_s43034_021_00130_z
crossref_primary_10_1016_j_laa_2023_06_024
crossref_primary_10_1007_s13226_024_00663_8
crossref_primary_10_1016_j_laa_2019_05_012
crossref_primary_10_1007_s11117_021_00825_6
crossref_primary_10_1007_s41980_020_00388_4
crossref_primary_10_1080_03081087_2020_1774487
crossref_primary_10_1007_s43037_022_00185_7
crossref_primary_10_1016_j_laa_2024_09_008
crossref_primary_10_1080_03081087_2022_2050883
crossref_primary_10_15672_hujms_730574
crossref_primary_10_1016_j_laa_2020_01_015
crossref_primary_10_1080_03081087_2019_1593925
crossref_primary_10_3390_sym15020304
crossref_primary_10_1007_s43034_021_00161_6
crossref_primary_10_1016_j_cam_2023_115070
crossref_primary_10_1112_blms_12480
crossref_primary_10_1007_s11587_021_00629_6
crossref_primary_10_1007_s43034_021_00148_3
crossref_primary_10_1016_j_laa_2022_10_019
crossref_primary_10_1007_s00013_020_01482_z
crossref_primary_10_1080_01630563_2023_2221897
crossref_primary_10_1186_s13660_022_02835_8
crossref_primary_10_1007_s00025_023_01994_4
crossref_primary_10_1007_s41980_020_00392_8
crossref_primary_10_2989_16073606_2024_2353387
crossref_primary_10_3390_math10193576
crossref_primary_10_1007_s00025_021_01515_1
crossref_primary_10_1007_s43037_020_00063_0
crossref_primary_10_1007_s43034_020_00064_y
crossref_primary_10_1515_gmj_2023_2079
crossref_primary_10_1007_s41980_022_00727_7
crossref_primary_10_2298_FIL2204415B
crossref_primary_10_1080_03081087_2020_1781037
crossref_primary_10_3390_axioms12030316
crossref_primary_10_1007_s12215_021_00623_9
crossref_primary_10_1007_s43037_023_00265_2
crossref_primary_10_1016_j_laa_2023_02_020
Cites_doi 10.1090/S0002-9939-99-05326-5
10.2140/pjm.1973.48.335
10.2307/2315737
10.1007/BF01212904
10.2140/pjm.1981.95.27
10.1007/s10474-005-0231-x
10.2140/pjm.1970.33.737
10.1090/S0002-9939-1952-0047004-9
10.1007/BF01292610
10.12732/ijpam.v112i4.6
10.1137/S0895479898343516
10.1080/03081089408818312
10.1016/j.laa.2010.09.012
10.1016/j.laa.2017.11.005
10.1090/S0002-9939-1966-0203464-1
10.1007/s00020-008-1613-6
10.1016/j.laa.2007.09.031
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright American Elsevier Company, Inc. Oct 15, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Oct 15, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.laa.2018.06.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 284
ExternalDocumentID 10_1016_j_laa_2018_06_021
S0024379518303057
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
SEW
SSH
T9H
WUQ
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-d0f529b6cd0371de329f4baaa6eed53172558d28f45909fabcc889ec5f9b5eed3
IEDL.DBID IXB
ISSN 0024-3795
IngestDate Fri Jul 25 03:17:01 EDT 2025
Tue Jul 01 03:18:05 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Fri Feb 23 02:32:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords secondary
Joint numerical range
Convexity
primary
Positive operator
Maximal numerical range
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-d0f529b6cd0371de329f4baaa6eed53172558d28f45909fabcc889ec5f9b5eed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8557-1229
PQID 2114223987
PQPubID 2047554
PageCount 19
ParticipantIDs proquest_journals_2114223987
crossref_citationtrail_10_1016_j_laa_2018_06_021
crossref_primary_10_1016_j_laa_2018_06_021
elsevier_sciencedirect_doi_10_1016_j_laa_2018_06_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2018
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Amelin (br0010) 1973; 48
Li (br0180) 1994; 37
Bermúdez, Saddi, Zaway (br0040) 2018; 540
Li, Poon (br0190) 1999; 21
Saddi (br0220) 2012; 9
Barnes (br0060) 2000; 128
EL-Adawy (br0110) 2004; 148
G.A. Khan, J. Kyle, Joint maximal numerical range, ICTP preprint IC/90/324, 1990.
Stampfli (br0230) 1970; 33
Gustafson (br0140) 1970; 25
Arias, Corach, Gonzalez (br0030) 2008; 62
Chō, Takaguchi (br0070) 1981; 95
Hausdorff (br0160) 1919; 3
Bonsall, Duncan (br0050) 1973
Givens (br0130) 1952; 3
Arias, Corach, Gonzalez (br0020) 2008; 428
Douglas (br0090) 1966; 17
Toeplitz (br0240) 1918; 2
Faghih-Ahmadi, Gorjizadeh (br0120) 2016; 36
Eliezer (br0080) 1968; 75
Sid Ahmed, Saddi (br0210) 2012; 436
Hassi, Sebestyén, De Snoo (br0150) 2005; 109
Dash (br0100) 1972; 7
Runji, Agure, Nyamwala (br0200) 2017; 112
Eliezer (10.1016/j.laa.2018.06.021_br0080) 1968; 75
Bermúdez (10.1016/j.laa.2018.06.021_br0040) 2018; 540
Barnes (10.1016/j.laa.2018.06.021_br0060) 2000; 128
Douglas (10.1016/j.laa.2018.06.021_br0090) 1966; 17
Runji (10.1016/j.laa.2018.06.021_br0200) 2017; 112
Stampfli (10.1016/j.laa.2018.06.021_br0230) 1970; 33
Hausdorff (10.1016/j.laa.2018.06.021_br0160) 1919; 3
Toeplitz (10.1016/j.laa.2018.06.021_br0240) 1918; 2
Dash (10.1016/j.laa.2018.06.021_br0100) 1972; 7
Faghih-Ahmadi (10.1016/j.laa.2018.06.021_br0120) 2016; 36
Li (10.1016/j.laa.2018.06.021_br0190) 1999; 21
Saddi (10.1016/j.laa.2018.06.021_br0220) 2012; 9
Gustafson (10.1016/j.laa.2018.06.021_br0140) 1970; 25
Sid Ahmed (10.1016/j.laa.2018.06.021_br0210) 2012; 436
Amelin (10.1016/j.laa.2018.06.021_br0010) 1973; 48
Arias (10.1016/j.laa.2018.06.021_br0030) 2008; 62
Li (10.1016/j.laa.2018.06.021_br0180) 1994; 37
Arias (10.1016/j.laa.2018.06.021_br0020) 2008; 428
Chō (10.1016/j.laa.2018.06.021_br0070) 1981; 95
Hassi (10.1016/j.laa.2018.06.021_br0150) 2005; 109
10.1016/j.laa.2018.06.021_br0170
Bonsall (10.1016/j.laa.2018.06.021_br0050) 1973
EL-Adawy (10.1016/j.laa.2018.06.021_br0110) 2004; 148
Givens (10.1016/j.laa.2018.06.021_br0130) 1952; 3
References_xml – volume: 128
  start-page: 1371
  year: 2000
  end-page: 1375
  ident: br0060
  article-title: The spectral properties of certain linear operators and their extensions
  publication-title: Proc. Amer. Math. Soc.
– volume: 148
  start-page: 793
  year: 2004
  end-page: 799
  ident: br0110
  article-title: The joint essential maximal numerical range
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 314
  year: 1919
  end-page: 316
  ident: br0160
  article-title: Der Wertevorrat einer Bilinearform
  publication-title: Math. Z.
– volume: 17
  start-page: 413
  year: 1966
  end-page: 416
  ident: br0090
  article-title: On majorization, factorization and range inclusion of operators in Hilbert space
  publication-title: Proc. Amer. Math. Soc.
– volume: 9
  year: 2012
  ident: br0220
  article-title: -normal operators in semi-Hilbertian spaces
  publication-title: Aust. J. Math. Anal. Appl.
– volume: 75
  start-page: 1090
  year: 1968
  end-page: 1091
  ident: br0080
  article-title: A note on group commutators of
  publication-title: Amer. Math. Monthly
– volume: 3
  start-page: 206
  year: 1952
  end-page: 209
  ident: br0130
  article-title: Field of values of a matrix
  publication-title: Proc. Amer. Math. Soc.
– volume: 436
  start-page: 3930
  year: 2012
  end-page: 3942
  ident: br0210
  article-title: -
  publication-title: Linear Algebra Appl.
– reference: G.A. Khan, J. Kyle, Joint maximal numerical range, ICTP preprint IC/90/324, 1990.
– volume: 37
  start-page: 51
  year: 1994
  end-page: 82
  ident: br0180
  article-title: C-numerical ranges and C-numerical radii
  publication-title: Linear Multilinear Algebra
– volume: 21
  start-page: 668
  year: 1999
  end-page: 678
  ident: br0190
  article-title: Convexity of the joint numerical range
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 33
  start-page: 737
  year: 1970
  end-page: 747
  ident: br0230
  article-title: The norm of derivation
  publication-title: Pacific J. Math.
– volume: 25
  start-page: 203
  year: 1970
  end-page: 204
  ident: br0140
  article-title: The Toeplitz–Hausdorff theorem of linear operators
  publication-title: Proc. Amer. Math. Soc.
– volume: 428
  start-page: 1460
  year: 2008
  end-page: 1475
  ident: br0020
  article-title: Partial isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
– year: 1973
  ident: br0050
  article-title: Numerical Ranges of Operators on Normed Spaces and of Elements of Banach Algebras
– volume: 2
  start-page: 187
  year: 1918
  end-page: 197
  ident: br0240
  article-title: Das algebraische Analogon zu einem Satze von Fejér
  publication-title: Math. Z.
– volume: 48
  start-page: 335
  year: 1973
  end-page: 345
  ident: br0010
  article-title: A numerical range for two linear operators
  publication-title: Pacific J. Math.
– volume: 540
  start-page: 95
  year: 2018
  end-page: 111
  ident: br0040
  article-title: -isometries on Hilbert spaces
  publication-title: Linear Algebra Appl.
– volume: 112
  start-page: 741
  year: 2017
  end-page: 747
  ident: br0200
  article-title: On the maximal numerical range of elementary operators
  publication-title: Int. J. Pure Appl. Math.
– volume: 62
  start-page: 11
  year: 2008
  end-page: 28
  ident: br0030
  article-title: Metric properties of projections in semi-Hilbertian spaces
  publication-title: Integral Equations Operator Theory
– volume: 36
  start-page: 73
  year: 2016
  end-page: 78
  ident: br0120
  article-title: A-numerical radius of A-normal operators in semi-Hilbertian spaces
  publication-title: Ital. J. Pure Appl. Math.
– volume: 95
  year: 1981
  ident: br0070
  article-title: Boundary points of joint numerical ranges
  publication-title: Pacific J. Math.
– volume: 109
  start-page: 1
  year: 2005
  end-page: 14
  ident: br0150
  article-title: On the nonnegativity of operator products
  publication-title: Acta Math. Hungar.
– volume: 7
  start-page: 75
  year: 1972
  end-page: 81
  ident: br0100
  article-title: Joint numerical range
  publication-title: Glas. Mat.
– volume: 128
  start-page: 1371
  year: 2000
  ident: 10.1016/j.laa.2018.06.021_br0060
  article-title: The spectral properties of certain linear operators and their extensions
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-99-05326-5
– volume: 48
  start-page: 335
  year: 1973
  ident: 10.1016/j.laa.2018.06.021_br0010
  article-title: A numerical range for two linear operators
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1973.48.335
– volume: 75
  start-page: 1090
  year: 1968
  ident: 10.1016/j.laa.2018.06.021_br0080
  article-title: A note on group commutators of 2×2 matrices
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2315737
– volume: 2
  start-page: 187
  year: 1918
  ident: 10.1016/j.laa.2018.06.021_br0240
  article-title: Das algebraische Analogon zu einem Satze von Fejér
  publication-title: Math. Z.
  doi: 10.1007/BF01212904
– year: 1973
  ident: 10.1016/j.laa.2018.06.021_br0050
– volume: 7
  start-page: 75
  year: 1972
  ident: 10.1016/j.laa.2018.06.021_br0100
  article-title: Joint numerical range
  publication-title: Glas. Mat.
– volume: 148
  start-page: 793
  issue: 3
  year: 2004
  ident: 10.1016/j.laa.2018.06.021_br0110
  article-title: The joint essential maximal numerical range
  publication-title: Appl. Math. Comput.
– volume: 95
  issue: 1
  year: 1981
  ident: 10.1016/j.laa.2018.06.021_br0070
  article-title: Boundary points of joint numerical ranges
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1981.95.27
– ident: 10.1016/j.laa.2018.06.021_br0170
– volume: 109
  start-page: 1
  year: 2005
  ident: 10.1016/j.laa.2018.06.021_br0150
  article-title: On the nonnegativity of operator products
  publication-title: Acta Math. Hungar.
  doi: 10.1007/s10474-005-0231-x
– volume: 33
  start-page: 737
  issue: 3
  year: 1970
  ident: 10.1016/j.laa.2018.06.021_br0230
  article-title: The norm of derivation
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1970.33.737
– volume: 3
  start-page: 206
  year: 1952
  ident: 10.1016/j.laa.2018.06.021_br0130
  article-title: Field of values of a matrix
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1952-0047004-9
– volume: 3
  start-page: 314
  year: 1919
  ident: 10.1016/j.laa.2018.06.021_br0160
  article-title: Der Wertevorrat einer Bilinearform
  publication-title: Math. Z.
  doi: 10.1007/BF01292610
– volume: 112
  start-page: 741
  issue: 4
  year: 2017
  ident: 10.1016/j.laa.2018.06.021_br0200
  article-title: On the maximal numerical range of elementary operators
  publication-title: Int. J. Pure Appl. Math.
  doi: 10.12732/ijpam.v112i4.6
– volume: 9
  issue: 1
  year: 2012
  ident: 10.1016/j.laa.2018.06.021_br0220
  article-title: A-normal operators in semi-Hilbertian spaces
  publication-title: Aust. J. Math. Anal. Appl.
– volume: 36
  start-page: 73
  year: 2016
  ident: 10.1016/j.laa.2018.06.021_br0120
  article-title: A-numerical radius of A-normal operators in semi-Hilbertian spaces
  publication-title: Ital. J. Pure Appl. Math.
– volume: 21
  start-page: 668
  year: 1999
  ident: 10.1016/j.laa.2018.06.021_br0190
  article-title: Convexity of the joint numerical range
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898343516
– volume: 37
  start-page: 51
  year: 1994
  ident: 10.1016/j.laa.2018.06.021_br0180
  article-title: C-numerical ranges and C-numerical radii
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089408818312
– volume: 436
  start-page: 3930
  year: 2012
  ident: 10.1016/j.laa.2018.06.021_br0210
  article-title: A-m-isometric operators in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.09.012
– volume: 540
  start-page: 95
  year: 2018
  ident: 10.1016/j.laa.2018.06.021_br0040
  article-title: (A,m)-isometries on Hilbert spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.11.005
– volume: 25
  start-page: 203
  year: 1970
  ident: 10.1016/j.laa.2018.06.021_br0140
  article-title: The Toeplitz–Hausdorff theorem of linear operators
  publication-title: Proc. Amer. Math. Soc.
– volume: 17
  start-page: 413
  year: 1966
  ident: 10.1016/j.laa.2018.06.021_br0090
  article-title: On majorization, factorization and range inclusion of operators in Hilbert space
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1966-0203464-1
– volume: 62
  start-page: 11
  year: 2008
  ident: 10.1016/j.laa.2018.06.021_br0030
  article-title: Metric properties of projections in semi-Hilbertian spaces
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/s00020-008-1613-6
– volume: 428
  start-page: 1460
  issue: 7
  year: 2008
  ident: 10.1016/j.laa.2018.06.021_br0020
  article-title: Partial isometries in semi-Hilbertian spaces
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.09.031
SSID ssj0004702
Score 2.531887
Snippet In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 266
SubjectTerms Convexity
Hilbert space
Joint numerical range
Linear algebra
Linear operators
Maximal numerical range
Numerical analysis
Positive operator
Theorems
Title Joint numerical ranges of operators in semi-Hilbertian spaces
URI https://dx.doi.org/10.1016/j.laa.2018.06.021
https://www.proquest.com/docview/2114223987
Volume 555
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGA1zXvQg_sTpHD14EuraNOmP4xyOqmwnB7uFpEmhUruydlf_dvOlraLgDh5bklK-JN_LR957QehWSg2SygeqDk5sjRDCFkHk6JpHgyXlAccC1MjzhR8vyfOKrnpo2mlhgFbZ5v4mp5ts3b4Zt9Ecl1kGGl9jpkf1pIRZC4pyj4RGxLd6-NZGBk7rGE5saN2dbBqOV87BeshtLDyx-xc2_crSBnpmx-io3TNak-a3TlBPFafocP5luFqdIb2xzIraKrbNAUxubUA0UFnr1FqXyhylV1ZWWJV6z-w4yw2dmuvnEihZ52g5e3ydxnZ7M4KdeJjWtnRSiiPhJxIc96TycJQSwTn3NeTpVRXoQiGUOEwJjZwo5SJJwjBSCU0jQXUT7wL1i3WhLpFF4EopEkhPEklSlwtd0jgiDGUgEl38qQFyupiwpLUNh9srctbxw96YDiODMDLgyGF3gO6-upSNZ8auxqQLNPsx8Ezn9F3dht2gsHbVVQwbYbAXhcHV_756jQ7gCbDJpUPUrzdbdaM3HbUYob37D3eE9idPL_FiZObYJ-Vn1k4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTIwIUVNHLtORqioWmg7tVI3y44dKaikVdP-f-7yUQQSDIxJnCg62_fu5HfvCHkwBkDSdpGqQ2MXEEK7WkQe5DwAllwJRTVWI48n3cGMvc75vEF6dS0M0ior31_69MJbV3c6lTU7qzTFGt9CTI_DosRVK_bIPkQDAvs3DOfPX8WRwqskw5mLw-ujzYLktVCoPeSXGp7U_w2cfrjpAnv6J-S4Chqdp_K_TknDZmfkaLxTXM3PCUSWabZxsm15ArNw1lg1kDvLxFmubHGWnjtp5uT2I3UH6aLgUyu4XiEn64LM-i_T3sCtWiO4cUD5xjVewmmku7FByT1jAxolTCuluoB5sK0EZAqhoWHCeORFidJxHIaRjXkSaQ5DgkvSzJaZvSIOw55STJjAMMMSX2nIaTwdhkboGLI_2yJebRMZV7rh2L5iIWuC2LsEM0o0o0SSHPVb5HH3yqoUzfhrMKsNLb_NvASn_tdr7XpSZLXtckmLyuAgCsX1_756Tw4G0_FIjoaTtxtyiE8QqHzeJs3NemtvIQLZ6LtihX0C8OHW4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+numerical+ranges+of+operators+in+semi-Hilbertian+spaces&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Baklouti%2C+Hamadi&rft.au=Feki%2C+Kais&rft.au=Mahmoud+Sid+Ahmed%2C+Ould+Ahmed&rft.date=2018-10-15&rft.pub=American+Elsevier+Company%2C+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=555&rft.spage=266&rft_id=info:doi/10.1016%2Fj.laa.2018.06.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon