Joint numerical ranges of operators in semi-Hilbertian spaces
In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, t...
Saved in:
Published in | Linear algebra and its applications Vol. 555; pp. 266 - 284 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.10.2018
American Elsevier Company, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, this generalizes the well known Toeplitz–Hausdorff Theorem [24,16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d≥2. |
---|---|
AbstractList | In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d=1, this generalizes the well known Toeplitz–Hausdorff Theorem [24,16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d≥2. In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear operators on a Hilbert space. Some properties and applications of these sets are studied. Mainly, it is proved that they are convex for d = 1, this generalizes the well known Toeplitz–Hausdorff Theorem [24], [16] and Stampfli's result [23]. Moreover, under additional hypotheses, we show that these sets are convex for d ≥ 2. |
Author | Feki, Kais Baklouti, Hamadi Sid Ahmed, Ould Ahmed Mahmoud |
Author_xml | – sequence: 1 givenname: Hamadi orcidid: 0000-0002-8557-1229 surname: Baklouti fullname: Baklouti, Hamadi email: h.baklouti@gmail.com organization: Sfax University, Tunisia – sequence: 2 givenname: Kais surname: Feki fullname: Feki, Kais email: kais.feki@hotmail.com organization: Sfax University, Tunisia – sequence: 3 givenname: Ould Ahmed Mahmoud surname: Sid Ahmed fullname: Sid Ahmed, Ould Ahmed Mahmoud email: sidahmed@ju.edu.sa organization: Aljouf University, Saudi Arabia |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnnfNx2Z3g3iQolYpeNFzyGYnkmWb1CQV_Pem1JOHnoaB95nhfRZo5rwDhK4Jrggmze1YTUpVFJOuwk2FKTlDc9K1rCQdb2ZojjGtS9YKfoEWMY4Y47rFdI7uX711qXD7LQSr1VQE5T4hFt4UfgdBJR9iYV0RYWvLtZ16CMmqvO-UhniJzo2aIlz9zSX6eHp8X63Lzdvzy-phU2pGeSoHbDgVfaMHzFoyAKPC1L1SqgEYOCMt5bwbaGdqLrAwqte66wRobkTPc4Qt0c3x7i74rz3EJEe_Dy6_lJSQmlImctclao8pHXyMAYzUNqlkvUtB2UkSLA-u5CizK3lwJXEjs6tMkn_kLtitCj8nmbsjA7n4t4Ugo7bgNAw2gE5y8PYE_QtqFYPL |
CitedBy_id | crossref_primary_10_1007_s43036_020_00099_x crossref_primary_10_1080_09720502_2021_1936904 crossref_primary_10_2298_FIL2212173A crossref_primary_10_3390_axioms12060522 crossref_primary_10_1007_s43036_020_00056_8 crossref_primary_10_1515_gmj_2022_2204 crossref_primary_10_1155_2022_3020449 crossref_primary_10_15672_hujms_1142554 crossref_primary_10_1186_s13660_024_03182_6 crossref_primary_10_1007_s00009_021_01927_x crossref_primary_10_1007_s43037_022_00181_x crossref_primary_10_1016_j_laa_2025_01_031 crossref_primary_10_1016_j_kjs_2025_100370 crossref_primary_10_1007_s40995_023_01545_0 crossref_primary_10_1007_s43036_020_00102_5 crossref_primary_10_3390_math11030685 crossref_primary_10_3390_math11102293 crossref_primary_10_1016_j_laa_2020_06_015 crossref_primary_10_3934_math_20241464 crossref_primary_10_1016_j_laa_2018_08_017 crossref_primary_10_1080_03081087_2024_2332607 crossref_primary_10_2298_FIL2320925T crossref_primary_10_15672_hujms_1126384 crossref_primary_10_1007_s11785_020_01013_2 crossref_primary_10_3934_math_20241349 crossref_primary_10_1080_03081087_2023_2177248 crossref_primary_10_1186_s13660_024_03095_4 crossref_primary_10_1515_gmj_2023_2057 crossref_primary_10_3390_axioms12070638 crossref_primary_10_1016_j_jmaa_2024_128826 crossref_primary_10_1007_s00025_020_01220_5 crossref_primary_10_1080_03081087_2019_1698509 crossref_primary_10_1007_s43034_021_00130_z crossref_primary_10_1016_j_laa_2023_06_024 crossref_primary_10_1007_s13226_024_00663_8 crossref_primary_10_1016_j_laa_2019_05_012 crossref_primary_10_1007_s11117_021_00825_6 crossref_primary_10_1007_s41980_020_00388_4 crossref_primary_10_1080_03081087_2020_1774487 crossref_primary_10_1007_s43037_022_00185_7 crossref_primary_10_1016_j_laa_2024_09_008 crossref_primary_10_1080_03081087_2022_2050883 crossref_primary_10_15672_hujms_730574 crossref_primary_10_1016_j_laa_2020_01_015 crossref_primary_10_1080_03081087_2019_1593925 crossref_primary_10_3390_sym15020304 crossref_primary_10_1007_s43034_021_00161_6 crossref_primary_10_1016_j_cam_2023_115070 crossref_primary_10_1112_blms_12480 crossref_primary_10_1007_s11587_021_00629_6 crossref_primary_10_1007_s43034_021_00148_3 crossref_primary_10_1016_j_laa_2022_10_019 crossref_primary_10_1007_s00013_020_01482_z crossref_primary_10_1080_01630563_2023_2221897 crossref_primary_10_1186_s13660_022_02835_8 crossref_primary_10_1007_s00025_023_01994_4 crossref_primary_10_1007_s41980_020_00392_8 crossref_primary_10_2989_16073606_2024_2353387 crossref_primary_10_3390_math10193576 crossref_primary_10_1007_s00025_021_01515_1 crossref_primary_10_1007_s43037_020_00063_0 crossref_primary_10_1007_s43034_020_00064_y crossref_primary_10_1515_gmj_2023_2079 crossref_primary_10_1007_s41980_022_00727_7 crossref_primary_10_2298_FIL2204415B crossref_primary_10_1080_03081087_2020_1781037 crossref_primary_10_3390_axioms12030316 crossref_primary_10_1007_s12215_021_00623_9 crossref_primary_10_1007_s43037_023_00265_2 crossref_primary_10_1016_j_laa_2023_02_020 |
Cites_doi | 10.1090/S0002-9939-99-05326-5 10.2140/pjm.1973.48.335 10.2307/2315737 10.1007/BF01212904 10.2140/pjm.1981.95.27 10.1007/s10474-005-0231-x 10.2140/pjm.1970.33.737 10.1090/S0002-9939-1952-0047004-9 10.1007/BF01292610 10.12732/ijpam.v112i4.6 10.1137/S0895479898343516 10.1080/03081089408818312 10.1016/j.laa.2010.09.012 10.1016/j.laa.2017.11.005 10.1090/S0002-9939-1966-0203464-1 10.1007/s00020-008-1613-6 10.1016/j.laa.2007.09.031 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright American Elsevier Company, Inc. Oct 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright American Elsevier Company, Inc. Oct 15, 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.laa.2018.06.021 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 284 |
ExternalDocumentID | 10_1016_j_laa_2018_06_021 S0024379518303057 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION FA8 FGOYB G-2 HZ~ MVM OHT R2- SEW SSH T9H WUQ 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-d0f529b6cd0371de329f4baaa6eed53172558d28f45909fabcc889ec5f9b5eed3 |
IEDL.DBID | IXB |
ISSN | 0024-3795 |
IngestDate | Fri Jul 25 03:17:01 EDT 2025 Tue Jul 01 03:18:05 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Fri Feb 23 02:32:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | secondary Joint numerical range Convexity primary Positive operator Maximal numerical range |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-d0f529b6cd0371de329f4baaa6eed53172558d28f45909fabcc889ec5f9b5eed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8557-1229 |
PQID | 2114223987 |
PQPubID | 2047554 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2114223987 crossref_citationtrail_10_1016_j_laa_2018_06_021 crossref_primary_10_1016_j_laa_2018_06_021 elsevier_sciencedirect_doi_10_1016_j_laa_2018_06_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-15 |
PublicationDateYYYYMMDD | 2018-10-15 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2018 |
Publisher | Elsevier Inc American Elsevier Company, Inc |
Publisher_xml | – name: Elsevier Inc – name: American Elsevier Company, Inc |
References | Amelin (br0010) 1973; 48 Li (br0180) 1994; 37 Bermúdez, Saddi, Zaway (br0040) 2018; 540 Li, Poon (br0190) 1999; 21 Saddi (br0220) 2012; 9 Barnes (br0060) 2000; 128 EL-Adawy (br0110) 2004; 148 G.A. Khan, J. Kyle, Joint maximal numerical range, ICTP preprint IC/90/324, 1990. Stampfli (br0230) 1970; 33 Gustafson (br0140) 1970; 25 Arias, Corach, Gonzalez (br0030) 2008; 62 Chō, Takaguchi (br0070) 1981; 95 Hausdorff (br0160) 1919; 3 Bonsall, Duncan (br0050) 1973 Givens (br0130) 1952; 3 Arias, Corach, Gonzalez (br0020) 2008; 428 Douglas (br0090) 1966; 17 Toeplitz (br0240) 1918; 2 Faghih-Ahmadi, Gorjizadeh (br0120) 2016; 36 Eliezer (br0080) 1968; 75 Sid Ahmed, Saddi (br0210) 2012; 436 Hassi, Sebestyén, De Snoo (br0150) 2005; 109 Dash (br0100) 1972; 7 Runji, Agure, Nyamwala (br0200) 2017; 112 Eliezer (10.1016/j.laa.2018.06.021_br0080) 1968; 75 Bermúdez (10.1016/j.laa.2018.06.021_br0040) 2018; 540 Barnes (10.1016/j.laa.2018.06.021_br0060) 2000; 128 Douglas (10.1016/j.laa.2018.06.021_br0090) 1966; 17 Runji (10.1016/j.laa.2018.06.021_br0200) 2017; 112 Stampfli (10.1016/j.laa.2018.06.021_br0230) 1970; 33 Hausdorff (10.1016/j.laa.2018.06.021_br0160) 1919; 3 Toeplitz (10.1016/j.laa.2018.06.021_br0240) 1918; 2 Dash (10.1016/j.laa.2018.06.021_br0100) 1972; 7 Faghih-Ahmadi (10.1016/j.laa.2018.06.021_br0120) 2016; 36 Li (10.1016/j.laa.2018.06.021_br0190) 1999; 21 Saddi (10.1016/j.laa.2018.06.021_br0220) 2012; 9 Gustafson (10.1016/j.laa.2018.06.021_br0140) 1970; 25 Sid Ahmed (10.1016/j.laa.2018.06.021_br0210) 2012; 436 Amelin (10.1016/j.laa.2018.06.021_br0010) 1973; 48 Arias (10.1016/j.laa.2018.06.021_br0030) 2008; 62 Li (10.1016/j.laa.2018.06.021_br0180) 1994; 37 Arias (10.1016/j.laa.2018.06.021_br0020) 2008; 428 Chō (10.1016/j.laa.2018.06.021_br0070) 1981; 95 Hassi (10.1016/j.laa.2018.06.021_br0150) 2005; 109 10.1016/j.laa.2018.06.021_br0170 Bonsall (10.1016/j.laa.2018.06.021_br0050) 1973 EL-Adawy (10.1016/j.laa.2018.06.021_br0110) 2004; 148 Givens (10.1016/j.laa.2018.06.021_br0130) 1952; 3 |
References_xml | – volume: 128 start-page: 1371 year: 2000 end-page: 1375 ident: br0060 article-title: The spectral properties of certain linear operators and their extensions publication-title: Proc. Amer. Math. Soc. – volume: 148 start-page: 793 year: 2004 end-page: 799 ident: br0110 article-title: The joint essential maximal numerical range publication-title: Appl. Math. Comput. – volume: 3 start-page: 314 year: 1919 end-page: 316 ident: br0160 article-title: Der Wertevorrat einer Bilinearform publication-title: Math. Z. – volume: 17 start-page: 413 year: 1966 end-page: 416 ident: br0090 article-title: On majorization, factorization and range inclusion of operators in Hilbert space publication-title: Proc. Amer. Math. Soc. – volume: 9 year: 2012 ident: br0220 article-title: -normal operators in semi-Hilbertian spaces publication-title: Aust. J. Math. Anal. Appl. – volume: 75 start-page: 1090 year: 1968 end-page: 1091 ident: br0080 article-title: A note on group commutators of publication-title: Amer. Math. Monthly – volume: 3 start-page: 206 year: 1952 end-page: 209 ident: br0130 article-title: Field of values of a matrix publication-title: Proc. Amer. Math. Soc. – volume: 436 start-page: 3930 year: 2012 end-page: 3942 ident: br0210 article-title: - publication-title: Linear Algebra Appl. – reference: G.A. Khan, J. Kyle, Joint maximal numerical range, ICTP preprint IC/90/324, 1990. – volume: 37 start-page: 51 year: 1994 end-page: 82 ident: br0180 article-title: C-numerical ranges and C-numerical radii publication-title: Linear Multilinear Algebra – volume: 21 start-page: 668 year: 1999 end-page: 678 ident: br0190 article-title: Convexity of the joint numerical range publication-title: SIAM J. Matrix Anal. Appl. – volume: 33 start-page: 737 year: 1970 end-page: 747 ident: br0230 article-title: The norm of derivation publication-title: Pacific J. Math. – volume: 25 start-page: 203 year: 1970 end-page: 204 ident: br0140 article-title: The Toeplitz–Hausdorff theorem of linear operators publication-title: Proc. Amer. Math. Soc. – volume: 428 start-page: 1460 year: 2008 end-page: 1475 ident: br0020 article-title: Partial isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. – year: 1973 ident: br0050 article-title: Numerical Ranges of Operators on Normed Spaces and of Elements of Banach Algebras – volume: 2 start-page: 187 year: 1918 end-page: 197 ident: br0240 article-title: Das algebraische Analogon zu einem Satze von Fejér publication-title: Math. Z. – volume: 48 start-page: 335 year: 1973 end-page: 345 ident: br0010 article-title: A numerical range for two linear operators publication-title: Pacific J. Math. – volume: 540 start-page: 95 year: 2018 end-page: 111 ident: br0040 article-title: -isometries on Hilbert spaces publication-title: Linear Algebra Appl. – volume: 112 start-page: 741 year: 2017 end-page: 747 ident: br0200 article-title: On the maximal numerical range of elementary operators publication-title: Int. J. Pure Appl. Math. – volume: 62 start-page: 11 year: 2008 end-page: 28 ident: br0030 article-title: Metric properties of projections in semi-Hilbertian spaces publication-title: Integral Equations Operator Theory – volume: 36 start-page: 73 year: 2016 end-page: 78 ident: br0120 article-title: A-numerical radius of A-normal operators in semi-Hilbertian spaces publication-title: Ital. J. Pure Appl. Math. – volume: 95 year: 1981 ident: br0070 article-title: Boundary points of joint numerical ranges publication-title: Pacific J. Math. – volume: 109 start-page: 1 year: 2005 end-page: 14 ident: br0150 article-title: On the nonnegativity of operator products publication-title: Acta Math. Hungar. – volume: 7 start-page: 75 year: 1972 end-page: 81 ident: br0100 article-title: Joint numerical range publication-title: Glas. Mat. – volume: 128 start-page: 1371 year: 2000 ident: 10.1016/j.laa.2018.06.021_br0060 article-title: The spectral properties of certain linear operators and their extensions publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-99-05326-5 – volume: 48 start-page: 335 year: 1973 ident: 10.1016/j.laa.2018.06.021_br0010 article-title: A numerical range for two linear operators publication-title: Pacific J. Math. doi: 10.2140/pjm.1973.48.335 – volume: 75 start-page: 1090 year: 1968 ident: 10.1016/j.laa.2018.06.021_br0080 article-title: A note on group commutators of 2×2 matrices publication-title: Amer. Math. Monthly doi: 10.2307/2315737 – volume: 2 start-page: 187 year: 1918 ident: 10.1016/j.laa.2018.06.021_br0240 article-title: Das algebraische Analogon zu einem Satze von Fejér publication-title: Math. Z. doi: 10.1007/BF01212904 – year: 1973 ident: 10.1016/j.laa.2018.06.021_br0050 – volume: 7 start-page: 75 year: 1972 ident: 10.1016/j.laa.2018.06.021_br0100 article-title: Joint numerical range publication-title: Glas. Mat. – volume: 148 start-page: 793 issue: 3 year: 2004 ident: 10.1016/j.laa.2018.06.021_br0110 article-title: The joint essential maximal numerical range publication-title: Appl. Math. Comput. – volume: 95 issue: 1 year: 1981 ident: 10.1016/j.laa.2018.06.021_br0070 article-title: Boundary points of joint numerical ranges publication-title: Pacific J. Math. doi: 10.2140/pjm.1981.95.27 – ident: 10.1016/j.laa.2018.06.021_br0170 – volume: 109 start-page: 1 year: 2005 ident: 10.1016/j.laa.2018.06.021_br0150 article-title: On the nonnegativity of operator products publication-title: Acta Math. Hungar. doi: 10.1007/s10474-005-0231-x – volume: 33 start-page: 737 issue: 3 year: 1970 ident: 10.1016/j.laa.2018.06.021_br0230 article-title: The norm of derivation publication-title: Pacific J. Math. doi: 10.2140/pjm.1970.33.737 – volume: 3 start-page: 206 year: 1952 ident: 10.1016/j.laa.2018.06.021_br0130 article-title: Field of values of a matrix publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1952-0047004-9 – volume: 3 start-page: 314 year: 1919 ident: 10.1016/j.laa.2018.06.021_br0160 article-title: Der Wertevorrat einer Bilinearform publication-title: Math. Z. doi: 10.1007/BF01292610 – volume: 112 start-page: 741 issue: 4 year: 2017 ident: 10.1016/j.laa.2018.06.021_br0200 article-title: On the maximal numerical range of elementary operators publication-title: Int. J. Pure Appl. Math. doi: 10.12732/ijpam.v112i4.6 – volume: 9 issue: 1 year: 2012 ident: 10.1016/j.laa.2018.06.021_br0220 article-title: A-normal operators in semi-Hilbertian spaces publication-title: Aust. J. Math. Anal. Appl. – volume: 36 start-page: 73 year: 2016 ident: 10.1016/j.laa.2018.06.021_br0120 article-title: A-numerical radius of A-normal operators in semi-Hilbertian spaces publication-title: Ital. J. Pure Appl. Math. – volume: 21 start-page: 668 year: 1999 ident: 10.1016/j.laa.2018.06.021_br0190 article-title: Convexity of the joint numerical range publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898343516 – volume: 37 start-page: 51 year: 1994 ident: 10.1016/j.laa.2018.06.021_br0180 article-title: C-numerical ranges and C-numerical radii publication-title: Linear Multilinear Algebra doi: 10.1080/03081089408818312 – volume: 436 start-page: 3930 year: 2012 ident: 10.1016/j.laa.2018.06.021_br0210 article-title: A-m-isometric operators in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.09.012 – volume: 540 start-page: 95 year: 2018 ident: 10.1016/j.laa.2018.06.021_br0040 article-title: (A,m)-isometries on Hilbert spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2017.11.005 – volume: 25 start-page: 203 year: 1970 ident: 10.1016/j.laa.2018.06.021_br0140 article-title: The Toeplitz–Hausdorff theorem of linear operators publication-title: Proc. Amer. Math. Soc. – volume: 17 start-page: 413 year: 1966 ident: 10.1016/j.laa.2018.06.021_br0090 article-title: On majorization, factorization and range inclusion of operators in Hilbert space publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1966-0203464-1 – volume: 62 start-page: 11 year: 2008 ident: 10.1016/j.laa.2018.06.021_br0030 article-title: Metric properties of projections in semi-Hilbertian spaces publication-title: Integral Equations Operator Theory doi: 10.1007/s00020-008-1613-6 – volume: 428 start-page: 1460 issue: 7 year: 2008 ident: 10.1016/j.laa.2018.06.021_br0020 article-title: Partial isometries in semi-Hilbertian spaces publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2007.09.031 |
SSID | ssj0004702 |
Score | 2.531887 |
Snippet | In this paper we aim to investigate the concept of numerical range and maximal numerical range relative to a positive operator of a d-tuple of bounded linear... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 266 |
SubjectTerms | Convexity Hilbert space Joint numerical range Linear algebra Linear operators Maximal numerical range Numerical analysis Positive operator Theorems |
Title | Joint numerical ranges of operators in semi-Hilbertian spaces |
URI | https://dx.doi.org/10.1016/j.laa.2018.06.021 https://www.proquest.com/docview/2114223987 |
Volume | 555 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwGA1zXvQg_sTpHD14EuraNOmP4xyOqmwnB7uFpEmhUruydlf_dvOlraLgDh5bklK-JN_LR957QehWSg2SygeqDk5sjRDCFkHk6JpHgyXlAccC1MjzhR8vyfOKrnpo2mlhgFbZ5v4mp5ts3b4Zt9Ecl1kGGl9jpkf1pIRZC4pyj4RGxLd6-NZGBk7rGE5saN2dbBqOV87BeshtLDyx-xc2_crSBnpmx-io3TNak-a3TlBPFafocP5luFqdIb2xzIraKrbNAUxubUA0UFnr1FqXyhylV1ZWWJV6z-w4yw2dmuvnEihZ52g5e3ydxnZ7M4KdeJjWtnRSiiPhJxIc96TycJQSwTn3NeTpVRXoQiGUOEwJjZwo5SJJwjBSCU0jQXUT7wL1i3WhLpFF4EopEkhPEklSlwtd0jgiDGUgEl38qQFyupiwpLUNh9srctbxw96YDiODMDLgyGF3gO6-upSNZ8auxqQLNPsx8Ezn9F3dht2gsHbVVQwbYbAXhcHV_756jQ7gCbDJpUPUrzdbdaM3HbUYob37D3eE9idPL_FiZObYJ-Vn1k4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SkKBTIwIUVNHLtORqioWmg7tVI3y44dKaikVdP-f-7yUQQSDIxJnCg62_fu5HfvCHkwBkDSdpGqQ2MXEEK7WkQe5DwAllwJRTVWI48n3cGMvc75vEF6dS0M0ior31_69MJbV3c6lTU7qzTFGt9CTI_DosRVK_bIPkQDAvs3DOfPX8WRwqskw5mLw-ujzYLktVCoPeSXGp7U_w2cfrjpAnv6J-S4Chqdp_K_TknDZmfkaLxTXM3PCUSWabZxsm15ArNw1lg1kDvLxFmubHGWnjtp5uT2I3UH6aLgUyu4XiEn64LM-i_T3sCtWiO4cUD5xjVewmmku7FByT1jAxolTCuluoB5sK0EZAqhoWHCeORFidJxHIaRjXkSaQ5DgkvSzJaZvSIOw55STJjAMMMSX2nIaTwdhkboGLI_2yJebRMZV7rh2L5iIWuC2LsEM0o0o0SSHPVb5HH3yqoUzfhrMKsNLb_NvASn_tdr7XpSZLXtckmLyuAgCsX1_756Tw4G0_FIjoaTtxtyiE8QqHzeJs3NemtvIQLZ6LtihX0C8OHW4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+numerical+ranges+of+operators+in+semi-Hilbertian+spaces&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Baklouti%2C+Hamadi&rft.au=Feki%2C+Kais&rft.au=Mahmoud+Sid+Ahmed%2C+Ould+Ahmed&rft.date=2018-10-15&rft.pub=American+Elsevier+Company%2C+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=555&rft.spage=266&rft_id=info:doi/10.1016%2Fj.laa.2018.06.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |