Generalized biomolecular modeling and design with RoseTTAFold All-Atom
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups t...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 384; no. 6693; p. eadl2528 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
19.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
Advances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna
et al
. present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. Funk |
---|---|
AbstractList | Editor’s summaryAdvances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna et al. present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. FunkINTRODUCTIONProteins rarely act alone; they form complexes with other proteins in cell signaling, interact with DNA and RNA during transcription and translation, and interact with small molecules both covalently and noncovalently during metabolism and signaling. Despite substantial recent progress in protein-only structure prediction, modeling such general biomolecular assemblies remains an outstanding challenge.RATIONALEWe set out to develop a unified structure prediction and design approach for assemblies containing proteins, nucleic acids, small molecules, metals, and chemical modifications. We sought to combine a sequence-based description of proteins and nucleic acids with an atomic graph representation of small molecules and protein covalent modifications. We started with the RoseTTAFold2 (RF2) network, which takes as input one-dimensional (1D) sequence information, 2D pairwise distance information from homologous templates, and 3D coordinate information and iteratively improves predicted structures through many hidden layers.RESULTSFor our biomolecular structure prediction network RoseTTAFold All-Atom (RFAA) (see the figure, top), we retained the representations of protein and nucleic acid chains from RF2 and represented arbitrary small molecules as atom-bond graphs. To the 1D track, we input the chemical element type of each nonpolymer atom; to the 2D track, the chemical bonds between atoms; and to the 3D track, information on chirality. Immediately after input, the full system was represented as a disconnected gas of amino acid residues, nucleic acid bases, and freely moving atoms, which was successively transformed through the many blocks of the network into physically plausible assembly structures. We trained RFAA on protein–small molecule, protein-metal, and covalently modified protein complexes that are found in the Protein Data Bank (PDB), filtering out common solvents and crystallization additives.In the CAMEO blind ligand-docking challenge, RFAA outperforms baseline automated pipelines. Although not all predictions are accurate, the network outputs a confidence estimate that correlates with accuracy. The network generalizes beyond the training set: Accurate predictions are made for proteins with low sequence homology (BLAST e-value >1) and ligands with low similarity (Tanimoto similarity <0.5) to those in the training set. Prediction accuracy is higher for protein–small molecule complexes with more-favorable computed interaction energies using a molecular mechanics force field, which suggests that RFAA has learned aspects of the physical chemistry of protein–small molecule interactions. Nearly half (46%) of covalent modifications are predicted accurately [<2.5-Å root mean square deviation (RMSD)]. These additional prediction capabilities do not come at the expense of the protein structure–prediction task because RFAA has a prediction accuracy on protein monomer structures comparable to that AlphaFold2.For small-molecule binder design, we developed RFdiffusion All-Atom (RFdiffusionAA) by fine-tuning RFAA on diffusion denoising tasks. Starting from random residue distributions, RFdiffusionAA generates folded protein structures that surround the small molecule. In contrast to previous approaches that rely on native or preexisting designed scaffolds, the binding pockets are custom generated for each ligand of interest. We generated small-molecule binding designs for the cardiac disease drug digoxigenin, the enzyme cofactor heme, and optically active bilin molecules. In each case, experimental characterization showed that a subset of the designs had the designed binding activity. The crystal structure of a heme binding design matched the RFdiffusionAA model very closely (0.86-Å Cα RMSD).CONCLUSIONRFAA demonstrates that a single neural network can be trained to accurately model general biomolecular assemblies containing a wide diversity of nonprotein components. Although there is still room for improvement in prediction accuracy, we anticipate that RFAA should be broadly useful for modeling full biological assemblies and RFdiffusionAA for designing small molecule–binding proteins and sensors. Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin. Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin. Advances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna et al . present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. Funk Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin. |
Author | Krishna, Rohith McHugh, Ryan Baker, David Wang, Jue Anishchenko, Ivan Hunter, C. Neil DiMaio, Frank Venkatesh, Preetham Hitchcock, Andrew Kang, Alex Vafeados, Dionne Baek, Minkyung Li, Xinting Bera, Asim K. Morey-Burrows, Felix S. Sutherland, George A. Ahern, Woody Sturmfels, Pascal Kalvet, Indrek Lee, Gyu Rie Humphreys, Ian R. Brackenbrough, Evans |
Author_xml | – sequence: 1 givenname: Rohith orcidid: 0009-0003-6387-9622 surname: Krishna fullname: Krishna, Rohith organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 2 givenname: Jue orcidid: 0000-0002-1139-6640 surname: Wang fullname: Wang, Jue organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 3 givenname: Woody orcidid: 0009-0006-1247-8847 surname: Ahern fullname: Ahern, Woody organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA – sequence: 4 givenname: Pascal surname: Sturmfels fullname: Sturmfels, Pascal organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA – sequence: 5 givenname: Preetham orcidid: 0000-0002-0089-9365 surname: Venkatesh fullname: Venkatesh, Preetham organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA – sequence: 6 givenname: Indrek orcidid: 0000-0002-6610-2857 surname: Kalvet fullname: Kalvet, Indrek organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA – sequence: 7 givenname: Gyu Rie orcidid: 0000-0002-9119-5303 surname: Lee fullname: Lee, Gyu Rie organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA – sequence: 8 givenname: Felix S. orcidid: 0009-0005-2309-6062 surname: Morey-Burrows fullname: Morey-Burrows, Felix S. organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK – sequence: 9 givenname: Ivan surname: Anishchenko fullname: Anishchenko, Ivan organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 10 givenname: Ian R. orcidid: 0000-0002-3058-6714 surname: Humphreys fullname: Humphreys, Ian R. organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 11 givenname: Ryan surname: McHugh fullname: McHugh, Ryan organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA – sequence: 12 givenname: Dionne orcidid: 0000-0002-2560-8907 surname: Vafeados fullname: Vafeados, Dionne organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 13 givenname: Xinting orcidid: 0000-0001-5559-7578 surname: Li fullname: Li, Xinting organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 14 givenname: George A. orcidid: 0000-0002-6319-4637 surname: Sutherland fullname: Sutherland, George A. organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK – sequence: 15 givenname: Andrew orcidid: 0000-0001-6572-434X surname: Hitchcock fullname: Hitchcock, Andrew organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK – sequence: 16 givenname: C. Neil orcidid: 0000-0003-2533-9783 surname: Hunter fullname: Hunter, C. Neil organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK – sequence: 17 givenname: Alex orcidid: 0000-0001-5487-0499 surname: Kang fullname: Kang, Alex organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 18 givenname: Evans orcidid: 0009-0004-1476-0219 surname: Brackenbrough fullname: Brackenbrough, Evans organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 19 givenname: Asim K. orcidid: 0000-0001-9473-2912 surname: Bera fullname: Bera, Asim K. organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 20 givenname: Minkyung orcidid: 0000-0003-3414-9404 surname: Baek fullname: Baek, Minkyung organization: School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea – sequence: 21 givenname: Frank orcidid: 0000-0002-7524-8938 surname: DiMaio fullname: DiMaio, Frank organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA – sequence: 22 givenname: David orcidid: 0000-0001-7896-6217 surname: Baker fullname: Baker, David organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38452047$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFLxDAQhYMouq6evUnBi5e606Rpm-MirgqCIOs5ZJOJRtJEkxbRX2_F9SJ4msN87zHz3iHZDTEgIScVXFQVbRZZOwwaL5TxlNNuh8wqELwUFNgumQGwpuyg5QfkMOcXgGkn2D45YF3NKdTtjKyuMWBS3n2iKTYu9tGjHr1KRR8NeheeChVMYTC7p1C8u-G5eIgZ1-vlKnpTLL0vl0Psj8ieVT7j8XbOyePqan15U97dX99eLu9KzSgfSo2sY43pwNa008pqW1u-0VZsVK1QA5iKN6AEgGLM0q4VGrmtqrbtplcEZXNy_uP7muLbiHmQvcsavVcB45glFbxuGyF4M6Fnf9CXOKYwXScZ1MCbespgok631Ljp0cjX5HqVPuRvQhPAfwCdYs4JrdRuUIOLYUjKeVmB_G5CbpuQ2yYm3eKP7tf6P8UXFmiM_g |
CitedBy_id | crossref_primary_10_1096_fj_202402439R crossref_primary_10_1038_s41392_024_01934_w crossref_primary_10_1038_s41477_024_01842_5 crossref_primary_10_3390_ijms26020500 crossref_primary_10_1021_acssynbio_4c00179 crossref_primary_10_1093_bioinformatics_btae675 crossref_primary_10_1021_acs_jcim_4c00467 crossref_primary_10_3389_fphar_2024_1411428 crossref_primary_10_1016_j_sbi_2024_102884 crossref_primary_10_3389_fphys_2024_1446459 crossref_primary_10_1038_s41422_024_00991_8 crossref_primary_10_1016_j_str_2024_08_015 crossref_primary_10_1016_j_cogsc_2025_101010 crossref_primary_10_1038_s41592_024_02409_0 crossref_primary_10_1016_j_jmb_2024_168726 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1126_science_adn6354 crossref_primary_10_1021_acscatal_4c05525 crossref_primary_10_1016_j_ejmech_2024_116702 crossref_primary_10_1016_j_ejmech_2024_116945 crossref_primary_10_1038_s41592_024_02338_y crossref_primary_10_1093_bib_bbaf079 crossref_primary_10_1186_s13321_025_00952_2 crossref_primary_10_1126_science_adu2454 crossref_primary_10_1042_BST20241630 crossref_primary_10_1007_s12033_024_01241_3 crossref_primary_10_1038_s41597_024_03524_5 crossref_primary_10_3390_molecules30051116 crossref_primary_10_1016_j_jmb_2024_168818 crossref_primary_10_3389_fbioe_2025_1537471 crossref_primary_10_1038_s41586_024_07487_w crossref_primary_10_1083_jcb_202311105 crossref_primary_10_1002_mef2_96 crossref_primary_10_1093_bioinformatics_btae586 crossref_primary_10_3390_cimb46100691 crossref_primary_10_1126_science_adq2634 crossref_primary_10_1021_acssynbio_4c00627 crossref_primary_10_1107_S2059798324005588 crossref_primary_10_1126_science_adn3780 crossref_primary_10_1016_j_xcrp_2024_102352 crossref_primary_10_59717_j_xinn_life_2024_100105 crossref_primary_10_1016_j_eng_2024_12_003 crossref_primary_10_3390_bioengineering12010026 crossref_primary_10_1021_acs_jcim_4c01193 crossref_primary_10_1039_D4RA06715K crossref_primary_10_3390_diagnostics14111100 crossref_primary_10_1016_j_sbi_2025_103023 crossref_primary_10_1016_j_tibs_2024_07_006 crossref_primary_10_1017_S0033583524000209 crossref_primary_10_1021_acs_jcim_4c01752 crossref_primary_10_1038_s41592_024_02350_2 crossref_primary_10_1016_j_sbi_2025_103020 crossref_primary_10_7554_eLife_99770 crossref_primary_10_1039_D4NP00030G crossref_primary_10_1007_s40259_024_00682_1 crossref_primary_10_3390_cells13161314 crossref_primary_10_1021_acs_chemrev_4c00264 crossref_primary_10_1021_acs_jcim_4c02296 crossref_primary_10_1021_acs_jpcb_4c04985 crossref_primary_10_1038_s41586_024_08435_4 crossref_primary_10_1021_acs_jctc_4c01373 crossref_primary_10_1002_prot_26792 crossref_primary_10_61373_gp024r_0079 crossref_primary_10_1002_cbic_202400903 crossref_primary_10_1016_j_ailsci_2025_100126 crossref_primary_10_1016_j_xinn_2024_100685 crossref_primary_10_1038_s43586_024_00356_w crossref_primary_10_3390_biom15030423 crossref_primary_10_1021_jacsau_4c00653 crossref_primary_10_3390_jof10120871 crossref_primary_10_1016_j_ijbiomac_2024_139067 crossref_primary_10_1096_fj_202401298R crossref_primary_10_1016_j_sbi_2025_102991 crossref_primary_10_1002_smll_202406388 crossref_primary_10_3390_ijms252413371 crossref_primary_10_1016_j_sbi_2025_102983 crossref_primary_10_3389_fmolb_2024_1414916 crossref_primary_10_1016_j_sbi_2025_102985 crossref_primary_10_1007_s00044_024_03253_9 crossref_primary_10_3390_ijms252312526 crossref_primary_10_1016_j_cell_2024_11_015 crossref_primary_10_1016_j_crstbi_2024_100163 crossref_primary_10_1038_s41580_024_00763_7 crossref_primary_10_22201_fq_18708404e_2025_1_89902 crossref_primary_10_1021_acs_jpcb_4c04966 crossref_primary_10_1063_5_0249683 crossref_primary_10_1016_j_sbi_2025_102998 crossref_primary_10_1021_acs_jctc_4c00385 crossref_primary_10_1016_j_bidere_2025_100009 crossref_primary_10_1016_j_sbi_2025_102994 crossref_primary_10_1016_j_ejmech_2025_117432 crossref_primary_10_1126_science_adq1741 crossref_primary_10_1002_pro_70041 crossref_primary_10_1080_0194262X_2025_2468333 crossref_primary_10_3390_biom14030339 crossref_primary_10_1093_nsr_nwae339 crossref_primary_10_1016_j_bidere_2025_100004 crossref_primary_10_1016_j_bidere_2025_100005 crossref_primary_10_1038_s41592_024_02372_w crossref_primary_10_1016_j_jmb_2024_168791 crossref_primary_10_1021_jacs_4c04618 crossref_primary_10_1038_s41467_024_51776_x crossref_primary_10_3389_fddsv_2024_1447867 crossref_primary_10_1021_acs_chemrev_4c00112 crossref_primary_10_1016_j_jpha_2025_101260 crossref_primary_10_1126_science_adq1977 crossref_primary_10_1016_j_hlife_2025_01_002 crossref_primary_10_1021_acs_chemrev_4c00120 crossref_primary_10_1016_j_drudis_2024_104106 crossref_primary_10_1016_j_mcpro_2024_100887 crossref_primary_10_1111_imr_13430 crossref_primary_10_1021_acscatal_4c04145 crossref_primary_10_1093_nar_gkae970 crossref_primary_10_1016_j_tips_2024_09_001 crossref_primary_10_1016_j_phrs_2024_107412 crossref_primary_10_1002_prot_26743 crossref_primary_10_1016_j_crstbi_2025_100165 crossref_primary_10_1007_s00203_024_04200_3 crossref_primary_10_1039_D4SC02058H crossref_primary_10_1021_acssynbio_4c00686 crossref_primary_10_1038_s41591_024_03434_4 crossref_primary_10_1021_acs_chemrev_3c00955 crossref_primary_10_3390_antib14010006 crossref_primary_10_3390_su16177651 crossref_primary_10_1016_j_csbj_2025_01_016 crossref_primary_10_1038_s41467_024_54668_2 crossref_primary_10_1038_d41586_024_01383_z crossref_primary_10_1360_SSI_2024_0296 crossref_primary_10_1093_nar_gkae1065 crossref_primary_10_1016_j_greenca_2024_05_001 crossref_primary_10_5114_bta_200803 crossref_primary_10_1002_advs_202404786 crossref_primary_10_1021_acs_jcim_4c02349 crossref_primary_10_1111_1751_7915_70047 crossref_primary_10_1016_j_chempr_2024_10_013 crossref_primary_10_1038_s41467_024_55808_4 crossref_primary_10_1021_acs_jpcb_4c04243 crossref_primary_10_1093_protein_gzae010 crossref_primary_10_1002_cctc_202400835 crossref_primary_10_1016_j_coelec_2024_101541 crossref_primary_10_1038_s41592_024_02516_y crossref_primary_10_1021_acs_jmedchem_4c03044 crossref_primary_10_1039_D4CP02759K crossref_primary_10_1021_acs_chemrev_4c00329 crossref_primary_10_1038_s42003_024_07331_x crossref_primary_10_1093_bioinformatics_btae628 crossref_primary_10_1007_s12539_024_00662_7 crossref_primary_10_1016_j_bej_2024_109510 crossref_primary_10_1021_acs_jcim_4c00975 crossref_primary_10_1016_j_jmb_2025_169012 crossref_primary_10_3389_fmolb_2024_1479705 crossref_primary_10_1016_j_jmb_2025_168960 crossref_primary_10_1051_medsci_2024124 crossref_primary_10_1016_j_canlet_2025_217453 crossref_primary_10_1021_acs_jcim_4c01818 crossref_primary_10_1016_j_cell_2024_07_045 crossref_primary_10_1021_acs_jctc_4c00502 crossref_primary_10_1126_sciadv_adn1524 crossref_primary_10_1016_j_str_2024_05_010 crossref_primary_10_1038_s41467_024_48837_6 crossref_primary_10_1016_j_ijbiomac_2024_133813 crossref_primary_10_1039_D4MD00869C crossref_primary_10_1016_j_compbiomed_2024_108620 crossref_primary_10_1039_D4SC04854G crossref_primary_10_1039_D4FD00153B crossref_primary_10_1039_D4MD00223G crossref_primary_10_1016_j_jsb_2024_108090 crossref_primary_10_1016_j_tim_2024_05_005 crossref_primary_10_1111_1751_7915_14521 crossref_primary_10_1002_prot_26818 crossref_primary_10_1021_acs_jcim_4c01475 crossref_primary_10_1038_s41580_024_00718_y crossref_primary_10_1038_s42004_024_01233_z crossref_primary_10_1016_j_cmpb_2025_108687 crossref_primary_10_1016_j_csbj_2024_09_010 crossref_primary_10_1016_j_neucom_2024_128103 crossref_primary_10_1021_acs_jpcb_4c08265 crossref_primary_10_1021_acs_jmedchem_4c01885 crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_1016_j_cels_2024_11_008 crossref_primary_10_1038_s43586_025_00383_1 crossref_primary_10_1016_j_fmre_2024_11_012 crossref_primary_10_1038_s42256_024_00931_6 crossref_primary_10_1002_cssc_202401916 crossref_primary_10_1016_j_ailsci_2024_100118 crossref_primary_10_1016_j_drudis_2025_104300 crossref_primary_10_1152_physiol_00029_2024 crossref_primary_10_1038_s41586_025_08598_8 crossref_primary_10_1016_j_bbrc_2024_150160 crossref_primary_10_1093_bib_bbaf083 crossref_primary_10_1126_science_adl2528 crossref_primary_10_1021_acsomega_4c11413 crossref_primary_10_3390_ijms25105296 crossref_primary_10_1021_acs_jcim_4c01365 crossref_primary_10_1021_acs_jmedchem_4c02740 crossref_primary_10_1021_jacs_4c16633 crossref_primary_10_1038_s41388_024_03077_2 crossref_primary_10_1038_s44324_024_00047_w crossref_primary_10_1016_j_ijbiomac_2025_142012 crossref_primary_10_1080_17460441_2024_2349169 crossref_primary_10_1038_s42256_024_00873_z crossref_primary_10_1016_j_cobme_2024_100550 crossref_primary_10_1016_j_jmb_2025_168937 crossref_primary_10_1016_j_mocell_2025_100191 crossref_primary_10_1093_bioinformatics_btae654 crossref_primary_10_1016_j_sbi_2024_102981 crossref_primary_10_1002_2211_5463_13902 crossref_primary_10_1371_journal_pcbi_1012650 crossref_primary_10_1038_s41592_024_02464_7 crossref_primary_10_1002_1873_3468_15003 crossref_primary_10_1002_cbic_202300863 crossref_primary_10_1021_jacs_4c18151 crossref_primary_10_1002_cbic_202400737 crossref_primary_10_1097_TP_0000000000005128 crossref_primary_10_1073_pnas_2409257121 crossref_primary_10_1016_j_ijbiomac_2024_136981 crossref_primary_10_3390_molecules30051047 crossref_primary_10_1016_j_csbj_2025_02_032 crossref_primary_10_3390_antiox13060666 crossref_primary_10_1021_acs_jctc_4c01636 crossref_primary_10_1016_j_str_2025_01_003 crossref_primary_10_1042_BST20231347 crossref_primary_10_1038_s42256_024_00920_9 |
Cites_doi | 10.1038/nmeth.1818 10.1038/s41592-019-0686-2 10.1098/rsif.2018.0021 10.1101/2023.05.24.542179 10.1038/s41592-019-0357-3 10.1101/2022.09.09.507333 10.1101/2022.07.21.500999 10.1038/s41598-017-16834-z 10.1107/S0907444909052925 10.1126/science.ade2574 10.1107/S2052520616003954 10.1101/2022.04.10.487779 10.1371/journal.pcbi.1002946 10.1371/journal.pcbi.1002195 10.1101/2023.11.01.565201 10.1101/2021.09.27.462000 10.1101/2021.10.04.463034 10.1186/1471-2105-10-421 10.1021/cr400415k 10.1002/elps.200900140 10.1073/pnas.1715495114 10.1093/database/bat031 10.1002/jcc.21759 10.1038/s41467-022-30005-3 10.1016/j.bbabio.2012.11.006 10.1101/2020.12.21.423882 10.1002/wcms.1493 10.1016/j.bmc.2022.116722 10.1126/science.add1964 10.1101/2022.12.10.519862 10.1093/nar/gkac1052 10.1385/1-59259-890-0:571 10.1107/S0907444904019158 10.1038/s41467-023-38328-5 10.1021/acs.jcim.2c01270 10.1038/s41586-023-06415-8 10.1038/s41422-021-00566-x 10.1126/science.abj8754 10.1038/s41586-021-03819-2 10.1186/1758-2946-3-33 10.26434/chemrxiv-2022-jjm0j 10.1126/science.add2187 10.1093/nar/gks966 10.1002/prot.20264 10.1002/pro.4530 10.1093/nar/gkr366 10.1016/j.chempr.2023.03.020 10.1146/annurev.biochem.77.062906.171838 10.21105/joss.03021 10.1126/science.adl2528 10.1021/bi200307s 10.1038/nature12443 10.1002/prot.25815 10.1021/jm030580l 10.1021/acs.jmedchem.3c00788 10.1126/science.abn2100 10.1002/prot.25431 10.1093/nar/gky427 10.1038/s41581-019-0129-4 10.1126/science.abb8330 10.1107/S0021889807021206 10.1093/nar/gkab1061 10.1021/acs.jcim.1c00203 10.1111/tpj.15552 10.1021/acs.chemrev.8b00032 10.1021/jacs.3c02742 10.1002/pro.3330 10.1107/S0907444909047337 10.1038/s41594-021-00680-9 10.1021/acs.chemrev.7b00373 10.1093/nar/28.1.235 10.1038/s41592-022-01685-y 10.1038/s41586-022-04654-9 10.1186/s12859-019-3019-7 10.1021/jm0306430 10.1039/D1CC04664K 10.1039/D3SC04185A/v2/response1 10.1093/nar/gkw929 10.1021/acs.jctc.0c01184 10.1038/nbt.3988 10.1016/S0021-9258(18)90679-4 10.1038/s41467-023-35795-8 10.3389/fmolb.2019.00102 10.1109/BIBM47256.2019.8983365 10.1038/s41598-017-09654-8 10.1038/s41929-022-00895-z 10.1021/ja00051a040 10.1002/jcc.21334 10.7554/eLife.28909 10.1002/prot.26194 10.1073/pnas.2221483120 10.1109/MCSE.2007.55 10.1093/nar/gkw1132 10.1107/S0907444910045749 10.1093/database/baab012 10.1073/pnas.1914677117 10.1101/2022.12.01.518682 10.1093/bioinformatics/btz828 10.1073/pnas.2203518119 10.1016/j.bbabio.2019.07.002 10.1056/NEJM199702203360801 10.1021/acs.jctc.7b00125 10.1101/2023.12.22.573103 10.1101/2022.06.06.495043 10.2165/00002018-200427140-00004 10.1073/pnas.2207805119 10.1002/pro.4443 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adl2528 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Chemistry |
EISSN | 1095-9203 |
ExternalDocumentID | 38452047 10_1126_science_adl2528 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM PV9 UIG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-ce3836d80f428cafcf4f5bcf9ba4aec00d1560a900a33f2879ce5f11778036923 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 03:51:28 EDT 2025 Wed Aug 13 04:28:26 EDT 2025 Thu Apr 17 08:37:50 EDT 2025 Tue Jul 01 03:14:05 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6693 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-ce3836d80f428cafcf4f5bcf9ba4aec00d1560a900a33f2879ce5f11778036923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-6387-9622 0009-0006-1247-8847 0000-0002-0089-9365 0000-0001-6572-434X 0000-0003-2533-9783 0000-0002-9119-5303 0000-0002-3058-6714 0000-0002-6610-2857 0000-0002-6319-4637 0000-0001-7896-6217 0009-0004-1476-0219 0000-0001-5487-0499 0000-0002-7524-8938 0000-0002-1139-6640 0000-0001-9473-2912 0009-0005-2309-6062 0000-0002-2560-8907 0000-0003-3414-9404 0000-0001-5559-7578 |
PMID | 38452047 |
PQID | 3040564452 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_2954769956 proquest_journals_3040564452 pubmed_primary_38452047 crossref_citationtrail_10_1126_science_adl2528 crossref_primary_10_1126_science_adl2528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-19 20240419 |
PublicationDateYYYYMMDD | 2024-04-19 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 Pedregosa F. (e_1_3_2_98_2) 2011; 12 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_72_2 e_1_3_2_117_2 |
References_xml | – ident: e_1_3_2_76_2 doi: 10.1038/nmeth.1818 – ident: e_1_3_2_119_2 doi: 10.1038/s41592-019-0686-2 – ident: e_1_3_2_65_2 doi: 10.1098/rsif.2018.0021 – ident: e_1_3_2_12_2 doi: 10.1101/2023.05.24.542179 – ident: e_1_3_2_109_2 doi: 10.1038/s41592-019-0357-3 – ident: e_1_3_2_11_2 doi: 10.1101/2022.09.09.507333 – ident: e_1_3_2_15_2 doi: 10.1101/2022.07.21.500999 – ident: e_1_3_2_48_2 – ident: e_1_3_2_64_2 doi: 10.1038/s41598-017-16834-z – ident: e_1_3_2_114_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_14_2 doi: 10.1126/science.ade2574 – ident: e_1_3_2_13_2 doi: 10.1107/S2052520616003954 – ident: e_1_3_2_79_2 doi: 10.1101/2022.04.10.487779 – ident: e_1_3_2_41_2 doi: 10.1371/journal.pcbi.1002946 – ident: e_1_3_2_96_2 doi: 10.1371/journal.pcbi.1002195 – ident: e_1_3_2_106_2 doi: 10.1101/2023.11.01.565201 – ident: e_1_3_2_40_2 doi: 10.1101/2021.09.27.462000 – ident: e_1_3_2_16_2 doi: 10.1101/2021.10.04.463034 – ident: e_1_3_2_97_2 doi: 10.1186/1471-2105-10-421 – ident: e_1_3_2_57_2 doi: 10.1021/cr400415k – ident: e_1_3_2_21_2 doi: 10.1002/elps.200900140 – ident: e_1_3_2_52_2 – ident: e_1_3_2_63_2 doi: 10.1073/pnas.1715495114 – ident: e_1_3_2_18_2 doi: 10.1093/database/bat031 – volume: 12 start-page: 2825 year: 2011 ident: e_1_3_2_98_2 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: e_1_3_2_101_2 doi: 10.1002/jcc.21759 – ident: e_1_3_2_32_2 doi: 10.1038/s41467-022-30005-3 – ident: e_1_3_2_62_2 doi: 10.1016/j.bbabio.2012.11.006 – ident: e_1_3_2_85_2 doi: 10.1101/2020.12.21.423882 – ident: e_1_3_2_102_2 doi: 10.1002/wcms.1493 – ident: e_1_3_2_73_2 doi: 10.1016/j.bmc.2022.116722 – ident: e_1_3_2_108_2 doi: 10.1126/science.add1964 – ident: e_1_3_2_103_2 doi: 10.1101/2022.12.10.519862 – ident: e_1_3_2_94_2 doi: 10.1093/nar/gkac1052 – ident: e_1_3_2_110_2 doi: 10.1385/1-59259-890-0:571 – ident: e_1_3_2_115_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_2_105_2 doi: 10.1038/s41467-023-38328-5 – ident: e_1_3_2_9_2 doi: 10.1021/acs.jcim.2c01270 – ident: e_1_3_2_46_2 doi: 10.1038/s41586-023-06415-8 – ident: e_1_3_2_84_2 – ident: e_1_3_2_69_2 doi: 10.1038/s41422-021-00566-x – ident: e_1_3_2_3_2 doi: 10.1126/science.abj8754 – ident: e_1_3_2_2_2 doi: 10.1038/s41586-021-03819-2 – ident: e_1_3_2_83_2 doi: 10.1186/1758-2946-3-33 – ident: e_1_3_2_30_2 doi: 10.26434/chemrxiv-2022-jjm0j – ident: e_1_3_2_75_2 – ident: e_1_3_2_50_2 doi: 10.1126/science.add2187 – ident: e_1_3_2_81_2 doi: 10.1093/nar/gks966 – ident: e_1_3_2_92_2 doi: 10.1002/prot.20264 – ident: e_1_3_2_8_2 doi: 10.1002/pro.4530 – ident: e_1_3_2_120_2 doi: 10.1093/nar/gkr366 – ident: e_1_3_2_47_2 doi: 10.1016/j.chempr.2023.03.020 – ident: e_1_3_2_56_2 doi: 10.1146/annurev.biochem.77.062906.171838 – ident: e_1_3_2_118_2 doi: 10.21105/joss.03021 – ident: e_1_3_2_74_2 doi: 10.1126/science.adl2528 – ident: e_1_3_2_107_2 doi: 10.1021/bi200307s – ident: e_1_3_2_55_2 doi: 10.1038/nature12443 – ident: e_1_3_2_19_2 doi: 10.1002/prot.25815 – ident: e_1_3_2_80_2 doi: 10.1021/jm030580l – ident: e_1_3_2_70_2 doi: 10.1021/acs.jmedchem.3c00788 – ident: e_1_3_2_104_2 doi: 10.1126/science.abn2100 – ident: e_1_3_2_17_2 doi: 10.1002/prot.25431 – ident: e_1_3_2_20_2 doi: 10.1093/nar/gky427 – ident: e_1_3_2_37_2 doi: 10.1038/s41581-019-0129-4 – ident: e_1_3_2_45_2 doi: 10.1126/science.abb8330 – ident: e_1_3_2_113_2 doi: 10.1107/S0021889807021206 – ident: e_1_3_2_25_2 doi: 10.1093/nar/gkab1061 – ident: e_1_3_2_10_2 doi: 10.1021/acs.jcim.1c00203 – ident: e_1_3_2_66_2 doi: 10.1111/tpj.15552 – ident: e_1_3_2_39_2 doi: 10.1021/acs.chemrev.8b00032 – ident: e_1_3_2_88_2 – ident: e_1_3_2_59_2 doi: 10.1021/jacs.3c02742 – ident: e_1_3_2_116_2 doi: 10.1002/pro.3330 – ident: e_1_3_2_111_2 doi: 10.1107/S0907444909047337 – ident: e_1_3_2_35_2 doi: 10.1038/s41594-021-00680-9 – ident: e_1_3_2_6_2 – ident: e_1_3_2_58_2 doi: 10.1021/acs.chemrev.7b00373 – ident: e_1_3_2_78_2 doi: 10.1093/nar/28.1.235 – ident: e_1_3_2_5_2 doi: 10.1038/s41592-022-01685-y – ident: e_1_3_2_87_2 – ident: e_1_3_2_99_2 doi: 10.1038/s41586-022-04654-9 – ident: e_1_3_2_26_2 – ident: e_1_3_2_77_2 doi: 10.1186/s12859-019-3019-7 – ident: e_1_3_2_4_2 doi: 10.1021/jm0306430 – ident: e_1_3_2_72_2 doi: 10.1039/D1CC04664K – ident: e_1_3_2_31_2 doi: 10.1039/D3SC04185A/v2/response1 – ident: e_1_3_2_95_2 doi: 10.1093/nar/gkw929 – ident: e_1_3_2_33_2 doi: 10.1021/acs.jctc.0c01184 – ident: e_1_3_2_82_2 doi: 10.1038/nbt.3988 – ident: e_1_3_2_60_2 doi: 10.1016/S0021-9258(18)90679-4 – ident: e_1_3_2_38_2 doi: 10.1038/s41467-023-35795-8 – ident: e_1_3_2_7_2 doi: 10.3389/fmolb.2019.00102 – ident: e_1_3_2_28_2 doi: 10.1109/BIBM47256.2019.8983365 – ident: e_1_3_2_24_2 doi: 10.1038/s41598-017-09654-8 – ident: e_1_3_2_71_2 doi: 10.1038/s41929-022-00895-z – ident: e_1_3_2_91_2 doi: 10.1021/ja00051a040 – ident: e_1_3_2_121_2 doi: 10.1002/jcc.21334 – ident: e_1_3_2_44_2 doi: 10.7554/eLife.28909 – ident: e_1_3_2_93_2 doi: 10.1002/prot.26194 – ident: e_1_3_2_68_2 doi: 10.1073/pnas.2221483120 – ident: e_1_3_2_117_2 doi: 10.1109/MCSE.2007.55 – ident: e_1_3_2_22_2 doi: 10.1093/nar/gkw1132 – ident: e_1_3_2_112_2 doi: 10.1107/S0907444910045749 – ident: e_1_3_2_36_2 doi: 10.1093/database/baab012 – ident: e_1_3_2_90_2 doi: 10.1073/pnas.1914677117 – ident: e_1_3_2_100_2 – ident: e_1_3_2_49_2 doi: 10.1101/2022.12.01.518682 – ident: e_1_3_2_23_2 doi: 10.1093/bioinformatics/btz828 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.2203518119 – ident: e_1_3_2_61_2 doi: 10.1016/j.bbabio.2019.07.002 – ident: e_1_3_2_29_2 – ident: e_1_3_2_53_2 doi: 10.1056/NEJM199702203360801 – ident: e_1_3_2_34_2 doi: 10.1021/acs.jctc.7b00125 – ident: e_1_3_2_51_2 doi: 10.1101/2023.12.22.573103 – ident: e_1_3_2_27_2 doi: 10.1101/2022.06.06.495043 – ident: e_1_3_2_89_2 – ident: e_1_3_2_86_2 – ident: e_1_3_2_54_2 doi: 10.2165/00002018-200427140-00004 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.2207805119 – ident: e_1_3_2_67_2 doi: 10.1002/pro.4443 |
SSID | ssj0009593 |
Score | 2.746194 |
Snippet | Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold... Editor’s summaryAdvances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | eadl2528 |
SubjectTerms | Accuracy Additives Amino acids Amino Acids - chemistry Assemblies Binding Bond graphs Cell signaling Chemical bonds Chemical elements Chemistry Chirality Coronary artery disease Covalence Crystal structure Crystallization Crystallography Deep Learning Design Digoxigenin DNA - chemistry Gas pipelines Graph representations Graphical representations Heart diseases Heme Homology Ligands Machine learning Metal ions Metals Modelling Models, Molecular Networks Neural networks Nucleic acids Optical activity Organic Chemistry Physical chemistry Polypeptides Predictions Protein Engineering - methods Protein structure Proteins Proteins - chemistry Residues Similarity Structure-function relationships |
Title | Generalized biomolecular modeling and design with RoseTTAFold All-Atom |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38452047 https://www.proquest.com/docview/3040564452 https://www.proquest.com/docview/2954769956 |
Volume | 384 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaUKVeqkIfLKXISD1QVVkFOzbJMbRECFEqtVmxtyhxbLFS2FRs9lB-fcfxY0MBiXKJVt44iWY-j2fG80DoU3IA24CqaEBkdKCLaus1F1dBLYTiXCnY43Tu8PdzfjKJTqdsuvIq9dklXTUWN_fmlTyFqzAGfNVZsv_BWf9QGIDfwF-4Aofh-ige25rRsxutRs7aK9fq1vS3cemHdR-kYTyuupFinqdZ29Rf0qYJ0s58ltNP3VIHvdOf5Qw46IMSUxM64CIJ7LSBW0ELj0uTb_azvZx13ut8YR3Up8sV2AA3vfC7aNvau_h_wWZ4pWDrNoruQlhqWBcF6SNbrCA0UjXUDSFJaCSZvGfMimJq2sVZzHGe0IFsBcw3hJlU8ruCf9CqUo4Hd94usX3-o8gmZ2dFfjzNn6N1ArYFCMf19OjbUfZvrWb_hbYi1CDXyr3gtjLzgIXSayr5a_TKmhg4NXjZQM_kfBO9ME1H_2yiDcusBd63-Pn8BmUDKOEhlLCDEgYoYQMlrKGEB1DCDkpv0SQ7zr-eBLbFRiAoYV0gJI0pr-NQgRkqSiVUpFglVFKVUSlFGNY6075MwrCkVIF1nQjJlD7oj0H1AePgHVqbt3O5hbAgVRQLeBLY3JFSKuZRzStGS8USVrJ4hMaOVoWw9ed1G5Sm6O1QwgtL3MISd4T2_YTfpvTKw7fuOOIXdn0uCgr7EwN1n5ER2vN_g_TUR2LlXLbLRaFPuQ-5zu4eofeGaf5dAEZGwuhw-xGzP6CXK-DvoLXueik_grbaVbsWXX8BXLSYww |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+biomolecular+modeling+and+design+with+RoseTTAFold+All-Atom&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Krishna%2C+Rohith&rft.au=Wang%2C+Jue&rft.au=Ahern%2C+Woody&rft.au=Sturmfels%2C+Pascal&rft.date=2024-04-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=384&rft.issue=6693&rft.spage=eadl2528&rft_id=info:doi/10.1126%2Fscience.adl2528&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |