Generalized biomolecular modeling and design with RoseTTAFold All-Atom

Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups t...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 384; no. 6693; p. eadl2528
Main Authors Krishna, Rohith, Wang, Jue, Ahern, Woody, Sturmfels, Pascal, Venkatesh, Preetham, Kalvet, Indrek, Lee, Gyu Rie, Morey-Burrows, Felix S., Anishchenko, Ivan, Humphreys, Ian R., McHugh, Ryan, Vafeados, Dionne, Li, Xinting, Sutherland, George A., Hitchcock, Andrew, Hunter, C. Neil, Kang, Alex, Brackenbrough, Evans, Bera, Asim K., Baek, Minkyung, DiMaio, Frank, Baker, David
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 19.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin. Advances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna et al . present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. Funk
AbstractList Editor’s summaryAdvances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna et al. present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. FunkINTRODUCTIONProteins rarely act alone; they form complexes with other proteins in cell signaling, interact with DNA and RNA during transcription and translation, and interact with small molecules both covalently and noncovalently during metabolism and signaling. Despite substantial recent progress in protein-only structure prediction, modeling such general biomolecular assemblies remains an outstanding challenge.RATIONALEWe set out to develop a unified structure prediction and design approach for assemblies containing proteins, nucleic acids, small molecules, metals, and chemical modifications. We sought to combine a sequence-based description of proteins and nucleic acids with an atomic graph representation of small molecules and protein covalent modifications. We started with the RoseTTAFold2 (RF2) network, which takes as input one-dimensional (1D) sequence information, 2D pairwise distance information from homologous templates, and 3D coordinate information and iteratively improves predicted structures through many hidden layers.RESULTSFor our biomolecular structure prediction network RoseTTAFold All-Atom (RFAA) (see the figure, top), we retained the representations of protein and nucleic acid chains from RF2 and represented arbitrary small molecules as atom-bond graphs. To the 1D track, we input the chemical element type of each nonpolymer atom; to the 2D track, the chemical bonds between atoms; and to the 3D track, information on chirality. Immediately after input, the full system was represented as a disconnected gas of amino acid residues, nucleic acid bases, and freely moving atoms, which was successively transformed through the many blocks of the network into physically plausible assembly structures. We trained RFAA on protein–small molecule, protein-metal, and covalently modified protein complexes that are found in the Protein Data Bank (PDB), filtering out common solvents and crystallization additives.In the CAMEO blind ligand-docking challenge, RFAA outperforms baseline automated pipelines. Although not all predictions are accurate, the network outputs a confidence estimate that correlates with accuracy. The network generalizes beyond the training set: Accurate predictions are made for proteins with low sequence homology (BLAST e-value >1) and ligands with low similarity (Tanimoto similarity <0.5) to those in the training set. Prediction accuracy is higher for protein–small molecule complexes with more-favorable computed interaction energies using a molecular mechanics force field, which suggests that RFAA has learned aspects of the physical chemistry of protein–small molecule interactions. Nearly half (46%) of covalent modifications are predicted accurately [<2.5-Å root mean square deviation (RMSD)]. These additional prediction capabilities do not come at the expense of the protein structure–prediction task because RFAA has a prediction accuracy on protein monomer structures comparable to that AlphaFold2.For small-molecule binder design, we developed RFdiffusion All-Atom (RFdiffusionAA) by fine-tuning RFAA on diffusion denoising tasks. Starting from random residue distributions, RFdiffusionAA generates folded protein structures that surround the small molecule. In contrast to previous approaches that rely on native or preexisting designed scaffolds, the binding pockets are custom generated for each ligand of interest. We generated small-molecule binding designs for the cardiac disease drug digoxigenin, the enzyme cofactor heme, and optically active bilin molecules. In each case, experimental characterization showed that a subset of the designs had the designed binding activity. The crystal structure of a heme binding design matched the RFdiffusionAA model very closely (0.86-Å Cα RMSD).CONCLUSIONRFAA demonstrates that a single neural network can be trained to accurately model general biomolecular assemblies containing a wide diversity of nonprotein components. Although there is still room for improvement in prediction accuracy, we anticipate that RFAA should be broadly useful for modeling full biological assemblies and RFdiffusionAA for designing small molecule–binding proteins and sensors.
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin. Advances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these tools have generally been limited to polypeptide chains. However, ligands such as small molecules, metal ions, and nucleic acids are crucial components of most proteins, both in terms of structure and biological function. Krishna et al . present a next-generation protein structure prediction and design tool, RoseTTAFold All-Atom, that can accept a wide range of ligands and covalent amino acid modifications. The authors demonstrate superior performance on protein-ligand structure prediction relative to other tools, even in the absence of an input experimental structure. They also perform de novo design of proteins to bind cofactors and small molecules and experimentally validate these designs. —Michael A. Funk
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
Author Krishna, Rohith
McHugh, Ryan
Baker, David
Wang, Jue
Anishchenko, Ivan
Hunter, C. Neil
DiMaio, Frank
Venkatesh, Preetham
Hitchcock, Andrew
Kang, Alex
Vafeados, Dionne
Baek, Minkyung
Li, Xinting
Bera, Asim K.
Morey-Burrows, Felix S.
Sutherland, George A.
Ahern, Woody
Sturmfels, Pascal
Kalvet, Indrek
Lee, Gyu Rie
Humphreys, Ian R.
Brackenbrough, Evans
Author_xml – sequence: 1
  givenname: Rohith
  orcidid: 0009-0003-6387-9622
  surname: Krishna
  fullname: Krishna, Rohith
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 2
  givenname: Jue
  orcidid: 0000-0002-1139-6640
  surname: Wang
  fullname: Wang, Jue
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 3
  givenname: Woody
  orcidid: 0009-0006-1247-8847
  surname: Ahern
  fullname: Ahern, Woody
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
– sequence: 4
  givenname: Pascal
  surname: Sturmfels
  fullname: Sturmfels, Pascal
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
– sequence: 5
  givenname: Preetham
  orcidid: 0000-0002-0089-9365
  surname: Venkatesh
  fullname: Venkatesh, Preetham
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
– sequence: 6
  givenname: Indrek
  orcidid: 0000-0002-6610-2857
  surname: Kalvet
  fullname: Kalvet, Indrek
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
– sequence: 7
  givenname: Gyu Rie
  orcidid: 0000-0002-9119-5303
  surname: Lee
  fullname: Lee, Gyu Rie
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
– sequence: 8
  givenname: Felix S.
  orcidid: 0009-0005-2309-6062
  surname: Morey-Burrows
  fullname: Morey-Burrows, Felix S.
  organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
– sequence: 9
  givenname: Ivan
  surname: Anishchenko
  fullname: Anishchenko, Ivan
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 10
  givenname: Ian R.
  orcidid: 0000-0002-3058-6714
  surname: Humphreys
  fullname: Humphreys, Ian R.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 11
  givenname: Ryan
  surname: McHugh
  fullname: McHugh, Ryan
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
– sequence: 12
  givenname: Dionne
  orcidid: 0000-0002-2560-8907
  surname: Vafeados
  fullname: Vafeados, Dionne
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 13
  givenname: Xinting
  orcidid: 0000-0001-5559-7578
  surname: Li
  fullname: Li, Xinting
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 14
  givenname: George A.
  orcidid: 0000-0002-6319-4637
  surname: Sutherland
  fullname: Sutherland, George A.
  organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
– sequence: 15
  givenname: Andrew
  orcidid: 0000-0001-6572-434X
  surname: Hitchcock
  fullname: Hitchcock, Andrew
  organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
– sequence: 16
  givenname: C. Neil
  orcidid: 0000-0003-2533-9783
  surname: Hunter
  fullname: Hunter, C. Neil
  organization: School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
– sequence: 17
  givenname: Alex
  orcidid: 0000-0001-5487-0499
  surname: Kang
  fullname: Kang, Alex
  organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 18
  givenname: Evans
  orcidid: 0009-0004-1476-0219
  surname: Brackenbrough
  fullname: Brackenbrough, Evans
  organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 19
  givenname: Asim K.
  orcidid: 0000-0001-9473-2912
  surname: Bera
  fullname: Bera, Asim K.
  organization: Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 20
  givenname: Minkyung
  orcidid: 0000-0003-3414-9404
  surname: Baek
  fullname: Baek, Minkyung
  organization: School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
– sequence: 21
  givenname: Frank
  orcidid: 0000-0002-7524-8938
  surname: DiMaio
  fullname: DiMaio, Frank
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
– sequence: 22
  givenname: David
  orcidid: 0000-0001-7896-6217
  surname: Baker
  fullname: Baker, David
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98105, USA., Institute for Protein Design, University of Washington, Seattle, WA 98105, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38452047$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFLxDAQhYMouq6evUnBi5e606Rpm-MirgqCIOs5ZJOJRtJEkxbRX2_F9SJ4msN87zHz3iHZDTEgIScVXFQVbRZZOwwaL5TxlNNuh8wqELwUFNgumQGwpuyg5QfkMOcXgGkn2D45YF3NKdTtjKyuMWBS3n2iKTYu9tGjHr1KRR8NeheeChVMYTC7p1C8u-G5eIgZ1-vlKnpTLL0vl0Psj8ieVT7j8XbOyePqan15U97dX99eLu9KzSgfSo2sY43pwNa008pqW1u-0VZsVK1QA5iKN6AEgGLM0q4VGrmtqrbtplcEZXNy_uP7muLbiHmQvcsavVcB45glFbxuGyF4M6Fnf9CXOKYwXScZ1MCbespgok631Ljp0cjX5HqVPuRvQhPAfwCdYs4JrdRuUIOLYUjKeVmB_G5CbpuQ2yYm3eKP7tf6P8UXFmiM_g
CitedBy_id crossref_primary_10_1096_fj_202402439R
crossref_primary_10_1038_s41392_024_01934_w
crossref_primary_10_1038_s41477_024_01842_5
crossref_primary_10_3390_ijms26020500
crossref_primary_10_1021_acssynbio_4c00179
crossref_primary_10_1093_bioinformatics_btae675
crossref_primary_10_1021_acs_jcim_4c00467
crossref_primary_10_3389_fphar_2024_1411428
crossref_primary_10_1016_j_sbi_2024_102884
crossref_primary_10_3389_fphys_2024_1446459
crossref_primary_10_1038_s41422_024_00991_8
crossref_primary_10_1016_j_str_2024_08_015
crossref_primary_10_1016_j_cogsc_2025_101010
crossref_primary_10_1038_s41592_024_02409_0
crossref_primary_10_1016_j_jmb_2024_168726
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1126_science_adn6354
crossref_primary_10_1021_acscatal_4c05525
crossref_primary_10_1016_j_ejmech_2024_116702
crossref_primary_10_1016_j_ejmech_2024_116945
crossref_primary_10_1038_s41592_024_02338_y
crossref_primary_10_1093_bib_bbaf079
crossref_primary_10_1186_s13321_025_00952_2
crossref_primary_10_1126_science_adu2454
crossref_primary_10_1042_BST20241630
crossref_primary_10_1007_s12033_024_01241_3
crossref_primary_10_1038_s41597_024_03524_5
crossref_primary_10_3390_molecules30051116
crossref_primary_10_1016_j_jmb_2024_168818
crossref_primary_10_3389_fbioe_2025_1537471
crossref_primary_10_1038_s41586_024_07487_w
crossref_primary_10_1083_jcb_202311105
crossref_primary_10_1002_mef2_96
crossref_primary_10_1093_bioinformatics_btae586
crossref_primary_10_3390_cimb46100691
crossref_primary_10_1126_science_adq2634
crossref_primary_10_1021_acssynbio_4c00627
crossref_primary_10_1107_S2059798324005588
crossref_primary_10_1126_science_adn3780
crossref_primary_10_1016_j_xcrp_2024_102352
crossref_primary_10_59717_j_xinn_life_2024_100105
crossref_primary_10_1016_j_eng_2024_12_003
crossref_primary_10_3390_bioengineering12010026
crossref_primary_10_1021_acs_jcim_4c01193
crossref_primary_10_1039_D4RA06715K
crossref_primary_10_3390_diagnostics14111100
crossref_primary_10_1016_j_sbi_2025_103023
crossref_primary_10_1016_j_tibs_2024_07_006
crossref_primary_10_1017_S0033583524000209
crossref_primary_10_1021_acs_jcim_4c01752
crossref_primary_10_1038_s41592_024_02350_2
crossref_primary_10_1016_j_sbi_2025_103020
crossref_primary_10_7554_eLife_99770
crossref_primary_10_1039_D4NP00030G
crossref_primary_10_1007_s40259_024_00682_1
crossref_primary_10_3390_cells13161314
crossref_primary_10_1021_acs_chemrev_4c00264
crossref_primary_10_1021_acs_jcim_4c02296
crossref_primary_10_1021_acs_jpcb_4c04985
crossref_primary_10_1038_s41586_024_08435_4
crossref_primary_10_1021_acs_jctc_4c01373
crossref_primary_10_1002_prot_26792
crossref_primary_10_61373_gp024r_0079
crossref_primary_10_1002_cbic_202400903
crossref_primary_10_1016_j_ailsci_2025_100126
crossref_primary_10_1016_j_xinn_2024_100685
crossref_primary_10_1038_s43586_024_00356_w
crossref_primary_10_3390_biom15030423
crossref_primary_10_1021_jacsau_4c00653
crossref_primary_10_3390_jof10120871
crossref_primary_10_1016_j_ijbiomac_2024_139067
crossref_primary_10_1096_fj_202401298R
crossref_primary_10_1016_j_sbi_2025_102991
crossref_primary_10_1002_smll_202406388
crossref_primary_10_3390_ijms252413371
crossref_primary_10_1016_j_sbi_2025_102983
crossref_primary_10_3389_fmolb_2024_1414916
crossref_primary_10_1016_j_sbi_2025_102985
crossref_primary_10_1007_s00044_024_03253_9
crossref_primary_10_3390_ijms252312526
crossref_primary_10_1016_j_cell_2024_11_015
crossref_primary_10_1016_j_crstbi_2024_100163
crossref_primary_10_1038_s41580_024_00763_7
crossref_primary_10_22201_fq_18708404e_2025_1_89902
crossref_primary_10_1021_acs_jpcb_4c04966
crossref_primary_10_1063_5_0249683
crossref_primary_10_1016_j_sbi_2025_102998
crossref_primary_10_1021_acs_jctc_4c00385
crossref_primary_10_1016_j_bidere_2025_100009
crossref_primary_10_1016_j_sbi_2025_102994
crossref_primary_10_1016_j_ejmech_2025_117432
crossref_primary_10_1126_science_adq1741
crossref_primary_10_1002_pro_70041
crossref_primary_10_1080_0194262X_2025_2468333
crossref_primary_10_3390_biom14030339
crossref_primary_10_1093_nsr_nwae339
crossref_primary_10_1016_j_bidere_2025_100004
crossref_primary_10_1016_j_bidere_2025_100005
crossref_primary_10_1038_s41592_024_02372_w
crossref_primary_10_1016_j_jmb_2024_168791
crossref_primary_10_1021_jacs_4c04618
crossref_primary_10_1038_s41467_024_51776_x
crossref_primary_10_3389_fddsv_2024_1447867
crossref_primary_10_1021_acs_chemrev_4c00112
crossref_primary_10_1016_j_jpha_2025_101260
crossref_primary_10_1126_science_adq1977
crossref_primary_10_1016_j_hlife_2025_01_002
crossref_primary_10_1021_acs_chemrev_4c00120
crossref_primary_10_1016_j_drudis_2024_104106
crossref_primary_10_1016_j_mcpro_2024_100887
crossref_primary_10_1111_imr_13430
crossref_primary_10_1021_acscatal_4c04145
crossref_primary_10_1093_nar_gkae970
crossref_primary_10_1016_j_tips_2024_09_001
crossref_primary_10_1016_j_phrs_2024_107412
crossref_primary_10_1002_prot_26743
crossref_primary_10_1016_j_crstbi_2025_100165
crossref_primary_10_1007_s00203_024_04200_3
crossref_primary_10_1039_D4SC02058H
crossref_primary_10_1021_acssynbio_4c00686
crossref_primary_10_1038_s41591_024_03434_4
crossref_primary_10_1021_acs_chemrev_3c00955
crossref_primary_10_3390_antib14010006
crossref_primary_10_3390_su16177651
crossref_primary_10_1016_j_csbj_2025_01_016
crossref_primary_10_1038_s41467_024_54668_2
crossref_primary_10_1038_d41586_024_01383_z
crossref_primary_10_1360_SSI_2024_0296
crossref_primary_10_1093_nar_gkae1065
crossref_primary_10_1016_j_greenca_2024_05_001
crossref_primary_10_5114_bta_200803
crossref_primary_10_1002_advs_202404786
crossref_primary_10_1021_acs_jcim_4c02349
crossref_primary_10_1111_1751_7915_70047
crossref_primary_10_1016_j_chempr_2024_10_013
crossref_primary_10_1038_s41467_024_55808_4
crossref_primary_10_1021_acs_jpcb_4c04243
crossref_primary_10_1093_protein_gzae010
crossref_primary_10_1002_cctc_202400835
crossref_primary_10_1016_j_coelec_2024_101541
crossref_primary_10_1038_s41592_024_02516_y
crossref_primary_10_1021_acs_jmedchem_4c03044
crossref_primary_10_1039_D4CP02759K
crossref_primary_10_1021_acs_chemrev_4c00329
crossref_primary_10_1038_s42003_024_07331_x
crossref_primary_10_1093_bioinformatics_btae628
crossref_primary_10_1007_s12539_024_00662_7
crossref_primary_10_1016_j_bej_2024_109510
crossref_primary_10_1021_acs_jcim_4c00975
crossref_primary_10_1016_j_jmb_2025_169012
crossref_primary_10_3389_fmolb_2024_1479705
crossref_primary_10_1016_j_jmb_2025_168960
crossref_primary_10_1051_medsci_2024124
crossref_primary_10_1016_j_canlet_2025_217453
crossref_primary_10_1021_acs_jcim_4c01818
crossref_primary_10_1016_j_cell_2024_07_045
crossref_primary_10_1021_acs_jctc_4c00502
crossref_primary_10_1126_sciadv_adn1524
crossref_primary_10_1016_j_str_2024_05_010
crossref_primary_10_1038_s41467_024_48837_6
crossref_primary_10_1016_j_ijbiomac_2024_133813
crossref_primary_10_1039_D4MD00869C
crossref_primary_10_1016_j_compbiomed_2024_108620
crossref_primary_10_1039_D4SC04854G
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1039_D4MD00223G
crossref_primary_10_1016_j_jsb_2024_108090
crossref_primary_10_1016_j_tim_2024_05_005
crossref_primary_10_1111_1751_7915_14521
crossref_primary_10_1002_prot_26818
crossref_primary_10_1021_acs_jcim_4c01475
crossref_primary_10_1038_s41580_024_00718_y
crossref_primary_10_1038_s42004_024_01233_z
crossref_primary_10_1016_j_cmpb_2025_108687
crossref_primary_10_1016_j_csbj_2024_09_010
crossref_primary_10_1016_j_neucom_2024_128103
crossref_primary_10_1021_acs_jpcb_4c08265
crossref_primary_10_1021_acs_jmedchem_4c01885
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1016_j_cels_2024_11_008
crossref_primary_10_1038_s43586_025_00383_1
crossref_primary_10_1016_j_fmre_2024_11_012
crossref_primary_10_1038_s42256_024_00931_6
crossref_primary_10_1002_cssc_202401916
crossref_primary_10_1016_j_ailsci_2024_100118
crossref_primary_10_1016_j_drudis_2025_104300
crossref_primary_10_1152_physiol_00029_2024
crossref_primary_10_1038_s41586_025_08598_8
crossref_primary_10_1016_j_bbrc_2024_150160
crossref_primary_10_1093_bib_bbaf083
crossref_primary_10_1126_science_adl2528
crossref_primary_10_1021_acsomega_4c11413
crossref_primary_10_3390_ijms25105296
crossref_primary_10_1021_acs_jcim_4c01365
crossref_primary_10_1021_acs_jmedchem_4c02740
crossref_primary_10_1021_jacs_4c16633
crossref_primary_10_1038_s41388_024_03077_2
crossref_primary_10_1038_s44324_024_00047_w
crossref_primary_10_1016_j_ijbiomac_2025_142012
crossref_primary_10_1080_17460441_2024_2349169
crossref_primary_10_1038_s42256_024_00873_z
crossref_primary_10_1016_j_cobme_2024_100550
crossref_primary_10_1016_j_jmb_2025_168937
crossref_primary_10_1016_j_mocell_2025_100191
crossref_primary_10_1093_bioinformatics_btae654
crossref_primary_10_1016_j_sbi_2024_102981
crossref_primary_10_1002_2211_5463_13902
crossref_primary_10_1371_journal_pcbi_1012650
crossref_primary_10_1038_s41592_024_02464_7
crossref_primary_10_1002_1873_3468_15003
crossref_primary_10_1002_cbic_202300863
crossref_primary_10_1021_jacs_4c18151
crossref_primary_10_1002_cbic_202400737
crossref_primary_10_1097_TP_0000000000005128
crossref_primary_10_1073_pnas_2409257121
crossref_primary_10_1016_j_ijbiomac_2024_136981
crossref_primary_10_3390_molecules30051047
crossref_primary_10_1016_j_csbj_2025_02_032
crossref_primary_10_3390_antiox13060666
crossref_primary_10_1021_acs_jctc_4c01636
crossref_primary_10_1016_j_str_2025_01_003
crossref_primary_10_1042_BST20231347
crossref_primary_10_1038_s42256_024_00920_9
Cites_doi 10.1038/nmeth.1818
10.1038/s41592-019-0686-2
10.1098/rsif.2018.0021
10.1101/2023.05.24.542179
10.1038/s41592-019-0357-3
10.1101/2022.09.09.507333
10.1101/2022.07.21.500999
10.1038/s41598-017-16834-z
10.1107/S0907444909052925
10.1126/science.ade2574
10.1107/S2052520616003954
10.1101/2022.04.10.487779
10.1371/journal.pcbi.1002946
10.1371/journal.pcbi.1002195
10.1101/2023.11.01.565201
10.1101/2021.09.27.462000
10.1101/2021.10.04.463034
10.1186/1471-2105-10-421
10.1021/cr400415k
10.1002/elps.200900140
10.1073/pnas.1715495114
10.1093/database/bat031
10.1002/jcc.21759
10.1038/s41467-022-30005-3
10.1016/j.bbabio.2012.11.006
10.1101/2020.12.21.423882
10.1002/wcms.1493
10.1016/j.bmc.2022.116722
10.1126/science.add1964
10.1101/2022.12.10.519862
10.1093/nar/gkac1052
10.1385/1-59259-890-0:571
10.1107/S0907444904019158
10.1038/s41467-023-38328-5
10.1021/acs.jcim.2c01270
10.1038/s41586-023-06415-8
10.1038/s41422-021-00566-x
10.1126/science.abj8754
10.1038/s41586-021-03819-2
10.1186/1758-2946-3-33
10.26434/chemrxiv-2022-jjm0j
10.1126/science.add2187
10.1093/nar/gks966
10.1002/prot.20264
10.1002/pro.4530
10.1093/nar/gkr366
10.1016/j.chempr.2023.03.020
10.1146/annurev.biochem.77.062906.171838
10.21105/joss.03021
10.1126/science.adl2528
10.1021/bi200307s
10.1038/nature12443
10.1002/prot.25815
10.1021/jm030580l
10.1021/acs.jmedchem.3c00788
10.1126/science.abn2100
10.1002/prot.25431
10.1093/nar/gky427
10.1038/s41581-019-0129-4
10.1126/science.abb8330
10.1107/S0021889807021206
10.1093/nar/gkab1061
10.1021/acs.jcim.1c00203
10.1111/tpj.15552
10.1021/acs.chemrev.8b00032
10.1021/jacs.3c02742
10.1002/pro.3330
10.1107/S0907444909047337
10.1038/s41594-021-00680-9
10.1021/acs.chemrev.7b00373
10.1093/nar/28.1.235
10.1038/s41592-022-01685-y
10.1038/s41586-022-04654-9
10.1186/s12859-019-3019-7
10.1021/jm0306430
10.1039/D1CC04664K
10.1039/D3SC04185A/v2/response1
10.1093/nar/gkw929
10.1021/acs.jctc.0c01184
10.1038/nbt.3988
10.1016/S0021-9258(18)90679-4
10.1038/s41467-023-35795-8
10.3389/fmolb.2019.00102
10.1109/BIBM47256.2019.8983365
10.1038/s41598-017-09654-8
10.1038/s41929-022-00895-z
10.1021/ja00051a040
10.1002/jcc.21334
10.7554/eLife.28909
10.1002/prot.26194
10.1073/pnas.2221483120
10.1109/MCSE.2007.55
10.1093/nar/gkw1132
10.1107/S0907444910045749
10.1093/database/baab012
10.1073/pnas.1914677117
10.1101/2022.12.01.518682
10.1093/bioinformatics/btz828
10.1073/pnas.2203518119
10.1016/j.bbabio.2019.07.002
10.1056/NEJM199702203360801
10.1021/acs.jctc.7b00125
10.1101/2023.12.22.573103
10.1101/2022.06.06.495043
10.2165/00002018-200427140-00004
10.1073/pnas.2207805119
10.1002/pro.4443
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adl2528
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Chemistry
EISSN 1095-9203
ExternalDocumentID 38452047
10_1126_science_adl2528
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
PV9
UIG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-ce3836d80f428cafcf4f5bcf9ba4aec00d1560a900a33f2879ce5f11778036923
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 03:51:28 EDT 2025
Wed Aug 13 04:28:26 EDT 2025
Thu Apr 17 08:37:50 EDT 2025
Tue Jul 01 03:14:05 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6693
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-ce3836d80f428cafcf4f5bcf9ba4aec00d1560a900a33f2879ce5f11778036923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-6387-9622
0009-0006-1247-8847
0000-0002-0089-9365
0000-0001-6572-434X
0000-0003-2533-9783
0000-0002-9119-5303
0000-0002-3058-6714
0000-0002-6610-2857
0000-0002-6319-4637
0000-0001-7896-6217
0009-0004-1476-0219
0000-0001-5487-0499
0000-0002-7524-8938
0000-0002-1139-6640
0000-0001-9473-2912
0009-0005-2309-6062
0000-0002-2560-8907
0000-0003-3414-9404
0000-0001-5559-7578
PMID 38452047
PQID 3040564452
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2954769956
proquest_journals_3040564452
pubmed_primary_38452047
crossref_citationtrail_10_1126_science_adl2528
crossref_primary_10_1126_science_adl2528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-19
20240419
PublicationDateYYYYMMDD 2024-04-19
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2024
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
Pedregosa F. (e_1_3_2_98_2) 2011; 12
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_114_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_72_2
e_1_3_2_117_2
References_xml – ident: e_1_3_2_76_2
  doi: 10.1038/nmeth.1818
– ident: e_1_3_2_119_2
  doi: 10.1038/s41592-019-0686-2
– ident: e_1_3_2_65_2
  doi: 10.1098/rsif.2018.0021
– ident: e_1_3_2_12_2
  doi: 10.1101/2023.05.24.542179
– ident: e_1_3_2_109_2
  doi: 10.1038/s41592-019-0357-3
– ident: e_1_3_2_11_2
  doi: 10.1101/2022.09.09.507333
– ident: e_1_3_2_15_2
  doi: 10.1101/2022.07.21.500999
– ident: e_1_3_2_48_2
– ident: e_1_3_2_64_2
  doi: 10.1038/s41598-017-16834-z
– ident: e_1_3_2_114_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_14_2
  doi: 10.1126/science.ade2574
– ident: e_1_3_2_13_2
  doi: 10.1107/S2052520616003954
– ident: e_1_3_2_79_2
  doi: 10.1101/2022.04.10.487779
– ident: e_1_3_2_41_2
  doi: 10.1371/journal.pcbi.1002946
– ident: e_1_3_2_96_2
  doi: 10.1371/journal.pcbi.1002195
– ident: e_1_3_2_106_2
  doi: 10.1101/2023.11.01.565201
– ident: e_1_3_2_40_2
  doi: 10.1101/2021.09.27.462000
– ident: e_1_3_2_16_2
  doi: 10.1101/2021.10.04.463034
– ident: e_1_3_2_97_2
  doi: 10.1186/1471-2105-10-421
– ident: e_1_3_2_57_2
  doi: 10.1021/cr400415k
– ident: e_1_3_2_21_2
  doi: 10.1002/elps.200900140
– ident: e_1_3_2_52_2
– ident: e_1_3_2_63_2
  doi: 10.1073/pnas.1715495114
– ident: e_1_3_2_18_2
  doi: 10.1093/database/bat031
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_3_2_98_2
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_2_101_2
  doi: 10.1002/jcc.21759
– ident: e_1_3_2_32_2
  doi: 10.1038/s41467-022-30005-3
– ident: e_1_3_2_62_2
  doi: 10.1016/j.bbabio.2012.11.006
– ident: e_1_3_2_85_2
  doi: 10.1101/2020.12.21.423882
– ident: e_1_3_2_102_2
  doi: 10.1002/wcms.1493
– ident: e_1_3_2_73_2
  doi: 10.1016/j.bmc.2022.116722
– ident: e_1_3_2_108_2
  doi: 10.1126/science.add1964
– ident: e_1_3_2_103_2
  doi: 10.1101/2022.12.10.519862
– ident: e_1_3_2_94_2
  doi: 10.1093/nar/gkac1052
– ident: e_1_3_2_110_2
  doi: 10.1385/1-59259-890-0:571
– ident: e_1_3_2_115_2
  doi: 10.1107/S0907444904019158
– ident: e_1_3_2_105_2
  doi: 10.1038/s41467-023-38328-5
– ident: e_1_3_2_9_2
  doi: 10.1021/acs.jcim.2c01270
– ident: e_1_3_2_46_2
  doi: 10.1038/s41586-023-06415-8
– ident: e_1_3_2_84_2
– ident: e_1_3_2_69_2
  doi: 10.1038/s41422-021-00566-x
– ident: e_1_3_2_3_2
  doi: 10.1126/science.abj8754
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_3_2_83_2
  doi: 10.1186/1758-2946-3-33
– ident: e_1_3_2_30_2
  doi: 10.26434/chemrxiv-2022-jjm0j
– ident: e_1_3_2_75_2
– ident: e_1_3_2_50_2
  doi: 10.1126/science.add2187
– ident: e_1_3_2_81_2
  doi: 10.1093/nar/gks966
– ident: e_1_3_2_92_2
  doi: 10.1002/prot.20264
– ident: e_1_3_2_8_2
  doi: 10.1002/pro.4530
– ident: e_1_3_2_120_2
  doi: 10.1093/nar/gkr366
– ident: e_1_3_2_47_2
  doi: 10.1016/j.chempr.2023.03.020
– ident: e_1_3_2_56_2
  doi: 10.1146/annurev.biochem.77.062906.171838
– ident: e_1_3_2_118_2
  doi: 10.21105/joss.03021
– ident: e_1_3_2_74_2
  doi: 10.1126/science.adl2528
– ident: e_1_3_2_107_2
  doi: 10.1021/bi200307s
– ident: e_1_3_2_55_2
  doi: 10.1038/nature12443
– ident: e_1_3_2_19_2
  doi: 10.1002/prot.25815
– ident: e_1_3_2_80_2
  doi: 10.1021/jm030580l
– ident: e_1_3_2_70_2
  doi: 10.1021/acs.jmedchem.3c00788
– ident: e_1_3_2_104_2
  doi: 10.1126/science.abn2100
– ident: e_1_3_2_17_2
  doi: 10.1002/prot.25431
– ident: e_1_3_2_20_2
  doi: 10.1093/nar/gky427
– ident: e_1_3_2_37_2
  doi: 10.1038/s41581-019-0129-4
– ident: e_1_3_2_45_2
  doi: 10.1126/science.abb8330
– ident: e_1_3_2_113_2
  doi: 10.1107/S0021889807021206
– ident: e_1_3_2_25_2
  doi: 10.1093/nar/gkab1061
– ident: e_1_3_2_10_2
  doi: 10.1021/acs.jcim.1c00203
– ident: e_1_3_2_66_2
  doi: 10.1111/tpj.15552
– ident: e_1_3_2_39_2
  doi: 10.1021/acs.chemrev.8b00032
– ident: e_1_3_2_88_2
– ident: e_1_3_2_59_2
  doi: 10.1021/jacs.3c02742
– ident: e_1_3_2_116_2
  doi: 10.1002/pro.3330
– ident: e_1_3_2_111_2
  doi: 10.1107/S0907444909047337
– ident: e_1_3_2_35_2
  doi: 10.1038/s41594-021-00680-9
– ident: e_1_3_2_6_2
– ident: e_1_3_2_58_2
  doi: 10.1021/acs.chemrev.7b00373
– ident: e_1_3_2_78_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_3_2_5_2
  doi: 10.1038/s41592-022-01685-y
– ident: e_1_3_2_87_2
– ident: e_1_3_2_99_2
  doi: 10.1038/s41586-022-04654-9
– ident: e_1_3_2_26_2
– ident: e_1_3_2_77_2
  doi: 10.1186/s12859-019-3019-7
– ident: e_1_3_2_4_2
  doi: 10.1021/jm0306430
– ident: e_1_3_2_72_2
  doi: 10.1039/D1CC04664K
– ident: e_1_3_2_31_2
  doi: 10.1039/D3SC04185A/v2/response1
– ident: e_1_3_2_95_2
  doi: 10.1093/nar/gkw929
– ident: e_1_3_2_33_2
  doi: 10.1021/acs.jctc.0c01184
– ident: e_1_3_2_82_2
  doi: 10.1038/nbt.3988
– ident: e_1_3_2_60_2
  doi: 10.1016/S0021-9258(18)90679-4
– ident: e_1_3_2_38_2
  doi: 10.1038/s41467-023-35795-8
– ident: e_1_3_2_7_2
  doi: 10.3389/fmolb.2019.00102
– ident: e_1_3_2_28_2
  doi: 10.1109/BIBM47256.2019.8983365
– ident: e_1_3_2_24_2
  doi: 10.1038/s41598-017-09654-8
– ident: e_1_3_2_71_2
  doi: 10.1038/s41929-022-00895-z
– ident: e_1_3_2_91_2
  doi: 10.1021/ja00051a040
– ident: e_1_3_2_121_2
  doi: 10.1002/jcc.21334
– ident: e_1_3_2_44_2
  doi: 10.7554/eLife.28909
– ident: e_1_3_2_93_2
  doi: 10.1002/prot.26194
– ident: e_1_3_2_68_2
  doi: 10.1073/pnas.2221483120
– ident: e_1_3_2_117_2
  doi: 10.1109/MCSE.2007.55
– ident: e_1_3_2_22_2
  doi: 10.1093/nar/gkw1132
– ident: e_1_3_2_112_2
  doi: 10.1107/S0907444910045749
– ident: e_1_3_2_36_2
  doi: 10.1093/database/baab012
– ident: e_1_3_2_90_2
  doi: 10.1073/pnas.1914677117
– ident: e_1_3_2_100_2
– ident: e_1_3_2_49_2
  doi: 10.1101/2022.12.01.518682
– ident: e_1_3_2_23_2
  doi: 10.1093/bioinformatics/btz828
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.2203518119
– ident: e_1_3_2_61_2
  doi: 10.1016/j.bbabio.2019.07.002
– ident: e_1_3_2_29_2
– ident: e_1_3_2_53_2
  doi: 10.1056/NEJM199702203360801
– ident: e_1_3_2_34_2
  doi: 10.1021/acs.jctc.7b00125
– ident: e_1_3_2_51_2
  doi: 10.1101/2023.12.22.573103
– ident: e_1_3_2_27_2
  doi: 10.1101/2022.06.06.495043
– ident: e_1_3_2_89_2
– ident: e_1_3_2_86_2
– ident: e_1_3_2_54_2
  doi: 10.2165/00002018-200427140-00004
– ident: e_1_3_2_43_2
  doi: 10.1073/pnas.2207805119
– ident: e_1_3_2_67_2
  doi: 10.1002/pro.4443
SSID ssj0009593
Score 2.746194
Snippet Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold...
Editor’s summaryAdvances in machine learning have made protein structure prediction and design much more accurate and accessible in recent years, but these...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage eadl2528
SubjectTerms Accuracy
Additives
Amino acids
Amino Acids - chemistry
Assemblies
Binding
Bond graphs
Cell signaling
Chemical bonds
Chemical elements
Chemistry
Chirality
Coronary artery disease
Covalence
Crystal structure
Crystallization
Crystallography
Deep Learning
Design
Digoxigenin
DNA - chemistry
Gas pipelines
Graph representations
Graphical representations
Heart diseases
Heme
Homology
Ligands
Machine learning
Metal ions
Metals
Modelling
Models, Molecular
Networks
Neural networks
Nucleic acids
Optical activity
Organic Chemistry
Physical chemistry
Polypeptides
Predictions
Protein Engineering - methods
Protein structure
Proteins
Proteins - chemistry
Residues
Similarity
Structure-function relationships
Title Generalized biomolecular modeling and design with RoseTTAFold All-Atom
URI https://www.ncbi.nlm.nih.gov/pubmed/38452047
https://www.proquest.com/docview/3040564452
https://www.proquest.com/docview/2954769956
Volume 384
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaUKVeqkIfLKXISD1QVVkFOzbJMbRECFEqtVmxtyhxbLFS2FRs9lB-fcfxY0MBiXKJVt44iWY-j2fG80DoU3IA24CqaEBkdKCLaus1F1dBLYTiXCnY43Tu8PdzfjKJTqdsuvIq9dklXTUWN_fmlTyFqzAGfNVZsv_BWf9QGIDfwF-4Aofh-ige25rRsxutRs7aK9fq1vS3cemHdR-kYTyuupFinqdZ29Rf0qYJ0s58ltNP3VIHvdOf5Qw46IMSUxM64CIJ7LSBW0ELj0uTb_azvZx13ut8YR3Up8sV2AA3vfC7aNvau_h_wWZ4pWDrNoruQlhqWBcF6SNbrCA0UjXUDSFJaCSZvGfMimJq2sVZzHGe0IFsBcw3hJlU8ruCf9CqUo4Hd94usX3-o8gmZ2dFfjzNn6N1ArYFCMf19OjbUfZvrWb_hbYi1CDXyr3gtjLzgIXSayr5a_TKmhg4NXjZQM_kfBO9ME1H_2yiDcusBd63-Pn8BmUDKOEhlLCDEgYoYQMlrKGEB1DCDkpv0SQ7zr-eBLbFRiAoYV0gJI0pr-NQgRkqSiVUpFglVFKVUSlFGNY6075MwrCkVIF1nQjJlD7oj0H1AePgHVqbt3O5hbAgVRQLeBLY3JFSKuZRzStGS8USVrJ4hMaOVoWw9ed1G5Sm6O1QwgtL3MISd4T2_YTfpvTKw7fuOOIXdn0uCgr7EwN1n5ER2vN_g_TUR2LlXLbLRaFPuQ-5zu4eofeGaf5dAEZGwuhw-xGzP6CXK-DvoLXueik_grbaVbsWXX8BXLSYww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+biomolecular+modeling+and+design+with+RoseTTAFold+All-Atom&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Krishna%2C+Rohith&rft.au=Wang%2C+Jue&rft.au=Ahern%2C+Woody&rft.au=Sturmfels%2C+Pascal&rft.date=2024-04-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=384&rft.issue=6693&rft.spage=eadl2528&rft_id=info:doi/10.1126%2Fscience.adl2528&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon