Low-Rank Optimal Transport for Robust Domain Adaptation
When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 11; no. 7; pp. 1667 - 1680 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063 Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation: distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets. |
---|---|
AbstractList | When encountering the distribution shift between the source(training)and target(test)domains,domain adapta-tion attempts to adjust the classifiers to be capable of dealing with different domains.Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality.However,the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality.Therefore,robust domain adaptation has been intro-duced to deal with such problems.In this paper,we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain.To disentangle these challenges,an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy infor-mation influence.For the domain shift problem,the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information.The rank constraint on the transport matrix can help recover the cor-rupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data.The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method,whose convergence can be mathe-matically proved.The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets. When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation: distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets. |
Author | Lian, Cheng Su, Yixin Xu, Bingrong Yin, Jianhua Zeng, Zhigang |
AuthorAffiliation | School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063;Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China |
AuthorAffiliation_xml | – name: School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063;Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China |
Author_xml | – sequence: 1 givenname: Bingrong orcidid: 0000-0003-1568-3855 surname: Xu fullname: Xu, Bingrong email: bingrongxu@whut.edu.cn organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070 – sequence: 2 givenname: Jianhua orcidid: 0000-0002-4534-9439 surname: Yin fullname: Yin, Jianhua email: yinjh@whut.edu.cn organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology,Wuhan,China,430063 – sequence: 3 givenname: Cheng orcidid: 0000-0001-6929-1545 surname: Lian fullname: Lian, Cheng email: chenglian@whut.edu.cn organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070 – sequence: 4 givenname: Yixin orcidid: 0000-0002-3143-3939 surname: Su fullname: Su, Yixin email: suyixin@whut.edu.cn organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070 – sequence: 5 givenname: Zhigang orcidid: 0000-0003-4587-3588 surname: Zeng fullname: Zeng, Zhigang email: zgzeng@hust.edu.cn organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,Wuhan,China,430074 |
BookMark | eNp9kM1LAzEQxYMoWGvPXjwseBO25mOzaY6lflMQaj2H2d2sbm2TNUmp9a83ZUXFg6cZht-befOO0L6xRiN0QvCQECwv7sePQ4ppNiQ0Y1m2h3qUUZlKKrL97z7PD9HA-wXGmFAucpn1kJjaTToD85o8tKFZwTKZOzC-tS4ktXXJzBZrH5JLu4LGJOMK2gChseYYHdSw9HrwVfvo6fpqPrlNpw83d5PxNC0Z5SEtoc70iHAajRAKRBAhRjmNs1wQLUsuWVFhVhQAwKL1OKCEMSGgKkVR1ayPzru9GzA1mGe1sGtn4kX1Ub28F2q7KXZ_Y4EJifBZB7fOvq21Dz80w3kumcSURuqio0pnvXe6Vq2Ln7utIljt0lQxTbXbqro0o4L_UZRNF0Nw0Cz_0Z12ukZr_esK55xIxj4BZmKAtw |
CODEN | IJASJC |
CitedBy_id | crossref_primary_10_1109_TIM_2025_3527531 crossref_primary_10_3389_fmed_2024_1496573 |
Cites_doi | 10.24963/ijcai.2020/314 10.1109/TITS.2022.3146715 10.1109/TBME.2021.3117407 10.1109/TIP.2022.3157139 10.1137/080716542 10.1090/gsm/058 10.1109/TMM.2022.3205457 10.1145/3446776 10.1109/TCYB.2021.3083245 10.1007/978-3-030-43089-4_44 10.1109/CVPR.2012.6247924 10.1137/080738970 10.1109/JAS.2023.123342 10.1109/TITS.2023.3296651 10.1109/CVPR.2017.107 10.1109/CVPR.2018.00473 10.1109/CVPR42600.2020.00288 10.1109/TCYB.2020.2991219 10.1007/978-3-662-44848-9_18 10.1145/3422622 10.1007/978-3-540-71050-9 10.1609/aaai.v33i01.33014951 10.1137/130929886 10.1109/CVPR.2017.316 10.1007/978-3-319-10578-9_31 10.1109/CVPRW53098.2021.00250 10.1109/JAS.2020.1003533 10.1016/j.neucom.2021.04.124 10.1109/TPAMI.2022.3215150 10.1109/ICCV.2017.301 10.1109/TNNLS.2018.2836933 10.1109/JAS.2023.123123 10.1109/CVPR.2015.7298885 10.1109/JAS.2022.105767 10.1007/978-3-030-01225-0_28 10.1109/JAS.2022.106004 10.1109/TMM.2022.3146744 10.1016/j.fmre.2023.06.006 10.1137/22m1478355 10.1109/ICCV.2015.463 10.1109/WACV56688.2023.00059 10.1109/JAS.2022.105515 10.1109/TIV.2023.3317833 10.1109/TCSS.2022.3229693 10.1007/s10958-006-0049-2 10.1007/978-3-030-01252-6_47 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/JAS.2024.124344 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 1680 |
ExternalDocumentID | zdhxb_ywb202407011 10_1109_JAS_2024_124344 10555193 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62206204,62176193 funderid: 10.13039/501100001809 |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION R-I RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX |
ID | FETCH-LOGICAL-c325t-caf4e815227412a171778624e8671e9c593bd03bbaaa3243c59213377adc7bdf3 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Thu May 29 04:10:31 EDT 2025 Fri Jul 25 07:43:23 EDT 2025 Tue Jul 01 02:11:58 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Aug 27 02:06:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Domain adaptation optimal transport noise cor-ruption low-rank constraint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-caf4e815227412a171778624e8671e9c593bd03bbaaa3243c59213377adc7bdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4534-9439 0000-0003-1568-3855 0000-0003-4587-3588 0000-0002-3143-3939 0000-0001-6929-1545 |
PQID | 3066939022 |
PQPubID | 2040495 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_JAS_2024_124344 proquest_journals_3066939022 wanfang_journals_zdhxb_ywb202407011 crossref_citationtrail_10_1109_JAS_2024_124344 ieee_primary_10555193 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
PublicationYear | 2024 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063 Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074 |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063 – name: Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074 – name: Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China |
References | ref13 ref57 ref15 Yu (ref22) 2020 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 Zhang (ref71) Long (ref25) Long (ref69) Monge (ref45) 1781 Kumar (ref67) Chapel (ref49) 2021 Chuang (ref48) Scetbon (ref56) 2021 ref46 ref47 Liu (ref35) ref42 ref41 ref44 ref43 ref8 Redko (ref50) ref7 Liu (ref21) 2019 ref9 Lin (ref64) 2009 ref4 ref3 ref6 ref5 Balaji (ref51) ref40 Long (ref24) ref34 Jiang (ref70) ref37 ref36 Fatras (ref58) 2021 ref31 ref30 ref33 Li (ref65) 2017 ref32 ref2 ref1 ref39 ref38 Ganin (ref68) Courty (ref16) Cuturi (ref60) Lin (ref63) 2010 Chang (ref59) Blondel (ref53) ref23 ref26 ref20 ref66 Zhang (ref12) ref28 ref27 ref29 ref62 ref61 |
References_xml | – ident: ref43 doi: 10.24963/ijcai.2020/314 – ident: ref3 doi: 10.1109/TITS.2022.3146715 – ident: ref7 doi: 10.1109/TBME.2021.3117407 – ident: ref11 doi: 10.1109/TIP.2022.3157139 – start-page: 2208 volume-title: Proc. 34th Int. Conf Machine Learning ident: ref25 article-title: Deep transfer learning with joint adaptation networks – ident: ref62 doi: 10.1137/080716542 – ident: ref44 doi: 10.1090/gsm/058 – start-page: 1180 volume-title: Proc. 32nd Int. Conf. Machine Learning ident: ref68 article-title: Unsupervised domain adaptation by backpropagation – ident: ref18 doi: 10.1109/TMM.2022.3205457 – ident: ref20 doi: 10.1145/3446776 – start-page: 469 volume-title: Proc. 30th Int. Conf. Neural Information Processing Systems ident: ref35 article-title: Coupled generative adversarial networks – ident: ref14 doi: 10.1109/TCYB.2021.3083245 – ident: ref32 doi: 10.1007/978-3-030-43089-4_44 – ident: ref26 doi: 10.1109/CVPR.2012.6247924 – ident: ref61 doi: 10.1137/080738970 – start-page: 6228 volume-title: Proc. 40th Int. Conf. Machine Learning ident: ref48 article-title: InfoOT: Information maximizing optimal transport – year: 2017 ident: ref65 article-title: WebVision database: Visual learning and understanding from web data publication-title: arXiv preprint – start-page: 12934 volume-title: Proc. 34th Int. Conf. Neural Information Processing Systems ident: ref51 article-title: Robust optimal transport with applications in generative modeling and domain adaptation – ident: ref30 doi: 10.1109/JAS.2023.123342 – ident: ref8 doi: 10.1109/TITS.2023.3296651 – year: 2009 ident: ref64 article-title: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix publication-title: Coordinated Science Lab., Urbana, IL, USA, Tech. Rep. UILU-ENG-09–2214 – ident: ref28 doi: 10.1109/CVPR.2017.107 – start-page: 7404 volume-title: Proc. 36th Int. Conf Machine Learning ident: ref71 article-title: Bridging theory and algorithm for domain adaptation – start-page: 3186 volume-title: Proc. 38th Int. Conf. Machine Learning year: 2021 ident: ref58 article-title: Unbalanced minibatch optimal transport; applications to domain adaptation – start-page: 1189 volume-title: Proc. 23rd Int. Conf. Neural Information Processing Systems ident: ref67 article-title: Self-paced learning for latent variable models – ident: ref34 doi: 10.1109/CVPR.2018.00473 – ident: ref10 doi: 10.1109/CVPR42600.2020.00288 – start-page: 666 year: 1781 ident: ref45 article-title: Mémoire sur la théorie des déblais et des remblais publication-title: Histoire de lA cadémie Royale des Sciences – start-page: 880 volume-title: Proc. 21st Int. Conf. Artificial Intelligence and Statistics ident: ref53 article-title: Smooth and sparse optimal transport – ident: ref15 doi: 10.1109/TCYB.2020.2991219 – ident: ref54 doi: 10.1007/978-3-662-44848-9_18 – ident: ref31 doi: 10.1145/3422622 – start-page: 2292 volume-title: Proc. 26th Int. Conf. Neural Information Processing Systems ident: ref60 article-title: Sinkhorn distances: Lightspeed computation of optimal transport – start-page: 136 volume-title: Proc. 30th Int. Conf. Neural Information Processing Systems ident: ref69 article-title: Unsupervised domain adaptation with residual transfer networks – ident: ref13 doi: 10.1007/978-3-540-71050-9 – ident: ref19 doi: 10.1609/aaai.v33i01.33014951 – start-page: 97 volume-title: Proc. 32nd Int. Conf Machine Learning ident: ref24 article-title: Learning transferable features with deep adaptation networks – ident: ref52 doi: 10.1137/130929886 – start-page: 388 volume-title: Proc. 30th Int. Conf Machine Learning ident: ref12 article-title: Covariate shift in Hilbert space: A solution via sorrogate kernels – start-page: 10913 volume-title: Proc. 37th Int. Conf. Machine Learning year: 2020 ident: ref22 article-title: Label-noise robust domain adaptation – ident: ref36 doi: 10.1109/CVPR.2017.316 – year: 2010 ident: ref63 article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices publication-title: arXiv preprint – ident: ref42 doi: 10.1007/978-3-319-10578-9_31 – ident: ref38 doi: 10.1109/CVPRW53098.2021.00250 – ident: ref1 doi: 10.1109/JAS.2020.1003533 – ident: ref55 doi: 10.1016/j.neucom.2021.04.124 – ident: ref66 doi: 10.1109/TPAMI.2022.3215150 – start-page: 2309 volume-title: Proc. 35th Int. Conf. Machine Learning ident: ref70 article-title: MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels – ident: ref29 doi: 10.1109/ICCV.2017.301 – ident: ref2 doi: 10.1109/TNNLS.2018.2836933 – ident: ref23 doi: 10.1109/JAS.2023.123123 – year: 2019 ident: ref21 article-title: Butterfly: A panacea for all difficulties in wildly unsupervised domain adaptation publication-title: arXiv preprint – start-page: 849 volume-title: Proc. 22nd Int. Conf. Artificial Intelligence and Statistics ident: ref50 article-title: Optimal transport for multi-source domain adaptation under target shift – ident: ref41 doi: 10.1109/CVPR.2015.7298885 – start-page: 23270 volume-title: Proc. 35th Conf. Neural Information Processing Systems year: 2021 ident: ref49 article-title: Unbalanced optimal transport through non-negative penalized linear regression – ident: ref5 doi: 10.1109/JAS.2022.105767 – ident: ref17 doi: 10.1007/978-3-030-01225-0_28 – ident: ref27 doi: 10.1109/JAS.2022.106004 – ident: ref37 doi: 10.1109/TMM.2022.3146744 – ident: ref47 doi: 10.1016/j.fmre.2023.06.006 – ident: ref57 doi: 10.1137/22m1478355 – ident: ref4 doi: 10.1109/ICCV.2015.463 – start-page: 3733 volume-title: Proc. 31st Int. Conf. Neural Information Processing Systems ident: ref16 article-title: Joint distribution optimal transportation for domain adaptation – ident: ref39 doi: 10.1109/WACV56688.2023.00059 – ident: ref6 doi: 10.1109/JAS.2022.105515 – ident: ref9 doi: 10.1109/TIV.2023.3317833 – ident: ref40 doi: 10.1109/TCSS.2022.3229693 – start-page: 29512 volume-title: Proc. 36th Int. Conf. Neural Information Processing Systems ident: ref59 article-title: Unified optimal transport framework for universal domain adaptation – ident: ref46 doi: 10.1007/s10958-006-0049-2 – start-page: 9344 volume-title: Proc. 38th Int. Conf. Machine Learning year: 2021 ident: ref56 article-title: Low-rank sinkhorn factorization – ident: ref33 doi: 10.1007/978-3-030-01252-6_47 |
SSID | ssj0001257694 |
Score | 2.3124926 |
Snippet | When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be... When encountering the distribution shift between the source(training)and target(test)domains,domain adapta-tion attempts to adjust the classifiers to be... |
SourceID | wanfang proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1667 |
SubjectTerms | Adaptation Adaptation models Convergence Convex functions Convexity Domain adaptation Lagrange multiplier low-rank constraint Noise noise corruption Noise measurement optimal transport Robustness Robustness (mathematics) Training |
Title | Low-Rank Optimal Transport for Robust Domain Adaptation |
URI | https://ieeexplore.ieee.org/document/10555193 https://www.proquest.com/docview/3066939022 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202407011 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6cIOiDPydOpxT0wZd0bZMt6-NQxxg6YTrYW0nSVGWuFe2Y-td7abu5CQPfSnsN7V2S-y7JfQdw4VFNOQ5o4kgnIkzTkDSpGxHNERwwVzAnq95w12t0Bqw7rA-LZPUsF0ZrnR0-07a5zPbyw0RNzFJZzRRzNIijBCWM3PJkrYUFFYTOWeFDBAk-8dHzFFQ-ruPXuq0HDAY9ZqM_o4wteaGsrMoSwtyYijgS8dOCq2nvQG_2kfkJk5E9SaWtvv_wN_77L3ZhuwCdVivvJXuwpuN92FqgIjwAfptMSV_EI-seJ5ExSs9pzy3EtVY_kZOP1LpOxuIltlqheMv38MswaN88XnVIUVSBKOrVU6JExHQTvbbhrfGEi-EcN0ki2hDdaV_VfSpDh0ophECwRfGGh3Es5yJUXIYRPYT1OIn1EVjK1bKhuOAhQ9TFI9mMItmgXDIc2K6iFbBnSg5UwThuCl-8Blnk4fgBWiUwVglyq1Tgcv7CW062sVq0bDS7IJYrtQLVmRmDYjR-BBgWNXzqI1ypwHlh2t-n3-Hzpwy-ptI0jzOg6x6vaPwENo1Mflq3Cuvp-0SfIiZJ5VnWF38AniraJw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IOrBt7g-C3rwkto02c32uPhg1XUFH-AtJGmqoraiXVb99U7arq6C4K2009DOJJlvksw3ADshs0zggCaBDhLCLYtJk9GEWIHggFPFg6J6w1m30b7mJzf1mypZvciFsdYWh8-s7y6Lvfw4Mz23VLbnijk6xDEK4-j467RM1xpaUkHwXJQ-RJgQkQh9T0XmQ4No76R1ieFgyH30aIzzH36oKKzyA2NO9FWaqPR2yNkczUJ38JnlGZMHv5dr33z8YnD893_MwUwFO71W2U_mYcSmCzA9REa4CKKT9cmFSh-8c5xGnlD6i_jcQ2TrXWS695p7B9mTuk-9Vqyey138Jbg-Orzab5OqrAIxLKznxKiE2yb6bcdcEyqKAZ1waSLWUd3ZyNQjpuOAaa2UQrjF8EaIkawQKjZCxwlbhrE0S-0KeIZa3TBCiZgj7hKJbiaJbjChOQ5talgN_IGSpak4x13pi0dZxB5BJNEq0llFllapwe7XC88l3cbfoktOs0NipVJrsD4wo6zG46vEwKgRsQgBSw22K9N-P_2I7960fO9r1zzOgZSu_tH4Fky2r846snPcPV2DKSdfnt1dh7H8pWc3EKHkerPol58rvt1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Optimal+Transport+for+Robust+Domain+Adaptation&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Bingrong+Xu&rft.au=Jianhua+Yin&rft.au=Cheng+Lian&rft.au=Yixin+Su&rft.date=2024-07-01&rft.pub=School+of+Automation%2CWuhan+University+of+Technology%2CWuhan+430070%2CChina%25Intelligent+Transportation+Systems+Research+Center%2CWuhan+University+of+Technology%2CWuhan+430063&rft.issn=2329-9266&rft.volume=11&rft.issue=7&rft.spage=1667&rft.epage=1680&rft_id=info:doi/10.1109%2FJAS.2024.124344&rft.externalDocID=zdhxb_ywb202407011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |