Low-Rank Optimal Transport for Robust Domain Adaptation

When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 11; no. 7; pp. 1667 - 1680
Main Authors Xu, Bingrong, Yin, Jianhua, Lian, Cheng, Su, Yixin, Zeng, Zhigang
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063
Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China
Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation: distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
AbstractList When encountering the distribution shift between the source(training)and target(test)domains,domain adapta-tion attempts to adjust the classifiers to be capable of dealing with different domains.Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality.However,the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality.Therefore,robust domain adaptation has been intro-duced to deal with such problems.In this paper,we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain.To disentangle these challenges,an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy infor-mation influence.For the domain shift problem,the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information.The rank constraint on the transport matrix can help recover the cor-rupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data.The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method,whose convergence can be mathe-matically proved.The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are well-labeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation: distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
Author Lian, Cheng
Su, Yixin
Xu, Bingrong
Yin, Jianhua
Zeng, Zhigang
AuthorAffiliation School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063;Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China
AuthorAffiliation_xml – name: School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063;Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China
Author_xml – sequence: 1
  givenname: Bingrong
  orcidid: 0000-0003-1568-3855
  surname: Xu
  fullname: Xu, Bingrong
  email: bingrongxu@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070
– sequence: 2
  givenname: Jianhua
  orcidid: 0000-0002-4534-9439
  surname: Yin
  fullname: Yin, Jianhua
  email: yinjh@whut.edu.cn
  organization: Intelligent Transportation Systems Research Center, Wuhan University of Technology,Wuhan,China,430063
– sequence: 3
  givenname: Cheng
  orcidid: 0000-0001-6929-1545
  surname: Lian
  fullname: Lian, Cheng
  email: chenglian@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070
– sequence: 4
  givenname: Yixin
  orcidid: 0000-0002-3143-3939
  surname: Su
  fullname: Su, Yixin
  email: suyixin@whut.edu.cn
  organization: School of Automation, Wuhan University of Technology,Wuhan,China,430070
– sequence: 5
  givenname: Zhigang
  orcidid: 0000-0003-4587-3588
  surname: Zeng
  fullname: Zeng, Zhigang
  email: zgzeng@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,Wuhan,China,430074
BookMark eNp9kM1LAzEQxYMoWGvPXjwseBO25mOzaY6lflMQaj2H2d2sbm2TNUmp9a83ZUXFg6cZht-befOO0L6xRiN0QvCQECwv7sePQ4ppNiQ0Y1m2h3qUUZlKKrL97z7PD9HA-wXGmFAucpn1kJjaTToD85o8tKFZwTKZOzC-tS4ktXXJzBZrH5JLu4LGJOMK2gChseYYHdSw9HrwVfvo6fpqPrlNpw83d5PxNC0Z5SEtoc70iHAajRAKRBAhRjmNs1wQLUsuWVFhVhQAwKL1OKCEMSGgKkVR1ayPzru9GzA1mGe1sGtn4kX1Ub28F2q7KXZ_Y4EJifBZB7fOvq21Dz80w3kumcSURuqio0pnvXe6Vq2Ln7utIljt0lQxTbXbqro0o4L_UZRNF0Nw0Cz_0Z12ukZr_esK55xIxj4BZmKAtw
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_TIM_2025_3527531
crossref_primary_10_3389_fmed_2024_1496573
Cites_doi 10.24963/ijcai.2020/314
10.1109/TITS.2022.3146715
10.1109/TBME.2021.3117407
10.1109/TIP.2022.3157139
10.1137/080716542
10.1090/gsm/058
10.1109/TMM.2022.3205457
10.1145/3446776
10.1109/TCYB.2021.3083245
10.1007/978-3-030-43089-4_44
10.1109/CVPR.2012.6247924
10.1137/080738970
10.1109/JAS.2023.123342
10.1109/TITS.2023.3296651
10.1109/CVPR.2017.107
10.1109/CVPR.2018.00473
10.1109/CVPR42600.2020.00288
10.1109/TCYB.2020.2991219
10.1007/978-3-662-44848-9_18
10.1145/3422622
10.1007/978-3-540-71050-9
10.1609/aaai.v33i01.33014951
10.1137/130929886
10.1109/CVPR.2017.316
10.1007/978-3-319-10578-9_31
10.1109/CVPRW53098.2021.00250
10.1109/JAS.2020.1003533
10.1016/j.neucom.2021.04.124
10.1109/TPAMI.2022.3215150
10.1109/ICCV.2017.301
10.1109/TNNLS.2018.2836933
10.1109/JAS.2023.123123
10.1109/CVPR.2015.7298885
10.1109/JAS.2022.105767
10.1007/978-3-030-01225-0_28
10.1109/JAS.2022.106004
10.1109/TMM.2022.3146744
10.1016/j.fmre.2023.06.006
10.1137/22m1478355
10.1109/ICCV.2015.463
10.1109/WACV56688.2023.00059
10.1109/JAS.2022.105515
10.1109/TIV.2023.3317833
10.1109/TCSS.2022.3229693
10.1007/s10958-006-0049-2
10.1007/978-3-030-01252-6_47
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2024.124344
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1680
ExternalDocumentID zdhxb_ywb202407011
10_1109_JAS_2024_124344
10555193
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62206204,62176193
  funderid: 10.13039/501100001809
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
R-I
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c325t-caf4e815227412a171778624e8671e9c593bd03bbaaa3243c59213377adc7bdf3
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Fri Jul 25 07:43:23 EDT 2025
Tue Jul 01 02:11:58 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Aug 27 02:06:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Domain adaptation
optimal transport
noise cor-ruption
low-rank constraint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-caf4e815227412a171778624e8671e9c593bd03bbaaa3243c59213377adc7bdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4534-9439
0000-0003-1568-3855
0000-0003-4587-3588
0000-0002-3143-3939
0000-0001-6929-1545
PQID 3066939022
PQPubID 2040495
PageCount 14
ParticipantIDs crossref_primary_10_1109_JAS_2024_124344
proquest_journals_3066939022
wanfang_journals_zdhxb_ywb202407011
crossref_citationtrail_10_1109_JAS_2024_124344
ieee_primary_10555193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2024
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063
Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China
Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: School of Automation,Wuhan University of Technology,Wuhan 430070,China%Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063
– name: Chongqing Research Institute,Wuhan University of Technology,Chongqing,China%School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074
– name: Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China,Wuhan 430074,China
References ref13
ref57
ref15
Yu (ref22) 2020
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
Zhang (ref71)
Long (ref25)
Long (ref69)
Monge (ref45) 1781
Kumar (ref67)
Chapel (ref49) 2021
Chuang (ref48)
Scetbon (ref56) 2021
ref46
ref47
Liu (ref35)
ref42
ref41
ref44
ref43
ref8
Redko (ref50)
ref7
Liu (ref21) 2019
ref9
Lin (ref64) 2009
ref4
ref3
ref6
ref5
Balaji (ref51)
ref40
Long (ref24)
ref34
Jiang (ref70)
ref37
ref36
Fatras (ref58) 2021
ref31
ref30
ref33
Li (ref65) 2017
ref32
ref2
ref1
ref39
ref38
Ganin (ref68)
Courty (ref16)
Cuturi (ref60)
Lin (ref63) 2010
Chang (ref59)
Blondel (ref53)
ref23
ref26
ref20
ref66
Zhang (ref12)
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref43
  doi: 10.24963/ijcai.2020/314
– ident: ref3
  doi: 10.1109/TITS.2022.3146715
– ident: ref7
  doi: 10.1109/TBME.2021.3117407
– ident: ref11
  doi: 10.1109/TIP.2022.3157139
– start-page: 2208
  volume-title: Proc. 34th Int. Conf Machine Learning
  ident: ref25
  article-title: Deep transfer learning with joint adaptation networks
– ident: ref62
  doi: 10.1137/080716542
– ident: ref44
  doi: 10.1090/gsm/058
– start-page: 1180
  volume-title: Proc. 32nd Int. Conf. Machine Learning
  ident: ref68
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref18
  doi: 10.1109/TMM.2022.3205457
– ident: ref20
  doi: 10.1145/3446776
– start-page: 469
  volume-title: Proc. 30th Int. Conf. Neural Information Processing Systems
  ident: ref35
  article-title: Coupled generative adversarial networks
– ident: ref14
  doi: 10.1109/TCYB.2021.3083245
– ident: ref32
  doi: 10.1007/978-3-030-43089-4_44
– ident: ref26
  doi: 10.1109/CVPR.2012.6247924
– ident: ref61
  doi: 10.1137/080738970
– start-page: 6228
  volume-title: Proc. 40th Int. Conf. Machine Learning
  ident: ref48
  article-title: InfoOT: Information maximizing optimal transport
– year: 2017
  ident: ref65
  article-title: WebVision database: Visual learning and understanding from web data
  publication-title: arXiv preprint
– start-page: 12934
  volume-title: Proc. 34th Int. Conf. Neural Information Processing Systems
  ident: ref51
  article-title: Robust optimal transport with applications in generative modeling and domain adaptation
– ident: ref30
  doi: 10.1109/JAS.2023.123342
– ident: ref8
  doi: 10.1109/TITS.2023.3296651
– year: 2009
  ident: ref64
  article-title: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix
  publication-title: Coordinated Science Lab., Urbana, IL, USA, Tech. Rep. UILU-ENG-09–2214
– ident: ref28
  doi: 10.1109/CVPR.2017.107
– start-page: 7404
  volume-title: Proc. 36th Int. Conf Machine Learning
  ident: ref71
  article-title: Bridging theory and algorithm for domain adaptation
– start-page: 3186
  volume-title: Proc. 38th Int. Conf. Machine Learning
  year: 2021
  ident: ref58
  article-title: Unbalanced minibatch optimal transport; applications to domain adaptation
– start-page: 1189
  volume-title: Proc. 23rd Int. Conf. Neural Information Processing Systems
  ident: ref67
  article-title: Self-paced learning for latent variable models
– ident: ref34
  doi: 10.1109/CVPR.2018.00473
– ident: ref10
  doi: 10.1109/CVPR42600.2020.00288
– start-page: 666
  year: 1781
  ident: ref45
  article-title: Mémoire sur la théorie des déblais et des remblais
  publication-title: Histoire de lA cadémie Royale des Sciences
– start-page: 880
  volume-title: Proc. 21st Int. Conf. Artificial Intelligence and Statistics
  ident: ref53
  article-title: Smooth and sparse optimal transport
– ident: ref15
  doi: 10.1109/TCYB.2020.2991219
– ident: ref54
  doi: 10.1007/978-3-662-44848-9_18
– ident: ref31
  doi: 10.1145/3422622
– start-page: 2292
  volume-title: Proc. 26th Int. Conf. Neural Information Processing Systems
  ident: ref60
  article-title: Sinkhorn distances: Lightspeed computation of optimal transport
– start-page: 136
  volume-title: Proc. 30th Int. Conf. Neural Information Processing Systems
  ident: ref69
  article-title: Unsupervised domain adaptation with residual transfer networks
– ident: ref13
  doi: 10.1007/978-3-540-71050-9
– ident: ref19
  doi: 10.1609/aaai.v33i01.33014951
– start-page: 97
  volume-title: Proc. 32nd Int. Conf Machine Learning
  ident: ref24
  article-title: Learning transferable features with deep adaptation networks
– ident: ref52
  doi: 10.1137/130929886
– start-page: 388
  volume-title: Proc. 30th Int. Conf Machine Learning
  ident: ref12
  article-title: Covariate shift in Hilbert space: A solution via sorrogate kernels
– start-page: 10913
  volume-title: Proc. 37th Int. Conf. Machine Learning
  year: 2020
  ident: ref22
  article-title: Label-noise robust domain adaptation
– ident: ref36
  doi: 10.1109/CVPR.2017.316
– year: 2010
  ident: ref63
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: arXiv preprint
– ident: ref42
  doi: 10.1007/978-3-319-10578-9_31
– ident: ref38
  doi: 10.1109/CVPRW53098.2021.00250
– ident: ref1
  doi: 10.1109/JAS.2020.1003533
– ident: ref55
  doi: 10.1016/j.neucom.2021.04.124
– ident: ref66
  doi: 10.1109/TPAMI.2022.3215150
– start-page: 2309
  volume-title: Proc. 35th Int. Conf. Machine Learning
  ident: ref70
  article-title: MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels
– ident: ref29
  doi: 10.1109/ICCV.2017.301
– ident: ref2
  doi: 10.1109/TNNLS.2018.2836933
– ident: ref23
  doi: 10.1109/JAS.2023.123123
– year: 2019
  ident: ref21
  article-title: Butterfly: A panacea for all difficulties in wildly unsupervised domain adaptation
  publication-title: arXiv preprint
– start-page: 849
  volume-title: Proc. 22nd Int. Conf. Artificial Intelligence and Statistics
  ident: ref50
  article-title: Optimal transport for multi-source domain adaptation under target shift
– ident: ref41
  doi: 10.1109/CVPR.2015.7298885
– start-page: 23270
  volume-title: Proc. 35th Conf. Neural Information Processing Systems
  year: 2021
  ident: ref49
  article-title: Unbalanced optimal transport through non-negative penalized linear regression
– ident: ref5
  doi: 10.1109/JAS.2022.105767
– ident: ref17
  doi: 10.1007/978-3-030-01225-0_28
– ident: ref27
  doi: 10.1109/JAS.2022.106004
– ident: ref37
  doi: 10.1109/TMM.2022.3146744
– ident: ref47
  doi: 10.1016/j.fmre.2023.06.006
– ident: ref57
  doi: 10.1137/22m1478355
– ident: ref4
  doi: 10.1109/ICCV.2015.463
– start-page: 3733
  volume-title: Proc. 31st Int. Conf. Neural Information Processing Systems
  ident: ref16
  article-title: Joint distribution optimal transportation for domain adaptation
– ident: ref39
  doi: 10.1109/WACV56688.2023.00059
– ident: ref6
  doi: 10.1109/JAS.2022.105515
– ident: ref9
  doi: 10.1109/TIV.2023.3317833
– ident: ref40
  doi: 10.1109/TCSS.2022.3229693
– start-page: 29512
  volume-title: Proc. 36th Int. Conf. Neural Information Processing Systems
  ident: ref59
  article-title: Unified optimal transport framework for universal domain adaptation
– ident: ref46
  doi: 10.1007/s10958-006-0049-2
– start-page: 9344
  volume-title: Proc. 38th Int. Conf. Machine Learning
  year: 2021
  ident: ref56
  article-title: Low-rank sinkhorn factorization
– ident: ref33
  doi: 10.1007/978-3-030-01252-6_47
SSID ssj0001257694
Score 2.3124926
Snippet When encountering the distribution shift between the source (training) and target (test) domains, domain adaptation attempts to adjust the classifiers to be...
When encountering the distribution shift between the source(training)and target(test)domains,domain adapta-tion attempts to adjust the classifiers to be...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1667
SubjectTerms Adaptation
Adaptation models
Convergence
Convex functions
Convexity
Domain adaptation
Lagrange multiplier
low-rank constraint
Noise
noise corruption
Noise measurement
optimal transport
Robustness
Robustness (mathematics)
Training
Title Low-Rank Optimal Transport for Robust Domain Adaptation
URI https://ieeexplore.ieee.org/document/10555193
https://www.proquest.com/docview/3066939022
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202407011
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6cIOiDPydOpxT0wZd0bZMt6-NQxxg6YTrYW0nSVGWuFe2Y-td7abu5CQPfSnsN7V2S-y7JfQdw4VFNOQ5o4kgnIkzTkDSpGxHNERwwVzAnq95w12t0Bqw7rA-LZPUsF0ZrnR0-07a5zPbyw0RNzFJZzRRzNIijBCWM3PJkrYUFFYTOWeFDBAk-8dHzFFQ-ruPXuq0HDAY9ZqM_o4wteaGsrMoSwtyYijgS8dOCq2nvQG_2kfkJk5E9SaWtvv_wN_77L3ZhuwCdVivvJXuwpuN92FqgIjwAfptMSV_EI-seJ5ExSs9pzy3EtVY_kZOP1LpOxuIltlqheMv38MswaN88XnVIUVSBKOrVU6JExHQTvbbhrfGEi-EcN0ki2hDdaV_VfSpDh0ophECwRfGGh3Es5yJUXIYRPYT1OIn1EVjK1bKhuOAhQ9TFI9mMItmgXDIc2K6iFbBnSg5UwThuCl-8Blnk4fgBWiUwVglyq1Tgcv7CW062sVq0bDS7IJYrtQLVmRmDYjR-BBgWNXzqI1ypwHlh2t-n3-Hzpwy-ptI0jzOg6x6vaPwENo1Mflq3Cuvp-0SfIiZJ5VnWF38AniraJw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IOrBt7g-C3rwkto02c32uPhg1XUFH-AtJGmqoraiXVb99U7arq6C4K2009DOJJlvksw3ADshs0zggCaBDhLCLYtJk9GEWIHggFPFg6J6w1m30b7mJzf1mypZvciFsdYWh8-s7y6Lvfw4Mz23VLbnijk6xDEK4-j467RM1xpaUkHwXJQ-RJgQkQh9T0XmQ4No76R1ieFgyH30aIzzH36oKKzyA2NO9FWaqPR2yNkczUJ38JnlGZMHv5dr33z8YnD893_MwUwFO71W2U_mYcSmCzA9REa4CKKT9cmFSh-8c5xGnlD6i_jcQ2TrXWS695p7B9mTuk-9Vqyey138Jbg-Orzab5OqrAIxLKznxKiE2yb6bcdcEyqKAZ1waSLWUd3ZyNQjpuOAaa2UQrjF8EaIkawQKjZCxwlbhrE0S-0KeIZa3TBCiZgj7hKJbiaJbjChOQ5talgN_IGSpak4x13pi0dZxB5BJNEq0llFllapwe7XC88l3cbfoktOs0NipVJrsD4wo6zG46vEwKgRsQgBSw22K9N-P_2I7960fO9r1zzOgZSu_tH4Fky2r846snPcPV2DKSdfnt1dh7H8pWc3EKHkerPol58rvt1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Optimal+Transport+for+Robust+Domain+Adaptation&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Bingrong+Xu&rft.au=Jianhua+Yin&rft.au=Cheng+Lian&rft.au=Yixin+Su&rft.date=2024-07-01&rft.pub=School+of+Automation%2CWuhan+University+of+Technology%2CWuhan+430070%2CChina%25Intelligent+Transportation+Systems+Research+Center%2CWuhan+University+of+Technology%2CWuhan+430063&rft.issn=2329-9266&rft.volume=11&rft.issue=7&rft.spage=1667&rft.epage=1680&rft_id=info:doi/10.1109%2FJAS.2024.124344&rft.externalDocID=zdhxb_ywb202407011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg