First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications

This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an or...

Full description

Saved in:
Bibliographic Details
Published inTransactions on electrical and electronic materials Vol. 22; no. 2; pp. 185 - 203
Main Authors Hazim, Angham, Abduljalil, Hayder M., Hashim, Ahmed
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 01.04.2021
한국전기전자재료학회
Subjects
Online AccessGet full text
ISSN1229-7607
2092-7592
DOI10.1007/s42341-020-00224-w

Cover

Loading…
Abstract This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al 2 O 3 –Au), (PMMA–ZrO 2 –Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites are the nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO 2 –Au) and (PMMA–Al 2 O 3 –Au) nanocomposites have huge applications in electronics and photo-electronics fields.
AbstractList This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al 2 O 3 –Au), (PMMA–ZrO 2 –Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affi nity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites arethe nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO 2 –Au) and (PMMA–Al 2 O 3 –Au) nanocomposites have huge applications in electronics and photo-electronics fi elds. KCI Citation Count: 2
This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al 2 O 3 –Au), (PMMA–ZrO 2 –Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites are the nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO 2 –Au) and (PMMA–Al 2 O 3 –Au) nanocomposites have huge applications in electronics and photo-electronics fields.
Author Hashim, Ahmed
Hazim, Angham
Abduljalil, Hayder M.
Author_xml – sequence: 1
  givenname: Angham
  orcidid: 0000-0002-0778-1159
  surname: Hazim
  fullname: Hazim, Angham
  organization: Department of Physics, College of Science, University of Babylon
– sequence: 2
  givenname: Hayder M.
  surname: Abduljalil
  fullname: Abduljalil, Hayder M.
  organization: Department of Physics, College of Science, University of Babylon
– sequence: 3
  givenname: Ahmed
  surname: Hashim
  fullname: Hashim, Ahmed
  email: ahmed_taay@yahoo.com
  organization: Department of Physics, College of Education for Pure Sciences, University of Babylon
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707422$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc9u1DAQxi1UJJalL8ApRyoRajuJXR-jVQuV2u6qlAsXy_HalalrR2NHVW-8A6_BU_EkeLOFQw89zWg0v--bP2_RQYjBIPSe4E8EY36cWtq0pMYU1xhT2tYPr9CCYkFr3gl6gBaEUlFzhvkbdJiSG3AjOoaJYAv0-8xBytUGXNBu9CZVK-X15FV2MaQq2urUG50hBqc_Vl8zTDpPoHylwrZaj9npkm8gjgayMzPwYXN52f_5-es7rGkJ_XQ0N_8r956um6f6lQpRx_sxJpcLbCPsNKP5b5mqfhx9MZnHeYdeW-WTOXyKS_Tt7PRm9aW-WH8-X_UXtW5ol2vN-O4uti23MI1gTcdtWddg2zZbwgaht4ZS1pJB2OHEYKE7oigbMOXWsI43S3S01w1g5Z12Mio3x9so70D21zfnUnDe8aK9RHTfqyGmBMbKEdy9gkdJsNyNIffvkeU9cn6PfCjQyTNIuzzvmEE5_zLa7NFUfMKtAfkjThDKOV6i_gIqz6us
CitedBy_id crossref_primary_10_1007_s12633_022_01728_1
crossref_primary_10_1007_s12633_022_02000_2
crossref_primary_10_1007_s11082_023_04929_z
crossref_primary_10_1007_s11082_024_07619_6
crossref_primary_10_1007_s12633_022_02104_9
crossref_primary_10_1007_s10854_024_13780_1
crossref_primary_10_1364_OPTCON_495634
crossref_primary_10_1007_s00289_022_04502_w
crossref_primary_10_1007_s11082_023_04699_8
crossref_primary_10_1007_s12633_022_01978_z
crossref_primary_10_15407_nnn_20_02_535
crossref_primary_10_15407_nnn_21_04_867
crossref_primary_10_1021_acsomega_1c04349
crossref_primary_10_1007_s11082_023_04994_4
crossref_primary_10_1007_s12633_023_02381_y
crossref_primary_10_15407_nnn_20_04_1009
crossref_primary_10_15407_nnn_21_01_163
crossref_primary_10_1007_s12633_021_01465_x
crossref_primary_10_1007_s12633_023_02572_7
crossref_primary_10_1007_s12633_021_01258_2
crossref_primary_10_1007_s12633_020_00723_8
crossref_primary_10_1007_s11082_023_06039_2
crossref_primary_10_1007_s12633_022_01730_7
crossref_primary_10_1007_s42341_021_00340_1
crossref_primary_10_1007_s11082_023_04830_9
crossref_primary_10_15407_nnn_20_04_951
crossref_primary_10_1007_s12633_022_01854_w
crossref_primary_10_15407_nnn_21_01_113
crossref_primary_10_1007_s12633_025_03220_y
crossref_primary_10_15407_nnn_21_01_153
crossref_primary_10_1016_j_matpr_2022_02_581
crossref_primary_10_1080_25740881_2024_2307335
crossref_primary_10_1002_jctb_7246
crossref_primary_10_1007_s12633_021_01265_3
crossref_primary_10_1007_s10904_023_02688_8
crossref_primary_10_1016_j_jpcs_2022_110708
crossref_primary_10_1007_s11082_022_04094_9
crossref_primary_10_3390_polym13132171
crossref_primary_10_1007_s12633_021_01449_x
crossref_primary_10_15407_nnn_21_03_553
crossref_primary_10_15407_nnn_20_04_1029
crossref_primary_10_1007_s12633_021_01186_1
crossref_primary_10_1007_s10904_022_02485_9
crossref_primary_10_15407_nnn_21_02_289
crossref_primary_10_1007_s11082_023_05048_5
crossref_primary_10_1007_s10854_025_14295_z
crossref_primary_10_1007_s10904_023_02866_8
crossref_primary_10_1007_s12633_023_02471_x
crossref_primary_10_1007_s12633_024_03213_3
crossref_primary_10_15407_nnn_21_04_877
crossref_primary_10_1007_s11082_022_04528_4
crossref_primary_10_1002_adfm_202311215
crossref_primary_10_1007_s11082_022_03784_8
crossref_primary_10_15407_nnn_21_03_527
crossref_primary_10_1007_s12633_024_03172_9
crossref_primary_10_1007_s42341_020_00244_6
Cites_doi 10.21608/ejchem.2019.7264.1593
10.1063/1.3663109
10.1038/nphoton.2010.186
10.1107/97809553602060000621
10.1166/jbns.2018.1526
10.1166/jbns.2018.1580
10.21608/ejchem.2019.11109.1712
10.22052/jns.2019.02.016
10.1166/sl.2017.3856
10.24297/jap.v4i3.1983
10.5772/51689
10.1088/1757-899x/518/3/032059
10.4236/ampc.2012.22013
10.1007/s12588-017-9192-5
10.1007/s42341-019-00111-z
10.15407/ujpe64.2.157
10.1155/2015/927364
10.30534/ijeter/2019/04782019
10.4236/ojopm.2013.33012
10.1007/s12588-017-9196-1
10.1166/jbns.2018.1537
10.1007/s42341-019-00100-2
10.1007/s42341-018-0081-1
10.1080/10584587.2010.489427
10.1007/s10854-018-9257-z
10.1166/jbns.2018.1551
10.1166/sl.2018.3935
10.1166/jap.2017.1313
10.1166/sl.2017.3876
10.1007/s10904-018-0837-4
10.15407/ujpe63.8.754
10.3390/ma3063654
10.1007/s12588-019-09228-5
10.1021/nl0731872
10.1007/s42341-019-00148-0
10.1007/s10904-020-01528-3
10.1166/jbns.2018.1591
10.21608/ejchem.2019.10712.1695
10.15407/ujpe62.12.1044
10.1166/sl.2017.3892
10.1166/sl.2017.3900
10.11591/eei.v8i1.1019
10.30534/ijeter/2019/01782019
10.1002/0471474908
10.30534/ijeter/2019/06782019
10.21608/ejchem.2019.6241.1522
10.1166/jbns.2018.1538
10.1166/sl.2018.3915
10.1186/1556-276X-9-1
10.1002/0471720895
10.15407/ujpe62.11.0978
10.1155/2014/697809
10.1166/jbns.2018.1561
10.1002/3527600043
10.1002/0471220655
10.3144/expresspolymlett.2012.31
10.4236/wjnse.2012.24026
10.1088/1757-899x/454/1/012113
10.1007/s42341-019-00121-x
10.1007/s42341-019-00145-3
10.1166/jbns.2018.1518
10.1166/jbns.2018.1533
10.15407/ujpe62.12.1050
10.21608/ejs.2007.149037
10.1166/mat.2016.1371
10.1007/s10854-018-9095-z
10.1016/j.physrep.2009.02.003
10.1021/ja301245b
10.11591/eei.v7i1.839
10.1103/PhysRevB.80.153412
10.21608/ejchem.2019.7154.1590
10.1093/hesc/9780198559160.001.0001
10.1515/zna-2000-9-1005
10.1166/sl.2017.3910
10.1007/s42341-020-00189-w
ContentType Journal Article
Copyright The Korean Institute of Electrical and Electronic Material Engineers 2020
Copyright_xml – notice: The Korean Institute of Electrical and Electronic Material Engineers 2020
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42341-020-00224-w
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2092-7592
EndPage 203
ExternalDocumentID oai_kci_go_kr_ARTI_9775796
10_1007_s42341_020_00224_w
GroupedDBID -EM
.UV
0R~
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADRFC
ADURQ
ADYFF
AEFQL
AEMSY
AESKC
AGDGC
AGJBK
AGMZJ
AGQEE
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AXYYD
BGNMA
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
HZB
IKXTQ
IWAJR
J-C
JDI
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RNS
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c325t-c671007f4224e396357f601e0f43d16b9cde22641b9fb8e09c51a26b027fe6573
ISSN 1229-7607
IngestDate Sun Mar 09 07:50:55 EDT 2025
Tue Jul 01 04:25:01 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
Fri Feb 21 02:49:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electronics
Gold
Energy gap
PMMA
Nanocomposites
Photonics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-c671007f4224e396357f601e0f43d16b9cde22641b9fb8e09c51a26b027fe6573
ORCID 0000-0002-0778-1159
PageCount 19
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9775796
crossref_primary_10_1007_s42341_020_00224_w
crossref_citationtrail_10_1007_s42341_020_00224_w
springer_journals_10_1007_s42341_020_00224_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
2021-04
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Transactions on electrical and electronic materials
PublicationTitleAbbrev Trans. Electr. Electron. Mater
PublicationYear 2021
Publisher The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
한국전기전자재료학회
Publisher_xml – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
– name: 한국전기전자재료학회
References Kenny LipkowitzBLarterRThomas CundariRBoydDBReviews in Computational Chemistry2005HobokenWiley
SahniVQuantal Density Functional Theory II: Approximation Methods and Applications2010BerlinSpringer
HashimAAl-AttiyahKHHObaidSFFabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shieldingUkr. J. Phys.201910.15407/ujpe64.2.157
HassanDAh-YasariAHFabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric applicationBull. Electr. Eng. Inform.201910.11591/eei.v8i1.1019
M. Vanin, Electronic and chemical properties of graphene-based structures: A density functional theory study, Ph.D. Thesis, Technical University of Denmark (2011)
AhmedHHashimAAbduljalilHMAnalysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial applicationEgypt. J. Chem.20196241167117610.21608/ejchem.2019.6241.1522
HashimAHamadZSSynthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocompositesJ. Bionanosci.201810.1166/jbns.2018.1561
AdeosunSLawalGIBalogunSAkpanEReview of green polymer nanocompositesJ. Miner. Mater. Charact. Eng.2012114385416
HashimAAl-KhafajiYHadiASynthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocompositesTrans. Electr. Electr. Mater.201910.1007/s42341-019-00145-3
M. Jasem Mohammed, The Molecular Geometry and Electronic Structure of Some Macromolecules, Ph.D. Thesis, University of Basrah (2005)
FittsDDPrinciples of Quantum Mechanics: As Applied to Chemistry and Chemical Physics2002New YorkCambridge University Press
ChandrakalaHNShivakumaraiahHSomashekarappaRSomashekarSChinmayeeSIndianJAdv. Chem. Sci.20142103
Al-AttiyahKHHHashimAObaidSFSynthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1526
RashidFLHashimAHabeebMASalmanSRAhmedHPreparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical propertiesJ. Eng. Appl. Sci.201385137139
AminAAhmedEHSabaaMWAyoubMMHBattishaIKOpen J. Organ. Polym. Mater.2013373
HashimAHadiASynthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor applicationSens. Lett.201710.1166/sl.2017.3900
JasimFAHashimAHadiAGLaftaFSalmanSRAhmedHPreparation of (pomegranate peel-polystyrene) composites and study their optical propertiesRes. J. Appl. Sci.201389439441
AllenFWatsonDBrammerLOrpenATaylorRJ. Int. Tables Crystallogr.200613790811
JeonI-YBaekJ-BJ. Mater.201033654
A. Hassen, S. El-Sayeda, W. M. Morsic, A.M. El Sayedb, J. Adv. Phys. 4 (2014)
HabbebMAHashimAAliA-RKAThe dielectric properties for (PMMA-LiF) compositesEur. J. Sci. Res.2011613367371
AgoolIRKadhimKJHashimAFabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensorsInt. J. Plast. Technol.201710.1007/s12588-017-9192-5
JeffreyEDReimersRComputational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology2006AustraliaThe University of Sydney
AliofkhazraeiMAdvances in Graphene Science2013LondonIntech Open Science
HashimAHabeebMAKhalafAHadiAFabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applicationsSens. Lett.20171558959610.1166/sl.2017.3856
David SherrillCIntroduction to Electronic structure Theory2002AtlantaGeorgia Institute of Technology
K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M. Sc. Thesis, University of Kufa (2010)
HallGGThe molecular orbital theory of chemical valence VIII. A method of calculating ionization potentialsProc. R. Soc. A1951205541552
DivyaRMeenaMMahadevanCKPadmaCMJ. Eng. Res. Appl.2014401
ZakAKHashimAMDarroudiMJ. Nanoscale Res. Lett.20149116
AbduljalilHayderHashimAhmedJewadAlaaThe effect of addition titanium dioxide on electrical properties of poly-methyl methacrylateEur. J. Sci. Res.2011632231235
BonaccorsoFSunZHasanTFerrariACJ. Nat. Photon.20104611622
RashidFLTalibSMHadiAHashimANovel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2–SiC) nanofluids for environmental applicationsIOP Conf. Ser. Mater. Sci. Eng.201810.1088/1757-899x/454/1/012113
HashimAHadiAA novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocompositesSens. Lett.201710.1166/sl.2017.3910
M.L. Chabinyc, X. Chen, R.E. Holmlin, H. Jacobs, H. Skulason, C.D. Frisbie, V. Mujica, M.A. Ratner, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. (2002)
HiroyukiIJ. Zeitschrift. Naturforschung A200055769771
DivyaRMeenaMMahadevanCKPadmaCMInvestigation on CuO dispersed PVA polymer filmsJ. Eng. Res. Appl.20144517
DorsettHWhiteAOverview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials2000AustraliaDeference science and Technology Organization
Al-RamadhanZHashimAAlgidsawiAJKThe D.C. electrical properties of (PVC-Al2O3) compositesAIP Conf. Proc.201110.1063/1.3663109
PetrushenkoIJ. Adv. Mater. Sci. Eng.20151517
MatthewsPTIntroduction to Quantum Mechanics1974New YorkMcGrew-Hill
MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic
HassanDHashimAStructural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1533
PaulingLThe Nature of the Chemical Bond1960United StatesCornell University Press
AgoolIRKadhimKJHashimASynthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applicationsInt. J. Plast. Technol.201710.1007/s12588-017-9196-1
HashimAHamadZSFabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensorsJ. Nanostruct.20199234034810.22052/jns.2019.02.016
B. Soren, T. Morten, Electronic and optical properties of graphene and graphene antidote structures, Master Thesis, University of Aalborg (2013)
AnghamHAhmedHHayderMAAnalysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applicationsTrans Electr Electron Mater201910.1007/s42341-019-00148-0
HassanDHashimAPreparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1537
JeburQMHashimAHabeebMAStructural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applicationsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00121-x
HadiAHashimAAl-KhafajiYStructural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devicesTrans. Electr. Electr. Mater.202010.1007/s42341-020-00189-w
GavadeCSinghNLSinghDShahSTaipathiAAvasthiDKJ. Integr. Ferroelectr.201011776
KadhimKJAgoolIRHashimASynthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial applicationMater. Focus201610.1166/mat.2016.1371
HashimAHadiANovel lead oxide polymer nanocomposites for nuclear radiation shielding applicationsUkr. J. Phys.201710.15407/ujpe62.11.0978
ZhangQHeavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1-ySeyJ. Am. Chem. Soc.2012241003110038
S. Bhavani, M. Ravi, V.V.R. Narasimha Rao, Int. J. Eng. Sci. Innov. Technol. 3 (2014)
HashimAHamadZSLower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applicationsEgypt. J. Chem.202010.21608/ejchem.2019.7264.1593
W. Al-Taay, A.M. Nabi, RM. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci. 6, ArticleID 697809 (2014)
AhmedHAbduljalilHMHashimAAnalysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00100-2
MohammadAHooshyariKJavanbakhtMEnhessariMFabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiO nanocomposite membranes for PEM fuel cellsIran. J. Energy Environ.2013428690
HashimAHadiQStructural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensorsJ. Mater. Sci. Mater. Electron.201829115981160410.1007/s10854-018-9257-z
G. Mohammed Merdan, Self-Consistent Field Calculation for the effect of Pressure and Temperature on some Properties of Greyt in Crystal, M.Sc. Thesis, University of Babylon (2005)
Al-GarahNHRashidFLHadiAHashimASynthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applicationsJ. Bionanosci.201810.1166/jbns.2018.1538
ChaudhariLNathuramRAbsorption coefficient of polymers (polyvinyl alcohol) by using gamma energy of 0.39 MeVBulg. J. Phys.201037232240
KadhimKJAgoolIRHashimAEffect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical applicationJ. Adv. Phys.201710.1166/jap.2017.1313
SangawarVGolchhaMEvolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticlesInt. J. Sci. Eng. Res.20134627002705
RabeeBHHashimASynthesis and characterization of carbon nanotubes-polystyrene compositesEur. J. Sci. Res.2011602247254
M. Obula Reddy, B. Chandra Babu, Indian J. Mater. Sci., Article ID 927364, 8 (2015)
ElmarzugiNAdaliTBentalebAKelebEMohamedAHamzaAMSpectroscopic characterization of PEG-DNA biocomplexes by FTIRJ. Appl. Pharm. Sci.201448610
H. Dorsett, A. White, Overview of Molecular Modeling and Ab Initio Mole
SM Reda (224_CR12) 2012; 2
FA Jasim (224_CR39) 2013; 8
Q Zhang (224_CR118) 2012; 24
L Pauling (224_CR105) 1960
JB Bhaiswar (224_CR15) 2014; 80
L Chaudhari (224_CR22) 2010; 37
DD Fitts (224_CR81) 2002
A Hashim (224_CR31) 2017
BH Rabee (224_CR50) 2011; 60
A Hashim (224_CR51) 2017
AB Elaydy (224_CR20) 2007; 30
224_CR108
224_CR87
224_CR106
S Adeosun (224_CR17) 2012; 11
224_CR104
224_CR102
B Kenny Lipkowitz (224_CR92) 2005
C David Sherrill (224_CR86) 2002
FA Jasim (224_CR38) 2013; 8
W Theil (224_CR93) 2000
SS Behera (224_CR14) 2012; 2
Hayder Abduljalil (224_CR28) 2011; 63
224_CR11
224_CR99
I Tantis (224_CR9) 2012; 6
D Hassan (224_CR115) 2018
W Koch (224_CR88) 2001
224_CR16
R Divya (224_CR18) 2014; 4
224_CR111
A Hashim (224_CR64) 2018
M Mueller (224_CR100) 2001
S Hadi (224_CR44) 2011; 5
KHH Al-Attiyah (224_CR74) 2019
224_CR94
KJ Kadhim (224_CR69) 2017
224_CR95
A Hashim (224_CR53) 2018; 28
224_CR96
A Amin (224_CR6) 2013; 3
A Hashim (224_CR33) 2017
NH Al-Garah (224_CR67) 2018
PT Matthews (224_CR98) 1974
A Hazim (224_CR109) 2019
A Mohammad (224_CR23) 2013; 4
B Ghavami (224_CR110) 2015; 1
M Aliofkhazraei (224_CR116) 2013
A Hashim (224_CR35) 2019; 9
A Hashim (224_CR56) 2019
R Divya (224_CR7) 2014; 4
PA Cox (224_CR82) 1996
H Ahmed (224_CR66) 2020
QM Jebur (224_CR45) 2019
A Hashim (224_CR73) 2018
FL Rashid (224_CR76) 2018
D Young (224_CR26) 2001
N Ira Levin (224_CR85) 2009
H Ahmed (224_CR62) 2019; 62
H Angham (224_CR107) 2019
FL Rashid (224_CR78) 2018; 8
A Hashim (224_CR43) 2017; 15
A Hashim (224_CR57) 2018
A Hashim (224_CR34) 2017
H Dorsett (224_CR103) 2000
HN Chandrakala (224_CR8) 2014; 2
N Elmarzugi (224_CR25) 2014; 4
GG Hall (224_CR90) 1951; 205
V Sahni (224_CR84) 2010
224_CR4
IR Agool (224_CR79) 2017
224_CR3
A Hashim (224_CR55) 2019
CJ Cramer (224_CR80) 2004
F Allen (224_CR121) 2006; 13
DW Rogers (224_CR83) 2003
A Hadi (224_CR59) 2017
F Bonaccorso (224_CR117) 2010; 4
A Hashim (224_CR122) 2017
A Hadi (224_CR77) 2019; 518
ED Jeffrey (224_CR91) 2006
Z Al-Ramadhan (224_CR29) 2011
A Hazim (224_CR113) 2019
A Hashim (224_CR52) 2017
A Hashim (224_CR63) 2018; 29
EK Tawfik (224_CR2) 2015; 3
A Hashim (224_CR72) 2018
AJ Kadham (224_CR46) 2018
H Ahmed (224_CR54) 2019
A Hashim (224_CR32) 2018
A Hashim (224_CR58) 2017; 15
B Abbas (224_CR71) 2019
M Khissi (224_CR21) 2011; 2
H Ahmed (224_CR97) 2019
C Gavade (224_CR13) 2010; 117
MA Habbeb (224_CR37) 2011; 61
I Petrushenko (224_CR112) 2015; 15
D Hassan (224_CR36) 2019
V Sangawar (224_CR19) 2013; 4
D Hassan (224_CR120) 2018
A Hashim (224_CR47) 2020
A Hashim (224_CR101) 2019
I Hiroyuki (224_CR119) 2000; 55
M Mueller (224_CR27) 2001
A Hashim (224_CR30) 2017
I-Y Jeon (224_CR5) 2010; 3
FL Rashid (224_CR41) 2013; 8
DE Hegazy (224_CR10) 2014; 47
K Karthikeyan (224_CR24) 2009; 5
A Hashim (224_CR48) 2020
KHH Al-Attiyah (224_CR75) 2018
KJ Kadhim (224_CR68) 2016
A Hashim (224_CR42) 2019
IR Agool (224_CR40) 2015; 9
A Hashim (224_CR70) 2018
IR Agool (224_CR60) 2017
AK Zak (224_CR1) 2014; 9
A Hadi (224_CR49) 2020
A Alexander (224_CR114) 2008; 8
A Hashim (224_CR61) 2018; 29
A Hashim (224_CR65) 2020
F Jensen (224_CR89) 1999
References_xml – reference: HashimAAbduljalilHMAhmedHFabrication and characterization of (PVA–TiO2)1-x/SiCx nanocomposites for biomedical applicationsEgypt. J. Chem.202010.21608/ejchem.2019.10712.1695
– reference: CramerCJEssentials of Computational Chemistry: Theories and Models20042ChichesterWiley
– reference: BonaccorsoFSunZHasanTFerrariACJ. Nat. Photon.20104611622
– reference: K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M. Sc. Thesis, University of Kufa (2010)
– reference: JeonI-YBaekJ-BJ. Mater.201033654
– reference: FittsDDPrinciples of Quantum Mechanics: As Applied to Chemistry and Chemical Physics2002New YorkCambridge University Press
– reference: JasimFAHashimAHadiAGLaftaFSalmanSRAhmedHPreparation of (pomegranate peel-polystyrene) composites and study their optical propertiesRes. J. Appl. Sci.201389439441
– reference: RashidFLTalibSMHadiAHashimANovel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2–SiC) nanofluids for environmental applicationsIOP Conf. Ser. Mater. Sci. Eng.201810.1088/1757-899x/454/1/012113
– reference: A. Hassen, S. El-Sayeda, W. M. Morsic, A.M. El Sayedb, J. Adv. Phys. 4 (2014)
– reference: DorsettHWhiteAOverview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials2000AustraliaDeference science and Technology Organization
– reference: HassanDAh-YasariAHFabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric applicationBull. Electr. Eng. Inform.201910.11591/eei.v8i1.1019
– reference: BhaiswarJBSalunkheMDongreSPKumbhareBTComparative study on thermal stabilityand optical properties of PANI/CdS and PANI/PbSnanocompositeIOSR J. Appl. Phys.2014807982
– reference: K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M.Sc. Thesis, University of Kufa (2010)
– reference: BeheraSSPatraJKPramanikKPandaNThatoiHWorld J. Nano Sci. Eng.20122196
– reference: AgoolIRMohammedFSHashimAThe effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blendAdv. Environ. Biol.2015911111
– reference: AhmedHAbduljalilHMHashimAAnalysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00100-2
– reference: HazimAAbduljalilHMHashimAStructural, electronic, optical properties and antibacterial application of novel (PMMA-Al2O3-Ag) nanocomposites for dental industries applicationsInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/04782019
– reference: HazimAHashimAAbduljalilHMNovel (PMMA-ZrO2-Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industriesInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/01782019
– reference: M. Vanin, Electronic and chemical properties of graphene-based structures: A density functional theory study, Ph.D. Thesis, Technical University of Denmark (2011)
– reference: HassanDHashimAStructural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1533
– reference: TawfikEKFawzyYHAEl-GhazalyMHAshryHAPhys. Sci. Res. Int. J.2015326
– reference: HashimAHadiQNovel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensorSens. Lett.201710.1166/sl.2017.3892
– reference: H. Dorsett, A. White, Overview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials, Deference science and Technology Organization
– reference: HashimAJassimANovel of (PVA–ST–PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applicationsSens. Lett.201710.1166/sl.2018.3915
– reference: JeffreyEDReimersRComputational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology2006AustraliaThe University of Sydney
– reference: HashimAAbduljalilHAhmedHAnalysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applicationsEgypt. J. Chem.201910.21608/ejchem.2019.7154.1590
– reference: David SherrillCIntroduction to Electronic structure Theory2002AtlantaGeorgia Institute of Technology
– reference: AdeosunSLawalGIBalogunSAkpanEReview of green polymer nanocompositesJ. Miner. Mater. Charact. Eng.2012114385416
– reference: G. Montambaux, F. Piechon, J. Fuchs, M. O. Goerbig, Merging of Dirac points in a two-dimensional crystal. Phys. Rev. 80 (2009)
– reference: HadiAHashimAAl-KhafajiYStructural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devicesTrans. Electr. Electr. Mater.202010.1007/s42341-020-00189-w
– reference: AbbasBHashimANovel X-rays attenuation by (PMMA-PS-WC) new nanocompsites: fabrication, structural, optical characterizations and X-ray shielding applicationInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/06782019
– reference: L.M. Malarda, M.A. Pimentaa, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 51–87 (2009)
– reference: HassanDHashimAPreparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1537
– reference: M. Obula Reddy, B. Chandra Babu, Indian J. Mater. Sci., Article ID 927364, 8 (2015)
– reference: W. Al-Taay, A.M. Nabi, RM. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci. 6, ArticleID 697809 (2014)
– reference: PetrushenkoIJ. Adv. Mater. Sci. Eng.20151517
– reference: HashimAHadiQStructural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensorsJ. Mater. Sci. Mater. Electron.201829115981160410.1007/s10854-018-9257-z
– reference: Al-AttiyahKHHHashimAObaidSFSynthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1526
– reference: HashimAHadiQSynthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensorsJ. Inorg. Organometal. Polym. Mater.20182841394140110.1007/s10904-018-0837-4
– reference: KadhimKJAgoolIRHashimASynthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial applicationMater. Focus201610.1166/mat.2016.1371
– reference: HadiSHashimAJewadAOptical properties of (PVA-LiF) compositesAust. J. Basic Appl. Sci.20115921922195
– reference: AbduljalilHayderHashimAhmedJewadAlaaThe effect of addition titanium dioxide on electrical properties of poly-methyl methacrylateEur. J. Sci. Res.2011632231235
– reference: Al-AttiyahKHHHashimAObaidSFFabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applicationsInt. J. Plast. Technol.201910.1007/s12588-019-09228-5
– reference: RogersDWComputational Chemistry Using the PC20033HobokenWiley
– reference: HadiARashidFLHusseinHQHashimANovel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applicationsIOP Conf. Ser. Mater. Sci. Eng.20195183510.1088/1757-899x/518/3/032059
– reference: MatthewsPTIntroduction to Quantum Mechanics1974New YorkMcGrew-Hill
– reference: TantisIPsarrasGCTasisDJ. Expr. Poly. Lett.20126283
– reference: HegazyDEEidMMadaniMArab J. Nucl. Sci. Appl.20144741
– reference: SangawarVGolchhaMEvolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticlesInt. J. Sci. Eng. Res.20134627002705
– reference: ZhangQHeavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1-ySeyJ. Am. Chem. Soc.2012241003110038
– reference: KarthikeyanKPoornaprakashNSelvakumarNJeyasubrmanianKThermal properties and morphology of MgO–PVA nanocomposite filmJ Nanostruct. Polym. Nanocompos.2009548388
– reference: KadhamAJHassanDMohammadNHashimAFabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applicationsBull. Electr. Eng. Inform.201810.11591/eei.v7i1.839
– reference: TheilWSemiempirical Methods2000JülichJohn Von Neumann Institute for Computing
– reference: MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic
– reference: DivyaRMeenaMMahadevanCKPadmaCMInvestigation on CuO dispersed PVA polymer filmsJ. Eng. Res. Appl.20144517
– reference: RabeeBHHashimASynthesis and characterization of carbon nanotubes-polystyrene compositesEur. J. Sci. Res.2011602247254
– reference: S. Bhavani, M. Ravi, V.V.R. Narasimha Rao, Int. J. Eng. Sci. Innov. Technol. 3 (2014)
– reference: B. Soren, T. Morten, Electronic and optical properties of graphene and graphene antidote structures, Master Thesis, University of Aalborg (2013)
– reference: JasimFALaftaFHashimAAliMHadiAGCharacterization of palm fronds-polystyrene compositesJ. Eng. Appl. Sci.201385140142
– reference: HashimAEnhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applicationsJ. Inorg. Org. Polym. Mater.202010.1007/s10904-020-01528-3
– reference: HashimAHamidNFabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience applicationJ. Bionanosci.201810.1166/jbns.2018.1591
– reference: HashimAHadiANovel lead oxide polymer nanocomposites for nuclear radiation shielding applicationsUkr. J. Phys.201710.15407/ujpe62.11.0978
– reference: HashimAHabeebMAHadiASynthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperaturesSens. Lett.201715975876110.1166/sl.2017.3876
– reference: HashimAHadiASynthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor applicationSens. Lett.201710.1166/sl.2017.3900
– reference: HashimAAl-KhafajiYHadiASynthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocompositesTrans. Electr. Electr. Mater.201910.1007/s42341-019-00145-3
– reference: AgoolIRKadhimKJHashimASynthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applicationsInt. J. Plast. Technol.201710.1007/s12588-017-9196-1
– reference: GhavamiBEbrahimzadehAJ. Mesoscale Nano Scale Phys.2015116
– reference: ZakAKHashimAMDarroudiMJ. Nanoscale Res. Lett.20149116
– reference: HashimAHadiANovel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterizationUkr. J. Phys.201810.15407/ujpe63.8.754
– reference: YoungDComputational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems2001New YorkWiley
– reference: ElaydyABAkraiamFAEnhancement of DC electrical conductivity and creep relaxation for PVA samples doped with SrCl2Egypt J. Solids2007302189197
– reference: KhissiMEl HasnaouiMBelattarJGracaMFAchourMCostaLCDC electrical conductivity studies on copolymer/carbon black compositesJ. Mater. Environ. Sci.201123281284
– reference: CoxPAIntroduction to Quantum Theory and Atomic Structure1996New YorkOxford University Press Inc.
– reference: AhmedHHashimAAbduljalilHMAnalysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial applicationEgypt. J. Chem.20196241167117610.21608/ejchem.2019.6241.1522
– reference: ChandrakalaHNShivakumaraiahHSomashekarappaRSomashekarSChinmayeeSIndianJAdv. Chem. Sci.20142103
– reference: MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic/Plenum Publishers
– reference: HashimAHamadZSFabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensorsJ. Nanostruct.20199234034810.22052/jns.2019.02.016
– reference: AnghamHAhmedHHayderMAAnalysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applicationsTrans Electr Electron Mater201910.1007/s42341-019-00148-0
– reference: AllenFWatsonDBrammerLOrpenATaylorRJ. Int. Tables Crystallogr.200613790811
– reference: HashimAAgoolIRKadhimKJModern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a reviewJ. Bionanosci.201810.1166/jbns.2018.1580
– reference: HadiAHashimADevelopment of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticlesUkr. J. Phys.201710.15407/ujpe62.12.1044
– reference: Al-GarahNHRashidFLHadiAHashimASynthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applicationsJ. Bionanosci.201810.1166/jbns.2018.1538
– reference: JensenFIntroduction to Computational Chemistry1999LondonWiley
– reference: Ira LevinNQuantum Chemistry20096Upper Saddle RiverPearson Education Inc
– reference: Al-RamadhanZHashimAAlgidsawiAJKThe D.C. electrical properties of (PVC-Al2O3) compositesAIP Conf. Proc.201110.1063/1.3663109
– reference: HashimAJassimANovel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1518
– reference: AlexanderAGhoshSBaoWCalizoITeweldebrhanDMiaoFLauCJ. Nano. Lett.20088902907
– reference: KadhimKJAgoolIRHashimAEffect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical applicationJ. Adv. Phys.201710.1166/jap.2017.1313
– reference: ChaudhariLNathuramRAbsorption coefficient of polymers (polyvinyl alcohol) by using gamma energy of 0.39 MeVBulg. J. Phys.201037232240
– reference: RashidFLHadiAAl-GarahNHHashimANovel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applicationsInt. J. Pharmaceut. Phytopharmacol. Res.2018814656
– reference: HashimAHadiASynthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticlesUkr. J. Phys.201710.15407/ujpe62.12.1050
– reference: G. Mohammed Merdan, Self-Consistent Field Calculation for the effect of Pressure and Temperature on some Properties of Greyt in Crystal, M.Sc. Thesis, University of Babylon (2005)
– reference: ElmarzugiNAdaliTBentalebAKelebEMohamedAHamzaAMSpectroscopic characterization of PEG-DNA biocomplexes by FTIRJ. Appl. Pharm. Sci.201448610
– reference: AgoolIRKadhimKJHashimAFabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensorsInt. J. Plast. Technol.201710.1007/s12588-017-9192-5
– reference: HashimAHamadZSLower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applicationsEgypt. J. Chem.202010.21608/ejchem.2019.7264.1593
– reference: RedaSMAl-GhannamSMAdv. Mater. Phys. Chem.2012275
– reference: KochWHolthausenMCAchemist’s guide to functional theory20012BerlinWiley
– reference: AhmedHAbduljalilHMHashimAStructural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00111-z
– reference: GavadeCSinghNLSinghDShahSTaipathiAAvasthiDKJ. Integr. Ferroelectr.201011776
– reference: HashimAHamadZSNovel of (niobium carbide-biopolymer blend) nanocomposites: characterization for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1551
– reference: HashimAAl-AttiyahKHHObaidSFFabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shieldingUkr. J. Phys.201910.15407/ujpe64.2.157
– reference: HashimAHabeebMAKhalafAHadiAFabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applicationsSens. Lett.20171558959610.1166/sl.2017.3856
– reference: MohammadAHooshyariKJavanbakhtMEnhessariMFabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiO nanocomposite membranes for PEM fuel cellsIran. J. Energy Environ.2013428690
– reference: HashimAHadiAA novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocompositesSens. Lett.201710.1166/sl.2017.3910
– reference: HallGGThe molecular orbital theory of chemical valence VIII. A method of calculating ionization potentialsProc. R. Soc. A1951205541552
– reference: HiroyukiIJ. Zeitschrift. Naturforschung A200055769771
– reference: PaulingLThe Nature of the Chemical Bond1960United StatesCornell University Press
– reference: HabbebMAHashimAAliA-RKAThe dielectric properties for (PMMA-LiF) compositesEur. J. Sci. Res.2011613367371
– reference: DivyaRMeenaMMahadevanCKPadmaCMJ. Eng. Res. Appl.2014401
– reference: M. Jasem Mohammed, The Molecular Geometry and Electronic Structure of Some Macromolecules, Ph.D. Thesis, University of Basrah (2005)
– reference: AminAAhmedEHSabaaMWAyoubMMHBattishaIKOpen J. Organ. Polym. Mater.2013373
– reference: HashimAHamadZSSynthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocompositesJ. Bionanosci.201810.1166/jbns.2018.1561
– reference: AliofkhazraeiMAdvances in Graphene Science2013LondonIntech Open Science
– reference: SahniVQuantal Density Functional Theory II: Approximation Methods and Applications2010BerlinSpringer
– reference: RashidFLHashimAHabeebMASalmanSRAhmedHPreparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical propertiesJ. Eng. Appl. Sci.201385137139
– reference: HashimAHabeebMASynthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperaturesTrans. Electr. Electr. Mater.201910.1007/s42341-018-0081-1
– reference: M.L. Chabinyc, X. Chen, R.E. Holmlin, H. Jacobs, H. Skulason, C.D. Frisbie, V. Mujica, M.A. Ratner, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. (2002)
– reference: HashimAHabeebMAHadiAJeburQMHadiWFabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applicationsSens. Lett.201710.1166/sl.2018.3935
– reference: HashimAAgoolIRKadhimKJNovel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applicationsJ. Mater. Sci.: Mater. Electron.20182912103691039410.1007/s10854-018-9095-z
– reference: JeburQMHashimAHabeebMAStructural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applicationsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00121-x
– reference: AhmedHHashimAFabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applicationsEgypt. J. Chem.202010.21608/ejchem.2019.11109.1712
– reference: Kenny LipkowitzBLarterRThomas CundariRBoydDBReviews in Computational Chemistry2005HobokenWiley
– ident: 224_CR99
– ident: 224_CR106
– year: 2020
  ident: 224_CR47
  publication-title: Egypt. J. Chem.
  doi: 10.21608/ejchem.2019.7264.1593
– volume-title: Overview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials
  year: 2000
  ident: 224_CR103
– volume: 8
  start-page: 439
  issue: 9
  year: 2013
  ident: 224_CR38
  publication-title: Res. J. Appl. Sci.
– year: 2011
  ident: 224_CR29
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3663109
– volume: 4
  start-page: 611
  year: 2010
  ident: 224_CR117
  publication-title: J. Nat. Photon.
  doi: 10.1038/nphoton.2010.186
– volume: 13
  start-page: 790
  year: 2006
  ident: 224_CR121
  publication-title: J. Int. Tables Crystallogr.
  doi: 10.1107/97809553602060000621
– year: 2018
  ident: 224_CR75
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1526
– volume-title: Computational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology
  year: 2006
  ident: 224_CR91
– volume: 1
  start-page: 1
  year: 2015
  ident: 224_CR110
  publication-title: J. Mesoscale Nano Scale Phys.
– year: 2018
  ident: 224_CR64
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1580
– year: 2020
  ident: 224_CR66
  publication-title: Egypt. J. Chem.
  doi: 10.21608/ejchem.2019.11109.1712
– volume: 9
  start-page: 340
  issue: 2
  year: 2019
  ident: 224_CR35
  publication-title: J. Nanostruct.
  doi: 10.22052/jns.2019.02.016
– volume: 15
  start-page: 589
  year: 2017
  ident: 224_CR43
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2017.3856
– volume-title: Quantum Chemistry
  year: 2009
  ident: 224_CR85
– ident: 224_CR11
  doi: 10.24297/jap.v4i3.1983
– volume: 4
  start-page: 2700
  issue: 6
  year: 2013
  ident: 224_CR19
  publication-title: Int. J. Sci. Eng. Res.
– volume-title: The Nature of the Chemical Bond
  year: 1960
  ident: 224_CR105
– volume-title: Advances in Graphene Science
  year: 2013
  ident: 224_CR116
  doi: 10.5772/51689
– volume: 5
  start-page: 83
  issue: 4
  year: 2009
  ident: 224_CR24
  publication-title: J Nanostruct. Polym. Nanocompos.
– volume: 518
  start-page: 5
  issue: 3
  year: 2019
  ident: 224_CR77
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899x/518/3/032059
– volume: 2
  start-page: 75
  year: 2012
  ident: 224_CR12
  publication-title: Adv. Mater. Phys. Chem.
  doi: 10.4236/ampc.2012.22013
– year: 2017
  ident: 224_CR60
  publication-title: Int. J. Plast. Technol.
  doi: 10.1007/s12588-017-9192-5
– ident: 224_CR96
– year: 2019
  ident: 224_CR97
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-019-00111-z
– year: 2019
  ident: 224_CR101
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe64.2.157
– ident: 224_CR3
  doi: 10.1155/2015/927364
– year: 2019
  ident: 224_CR113
  publication-title: Int. J. Emerg. Trends Eng. Res.
  doi: 10.30534/ijeter/2019/04782019
– volume: 3
  start-page: 73
  year: 2013
  ident: 224_CR6
  publication-title: Open J. Organ. Polym. Mater.
  doi: 10.4236/ojopm.2013.33012
– year: 2017
  ident: 224_CR79
  publication-title: Int. J. Plast. Technol.
  doi: 10.1007/s12588-017-9196-1
– year: 2018
  ident: 224_CR120
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1537
– year: 2019
  ident: 224_CR54
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-019-00100-2
– volume-title: Introduction to Computational Chemistry
  year: 1999
  ident: 224_CR89
– volume-title: Quantal Density Functional Theory II: Approximation Methods and Applications
  year: 2010
  ident: 224_CR84
– volume: 37
  start-page: 232
  year: 2010
  ident: 224_CR22
  publication-title: Bulg. J. Phys.
– year: 2019
  ident: 224_CR55
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-018-0081-1
– volume: 2
  start-page: 281
  issue: 3
  year: 2011
  ident: 224_CR21
  publication-title: J. Mater. Environ. Sci.
– volume: 117
  start-page: 76
  year: 2010
  ident: 224_CR13
  publication-title: J. Integr. Ferroelectr.
  doi: 10.1080/10584587.2010.489427
– volume: 8
  start-page: 46
  issue: 1
  year: 2018
  ident: 224_CR78
  publication-title: Int. J. Pharmaceut. Phytopharmacol. Res.
– volume: 47
  start-page: 41
  year: 2014
  ident: 224_CR10
  publication-title: Arab J. Nucl. Sci. Appl.
– volume: 29
  start-page: 11598
  year: 2018
  ident: 224_CR61
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-9257-z
– volume: 4
  start-page: 1
  issue: 5
  year: 2014
  ident: 224_CR18
  publication-title: J. Eng. Res. Appl.
– year: 2018
  ident: 224_CR73
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1551
– volume-title: Essentials of Computational Chemistry: Theories and Models
  year: 2004
  ident: 224_CR80
– year: 2017
  ident: 224_CR34
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2018.3935
– year: 2017
  ident: 224_CR69
  publication-title: J. Adv. Phys.
  doi: 10.1166/jap.2017.1313
– volume: 15
  start-page: 758
  issue: 9
  year: 2017
  ident: 224_CR58
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2017.3876
– volume: 28
  start-page: 1394
  issue: 4
  year: 2018
  ident: 224_CR53
  publication-title: J. Inorg. Organometal. Polym. Mater.
  doi: 10.1007/s10904-018-0837-4
– year: 2018
  ident: 224_CR32
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe63.8.754
– volume: 3
  start-page: 3654
  year: 2010
  ident: 224_CR5
  publication-title: J. Mater.
  doi: 10.3390/ma3063654
– year: 2019
  ident: 224_CR74
  publication-title: Int. J. Plast. Technol.
  doi: 10.1007/s12588-019-09228-5
– volume: 8
  start-page: 902
  year: 2008
  ident: 224_CR114
  publication-title: J. Nano. Lett.
  doi: 10.1021/nl0731872
– ident: 224_CR94
– year: 2019
  ident: 224_CR107
  publication-title: Trans Electr Electron Mater
  doi: 10.1007/s42341-019-00148-0
– volume: 8
  start-page: 137
  issue: 5
  year: 2013
  ident: 224_CR41
  publication-title: J. Eng. Appl. Sci.
– year: 2020
  ident: 224_CR48
  publication-title: J. Inorg. Org. Polym. Mater.
  doi: 10.1007/s10904-020-01528-3
– volume-title: Introduction to Quantum Mechanics
  year: 1974
  ident: 224_CR98
– year: 2018
  ident: 224_CR72
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1591
– volume: 60
  start-page: 247
  issue: 2
  year: 2011
  ident: 224_CR50
  publication-title: Eur. J. Sci. Res.
– ident: 224_CR102
– year: 2020
  ident: 224_CR65
  publication-title: Egypt. J. Chem.
  doi: 10.21608/ejchem.2019.10712.1695
– year: 2017
  ident: 224_CR59
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe62.12.1044
– volume: 63
  start-page: 231
  issue: 2
  year: 2011
  ident: 224_CR28
  publication-title: Eur. J. Sci. Res.
– year: 2017
  ident: 224_CR33
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2017.3892
– year: 2017
  ident: 224_CR51
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2017.3900
– year: 2019
  ident: 224_CR36
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v8i1.1019
– year: 2019
  ident: 224_CR109
  publication-title: Int. J. Emerg. Trends Eng. Res.
  doi: 10.30534/ijeter/2019/01782019
– volume: 61
  start-page: 367
  issue: 3
  year: 2011
  ident: 224_CR37
  publication-title: Eur. J. Sci. Res.
– volume: 80
  start-page: 79
  year: 2014
  ident: 224_CR15
  publication-title: IOSR J. Appl. Phys.
– volume-title: Computational Chemistry Using the PC
  year: 2003
  ident: 224_CR83
  doi: 10.1002/0471474908
– year: 2019
  ident: 224_CR71
  publication-title: Int. J. Emerg. Trends Eng. Res.
  doi: 10.30534/ijeter/2019/06782019
– volume: 62
  start-page: 1167
  issue: 4
  year: 2019
  ident: 224_CR62
  publication-title: Egypt. J. Chem.
  doi: 10.21608/ejchem.2019.6241.1522
– ident: 224_CR95
– year: 2018
  ident: 224_CR67
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1538
– volume: 4
  start-page: 86
  issue: 2
  year: 2013
  ident: 224_CR23
  publication-title: Iran. J. Energy Environ.
– year: 2017
  ident: 224_CR52
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2018.3915
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  ident: 224_CR1
  publication-title: J. Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-1
– volume: 4
  start-page: 6
  issue: 8
  year: 2014
  ident: 224_CR25
  publication-title: J. Appl. Pharm. Sci.
– volume: 3
  start-page: 26
  year: 2015
  ident: 224_CR2
  publication-title: Phys. Sci. Res. Int. J.
– volume-title: Semiempirical Methods
  year: 2000
  ident: 224_CR93
– volume-title: Reviews in Computational Chemistry
  year: 2005
  ident: 224_CR92
  doi: 10.1002/0471720895
– volume: 4
  start-page: 01
  year: 2014
  ident: 224_CR7
  publication-title: J. Eng. Res. Appl.
– volume: 15
  start-page: 1
  year: 2015
  ident: 224_CR112
  publication-title: J. Adv. Mater. Sci. Eng.
– volume: 205
  start-page: 541
  year: 1951
  ident: 224_CR90
  publication-title: Proc. R. Soc. A
– year: 2017
  ident: 224_CR122
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe62.11.0978
– ident: 224_CR16
  doi: 10.1155/2014/697809
– year: 2018
  ident: 224_CR70
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1561
– volume-title: Achemist’s guide to functional theory
  year: 2001
  ident: 224_CR88
  doi: 10.1002/3527600043
– volume-title: Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems
  year: 2001
  ident: 224_CR26
  doi: 10.1002/0471220655
– volume-title: Introduction to Electronic structure Theory
  year: 2002
  ident: 224_CR86
– volume: 6
  start-page: 283
  year: 2012
  ident: 224_CR9
  publication-title: J. Expr. Poly. Lett.
  doi: 10.3144/expresspolymlett.2012.31
– volume: 2
  start-page: 196
  year: 2012
  ident: 224_CR14
  publication-title: World J. Nano Sci. Eng.
  doi: 10.4236/wjnse.2012.24026
– year: 2018
  ident: 224_CR76
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899x/454/1/012113
– year: 2019
  ident: 224_CR45
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-019-00121-x
– volume: 5
  start-page: 2192
  issue: 9
  year: 2011
  ident: 224_CR44
  publication-title: Aust. J. Basic Appl. Sci.
– year: 2019
  ident: 224_CR56
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-019-00145-3
– year: 2018
  ident: 224_CR57
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1518
– ident: 224_CR108
– year: 2018
  ident: 224_CR115
  publication-title: J. Bionanosci.
  doi: 10.1166/jbns.2018.1533
– volume: 2
  start-page: 103
  year: 2014
  ident: 224_CR8
  publication-title: Adv. Chem. Sci.
– year: 2017
  ident: 224_CR30
  publication-title: Ukr. J. Phys.
  doi: 10.15407/ujpe62.12.1050
– volume: 30
  start-page: 189
  issue: 2
  year: 2007
  ident: 224_CR20
  publication-title: Egypt J. Solids
  doi: 10.21608/ejs.2007.149037
– ident: 224_CR87
– year: 2016
  ident: 224_CR68
  publication-title: Mater. Focus
  doi: 10.1166/mat.2016.1371
– volume: 29
  start-page: 10369
  issue: 12
  year: 2018
  ident: 224_CR63
  publication-title: J. Mater. Sci.: Mater. Electron.
  doi: 10.1007/s10854-018-9095-z
– ident: 224_CR111
  doi: 10.1016/j.physrep.2009.02.003
– volume: 8
  start-page: 140
  issue: 5
  year: 2013
  ident: 224_CR39
  publication-title: J. Eng. Appl. Sci.
– volume: 9
  start-page: 1
  issue: 11
  year: 2015
  ident: 224_CR40
  publication-title: Adv. Environ. Biol.
– volume: 24
  start-page: 10031
  year: 2012
  ident: 224_CR118
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301245b
– ident: 224_CR4
– year: 2018
  ident: 224_CR46
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v7i1.839
– volume-title: Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations
  year: 2001
  ident: 224_CR27
– ident: 224_CR104
  doi: 10.1103/PhysRevB.80.153412
– year: 2019
  ident: 224_CR42
  publication-title: Egypt. J. Chem.
  doi: 10.21608/ejchem.2019.7154.1590
– volume-title: Introduction to Quantum Theory and Atomic Structure
  year: 1996
  ident: 224_CR82
  doi: 10.1093/hesc/9780198559160.001.0001
– volume: 55
  start-page: 769
  year: 2000
  ident: 224_CR119
  publication-title: J. Zeitschrift. Naturforschung A
  doi: 10.1515/zna-2000-9-1005
– year: 2017
  ident: 224_CR31
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2017.3910
– volume-title: Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations
  year: 2001
  ident: 224_CR100
– volume: 11
  start-page: 385
  issue: 4
  year: 2012
  ident: 224_CR17
  publication-title: J. Miner. Mater. Charact. Eng.
– year: 2020
  ident: 224_CR49
  publication-title: Trans. Electr. Electr. Mater.
  doi: 10.1007/s42341-020-00189-w
– volume-title: Principles of Quantum Mechanics: As Applied to Chemistry and Chemical Physics
  year: 2002
  ident: 224_CR81
SSID ssib039560196
ssj0000314789
Score 2.4136832
Snippet This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Chemistry and Materials Science
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Regular Paper
전기공학
Title First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications
URI https://link.springer.com/article/10.1007/s42341-020-00224-w
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707422
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions on Electrical and Electronic Materials, 2021, 22(2), , pp.185-203
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVi59Iciq6ou4EoemiRyBCpzToqRYy0gGMfEiDoRZAoKk7iyIEXBM2p_9Df6Ff1SzpDUovtNmh6sWyCpGXO83CGmnlDyHvXERwla_VgM7fcnkisUOTMYimYo7wHMBCK7fPIPzxxv5x6p1utnUbU0nKRdsXtH_NK_keq0AZyxSzZe0i2mhQa4D3IF15BwvD6TzLun4Pttjsqz8vnmGkllo3otoOqyI2O6EKuWMWzgcflw2t9jj3C8_gZEqviELA4R4NBVAZBOF9nQ159iJZ4ioCD17tFEz501vqB5p5iyDrGhUnF-4DfOa0r78y1Edw8NbxobKE650I9z9BjKmaDRvEesLj1Ute69FZXiI6Ks3FyVT_fypaTC_A6NHt38g1JNAbdetR8bIaNr0zClzkM4awRQ6P1N-ehFfi6kG5XqjZuh-BEeOGK0ue8AW7e0OBMVxAyxgBXBAyb-4wOLZmDLerCPXBMzgdbyLqpd9UykmBts61CICu6aDVHDHPEao74pkW2Ofg8dptsR_39_aNSPTroyjLDjqgMDYe5gSryWP1skxamkkM3bm7F9GoVs3zj6b8yqo4fkYfGG6KRhvZjsiWLJ2SnwZH5lPxUIKc1yGkT5HSa0xrke7SGOAWcUANxWkMcB3xA5P76_gOhDZdo-VF1LpsVlE37KoQpQJiuQZg2IfyMnPQPjj8dWqbEiCUc7i0s4SO7VZC7sEDSCZGcMYdFlnbuOhnz01BkElPNWRrmaU_aofBYwv3U5kEufS9wnpN2MS3kC0Lt0A6ClDtZ5qYuy_3EcT3bzoIg8UXKJesQVq5-LAz_PpaBmcR_h0KH7FZjrjX7zJ2934FQ40txHiNpPF7PpvHlLAbX-HMMjh7mnXfIXinz2Kiy-R1zvrzXHbwiD-p_5WvSBpnLN2C0L9K3Bsy_AUAU4-0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Principles+Calculations+of+Electronic%2C+Structural+and+Optical+Properties+of+%28PMMA%E2%80%93ZrO2%E2%80%93Au%29+and+%28PMMA%E2%80%93Al2O3%E2%80%93Au%29+Nanocomposites+for+Optoelectronics+Applications&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Hazim%2C+Angham&rft.au=Abduljalil%2C+Hayder+M.&rft.au=Hashim%2C+Ahmed&rft.date=2021-04-01&rft.issn=1229-7607&rft.eissn=2092-7592&rft.volume=22&rft.issue=2&rft.spage=185&rft.epage=203&rft_id=info:doi/10.1007%2Fs42341-020-00224-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42341_020_00224_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon