First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications
This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an or...
Saved in:
Published in | Transactions on electrical and electronic materials Vol. 22; no. 2; pp. 185 - 203 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
01.04.2021
한국전기전자재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-7607 2092-7592 |
DOI | 10.1007/s42341-020-00224-w |
Cover
Loading…
Abstract | This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al
2
O
3
–Au), (PMMA–ZrO
2
–Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites are the nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E
T
decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO
2
–Au) and (PMMA–Al
2
O
3
–Au) nanocomposites have huge applications in electronics and photo-electronics fields. |
---|---|
AbstractList | This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al 2 O 3 –Au), (PMMA–ZrO 2 –Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affi nity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites arethe nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO 2 –Au) and (PMMA–Al 2 O 3 –Au) nanocomposites have huge applications in electronics and photo-electronics fi elds. KCI Citation Count: 2 This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and nanocomposites. The hybrid functional B3LYP/6-31G level of DFT is used to investigate four molecules divided into two groups, they are PMMA as an original basis molecule and (PMMA–Au), (PMMA–Al 2 O 3 –Au), (PMMA–ZrO 2 –Au) nanocomposites as the two group. The DFT calculations have been performed using Gaussian 09 package of programs. The geometrical optimization included both bonds in °A and angles in deg. The calculated electronic properties included the total energy, HOMO and LUMO energies, energy gap, ionization energy, electron affinity, electronegativity, electrochemical hardness, electronic softness and Electrophilic index. The geometrical optimization of PMMA and nanocomposites has been found in good agreement with the experimental data because of its relaxed geometrical parameters. One of the important results was obtain in this study, is the decreasing of the energy gap. This states that these nanocomposites are the nearest to semiconductor due to the both HOMO and LUMO levels become more adjacent. These consequences mention to construct new structures with new electronic properties. All nanocomposites need small energy to become cationdue to ionization potential is decrease with addition nanoparticles to the pure PMMA, but the electronic affinity is an increase with with addition nanoparticles to the pure PMMA. The total ground state energy of the PMMA have largest value of total energy compared for other nanocomposites, where E T decreased with addition nanoparticles to pure PMMA. The hardness decrease with addition nanoparticles to the pure PMMA, therefore all the nanocomposites are softer, and this reduces the resistance of a species to lose electrons. Good relax for the structures of the studied PMMA was obtained theoretically, in which, the angles C–C, C=O and C–H in pure PMMA are remain in the same ranges for other nanocomposites. In general, most of the studied nonocomposites direct electronic transition from the valence to conduction band with wave length lies in the range of solar spectrum. The obtained results showed that the (PMMA–ZrO 2 –Au) and (PMMA–Al 2 O 3 –Au) nanocomposites have huge applications in electronics and photo-electronics fields. |
Author | Hashim, Ahmed Hazim, Angham Abduljalil, Hayder M. |
Author_xml | – sequence: 1 givenname: Angham orcidid: 0000-0002-0778-1159 surname: Hazim fullname: Hazim, Angham organization: Department of Physics, College of Science, University of Babylon – sequence: 2 givenname: Hayder M. surname: Abduljalil fullname: Abduljalil, Hayder M. organization: Department of Physics, College of Science, University of Babylon – sequence: 3 givenname: Ahmed surname: Hashim fullname: Hashim, Ahmed email: ahmed_taay@yahoo.com organization: Department of Physics, College of Education for Pure Sciences, University of Babylon |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707422$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc9u1DAQxi1UJJalL8ApRyoRajuJXR-jVQuV2u6qlAsXy_HalalrR2NHVW-8A6_BU_EkeLOFQw89zWg0v--bP2_RQYjBIPSe4E8EY36cWtq0pMYU1xhT2tYPr9CCYkFr3gl6gBaEUlFzhvkbdJiSG3AjOoaJYAv0-8xBytUGXNBu9CZVK-X15FV2MaQq2urUG50hBqc_Vl8zTDpPoHylwrZaj9npkm8gjgayMzPwYXN52f_5-es7rGkJ_XQ0N_8r956um6f6lQpRx_sxJpcLbCPsNKP5b5mqfhx9MZnHeYdeW-WTOXyKS_Tt7PRm9aW-WH8-X_UXtW5ol2vN-O4uti23MI1gTcdtWddg2zZbwgaht4ZS1pJB2OHEYKE7oigbMOXWsI43S3S01w1g5Z12Mio3x9so70D21zfnUnDe8aK9RHTfqyGmBMbKEdy9gkdJsNyNIffvkeU9cn6PfCjQyTNIuzzvmEE5_zLa7NFUfMKtAfkjThDKOV6i_gIqz6us |
CitedBy_id | crossref_primary_10_1007_s12633_022_01728_1 crossref_primary_10_1007_s12633_022_02000_2 crossref_primary_10_1007_s11082_023_04929_z crossref_primary_10_1007_s11082_024_07619_6 crossref_primary_10_1007_s12633_022_02104_9 crossref_primary_10_1007_s10854_024_13780_1 crossref_primary_10_1364_OPTCON_495634 crossref_primary_10_1007_s00289_022_04502_w crossref_primary_10_1007_s11082_023_04699_8 crossref_primary_10_1007_s12633_022_01978_z crossref_primary_10_15407_nnn_20_02_535 crossref_primary_10_15407_nnn_21_04_867 crossref_primary_10_1021_acsomega_1c04349 crossref_primary_10_1007_s11082_023_04994_4 crossref_primary_10_1007_s12633_023_02381_y crossref_primary_10_15407_nnn_20_04_1009 crossref_primary_10_15407_nnn_21_01_163 crossref_primary_10_1007_s12633_021_01465_x crossref_primary_10_1007_s12633_023_02572_7 crossref_primary_10_1007_s12633_021_01258_2 crossref_primary_10_1007_s12633_020_00723_8 crossref_primary_10_1007_s11082_023_06039_2 crossref_primary_10_1007_s12633_022_01730_7 crossref_primary_10_1007_s42341_021_00340_1 crossref_primary_10_1007_s11082_023_04830_9 crossref_primary_10_15407_nnn_20_04_951 crossref_primary_10_1007_s12633_022_01854_w crossref_primary_10_15407_nnn_21_01_113 crossref_primary_10_1007_s12633_025_03220_y crossref_primary_10_15407_nnn_21_01_153 crossref_primary_10_1016_j_matpr_2022_02_581 crossref_primary_10_1080_25740881_2024_2307335 crossref_primary_10_1002_jctb_7246 crossref_primary_10_1007_s12633_021_01265_3 crossref_primary_10_1007_s10904_023_02688_8 crossref_primary_10_1016_j_jpcs_2022_110708 crossref_primary_10_1007_s11082_022_04094_9 crossref_primary_10_3390_polym13132171 crossref_primary_10_1007_s12633_021_01449_x crossref_primary_10_15407_nnn_21_03_553 crossref_primary_10_15407_nnn_20_04_1029 crossref_primary_10_1007_s12633_021_01186_1 crossref_primary_10_1007_s10904_022_02485_9 crossref_primary_10_15407_nnn_21_02_289 crossref_primary_10_1007_s11082_023_05048_5 crossref_primary_10_1007_s10854_025_14295_z crossref_primary_10_1007_s10904_023_02866_8 crossref_primary_10_1007_s12633_023_02471_x crossref_primary_10_1007_s12633_024_03213_3 crossref_primary_10_15407_nnn_21_04_877 crossref_primary_10_1007_s11082_022_04528_4 crossref_primary_10_1002_adfm_202311215 crossref_primary_10_1007_s11082_022_03784_8 crossref_primary_10_15407_nnn_21_03_527 crossref_primary_10_1007_s12633_024_03172_9 crossref_primary_10_1007_s42341_020_00244_6 |
Cites_doi | 10.21608/ejchem.2019.7264.1593 10.1063/1.3663109 10.1038/nphoton.2010.186 10.1107/97809553602060000621 10.1166/jbns.2018.1526 10.1166/jbns.2018.1580 10.21608/ejchem.2019.11109.1712 10.22052/jns.2019.02.016 10.1166/sl.2017.3856 10.24297/jap.v4i3.1983 10.5772/51689 10.1088/1757-899x/518/3/032059 10.4236/ampc.2012.22013 10.1007/s12588-017-9192-5 10.1007/s42341-019-00111-z 10.15407/ujpe64.2.157 10.1155/2015/927364 10.30534/ijeter/2019/04782019 10.4236/ojopm.2013.33012 10.1007/s12588-017-9196-1 10.1166/jbns.2018.1537 10.1007/s42341-019-00100-2 10.1007/s42341-018-0081-1 10.1080/10584587.2010.489427 10.1007/s10854-018-9257-z 10.1166/jbns.2018.1551 10.1166/sl.2018.3935 10.1166/jap.2017.1313 10.1166/sl.2017.3876 10.1007/s10904-018-0837-4 10.15407/ujpe63.8.754 10.3390/ma3063654 10.1007/s12588-019-09228-5 10.1021/nl0731872 10.1007/s42341-019-00148-0 10.1007/s10904-020-01528-3 10.1166/jbns.2018.1591 10.21608/ejchem.2019.10712.1695 10.15407/ujpe62.12.1044 10.1166/sl.2017.3892 10.1166/sl.2017.3900 10.11591/eei.v8i1.1019 10.30534/ijeter/2019/01782019 10.1002/0471474908 10.30534/ijeter/2019/06782019 10.21608/ejchem.2019.6241.1522 10.1166/jbns.2018.1538 10.1166/sl.2018.3915 10.1186/1556-276X-9-1 10.1002/0471720895 10.15407/ujpe62.11.0978 10.1155/2014/697809 10.1166/jbns.2018.1561 10.1002/3527600043 10.1002/0471220655 10.3144/expresspolymlett.2012.31 10.4236/wjnse.2012.24026 10.1088/1757-899x/454/1/012113 10.1007/s42341-019-00121-x 10.1007/s42341-019-00145-3 10.1166/jbns.2018.1518 10.1166/jbns.2018.1533 10.15407/ujpe62.12.1050 10.21608/ejs.2007.149037 10.1166/mat.2016.1371 10.1007/s10854-018-9095-z 10.1016/j.physrep.2009.02.003 10.1021/ja301245b 10.11591/eei.v7i1.839 10.1103/PhysRevB.80.153412 10.21608/ejchem.2019.7154.1590 10.1093/hesc/9780198559160.001.0001 10.1515/zna-2000-9-1005 10.1166/sl.2017.3910 10.1007/s42341-020-00189-w |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical and Electronic Material Engineers 2020 |
Copyright_xml | – notice: The Korean Institute of Electrical and Electronic Material Engineers 2020 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42341-020-00224-w |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2092-7592 |
EndPage | 203 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9775796 10_1007_s42341_020_00224_w |
GroupedDBID | -EM .UV 0R~ 406 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADRFC ADURQ ADYFF AEFQL AEMSY AESKC AGDGC AGJBK AGMZJ AGQEE AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AXYYD BGNMA DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE HZB IKXTQ IWAJR J-C JDI JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RNS ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ACYCR |
ID | FETCH-LOGICAL-c325t-c671007f4224e396357f601e0f43d16b9cde22641b9fb8e09c51a26b027fe6573 |
ISSN | 1229-7607 |
IngestDate | Sun Mar 09 07:50:55 EDT 2025 Tue Jul 01 04:25:01 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Fri Feb 21 02:49:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electronics Gold Energy gap PMMA Nanocomposites Photonics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-c671007f4224e396357f601e0f43d16b9cde22641b9fb8e09c51a26b027fe6573 |
ORCID | 0000-0002-0778-1159 |
PageCount | 19 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9775796 crossref_primary_10_1007_s42341_020_00224_w crossref_citationtrail_10_1007_s42341_020_00224_w springer_journals_10_1007_s42341_020_00224_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 2021-04-00 2021-04 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Transactions on electrical and electronic materials |
PublicationTitleAbbrev | Trans. Electr. Electron. Mater |
PublicationYear | 2021 |
Publisher | The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 한국전기전자재료학회 |
Publisher_xml | – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) – name: 한국전기전자재료학회 |
References | Kenny LipkowitzBLarterRThomas CundariRBoydDBReviews in Computational Chemistry2005HobokenWiley SahniVQuantal Density Functional Theory II: Approximation Methods and Applications2010BerlinSpringer HashimAAl-AttiyahKHHObaidSFFabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shieldingUkr. J. Phys.201910.15407/ujpe64.2.157 HassanDAh-YasariAHFabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric applicationBull. Electr. Eng. Inform.201910.11591/eei.v8i1.1019 M. Vanin, Electronic and chemical properties of graphene-based structures: A density functional theory study, Ph.D. Thesis, Technical University of Denmark (2011) AhmedHHashimAAbduljalilHMAnalysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial applicationEgypt. J. Chem.20196241167117610.21608/ejchem.2019.6241.1522 HashimAHamadZSSynthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocompositesJ. Bionanosci.201810.1166/jbns.2018.1561 AdeosunSLawalGIBalogunSAkpanEReview of green polymer nanocompositesJ. Miner. Mater. Charact. Eng.2012114385416 HashimAAl-KhafajiYHadiASynthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocompositesTrans. Electr. Electr. Mater.201910.1007/s42341-019-00145-3 M. Jasem Mohammed, The Molecular Geometry and Electronic Structure of Some Macromolecules, Ph.D. Thesis, University of Basrah (2005) FittsDDPrinciples of Quantum Mechanics: As Applied to Chemistry and Chemical Physics2002New YorkCambridge University Press ChandrakalaHNShivakumaraiahHSomashekarappaRSomashekarSChinmayeeSIndianJAdv. Chem. Sci.20142103 Al-AttiyahKHHHashimAObaidSFSynthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1526 RashidFLHashimAHabeebMASalmanSRAhmedHPreparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical propertiesJ. Eng. Appl. Sci.201385137139 AminAAhmedEHSabaaMWAyoubMMHBattishaIKOpen J. Organ. Polym. Mater.2013373 HashimAHadiASynthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor applicationSens. Lett.201710.1166/sl.2017.3900 JasimFAHashimAHadiAGLaftaFSalmanSRAhmedHPreparation of (pomegranate peel-polystyrene) composites and study their optical propertiesRes. J. Appl. Sci.201389439441 AllenFWatsonDBrammerLOrpenATaylorRJ. Int. Tables Crystallogr.200613790811 JeonI-YBaekJ-BJ. Mater.201033654 A. Hassen, S. El-Sayeda, W. M. Morsic, A.M. El Sayedb, J. Adv. Phys. 4 (2014) HabbebMAHashimAAliA-RKAThe dielectric properties for (PMMA-LiF) compositesEur. J. Sci. Res.2011613367371 AgoolIRKadhimKJHashimAFabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensorsInt. J. Plast. Technol.201710.1007/s12588-017-9192-5 JeffreyEDReimersRComputational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology2006AustraliaThe University of Sydney AliofkhazraeiMAdvances in Graphene Science2013LondonIntech Open Science HashimAHabeebMAKhalafAHadiAFabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applicationsSens. Lett.20171558959610.1166/sl.2017.3856 David SherrillCIntroduction to Electronic structure Theory2002AtlantaGeorgia Institute of Technology K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M. Sc. Thesis, University of Kufa (2010) HallGGThe molecular orbital theory of chemical valence VIII. A method of calculating ionization potentialsProc. R. Soc. A1951205541552 DivyaRMeenaMMahadevanCKPadmaCMJ. Eng. Res. Appl.2014401 ZakAKHashimAMDarroudiMJ. Nanoscale Res. Lett.20149116 AbduljalilHayderHashimAhmedJewadAlaaThe effect of addition titanium dioxide on electrical properties of poly-methyl methacrylateEur. J. Sci. Res.2011632231235 BonaccorsoFSunZHasanTFerrariACJ. Nat. Photon.20104611622 RashidFLTalibSMHadiAHashimANovel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2–SiC) nanofluids for environmental applicationsIOP Conf. Ser. Mater. Sci. Eng.201810.1088/1757-899x/454/1/012113 HashimAHadiAA novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocompositesSens. Lett.201710.1166/sl.2017.3910 M.L. Chabinyc, X. Chen, R.E. Holmlin, H. Jacobs, H. Skulason, C.D. Frisbie, V. Mujica, M.A. Ratner, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. (2002) HiroyukiIJ. Zeitschrift. Naturforschung A200055769771 DivyaRMeenaMMahadevanCKPadmaCMInvestigation on CuO dispersed PVA polymer filmsJ. Eng. Res. Appl.20144517 DorsettHWhiteAOverview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials2000AustraliaDeference science and Technology Organization Al-RamadhanZHashimAAlgidsawiAJKThe D.C. electrical properties of (PVC-Al2O3) compositesAIP Conf. Proc.201110.1063/1.3663109 PetrushenkoIJ. Adv. Mater. Sci. Eng.20151517 MatthewsPTIntroduction to Quantum Mechanics1974New YorkMcGrew-Hill MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic HassanDHashimAStructural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1533 PaulingLThe Nature of the Chemical Bond1960United StatesCornell University Press AgoolIRKadhimKJHashimASynthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applicationsInt. J. Plast. Technol.201710.1007/s12588-017-9196-1 HashimAHamadZSFabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensorsJ. Nanostruct.20199234034810.22052/jns.2019.02.016 B. Soren, T. Morten, Electronic and optical properties of graphene and graphene antidote structures, Master Thesis, University of Aalborg (2013) AnghamHAhmedHHayderMAAnalysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applicationsTrans Electr Electron Mater201910.1007/s42341-019-00148-0 HassanDHashimAPreparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1537 JeburQMHashimAHabeebMAStructural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applicationsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00121-x HadiAHashimAAl-KhafajiYStructural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devicesTrans. Electr. Electr. Mater.202010.1007/s42341-020-00189-w GavadeCSinghNLSinghDShahSTaipathiAAvasthiDKJ. Integr. Ferroelectr.201011776 KadhimKJAgoolIRHashimASynthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial applicationMater. Focus201610.1166/mat.2016.1371 HashimAHadiANovel lead oxide polymer nanocomposites for nuclear radiation shielding applicationsUkr. J. Phys.201710.15407/ujpe62.11.0978 ZhangQHeavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1-ySeyJ. Am. Chem. Soc.2012241003110038 S. Bhavani, M. Ravi, V.V.R. Narasimha Rao, Int. J. Eng. Sci. Innov. Technol. 3 (2014) HashimAHamadZSLower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applicationsEgypt. J. Chem.202010.21608/ejchem.2019.7264.1593 W. Al-Taay, A.M. Nabi, RM. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci. 6, ArticleID 697809 (2014) AhmedHAbduljalilHMHashimAAnalysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00100-2 MohammadAHooshyariKJavanbakhtMEnhessariMFabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiO nanocomposite membranes for PEM fuel cellsIran. J. Energy Environ.2013428690 HashimAHadiQStructural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensorsJ. Mater. Sci. Mater. Electron.201829115981160410.1007/s10854-018-9257-z G. Mohammed Merdan, Self-Consistent Field Calculation for the effect of Pressure and Temperature on some Properties of Greyt in Crystal, M.Sc. Thesis, University of Babylon (2005) Al-GarahNHRashidFLHadiAHashimASynthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applicationsJ. Bionanosci.201810.1166/jbns.2018.1538 ChaudhariLNathuramRAbsorption coefficient of polymers (polyvinyl alcohol) by using gamma energy of 0.39 MeVBulg. J. Phys.201037232240 KadhimKJAgoolIRHashimAEffect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical applicationJ. Adv. Phys.201710.1166/jap.2017.1313 SangawarVGolchhaMEvolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticlesInt. J. Sci. Eng. Res.20134627002705 RabeeBHHashimASynthesis and characterization of carbon nanotubes-polystyrene compositesEur. J. Sci. Res.2011602247254 M. Obula Reddy, B. Chandra Babu, Indian J. Mater. Sci., Article ID 927364, 8 (2015) ElmarzugiNAdaliTBentalebAKelebEMohamedAHamzaAMSpectroscopic characterization of PEG-DNA biocomplexes by FTIRJ. Appl. Pharm. Sci.201448610 H. Dorsett, A. White, Overview of Molecular Modeling and Ab Initio Mole SM Reda (224_CR12) 2012; 2 FA Jasim (224_CR39) 2013; 8 Q Zhang (224_CR118) 2012; 24 L Pauling (224_CR105) 1960 JB Bhaiswar (224_CR15) 2014; 80 L Chaudhari (224_CR22) 2010; 37 DD Fitts (224_CR81) 2002 A Hashim (224_CR31) 2017 BH Rabee (224_CR50) 2011; 60 A Hashim (224_CR51) 2017 AB Elaydy (224_CR20) 2007; 30 224_CR108 224_CR87 224_CR106 S Adeosun (224_CR17) 2012; 11 224_CR104 224_CR102 B Kenny Lipkowitz (224_CR92) 2005 C David Sherrill (224_CR86) 2002 FA Jasim (224_CR38) 2013; 8 W Theil (224_CR93) 2000 SS Behera (224_CR14) 2012; 2 Hayder Abduljalil (224_CR28) 2011; 63 224_CR11 224_CR99 I Tantis (224_CR9) 2012; 6 D Hassan (224_CR115) 2018 W Koch (224_CR88) 2001 224_CR16 R Divya (224_CR18) 2014; 4 224_CR111 A Hashim (224_CR64) 2018 M Mueller (224_CR100) 2001 S Hadi (224_CR44) 2011; 5 KHH Al-Attiyah (224_CR74) 2019 224_CR94 KJ Kadhim (224_CR69) 2017 224_CR95 A Hashim (224_CR53) 2018; 28 224_CR96 A Amin (224_CR6) 2013; 3 A Hashim (224_CR33) 2017 NH Al-Garah (224_CR67) 2018 PT Matthews (224_CR98) 1974 A Hazim (224_CR109) 2019 A Mohammad (224_CR23) 2013; 4 B Ghavami (224_CR110) 2015; 1 M Aliofkhazraei (224_CR116) 2013 A Hashim (224_CR35) 2019; 9 A Hashim (224_CR56) 2019 R Divya (224_CR7) 2014; 4 PA Cox (224_CR82) 1996 H Ahmed (224_CR66) 2020 QM Jebur (224_CR45) 2019 A Hashim (224_CR73) 2018 FL Rashid (224_CR76) 2018 D Young (224_CR26) 2001 N Ira Levin (224_CR85) 2009 H Ahmed (224_CR62) 2019; 62 H Angham (224_CR107) 2019 FL Rashid (224_CR78) 2018; 8 A Hashim (224_CR43) 2017; 15 A Hashim (224_CR57) 2018 A Hashim (224_CR34) 2017 H Dorsett (224_CR103) 2000 HN Chandrakala (224_CR8) 2014; 2 N Elmarzugi (224_CR25) 2014; 4 GG Hall (224_CR90) 1951; 205 V Sahni (224_CR84) 2010 224_CR4 IR Agool (224_CR79) 2017 224_CR3 A Hashim (224_CR55) 2019 CJ Cramer (224_CR80) 2004 F Allen (224_CR121) 2006; 13 DW Rogers (224_CR83) 2003 A Hadi (224_CR59) 2017 F Bonaccorso (224_CR117) 2010; 4 A Hashim (224_CR122) 2017 A Hadi (224_CR77) 2019; 518 ED Jeffrey (224_CR91) 2006 Z Al-Ramadhan (224_CR29) 2011 A Hazim (224_CR113) 2019 A Hashim (224_CR52) 2017 A Hashim (224_CR63) 2018; 29 EK Tawfik (224_CR2) 2015; 3 A Hashim (224_CR72) 2018 AJ Kadham (224_CR46) 2018 H Ahmed (224_CR54) 2019 A Hashim (224_CR32) 2018 A Hashim (224_CR58) 2017; 15 B Abbas (224_CR71) 2019 M Khissi (224_CR21) 2011; 2 H Ahmed (224_CR97) 2019 C Gavade (224_CR13) 2010; 117 MA Habbeb (224_CR37) 2011; 61 I Petrushenko (224_CR112) 2015; 15 D Hassan (224_CR36) 2019 V Sangawar (224_CR19) 2013; 4 D Hassan (224_CR120) 2018 A Hashim (224_CR47) 2020 A Hashim (224_CR101) 2019 I Hiroyuki (224_CR119) 2000; 55 M Mueller (224_CR27) 2001 A Hashim (224_CR30) 2017 I-Y Jeon (224_CR5) 2010; 3 FL Rashid (224_CR41) 2013; 8 DE Hegazy (224_CR10) 2014; 47 K Karthikeyan (224_CR24) 2009; 5 A Hashim (224_CR48) 2020 KHH Al-Attiyah (224_CR75) 2018 KJ Kadhim (224_CR68) 2016 A Hashim (224_CR42) 2019 IR Agool (224_CR40) 2015; 9 A Hashim (224_CR70) 2018 IR Agool (224_CR60) 2017 AK Zak (224_CR1) 2014; 9 A Hadi (224_CR49) 2020 A Alexander (224_CR114) 2008; 8 A Hashim (224_CR61) 2018; 29 A Hashim (224_CR65) 2020 F Jensen (224_CR89) 1999 |
References_xml | – reference: HashimAAbduljalilHMAhmedHFabrication and characterization of (PVA–TiO2)1-x/SiCx nanocomposites for biomedical applicationsEgypt. J. Chem.202010.21608/ejchem.2019.10712.1695 – reference: CramerCJEssentials of Computational Chemistry: Theories and Models20042ChichesterWiley – reference: BonaccorsoFSunZHasanTFerrariACJ. Nat. Photon.20104611622 – reference: K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M. Sc. Thesis, University of Kufa (2010) – reference: JeonI-YBaekJ-BJ. Mater.201033654 – reference: FittsDDPrinciples of Quantum Mechanics: As Applied to Chemistry and Chemical Physics2002New YorkCambridge University Press – reference: JasimFAHashimAHadiAGLaftaFSalmanSRAhmedHPreparation of (pomegranate peel-polystyrene) composites and study their optical propertiesRes. J. Appl. Sci.201389439441 – reference: RashidFLTalibSMHadiAHashimANovel of thermal energy storage and release: water/(SnO2-TaC) and water/(SnO2–SiC) nanofluids for environmental applicationsIOP Conf. Ser. Mater. Sci. Eng.201810.1088/1757-899x/454/1/012113 – reference: A. Hassen, S. El-Sayeda, W. M. Morsic, A.M. El Sayedb, J. Adv. Phys. 4 (2014) – reference: DorsettHWhiteAOverview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials2000AustraliaDeference science and Technology Organization – reference: HassanDAh-YasariAHFabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric applicationBull. Electr. Eng. Inform.201910.11591/eei.v8i1.1019 – reference: BhaiswarJBSalunkheMDongreSPKumbhareBTComparative study on thermal stabilityand optical properties of PANI/CdS and PANI/PbSnanocompositeIOSR J. Appl. Phys.2014807982 – reference: K. Abd Ali Saeed, A theoretical Study of the Structural Properties and its Correlation with the biological Activity of Stavudine and some Derivatives, M.Sc. Thesis, University of Kufa (2010) – reference: BeheraSSPatraJKPramanikKPandaNThatoiHWorld J. Nano Sci. Eng.20122196 – reference: AgoolIRMohammedFSHashimAThe effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blendAdv. Environ. Biol.2015911111 – reference: AhmedHAbduljalilHMHashimAAnalysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00100-2 – reference: HazimAAbduljalilHMHashimAStructural, electronic, optical properties and antibacterial application of novel (PMMA-Al2O3-Ag) nanocomposites for dental industries applicationsInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/04782019 – reference: HazimAHashimAAbduljalilHMNovel (PMMA-ZrO2-Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industriesInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/01782019 – reference: M. Vanin, Electronic and chemical properties of graphene-based structures: A density functional theory study, Ph.D. Thesis, Technical University of Denmark (2011) – reference: HassanDHashimAStructural and optical properties of (polystyrene-copper oxide) nanocomposites for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1533 – reference: TawfikEKFawzyYHAEl-GhazalyMHAshryHAPhys. Sci. Res. Int. J.2015326 – reference: HashimAHadiQNovel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensorSens. Lett.201710.1166/sl.2017.3892 – reference: H. Dorsett, A. White, Overview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials, Deference science and Technology Organization – reference: HashimAJassimANovel of (PVA–ST–PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applicationsSens. Lett.201710.1166/sl.2018.3915 – reference: JeffreyEDReimersRComputational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology2006AustraliaThe University of Sydney – reference: HashimAAbduljalilHAhmedHAnalysis of optical, electronic and spectroscopic properties of (biopolymer-SiC) nanocomposites for electronics applicationsEgypt. J. Chem.201910.21608/ejchem.2019.7154.1590 – reference: David SherrillCIntroduction to Electronic structure Theory2002AtlantaGeorgia Institute of Technology – reference: AdeosunSLawalGIBalogunSAkpanEReview of green polymer nanocompositesJ. Miner. Mater. Charact. Eng.2012114385416 – reference: G. Montambaux, F. Piechon, J. Fuchs, M. O. Goerbig, Merging of Dirac points in a two-dimensional crystal. Phys. Rev. 80 (2009) – reference: HadiAHashimAAl-KhafajiYStructural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devicesTrans. Electr. Electr. Mater.202010.1007/s42341-020-00189-w – reference: AbbasBHashimANovel X-rays attenuation by (PMMA-PS-WC) new nanocompsites: fabrication, structural, optical characterizations and X-ray shielding applicationInt. J. Emerg. Trends Eng. Res.201910.30534/ijeter/2019/06782019 – reference: L.M. Malarda, M.A. Pimentaa, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 51–87 (2009) – reference: HassanDHashimAPreparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1537 – reference: M. Obula Reddy, B. Chandra Babu, Indian J. Mater. Sci., Article ID 927364, 8 (2015) – reference: W. Al-Taay, A.M. Nabi, RM. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films, Int. J. Polym. Sci. 6, ArticleID 697809 (2014) – reference: PetrushenkoIJ. Adv. Mater. Sci. Eng.20151517 – reference: HashimAHadiQStructural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensorsJ. Mater. Sci. Mater. Electron.201829115981160410.1007/s10854-018-9257-z – reference: Al-AttiyahKHHHashimAObaidSFSynthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1526 – reference: HashimAHadiQSynthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensorsJ. Inorg. Organometal. Polym. Mater.20182841394140110.1007/s10904-018-0837-4 – reference: KadhimKJAgoolIRHashimASynthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial applicationMater. Focus201610.1166/mat.2016.1371 – reference: HadiSHashimAJewadAOptical properties of (PVA-LiF) compositesAust. J. Basic Appl. Sci.20115921922195 – reference: AbduljalilHayderHashimAhmedJewadAlaaThe effect of addition titanium dioxide on electrical properties of poly-methyl methacrylateEur. J. Sci. Res.2011632231235 – reference: Al-AttiyahKHHHashimAObaidSFFabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applicationsInt. J. Plast. Technol.201910.1007/s12588-019-09228-5 – reference: RogersDWComputational Chemistry Using the PC20033HobokenWiley – reference: HadiARashidFLHusseinHQHashimANovel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applicationsIOP Conf. Ser. Mater. Sci. Eng.20195183510.1088/1757-899x/518/3/032059 – reference: MatthewsPTIntroduction to Quantum Mechanics1974New YorkMcGrew-Hill – reference: TantisIPsarrasGCTasisDJ. Expr. Poly. Lett.20126283 – reference: HegazyDEEidMMadaniMArab J. Nucl. Sci. Appl.20144741 – reference: SangawarVGolchhaMEvolution of the optical properties of polystyrene thin films filled with zinc oxide nanoparticlesInt. J. Sci. Eng. Res.20134627002705 – reference: ZhangQHeavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1-ySeyJ. Am. Chem. Soc.2012241003110038 – reference: KarthikeyanKPoornaprakashNSelvakumarNJeyasubrmanianKThermal properties and morphology of MgO–PVA nanocomposite filmJ Nanostruct. Polym. Nanocompos.2009548388 – reference: KadhamAJHassanDMohammadNHashimAFabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applicationsBull. Electr. Eng. Inform.201810.11591/eei.v7i1.839 – reference: TheilWSemiempirical Methods2000JülichJohn Von Neumann Institute for Computing – reference: MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic – reference: DivyaRMeenaMMahadevanCKPadmaCMInvestigation on CuO dispersed PVA polymer filmsJ. Eng. Res. Appl.20144517 – reference: RabeeBHHashimASynthesis and characterization of carbon nanotubes-polystyrene compositesEur. J. Sci. Res.2011602247254 – reference: S. Bhavani, M. Ravi, V.V.R. Narasimha Rao, Int. J. Eng. Sci. Innov. Technol. 3 (2014) – reference: B. Soren, T. Morten, Electronic and optical properties of graphene and graphene antidote structures, Master Thesis, University of Aalborg (2013) – reference: JasimFALaftaFHashimAAliMHadiAGCharacterization of palm fronds-polystyrene compositesJ. Eng. Appl. Sci.201385140142 – reference: HashimAEnhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applicationsJ. Inorg. Org. Polym. Mater.202010.1007/s10904-020-01528-3 – reference: HashimAHamidNFabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience applicationJ. Bionanosci.201810.1166/jbns.2018.1591 – reference: HashimAHadiANovel lead oxide polymer nanocomposites for nuclear radiation shielding applicationsUkr. J. Phys.201710.15407/ujpe62.11.0978 – reference: HashimAHabeebMAHadiASynthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperaturesSens. Lett.201715975876110.1166/sl.2017.3876 – reference: HashimAHadiASynthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor applicationSens. Lett.201710.1166/sl.2017.3900 – reference: HashimAAl-KhafajiYHadiASynthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocompositesTrans. Electr. Electr. Mater.201910.1007/s42341-019-00145-3 – reference: AgoolIRKadhimKJHashimASynthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applicationsInt. J. Plast. Technol.201710.1007/s12588-017-9196-1 – reference: GhavamiBEbrahimzadehAJ. Mesoscale Nano Scale Phys.2015116 – reference: ZakAKHashimAMDarroudiMJ. Nanoscale Res. Lett.20149116 – reference: HashimAHadiANovel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterizationUkr. J. Phys.201810.15407/ujpe63.8.754 – reference: YoungDComputational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems2001New YorkWiley – reference: ElaydyABAkraiamFAEnhancement of DC electrical conductivity and creep relaxation for PVA samples doped with SrCl2Egypt J. Solids2007302189197 – reference: KhissiMEl HasnaouiMBelattarJGracaMFAchourMCostaLCDC electrical conductivity studies on copolymer/carbon black compositesJ. Mater. Environ. Sci.201123281284 – reference: CoxPAIntroduction to Quantum Theory and Atomic Structure1996New YorkOxford University Press Inc. – reference: AhmedHHashimAAbduljalilHMAnalysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial applicationEgypt. J. Chem.20196241167117610.21608/ejchem.2019.6241.1522 – reference: ChandrakalaHNShivakumaraiahHSomashekarappaRSomashekarSChinmayeeSIndianJAdv. Chem. Sci.20142103 – reference: MuellerMFundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations2001New YorkKluwer Academic/Plenum Publishers – reference: HashimAHamadZSFabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensorsJ. Nanostruct.20199234034810.22052/jns.2019.02.016 – reference: AnghamHAhmedHHayderMAAnalysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applicationsTrans Electr Electron Mater201910.1007/s42341-019-00148-0 – reference: AllenFWatsonDBrammerLOrpenATaylorRJ. Int. Tables Crystallogr.200613790811 – reference: HashimAAgoolIRKadhimKJModern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a reviewJ. Bionanosci.201810.1166/jbns.2018.1580 – reference: HadiAHashimADevelopment of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticlesUkr. J. Phys.201710.15407/ujpe62.12.1044 – reference: Al-GarahNHRashidFLHadiAHashimASynthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applicationsJ. Bionanosci.201810.1166/jbns.2018.1538 – reference: JensenFIntroduction to Computational Chemistry1999LondonWiley – reference: Ira LevinNQuantum Chemistry20096Upper Saddle RiverPearson Education Inc – reference: Al-RamadhanZHashimAAlgidsawiAJKThe D.C. electrical properties of (PVC-Al2O3) compositesAIP Conf. Proc.201110.1063/1.3663109 – reference: HashimAJassimANovel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applicationsJ. Bionanosci.201810.1166/jbns.2018.1518 – reference: AlexanderAGhoshSBaoWCalizoITeweldebrhanDMiaoFLauCJ. Nano. Lett.20088902907 – reference: KadhimKJAgoolIRHashimAEffect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical applicationJ. Adv. Phys.201710.1166/jap.2017.1313 – reference: ChaudhariLNathuramRAbsorption coefficient of polymers (polyvinyl alcohol) by using gamma energy of 0.39 MeVBulg. J. Phys.201037232240 – reference: RashidFLHadiAAl-GarahNHHashimANovel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applicationsInt. J. Pharmaceut. Phytopharmacol. Res.2018814656 – reference: HashimAHadiASynthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticlesUkr. J. Phys.201710.15407/ujpe62.12.1050 – reference: G. Mohammed Merdan, Self-Consistent Field Calculation for the effect of Pressure and Temperature on some Properties of Greyt in Crystal, M.Sc. Thesis, University of Babylon (2005) – reference: ElmarzugiNAdaliTBentalebAKelebEMohamedAHamzaAMSpectroscopic characterization of PEG-DNA biocomplexes by FTIRJ. Appl. Pharm. Sci.201448610 – reference: AgoolIRKadhimKJHashimAFabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensorsInt. J. Plast. Technol.201710.1007/s12588-017-9192-5 – reference: HashimAHamadZSLower cost and higher UV-absorption of polyvinyl alcohol/silica nanocomposites for potential applicationsEgypt. J. Chem.202010.21608/ejchem.2019.7264.1593 – reference: RedaSMAl-GhannamSMAdv. Mater. Phys. Chem.2012275 – reference: KochWHolthausenMCAchemist’s guide to functional theory20012BerlinWiley – reference: AhmedHAbduljalilHMHashimAStructural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensorsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00111-z – reference: GavadeCSinghNLSinghDShahSTaipathiAAvasthiDKJ. Integr. Ferroelectr.201011776 – reference: HashimAHamadZSNovel of (niobium carbide-biopolymer blend) nanocomposites: characterization for bioenvironmental applicationsJ. Bionanosci.201810.1166/jbns.2018.1551 – reference: HashimAAl-AttiyahKHHObaidSFFabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shieldingUkr. J. Phys.201910.15407/ujpe64.2.157 – reference: HashimAHabeebMAKhalafAHadiAFabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applicationsSens. Lett.20171558959610.1166/sl.2017.3856 – reference: MohammadAHooshyariKJavanbakhtMEnhessariMFabrication and characterization of poly vinyl alcohol/poly vinyl pyrrolidone/MnTiO nanocomposite membranes for PEM fuel cellsIran. J. Energy Environ.2013428690 – reference: HashimAHadiAA novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocompositesSens. Lett.201710.1166/sl.2017.3910 – reference: HallGGThe molecular orbital theory of chemical valence VIII. A method of calculating ionization potentialsProc. R. Soc. A1951205541552 – reference: HiroyukiIJ. Zeitschrift. Naturforschung A200055769771 – reference: PaulingLThe Nature of the Chemical Bond1960United StatesCornell University Press – reference: HabbebMAHashimAAliA-RKAThe dielectric properties for (PMMA-LiF) compositesEur. J. Sci. Res.2011613367371 – reference: DivyaRMeenaMMahadevanCKPadmaCMJ. Eng. Res. Appl.2014401 – reference: M. Jasem Mohammed, The Molecular Geometry and Electronic Structure of Some Macromolecules, Ph.D. Thesis, University of Basrah (2005) – reference: AminAAhmedEHSabaaMWAyoubMMHBattishaIKOpen J. Organ. Polym. Mater.2013373 – reference: HashimAHamadZSSynthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocompositesJ. Bionanosci.201810.1166/jbns.2018.1561 – reference: AliofkhazraeiMAdvances in Graphene Science2013LondonIntech Open Science – reference: SahniVQuantal Density Functional Theory II: Approximation Methods and Applications2010BerlinSpringer – reference: RashidFLHashimAHabeebMASalmanSRAhmedHPreparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical propertiesJ. Eng. Appl. Sci.201385137139 – reference: HashimAHabeebMASynthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperaturesTrans. Electr. Electr. Mater.201910.1007/s42341-018-0081-1 – reference: M.L. Chabinyc, X. Chen, R.E. Holmlin, H. Jacobs, H. Skulason, C.D. Frisbie, V. Mujica, M.A. Ratner, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. (2002) – reference: HashimAHabeebMAHadiAJeburQMHadiWFabrication of novel (PVA-PEG-CMC-Fe3O4) magnetic nanocomposites for piezoelectric applicationsSens. Lett.201710.1166/sl.2018.3935 – reference: HashimAAgoolIRKadhimKJNovel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applicationsJ. Mater. Sci.: Mater. Electron.20182912103691039410.1007/s10854-018-9095-z – reference: JeburQMHashimAHabeebMAStructural, electrical and optical properties for (polyvinyl alcohol–polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applicationsTrans. Electr. Electr. Mater.201910.1007/s42341-019-00121-x – reference: AhmedHHashimAFabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applicationsEgypt. J. Chem.202010.21608/ejchem.2019.11109.1712 – reference: Kenny LipkowitzBLarterRThomas CundariRBoydDBReviews in Computational Chemistry2005HobokenWiley – ident: 224_CR99 – ident: 224_CR106 – year: 2020 ident: 224_CR47 publication-title: Egypt. J. Chem. doi: 10.21608/ejchem.2019.7264.1593 – volume-title: Overview of Molecular Modeling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials year: 2000 ident: 224_CR103 – volume: 8 start-page: 439 issue: 9 year: 2013 ident: 224_CR38 publication-title: Res. J. Appl. Sci. – year: 2011 ident: 224_CR29 publication-title: AIP Conf. Proc. doi: 10.1063/1.3663109 – volume: 4 start-page: 611 year: 2010 ident: 224_CR117 publication-title: J. Nat. Photon. doi: 10.1038/nphoton.2010.186 – volume: 13 start-page: 790 year: 2006 ident: 224_CR121 publication-title: J. Int. Tables Crystallogr. doi: 10.1107/97809553602060000621 – year: 2018 ident: 224_CR75 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1526 – volume-title: Computational Methods for Large systems: Electronic Structure Approaches for Biotechnology and Nanotechnology year: 2006 ident: 224_CR91 – volume: 1 start-page: 1 year: 2015 ident: 224_CR110 publication-title: J. Mesoscale Nano Scale Phys. – year: 2018 ident: 224_CR64 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1580 – year: 2020 ident: 224_CR66 publication-title: Egypt. J. Chem. doi: 10.21608/ejchem.2019.11109.1712 – volume: 9 start-page: 340 issue: 2 year: 2019 ident: 224_CR35 publication-title: J. Nanostruct. doi: 10.22052/jns.2019.02.016 – volume: 15 start-page: 589 year: 2017 ident: 224_CR43 publication-title: Sens. Lett. doi: 10.1166/sl.2017.3856 – volume-title: Quantum Chemistry year: 2009 ident: 224_CR85 – ident: 224_CR11 doi: 10.24297/jap.v4i3.1983 – volume: 4 start-page: 2700 issue: 6 year: 2013 ident: 224_CR19 publication-title: Int. J. Sci. Eng. Res. – volume-title: The Nature of the Chemical Bond year: 1960 ident: 224_CR105 – volume-title: Advances in Graphene Science year: 2013 ident: 224_CR116 doi: 10.5772/51689 – volume: 5 start-page: 83 issue: 4 year: 2009 ident: 224_CR24 publication-title: J Nanostruct. Polym. Nanocompos. – volume: 518 start-page: 5 issue: 3 year: 2019 ident: 224_CR77 publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899x/518/3/032059 – volume: 2 start-page: 75 year: 2012 ident: 224_CR12 publication-title: Adv. Mater. Phys. Chem. doi: 10.4236/ampc.2012.22013 – year: 2017 ident: 224_CR60 publication-title: Int. J. Plast. Technol. doi: 10.1007/s12588-017-9192-5 – ident: 224_CR96 – year: 2019 ident: 224_CR97 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-019-00111-z – year: 2019 ident: 224_CR101 publication-title: Ukr. J. Phys. doi: 10.15407/ujpe64.2.157 – ident: 224_CR3 doi: 10.1155/2015/927364 – year: 2019 ident: 224_CR113 publication-title: Int. J. Emerg. Trends Eng. Res. doi: 10.30534/ijeter/2019/04782019 – volume: 3 start-page: 73 year: 2013 ident: 224_CR6 publication-title: Open J. Organ. Polym. Mater. doi: 10.4236/ojopm.2013.33012 – year: 2017 ident: 224_CR79 publication-title: Int. J. Plast. Technol. doi: 10.1007/s12588-017-9196-1 – year: 2018 ident: 224_CR120 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1537 – year: 2019 ident: 224_CR54 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-019-00100-2 – volume-title: Introduction to Computational Chemistry year: 1999 ident: 224_CR89 – volume-title: Quantal Density Functional Theory II: Approximation Methods and Applications year: 2010 ident: 224_CR84 – volume: 37 start-page: 232 year: 2010 ident: 224_CR22 publication-title: Bulg. J. Phys. – year: 2019 ident: 224_CR55 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-018-0081-1 – volume: 2 start-page: 281 issue: 3 year: 2011 ident: 224_CR21 publication-title: J. Mater. Environ. Sci. – volume: 117 start-page: 76 year: 2010 ident: 224_CR13 publication-title: J. Integr. Ferroelectr. doi: 10.1080/10584587.2010.489427 – volume: 8 start-page: 46 issue: 1 year: 2018 ident: 224_CR78 publication-title: Int. J. Pharmaceut. Phytopharmacol. Res. – volume: 47 start-page: 41 year: 2014 ident: 224_CR10 publication-title: Arab J. Nucl. Sci. Appl. – volume: 29 start-page: 11598 year: 2018 ident: 224_CR61 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-9257-z – volume: 4 start-page: 1 issue: 5 year: 2014 ident: 224_CR18 publication-title: J. Eng. Res. Appl. – year: 2018 ident: 224_CR73 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1551 – volume-title: Essentials of Computational Chemistry: Theories and Models year: 2004 ident: 224_CR80 – year: 2017 ident: 224_CR34 publication-title: Sens. Lett. doi: 10.1166/sl.2018.3935 – year: 2017 ident: 224_CR69 publication-title: J. Adv. Phys. doi: 10.1166/jap.2017.1313 – volume: 15 start-page: 758 issue: 9 year: 2017 ident: 224_CR58 publication-title: Sens. Lett. doi: 10.1166/sl.2017.3876 – volume: 28 start-page: 1394 issue: 4 year: 2018 ident: 224_CR53 publication-title: J. Inorg. Organometal. Polym. Mater. doi: 10.1007/s10904-018-0837-4 – year: 2018 ident: 224_CR32 publication-title: Ukr. J. Phys. doi: 10.15407/ujpe63.8.754 – volume: 3 start-page: 3654 year: 2010 ident: 224_CR5 publication-title: J. Mater. doi: 10.3390/ma3063654 – year: 2019 ident: 224_CR74 publication-title: Int. J. Plast. Technol. doi: 10.1007/s12588-019-09228-5 – volume: 8 start-page: 902 year: 2008 ident: 224_CR114 publication-title: J. Nano. Lett. doi: 10.1021/nl0731872 – ident: 224_CR94 – year: 2019 ident: 224_CR107 publication-title: Trans Electr Electron Mater doi: 10.1007/s42341-019-00148-0 – volume: 8 start-page: 137 issue: 5 year: 2013 ident: 224_CR41 publication-title: J. Eng. Appl. Sci. – year: 2020 ident: 224_CR48 publication-title: J. Inorg. Org. Polym. Mater. doi: 10.1007/s10904-020-01528-3 – volume-title: Introduction to Quantum Mechanics year: 1974 ident: 224_CR98 – year: 2018 ident: 224_CR72 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1591 – volume: 60 start-page: 247 issue: 2 year: 2011 ident: 224_CR50 publication-title: Eur. J. Sci. Res. – ident: 224_CR102 – year: 2020 ident: 224_CR65 publication-title: Egypt. J. Chem. doi: 10.21608/ejchem.2019.10712.1695 – year: 2017 ident: 224_CR59 publication-title: Ukr. J. Phys. doi: 10.15407/ujpe62.12.1044 – volume: 63 start-page: 231 issue: 2 year: 2011 ident: 224_CR28 publication-title: Eur. J. Sci. Res. – year: 2017 ident: 224_CR33 publication-title: Sens. Lett. doi: 10.1166/sl.2017.3892 – year: 2017 ident: 224_CR51 publication-title: Sens. Lett. doi: 10.1166/sl.2017.3900 – year: 2019 ident: 224_CR36 publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v8i1.1019 – year: 2019 ident: 224_CR109 publication-title: Int. J. Emerg. Trends Eng. Res. doi: 10.30534/ijeter/2019/01782019 – volume: 61 start-page: 367 issue: 3 year: 2011 ident: 224_CR37 publication-title: Eur. J. Sci. Res. – volume: 80 start-page: 79 year: 2014 ident: 224_CR15 publication-title: IOSR J. Appl. Phys. – volume-title: Computational Chemistry Using the PC year: 2003 ident: 224_CR83 doi: 10.1002/0471474908 – year: 2019 ident: 224_CR71 publication-title: Int. J. Emerg. Trends Eng. Res. doi: 10.30534/ijeter/2019/06782019 – volume: 62 start-page: 1167 issue: 4 year: 2019 ident: 224_CR62 publication-title: Egypt. J. Chem. doi: 10.21608/ejchem.2019.6241.1522 – ident: 224_CR95 – year: 2018 ident: 224_CR67 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1538 – volume: 4 start-page: 86 issue: 2 year: 2013 ident: 224_CR23 publication-title: Iran. J. Energy Environ. – year: 2017 ident: 224_CR52 publication-title: Sens. Lett. doi: 10.1166/sl.2018.3915 – volume: 9 start-page: 1 issue: 1 year: 2014 ident: 224_CR1 publication-title: J. Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-1 – volume: 4 start-page: 6 issue: 8 year: 2014 ident: 224_CR25 publication-title: J. Appl. Pharm. Sci. – volume: 3 start-page: 26 year: 2015 ident: 224_CR2 publication-title: Phys. Sci. Res. Int. J. – volume-title: Semiempirical Methods year: 2000 ident: 224_CR93 – volume-title: Reviews in Computational Chemistry year: 2005 ident: 224_CR92 doi: 10.1002/0471720895 – volume: 4 start-page: 01 year: 2014 ident: 224_CR7 publication-title: J. Eng. Res. Appl. – volume: 15 start-page: 1 year: 2015 ident: 224_CR112 publication-title: J. Adv. Mater. Sci. Eng. – volume: 205 start-page: 541 year: 1951 ident: 224_CR90 publication-title: Proc. R. Soc. A – year: 2017 ident: 224_CR122 publication-title: Ukr. J. Phys. doi: 10.15407/ujpe62.11.0978 – ident: 224_CR16 doi: 10.1155/2014/697809 – year: 2018 ident: 224_CR70 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1561 – volume-title: Achemist’s guide to functional theory year: 2001 ident: 224_CR88 doi: 10.1002/3527600043 – volume-title: Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems year: 2001 ident: 224_CR26 doi: 10.1002/0471220655 – volume-title: Introduction to Electronic structure Theory year: 2002 ident: 224_CR86 – volume: 6 start-page: 283 year: 2012 ident: 224_CR9 publication-title: J. Expr. Poly. Lett. doi: 10.3144/expresspolymlett.2012.31 – volume: 2 start-page: 196 year: 2012 ident: 224_CR14 publication-title: World J. Nano Sci. Eng. doi: 10.4236/wjnse.2012.24026 – year: 2018 ident: 224_CR76 publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899x/454/1/012113 – year: 2019 ident: 224_CR45 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-019-00121-x – volume: 5 start-page: 2192 issue: 9 year: 2011 ident: 224_CR44 publication-title: Aust. J. Basic Appl. Sci. – year: 2019 ident: 224_CR56 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-019-00145-3 – year: 2018 ident: 224_CR57 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1518 – ident: 224_CR108 – year: 2018 ident: 224_CR115 publication-title: J. Bionanosci. doi: 10.1166/jbns.2018.1533 – volume: 2 start-page: 103 year: 2014 ident: 224_CR8 publication-title: Adv. Chem. Sci. – year: 2017 ident: 224_CR30 publication-title: Ukr. J. Phys. doi: 10.15407/ujpe62.12.1050 – volume: 30 start-page: 189 issue: 2 year: 2007 ident: 224_CR20 publication-title: Egypt J. Solids doi: 10.21608/ejs.2007.149037 – ident: 224_CR87 – year: 2016 ident: 224_CR68 publication-title: Mater. Focus doi: 10.1166/mat.2016.1371 – volume: 29 start-page: 10369 issue: 12 year: 2018 ident: 224_CR63 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-018-9095-z – ident: 224_CR111 doi: 10.1016/j.physrep.2009.02.003 – volume: 8 start-page: 140 issue: 5 year: 2013 ident: 224_CR39 publication-title: J. Eng. Appl. Sci. – volume: 9 start-page: 1 issue: 11 year: 2015 ident: 224_CR40 publication-title: Adv. Environ. Biol. – volume: 24 start-page: 10031 year: 2012 ident: 224_CR118 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301245b – ident: 224_CR4 – year: 2018 ident: 224_CR46 publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v7i1.839 – volume-title: Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations year: 2001 ident: 224_CR27 – ident: 224_CR104 doi: 10.1103/PhysRevB.80.153412 – year: 2019 ident: 224_CR42 publication-title: Egypt. J. Chem. doi: 10.21608/ejchem.2019.7154.1590 – volume-title: Introduction to Quantum Theory and Atomic Structure year: 1996 ident: 224_CR82 doi: 10.1093/hesc/9780198559160.001.0001 – volume: 55 start-page: 769 year: 2000 ident: 224_CR119 publication-title: J. Zeitschrift. Naturforschung A doi: 10.1515/zna-2000-9-1005 – year: 2017 ident: 224_CR31 publication-title: Sens. Lett. doi: 10.1166/sl.2017.3910 – volume-title: Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations year: 2001 ident: 224_CR100 – volume: 11 start-page: 385 issue: 4 year: 2012 ident: 224_CR17 publication-title: J. Miner. Mater. Charact. Eng. – year: 2020 ident: 224_CR49 publication-title: Trans. Electr. Electr. Mater. doi: 10.1007/s42341-020-00189-w – volume-title: Principles of Quantum Mechanics: As Applied to Chemistry and Chemical Physics year: 2002 ident: 224_CR81 |
SSID | ssib039560196 ssj0000314789 |
Score | 2.4136832 |
Snippet | This study focuses on the quantum mechanical treatment of the geometrical optimization and the electronic structure problems of a nanomaterial PMMA and... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 185 |
SubjectTerms | Chemistry and Materials Science Electronics and Microelectronics Instrumentation Materials Science Optical and Electronic Materials Regular Paper 전기공학 |
Title | First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications |
URI | https://link.springer.com/article/10.1007/s42341-020-00224-w https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707422 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions on Electrical and Electronic Materials, 2021, 22(2), , pp.185-203 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVi59Iciq6ou4EoemiRyBCpzToqRYy0gGMfEiDoRZAoKk7iyIEXBM2p_9Df6Ff1SzpDUovtNmh6sWyCpGXO83CGmnlDyHvXERwla_VgM7fcnkisUOTMYimYo7wHMBCK7fPIPzxxv5x6p1utnUbU0nKRdsXtH_NK_keq0AZyxSzZe0i2mhQa4D3IF15BwvD6TzLun4Pttjsqz8vnmGkllo3otoOqyI2O6EKuWMWzgcflw2t9jj3C8_gZEqviELA4R4NBVAZBOF9nQ159iJZ4ioCD17tFEz501vqB5p5iyDrGhUnF-4DfOa0r78y1Edw8NbxobKE650I9z9BjKmaDRvEesLj1Ute69FZXiI6Ks3FyVT_fypaTC_A6NHt38g1JNAbdetR8bIaNr0zClzkM4awRQ6P1N-ehFfi6kG5XqjZuh-BEeOGK0ue8AW7e0OBMVxAyxgBXBAyb-4wOLZmDLerCPXBMzgdbyLqpd9UykmBts61CICu6aDVHDHPEao74pkW2Ofg8dptsR_39_aNSPTroyjLDjqgMDYe5gSryWP1skxamkkM3bm7F9GoVs3zj6b8yqo4fkYfGG6KRhvZjsiWLJ2SnwZH5lPxUIKc1yGkT5HSa0xrke7SGOAWcUANxWkMcB3xA5P76_gOhDZdo-VF1LpsVlE37KoQpQJiuQZg2IfyMnPQPjj8dWqbEiCUc7i0s4SO7VZC7sEDSCZGcMYdFlnbuOhnz01BkElPNWRrmaU_aofBYwv3U5kEufS9wnpN2MS3kC0Lt0A6ClDtZ5qYuy_3EcT3bzoIg8UXKJesQVq5-LAz_PpaBmcR_h0KH7FZjrjX7zJ2934FQ40txHiNpPF7PpvHlLAbX-HMMjh7mnXfIXinz2Kiy-R1zvrzXHbwiD-p_5WvSBpnLN2C0L9K3Bsy_AUAU4-0 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Principles+Calculations+of+Electronic%2C+Structural+and+Optical+Properties+of+%28PMMA%E2%80%93ZrO2%E2%80%93Au%29+and+%28PMMA%E2%80%93Al2O3%E2%80%93Au%29+Nanocomposites+for+Optoelectronics+Applications&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Hazim%2C+Angham&rft.au=Abduljalil%2C+Hayder+M.&rft.au=Hashim%2C+Ahmed&rft.date=2021-04-01&rft.issn=1229-7607&rft.eissn=2092-7592&rft.volume=22&rft.issue=2&rft.spage=185&rft.epage=203&rft_id=info:doi/10.1007%2Fs42341-020-00224-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42341_020_00224_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon |