Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials – A mini review
[Display omitted] •The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based mate...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 330; p. 112837 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based materials interact with specific analytes also discussed.
Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated. |
---|---|
AbstractList | [Display omitted]
•The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based materials interact with specific analytes also discussed.
Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated. Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated. |
ArticleNumber | 112837 |
Author | Triyana, Kuwat Santoso, Iman Fauzi, Fika Rianjanu, Aditya |
Author_xml | – sequence: 1 givenname: Fika orcidid: 0000-0002-0426-9248 surname: Fauzi fullname: Fauzi, Fika email: fika.fauzi@uny.ac.id organization: Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta, 55281, Indonesia – sequence: 2 givenname: Aditya orcidid: 0000-0001-7852-3619 surname: Rianjanu fullname: Rianjanu, Aditya email: aditya.rianjanu@mt.itera.ac.id organization: Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung, 35365, Indonesia – sequence: 3 givenname: Iman orcidid: 0000-0003-2695-8965 surname: Santoso fullname: Santoso, Iman organization: Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia – sequence: 4 givenname: Kuwat surname: Triyana fullname: Triyana, Kuwat organization: Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia |
BookMark | eNp9kM1KAzEQx4MoWD8ewFvAix625qO72cWTFL9AEUHPYTaZ2pQ2W5O0Uk--g2_okxhZTx48Dcz8fzPMb49s-84jIUecDTnj1dlsGD0MBRN8yLmopdoiA14rWUhWNdtkwBoxKkZipHbJXowzxpiUSg3I-hoiBW_pdLVw1qUNjeij8y_0zaUpfV1BSO_UhE1MMKcLZ0LXwhy8QXryOL4_paaDhLZPvwRYTtFj0ULMvUWeBAfzSL8-PulFpr2jAdcO3w7IziQP8PC37pPnq8un8U1x93B9O764K4wUZSoMZ6BM07Q1mtbyyQRB1aaB2jIUFaukkRylbCvgqipt1SLjyrASS4nG1qXcJ8f93mXoXlcYk551q-DzSS3KshrJmjcip3ifyt_FGHCil8EtIGw0Z_pHr57prFf_6NW93syoP4xxCZLrfArg5v-S5z2J-fEsI-hoHGaj1gU0SdvO_UN_A_sBmJ4 |
CitedBy_id | crossref_primary_10_1021_acsanm_4c01760 crossref_primary_10_3390_membranes12020125 crossref_primary_10_1016_j_sna_2024_115713 crossref_primary_10_3390_mi14061274 crossref_primary_10_1007_s10853_024_10465_2 crossref_primary_10_2139_ssrn_4122740 crossref_primary_10_1016_j_surfin_2022_102035 crossref_primary_10_1039_D3CP05458F crossref_primary_10_3390_molecules27175437 crossref_primary_10_35848_1347_4065_ac1a8e crossref_primary_10_1016_j_snb_2023_134194 crossref_primary_10_1021_acsanm_2c05423 crossref_primary_10_1186_s11671_023_03779_8 crossref_primary_10_3390_s23062996 crossref_primary_10_1002_slct_202103615 crossref_primary_10_1016_j_bios_2022_114749 crossref_primary_10_1021_acsanm_1c01895 crossref_primary_10_1039_D4NJ04001E crossref_primary_10_1016_j_nanoso_2022_100908 crossref_primary_10_1016_j_snb_2022_132851 crossref_primary_10_1007_s10853_024_09921_w crossref_primary_10_2139_ssrn_4100441 crossref_primary_10_3390_s22010390 crossref_primary_10_1007_s11164_023_05054_y crossref_primary_10_1016_j_icheatmasstransfer_2022_106507 crossref_primary_10_1039_D2AY01382G crossref_primary_10_1021_acsomega_3c06571 crossref_primary_10_1021_acs_energyfuels_4c00060 crossref_primary_10_1109_TIM_2024_3428629 crossref_primary_10_1021_acsanm_4c07191 crossref_primary_10_1109_JSEN_2024_3363056 crossref_primary_10_1021_acs_chemrev_2c00618 crossref_primary_10_1021_acsami_4c04630 crossref_primary_10_1002_adem_202101216 crossref_primary_10_1016_j_biosx_2022_100110 crossref_primary_10_3390_s22145112 crossref_primary_10_1007_s42247_023_00454_7 crossref_primary_10_1016_j_measurement_2025_117039 crossref_primary_10_1016_j_surfin_2023_103542 crossref_primary_10_1007_s10934_023_01451_1 crossref_primary_10_1007_s00216_024_05407_5 crossref_primary_10_1021_acs_langmuir_4c02116 crossref_primary_10_1039_D4TA05042H crossref_primary_10_1109_JSEN_2022_3214210 crossref_primary_10_1016_j_ijoes_2025_100980 crossref_primary_10_1039_D3NA00507K crossref_primary_10_1016_j_snb_2024_136033 crossref_primary_10_1021_acsami_2c15237 crossref_primary_10_1016_j_snb_2023_134188 crossref_primary_10_1142_S1793292024300093 crossref_primary_10_3390_s21238049 crossref_primary_10_1039_D3NJ01350B crossref_primary_10_3390_s22155728 crossref_primary_10_1021_acssensors_3c00853 crossref_primary_10_2139_ssrn_4020633 crossref_primary_10_1109_JSEN_2022_3148039 crossref_primary_10_1016_j_measurement_2022_111674 crossref_primary_10_1016_j_tifs_2023_06_034 crossref_primary_10_3390_chemosensors9080194 crossref_primary_10_1016_j_hybadv_2023_100089 crossref_primary_10_1557_s43579_023_00367_w crossref_primary_10_1016_j_microc_2023_109237 crossref_primary_10_3390_s22249939 crossref_primary_10_1109_TIM_2023_3348895 crossref_primary_10_1016_j_talanta_2024_127081 crossref_primary_10_1016_j_snb_2022_132253 crossref_primary_10_3390_s24227263 crossref_primary_10_1103_PhysRevApplied_20_044047 crossref_primary_10_35848_1347_4065_adb636 crossref_primary_10_1016_j_trac_2022_116805 crossref_primary_10_3390_chemosensors10120522 crossref_primary_10_3390_s24165119 crossref_primary_10_3390_electronics12122666 crossref_primary_10_1021_acsami_3c14766 crossref_primary_10_1021_acssensors_1c02715 crossref_primary_10_1021_acsnano_3c11832 crossref_primary_10_1016_j_snb_2024_135874 crossref_primary_10_3390_chemosensors11010016 crossref_primary_10_1016_j_aca_2022_339759 crossref_primary_10_1016_j_jaerosci_2024_106495 crossref_primary_10_1007_s11164_024_05422_2 crossref_primary_10_1002_slct_202304694 crossref_primary_10_1109_TED_2024_3446744 crossref_primary_10_1002_app_54390 crossref_primary_10_1016_j_microc_2024_110364 crossref_primary_10_1016_j_trac_2024_117958 crossref_primary_10_3390_chemosensors10080315 crossref_primary_10_1109_TIM_2023_3347786 crossref_primary_10_1016_j_trac_2024_117792 crossref_primary_10_3390_nano12060975 crossref_primary_10_1016_j_trac_2024_117790 crossref_primary_10_3233_JIFS_222539 crossref_primary_10_1002_adsr_202400148 crossref_primary_10_1016_j_jfca_2024_106392 crossref_primary_10_1016_j_sna_2023_114676 crossref_primary_10_1016_j_snb_2023_135233 crossref_primary_10_3390_mi13101651 crossref_primary_10_3390_mi13091441 crossref_primary_10_1021_acsanm_3c05682 crossref_primary_10_1109_JSEN_2023_3332774 crossref_primary_10_1016_j_measurement_2024_116415 crossref_primary_10_1080_09593330_2021_1983025 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1109_JSEN_2024_3441716 crossref_primary_10_1109_TIM_2022_3200358 crossref_primary_10_1016_j_fuel_2021_122998 crossref_primary_10_1016_j_mee_2023_111959 crossref_primary_10_1007_s10854_024_13087_1 crossref_primary_10_1016_j_ccr_2022_214502 crossref_primary_10_56171_ojn_1598824 crossref_primary_10_1016_j_envpol_2022_119931 crossref_primary_10_1016_j_snb_2022_132748 crossref_primary_10_3390_molecules28041978 crossref_primary_10_3390_photonics10090975 crossref_primary_10_1016_j_diamond_2024_111438 |
Cites_doi | 10.1016/j.snb.2016.01.105 10.3390/s20092711 10.1007/s10853-009-3829-5 10.1063/1.4996603 10.3390/coatings10090883 10.1021/jz300358t 10.1126/science.1157996 10.1039/C9AN01366K 10.1021/acsomega.8b00061 10.1016/j.foodchem.2020.127615 10.1038/nnano.2008.210 10.1039/c2sc20205k 10.1016/j.rser.2020.110026 10.1021/nl0731872 10.1016/j.cplett.2016.08.025 10.1109/58.279139 10.1016/j.snb.2018.03.143 10.1016/j.apsusc.2018.03.090 10.1016/j.jcis.2017.01.043 10.1016/j.rinp.2019.102680 10.1021/nl902623y 10.1039/C5TA00252D 10.1038/nmat1967 10.1016/j.apsusc.2020.145257 10.1021/es201121w 10.1016/j.snb.2018.12.081 10.1016/j.carbon.2013.07.055 10.1049/el.2014.2735 10.1016/j.snb.2014.12.134 10.1021/ac981245l 10.1016/j.sna.2019.111742 10.1126/science.1171245 10.1016/j.colsurfb.2016.09.007 10.1016/j.sbsr.2019.100294 10.4028/www.scientific.net/MSF.966.3 10.1021/nl0612289 10.1126/science.aaa6502 10.1016/j.snb.2013.10.076 10.1016/j.ultras.2017.06.019 10.1016/j.jece.2020.103743 10.1016/j.snb.2017.08.212 10.1039/C0JM02126A 10.3390/s18041150 10.1016/j.jhazmat.2009.02.003 10.1016/j.snb.2013.01.014 10.1016/j.snb.2019.127579 10.1109/JSEN.2018.2872854 10.1016/j.snb.2008.02.037 10.1016/j.snb.2019.127313 10.3390/nano9030422 10.1016/j.snb.2018.12.154 10.3390/chemosensors7020020 10.1002/admi.201900849 10.1016/j.apsusc.2019.06.280 10.1016/j.snb.2016.01.046 10.1016/j.snb.2018.02.012 10.1021/acsanm.0c00896 10.1016/j.snb.2019.04.050 10.1016/j.snb.2020.128286 10.1016/j.sna.2015.11.034 10.1039/c1jm13037d 10.1002/anie.201200474 10.1021/acs.chemmater.5b02385 10.1021/acsami.0c12196 10.1016/j.carbon.2020.04.093 10.1016/j.jcis.2019.10.080 10.1021/ar300203n 10.1016/j.snb.2019.127192 10.1039/c0jm00168f 10.1016/j.carbon.2018.09.068 10.1016/j.trac.2018.08.009 10.3390/electronics7090181 10.1002/pssa.201900869 10.1007/BF01337937 10.1038/ncomms1067 10.1038/s41598-020-58472-y 10.1021/nl801827v 10.1016/j.snb.2017.09.028 10.1016/j.snb.2014.01.088 10.1126/science.1102896 10.1126/science.1156965 10.1016/j.vacuum.2016.10.017 10.1126/science.aah3398 10.1016/j.matchemphys.2015.01.005 10.1038/s41378-019-0075-0 10.1103/PhysRevB.77.115449 10.1016/j.polymer.2020.123335 10.1038/ncomms1643 10.1016/j.tsf.2014.07.036 10.1016/j.trac.2010.05.011 10.1016/j.cej.2014.04.004 10.1039/C5RA04890G 10.5194/jsss-8-243-2019 10.1103/PhysRev.71.622 10.1016/j.matlet.2016.01.122 10.3390/s19204395 10.1016/j.snb.2018.06.062 10.1016/j.snb.2016.12.063 10.1007/s40242-016-6129-z 10.1109/JSEN.2013.2273615 10.1038/s41598-019-51851-0 10.1016/j.snb.2020.128373 10.1039/C5RA19132G 10.1016/j.apsusc.2011.04.028 10.3389/fmats.2018.00082 10.1016/j.jwpe.2019.101044 10.1016/j.mtcomm.2020.101770 10.1116/1.1335681 10.1016/j.ssc.2008.02.024 10.1016/j.snb.2016.04.070 10.1016/j.colsurfb.2019.110596 10.1039/C5TA01010A 10.1109/FREQ.2000.887325 10.1063/1.2982585 10.1088/2053-1591/aadb2b 10.1007/s11431-016-0281-7 10.1016/j.sna.2019.01.009 10.1038/nnano.2010.172 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Oct 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Oct 15, 2021 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2021.112837 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2021_112837 S0924424721003009 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-c10a7c99b8ecbd1ffea78c9a8d0e26063c31e33b6a1765d6be017c05e53ecd853 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 25 07:52:20 EDT 2025 Tue Jul 01 01:05:34 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 23 02:46:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Humidity sensor Graphene composites Graphene QCM Gas sensor Graphene oxide Reduced graphene oxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-c10a7c99b8ecbd1ffea78c9a8d0e26063c31e33b6a1765d6be017c05e53ecd853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0426-9248 0000-0003-2695-8965 0000-0001-7852-3619 |
PQID | 2556438192 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2556438192 crossref_primary_10_1016_j_sna_2021_112837 crossref_citationtrail_10_1016_j_sna_2021_112837 elsevier_sciencedirect_doi_10_1016_j_sna_2021_112837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Park, Ko, Hong, Shin, Park, Kang, Lee, Kim, Son (bib0085) 2015; 27 El Habti, Bastien (bib0060) 1994; 41 Voiry, Yang, Kupferberg, Fullon, Lee, Jeong, Shin, Chhowalla (bib0435) 2016; 353 Rianjanu, Hasanah, Nugroho, Kusumaatmaja, Roto, Triyana (bib0165) 2019; 7 Syama, Mohanan (bib0275) 2019 Yavari, Koratkar (bib0360) 2012; 3 Wang (bib0020) 2020; 307 Wang, Gao, Xu (bib0180) 2019; 293 Ayad, El-Hefnawey, Torad (bib0095) 2009; 168 Wallace (bib0195) 1947; 71 Jin, Tao, Feng, Yu, Wang, Dong, Luo (bib0560) 2017; 140 Triyana, Sembiring, Rianjanu, Hidayat, Riowirawan, Julian, Kusumaatmaja, Santoso, Roto (bib0170) 2018; 7 Mehmood, Mubarak, Khalid, Walvekar, Abdullah, Siddiqui, Baloch, Nizamuddin, Mazari (bib0290) 2020; 8 Zhang, Wang, Li, Zhou, Zong, Dong (bib0520) 2018; 255 Murdaka, Nugroho, Kusumaatmaja, Isnaeni, Santoso (bib0245) 2019 Guerrero-Contreras, Caballero-Briones (bib0405) 2015; 153 Ho, Wu (bib0565) 2020; 510 Xu, Zhang, Qu (bib0265) 2020; 32 Ren, Zhang, Wang, Li, Liu (bib0575) 2018; 18 Pumera, Ambrosi, Bonanni, Chng, Poh (bib0345) 2010; 29 Zhang, Zhang, Zhou (bib0390) 2013; 46 Li, Yao, Lin, Moon, Lin, Wong (bib0430) 2010; 20 Ding, Chen, Chen, Zhao, Li (bib0605) 2018; 266 Vig, Walls (bib0055) 2000 Yao, Chen, Guo, Wu (bib0500) 2011; 257 Kuznetsova, Zaitsev, Krasnopolskaya, Teplykh, Semyonov, Avtonomova, Ziangirova, Smirnov, Kolesov (bib0160) 2020; 20 Gupta, Athirah, Fahmi Hawari (bib0530) 2020; 18 Zhang, Hu, Fan, Li (bib0470) 2017; 243 He, Wu, Yin, Zhang (bib0340) 2012; 3 Trajcheva, Politakos, Pérez, Joseph, Blazevska Gilev, Tomovska (bib0315) 2021; 213 Kuznetsova, Kolesov, Zaitsev, Tkachev, Kashin, Shikhabudinov, Fionov, Gubin, Sun (bib0240) 2017; 214 Jayawardena, Siriwardena, Rajapakse, Kubono, Shimomura (bib0505) 2019; 493 Yuan, Tai, Bao, Liu, Ye, Jiang (bib0480) 2016; 174 Sauerbrey (bib0025) 1959; 155 Yao, Xue (bib0600) 2015; 211 Ollik, Lieder (bib0280) 2020; 10 Mattevi, Kim, Chhowalla (bib0370) 2011; 21 Kuznetsova, Anisimkin, Gubin, Tkachev, Kolesov, Kashin, Zaitsev, Shikhabudinov, Verona, Sun (bib0630) 2017; 81 Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (bib0385) 2009; 324 Olabi, Abdelkareem, Wilberforce, Sayed (bib0285) 2021; 135 Nine, Cole, Tran, Losic (bib0475) 2015; 3 Reina, Jia, Ho, Nezich, Son, Bulovic, Dresselhaus, Kong (bib0380) 2009; 9 Tai, Zhen, Liu, Ye, Xie, Du, Jiang (bib0580) 2016; 230 Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (bib0205) 2008; 146 Li, Chen, Yao, Li, Chen, Bi (bib0595) 2013; 13 Yuan, Tai, Ye, Liu, Xie, Du, Jiang (bib0590) 2016; 234 Yang, He, Hu, Yan, Cheng (bib0110) 2011; 45 Dean, Young, Meric, Lee, Wang, Sorgenfrei, Watanabe, Taniguchi, Kim, Shepard, Hone (bib0210) 2010; 5 Zheng, Fan, Li, Yang, Li, Lin, Zhou, Lv (bib0155) 2019; 283 Chen, Yao, Li, Shi (bib0400) 2013; 64 Larki, Sabri, Kabir, Nafady, Kandjani, Bhargava (bib0100) 2015; 5 Li, Chen, Yao, Li, Chen (bib0465) 2014; 196 Kravchenko, Snopok (bib0035) 2020; 145 Gao, Liu, Bai, Xu, Kong, Liu, Lv, Long, Yang, Li (bib0255) 2019; 141 Wu, Chen, Zhu, Zhou, Yao, Quan, Liu (bib0455) 2013; 178 Ma, Xie, Su, Du, Xie, Jiang (bib0490) 2016; 59 Marjani, Nakhjiri, Adimi, Jirandehi, Shirazian (bib0270) 2020; 10 Li, Zhang, Bai, Sun, Wang, Wang, Dai (bib0425) 2008; 3 Novoselov (bib0190) 2004; 306 Zhang, Hou, Zhang, Zhao (bib0335) 2017; 111 Rianjanu, Nugroho, Kusumaatmaja, Roto, Triyana (bib0075) 2019; 25 Chen, Wang, Gu, Wang, Wang, Wei (bib0550) 2020; 306 Lucklum, Behling, Hauptmann (bib0045) 1999; 71 Rianjanu, Julian, Hidayat, Yulianto, Majid, Syamsu, Wasisto, Triyana (bib0140) 2020; 319 Ho, Wu (bib0125) 2020 Rianjanu, Nurfani, Arif, Triyana, Wasisto (bib0010) 2021; 26 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (bib0220) 2008; 8 Magna, Belugina, Mandoj, Catini, Legin, Paolesse, Di Natale (bib0350) 2020; 320 Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (bib0365) 2007; 6 Yao, Chen, Li, Chen, Li (bib0555) 2014; 191 Chien, Li, Lai, Yeh, Chen, Chen, Chen, Chen, Nemoto, Isoda, Chen, Fujita, Eda, Yamaguchi, Chhowalla, Chen (bib0250) 2012; 51 Wang, Xie, Su, Su, Zhang, Du, Tai, Jiang (bib0615) 2018; 255 Nugroho, Rianjanu, Triyana, Kusumaatmaja, Roto (bib0070) 2019; 15 Le, Liu, Peng, Pang, Xu, Gao, Xie (bib0330) 2019; 5 Hwang, Das Sarma (bib0200) 2008; 77 Zhang, Wang, Zong, Dong, Zhang (bib0585) 2018; 262 Jia, Chen, Yu, Zhang, Dong (bib0540) 2015; 5 Robinson, Snow, Bǎdescu, Reinecke, Perkins (bib0625) 2006; 6 Mujahid, Afzal, Dickert (bib0050) 2019; 19 Rianjanu, Roto, Julian, Hidayat, Kusumaatmaja, Suyono, Triyana (bib0175) 2018; 18 Lv, Hu, Luo, Liu, Qiao, Zhang, Song, Shi, Cai, Watanabe (bib0150) 2019; 9 Smith, LaChance, Zeng, Liu, Sun (bib0395) 2019; 1 Van Quang, Hung, Tuan, Phan, Huy, Van Quy (bib0450) 2014; 568 Qi, Xu, Zhang, Fei, Wang (bib0130) 2020; 560 Julian, Rianjanu, Hidayat, Kusumaatmaja, Roto, Triyana (bib0145) 2019; 8 Rianjanu, Triyana, Nugroho, Kusumaatmaja, Roto (bib0090) 2020; 301 Fang, Lin, Hu, Liu, Tang, Shi, Liao (bib0610) 2020; 304 Yao, he Huang, ya Zhang, Zhang, Hou, kun Zhou (bib0135) 2020; 302 Ain, Farooq, Jalees (bib0305) 2020; 33 Du, Wang, Huang, Tao, Tang, Jiang (bib0120) 2009; 44 Toh, Loh, Kamarudin, Daud (bib0440) 2014; 251 Triyana, Rianjanu, Nugroho, As’ari, Kusumaatmaja, Roto, Suryana, Wasisto (bib0065) 2019; 9 Lee, Wei, Kysar, Hone (bib0215) 2008; 321 Qi, Wang, Wang, Xu, Zhang (bib0460) 2016; 32 Moon, Lee, Ruoff, Lee (bib0415) 2010; 1 Yang, He (bib0545) 2016; 228 Roto, Rianjanu, Rahmawati, Fatyadi, Yulianto, Majid, Syamsu, Wasisto, Triyana (bib0080) 2020; 3 Tang, Zhang, Zhang, Zhao, Hou, Zhan (bib0325) 2020; 217 Yi, Shen (bib0355) 2015; 3 Jia, Yu, Zhang, Dong, Li (bib0525) 2016; 148 Tang, Ma, Xie, Su, Jiang (bib0485) 2016; 660 Lee, Il Choi, Kim, Woo, Kim, Yoo, Seo (bib0495) 2019; 284 Xu, Wang, Cha, Wu, Xu, Cheng, Xiang (bib0105) 2018; 3 Wang, Ding, Yu, Wang (bib0635) 2011; 21 Yu, Lian, Siriponglert, Li, Chen, Pei (bib0375) 2008; 93 Song, Shen, Wang, Chu, Xie, Zhou, Shen (bib0295) 2020; 185 Liu, Zhang (bib0015) 2021; 334 Park, Hu, Hwang, Lee, Casabianca, Cai, Potts, Ha, Chen, Oh, Kim, Kim, Ishii, Ruoff (bib0410) 2012; 3 Su, Te Lin (bib0510) 2016; 238 Zhao, He, Jiang, Yuan, Wu, Su, Tai (bib0535) 2019; 5 Zheng, Li, Ma, Wang, Wu, Cheng (bib0115) 2008; 133 Baghayeri, Ghanei-Motlagh, Tayebee, Fayazi, Narenji (bib0300) 2020 Azzouz, Kailasa, Lee, Rascón, Ballesteros, Zhang, Kim (bib0185) 2018; 108 Kumar, Huang, Ward, Adamson (bib0235) 2017; 493 Xin, Yao, Sun, Scott, Shao, Wang, Lian (bib0420) 2015; 349 Fauzi, Suhendar, Kusumaatmaja, Nugroho, Triyana, Nugroho, Santoso (bib0260) 2018 Hampitak, Melendrez, Iliut, Fresquet, Parsons, Spencer, Jowitt, Vijayaraghavan (bib0040) 2020; 165 Zhu, Zhang, Xie, Hou (bib0320) 2020; 12 Yang, Tseng, Chen (bib0445) 2018; 444 Yao, Chen, Li, Liu, Li (bib0570) 2014; 50 Chen, Deng, Xu, Wang, Wei, Wang (bib0515) 2018; 273 Son, Ji, Kim, Kim, Kim, Song, Lee, Lim, An, Myung (bib0310) 2021 Qi, Zhang, Shao, Yang, Fei, Wang (bib0620) 2019; 287 Torad, Zhang, Amer, Ayad, Kim, Kim, Ding, Zhang, Kimura, Yamauchi (bib0005) 2019; 6 Srivastava, Sakthivel (bib0030) 2001; 19 Li, Zhu, Cai, Borysiak, Han, Chen, Piner, Colombo, Ruoff (bib0225) 2009; 9 Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (bib0230) 2008; 320 Lee (10.1016/j.sna.2021.112837_bib0215) 2008; 321 Son (10.1016/j.sna.2021.112837_bib0310) 2021 Zhang (10.1016/j.sna.2021.112837_bib0585) 2018; 262 Guerrero-Contreras (10.1016/j.sna.2021.112837_bib0405) 2015; 153 Hampitak (10.1016/j.sna.2021.112837_bib0040) 2020; 165 Lucklum (10.1016/j.sna.2021.112837_bib0045) 1999; 71 Fauzi (10.1016/j.sna.2021.112837_bib0260) 2018 Rianjanu (10.1016/j.sna.2021.112837_bib0165) 2019; 7 Ho (10.1016/j.sna.2021.112837_bib0565) 2020; 510 Moon (10.1016/j.sna.2021.112837_bib0415) 2010; 1 Yao (10.1016/j.sna.2021.112837_bib0500) 2011; 257 Reina (10.1016/j.sna.2021.112837_bib0380) 2009; 9 Robinson (10.1016/j.sna.2021.112837_bib0625) 2006; 6 Rianjanu (10.1016/j.sna.2021.112837_bib0075) 2019; 25 Murdaka (10.1016/j.sna.2021.112837_bib0245) 2019 Wang (10.1016/j.sna.2021.112837_bib0615) 2018; 255 Fang (10.1016/j.sna.2021.112837_bib0610) 2020; 304 El Habti (10.1016/j.sna.2021.112837_bib0060) 1994; 41 Wallace (10.1016/j.sna.2021.112837_bib0195) 1947; 71 Li (10.1016/j.sna.2021.112837_bib0430) 2010; 20 Gao (10.1016/j.sna.2021.112837_bib0255) 2019; 141 Rianjanu (10.1016/j.sna.2021.112837_bib0010) 2021; 26 Zheng (10.1016/j.sna.2021.112837_bib0155) 2019; 283 Ding (10.1016/j.sna.2021.112837_bib0605) 2018; 266 Sauerbrey (10.1016/j.sna.2021.112837_bib0025) 1959; 155 Mattevi (10.1016/j.sna.2021.112837_bib0370) 2011; 21 Trajcheva (10.1016/j.sna.2021.112837_bib0315) 2021; 213 Kuznetsova (10.1016/j.sna.2021.112837_bib0160) 2020; 20 Yao (10.1016/j.sna.2021.112837_bib0600) 2015; 211 Yao (10.1016/j.sna.2021.112837_bib0135) 2020; 302 Yao (10.1016/j.sna.2021.112837_bib0570) 2014; 50 Van Quang (10.1016/j.sna.2021.112837_bib0450) 2014; 568 Srivastava (10.1016/j.sna.2021.112837_bib0030) 2001; 19 Kravchenko (10.1016/j.sna.2021.112837_bib0035) 2020; 145 Torad (10.1016/j.sna.2021.112837_bib0005) 2019; 6 Zhao (10.1016/j.sna.2021.112837_bib0535) 2019; 5 Zhang (10.1016/j.sna.2021.112837_bib0390) 2013; 46 Triyana (10.1016/j.sna.2021.112837_bib0065) 2019; 9 Jayawardena (10.1016/j.sna.2021.112837_bib0505) 2019; 493 Qi (10.1016/j.sna.2021.112837_bib0620) 2019; 287 Tai (10.1016/j.sna.2021.112837_bib0580) 2016; 230 Zhang (10.1016/j.sna.2021.112837_bib0335) 2017; 111 Chen (10.1016/j.sna.2021.112837_bib0515) 2018; 273 Ain (10.1016/j.sna.2021.112837_bib0305) 2020; 33 Tang (10.1016/j.sna.2021.112837_bib0485) 2016; 660 Wu (10.1016/j.sna.2021.112837_bib0455) 2013; 178 Zhu (10.1016/j.sna.2021.112837_bib0320) 2020; 12 Yuan (10.1016/j.sna.2021.112837_bib0590) 2016; 234 Larki (10.1016/j.sna.2021.112837_bib0100) 2015; 5 Park (10.1016/j.sna.2021.112837_bib0410) 2012; 3 Jia (10.1016/j.sna.2021.112837_bib0540) 2015; 5 Yang (10.1016/j.sna.2021.112837_bib0445) 2018; 444 Balandin (10.1016/j.sna.2021.112837_bib0220) 2008; 8 Lv (10.1016/j.sna.2021.112837_bib0150) 2019; 9 Wang (10.1016/j.sna.2021.112837_bib0180) 2019; 293 Rianjanu (10.1016/j.sna.2021.112837_bib0175) 2018; 18 Dean (10.1016/j.sna.2021.112837_bib0210) 2010; 5 Jin (10.1016/j.sna.2021.112837_bib0560) 2017; 140 Tang (10.1016/j.sna.2021.112837_bib0325) 2020; 217 Yang (10.1016/j.sna.2021.112837_bib0545) 2016; 228 Qi (10.1016/j.sna.2021.112837_bib0460) 2016; 32 Xin (10.1016/j.sna.2021.112837_bib0420) 2015; 349 Ho (10.1016/j.sna.2021.112837_bib0125) 2020 Hwang (10.1016/j.sna.2021.112837_bib0200) 2008; 77 Julian (10.1016/j.sna.2021.112837_bib0145) 2019; 8 Chen (10.1016/j.sna.2021.112837_bib0550) 2020; 306 Rianjanu (10.1016/j.sna.2021.112837_bib0090) 2020; 301 Li (10.1016/j.sna.2021.112837_bib0225) 2009; 9 Xu (10.1016/j.sna.2021.112837_bib0265) 2020; 32 Azzouz (10.1016/j.sna.2021.112837_bib0185) 2018; 108 Yi (10.1016/j.sna.2021.112837_bib0355) 2015; 3 Li (10.1016/j.sna.2021.112837_bib0595) 2013; 13 Yu (10.1016/j.sna.2021.112837_bib0375) 2008; 93 Pumera (10.1016/j.sna.2021.112837_bib0345) 2010; 29 Zhang (10.1016/j.sna.2021.112837_bib0520) 2018; 255 Syama (10.1016/j.sna.2021.112837_bib0275) 2019 Ma (10.1016/j.sna.2021.112837_bib0490) 2016; 59 Kumar (10.1016/j.sna.2021.112837_bib0235) 2017; 493 Baghayeri (10.1016/j.sna.2021.112837_bib0300) 2020 Nine (10.1016/j.sna.2021.112837_bib0475) 2015; 3 Kuznetsova (10.1016/j.sna.2021.112837_bib0240) 2017; 214 Le (10.1016/j.sna.2021.112837_bib0330) 2019; 5 Olabi (10.1016/j.sna.2021.112837_bib0285) 2021; 135 Li (10.1016/j.sna.2021.112837_bib0385) 2009; 324 Chien (10.1016/j.sna.2021.112837_bib0250) 2012; 51 Roto (10.1016/j.sna.2021.112837_bib0080) 2020; 3 Yavari (10.1016/j.sna.2021.112837_bib0360) 2012; 3 Schedin (10.1016/j.sna.2021.112837_bib0365) 2007; 6 Su (10.1016/j.sna.2021.112837_bib0510) 2016; 238 Li (10.1016/j.sna.2021.112837_bib0425) 2008; 3 Vig (10.1016/j.sna.2021.112837_bib0055) 2000 Zhang (10.1016/j.sna.2021.112837_bib0470) 2017; 243 He (10.1016/j.sna.2021.112837_bib0340) 2012; 3 Bolotin (10.1016/j.sna.2021.112837_bib0205) 2008; 146 Toh (10.1016/j.sna.2021.112837_bib0440) 2014; 251 Kuznetsova (10.1016/j.sna.2021.112837_bib0630) 2017; 81 Wang (10.1016/j.sna.2021.112837_bib0020) 2020; 307 Park (10.1016/j.sna.2021.112837_bib0085) 2015; 27 Lee (10.1016/j.sna.2021.112837_bib0495) 2019; 284 Rianjanu (10.1016/j.sna.2021.112837_bib0140) 2020; 319 Liu (10.1016/j.sna.2021.112837_bib0015) 2021; 334 Mujahid (10.1016/j.sna.2021.112837_bib0050) 2019; 19 Li (10.1016/j.sna.2021.112837_bib0465) 2014; 196 Du (10.1016/j.sna.2021.112837_bib0120) 2009; 44 Song (10.1016/j.sna.2021.112837_bib0295) 2020; 185 Novoselov (10.1016/j.sna.2021.112837_bib0190) 2004; 306 Yuan (10.1016/j.sna.2021.112837_bib0480) 2016; 174 Yang (10.1016/j.sna.2021.112837_bib0110) 2011; 45 Ollik (10.1016/j.sna.2021.112837_bib0280) 2020; 10 Marjani (10.1016/j.sna.2021.112837_bib0270) 2020; 10 Mehmood (10.1016/j.sna.2021.112837_bib0290) 2020; 8 Magna (10.1016/j.sna.2021.112837_bib0350) 2020; 320 Ren (10.1016/j.sna.2021.112837_bib0575) 2018; 18 Gupta (10.1016/j.sna.2021.112837_bib0530) 2020; 18 Smith (10.1016/j.sna.2021.112837_bib0395) 2019; 1 Wang (10.1016/j.sna.2021.112837_bib0635) 2011; 21 Nair (10.1016/j.sna.2021.112837_bib0230) 2008; 320 Nugroho (10.1016/j.sna.2021.112837_bib0070) 2019; 15 Xu (10.1016/j.sna.2021.112837_bib0105) 2018; 3 Triyana (10.1016/j.sna.2021.112837_bib0170) 2018; 7 Qi (10.1016/j.sna.2021.112837_bib0130) 2020; 560 Chen (10.1016/j.sna.2021.112837_bib0400) 2013; 64 Ayad (10.1016/j.sna.2021.112837_bib0095) 2009; 168 Yao (10.1016/j.sna.2021.112837_bib0555) 2014; 191 Zheng (10.1016/j.sna.2021.112837_bib0115) 2008; 133 Jia (10.1016/j.sna.2021.112837_bib0525) 2016; 148 Voiry (10.1016/j.sna.2021.112837_bib0435) 2016; 353 |
References_xml | – volume: 304 start-page: 127313 year: 2020 ident: bib0610 article-title: Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring publication-title: Sens. Actuators, B Chem. – volume: 320 start-page: 1308 year: 2008 ident: bib0230 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science (80-.). – volume: 6 start-page: 1900849 year: 2019 ident: bib0005 article-title: Advanced nanoporous material–based QCM devices: a new horizon of interfacial mass sensing technology publication-title: Adv. Mater. Interfaces – volume: 1 start-page: 31 year: 2019 end-page: 47 ident: bib0395 article-title: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites publication-title: Int. J. Green Nanotechnol. Mater. Sci. Eng. – volume: 59 start-page: 1377 year: 2016 end-page: 1382 ident: bib0490 article-title: Polyvinylpyrrolidone/graphene oxide thin films coated on quartz crystal microbalance electrode for NH3 detection at room temperature publication-title: Sci. China Ser. A-Math. Phys. Astron. Technol. Sci. – volume: 273 start-page: 498 year: 2018 end-page: 504 ident: bib0515 article-title: GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations publication-title: Sens. Actuators, B Chem. – volume: 3 start-page: 2437 year: 2018 end-page: 2443 ident: bib0105 article-title: Superhydrophobic polymerized n-Octadecylsilane surface for BTEX sensing and stable Toluene/Water selective detection based on QCM sensor publication-title: ACS Omega – volume: 284 start-page: 386 year: 2019 end-page: 394 ident: bib0495 article-title: Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides publication-title: Sens. Actuators, B Chem. – volume: 266 start-page: 534 year: 2018 end-page: 542 ident: bib0605 article-title: A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor publication-title: Sens. Actuators, B Chem. – volume: 71 start-page: 2488 year: 1999 end-page: 2496 ident: bib0045 article-title: Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors publication-title: Anal. Chem. – start-page: 145257 year: 2020 ident: bib0125 article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis publication-title: Appl. Surf. Sci. – volume: 19 start-page: 97 year: 2001 end-page: 100 ident: bib0030 article-title: Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools publication-title: J. Vac. Sci. Technol. A – volume: 19 start-page: 4395 year: 2019 ident: bib0050 article-title: An overview of high frequency acoustic sensors—QCMs, SAWs and FBARs—chemical and biochemical applications publication-title: Sensors – volume: 283 start-page: 659 year: 2019 end-page: 665 ident: bib0155 article-title: A fast-response and highly linear humidity sensor based on quartz crystal microbalance publication-title: Sens. Actuators B Chem. – volume: 51 start-page: 6662 year: 2012 end-page: 6666 ident: bib0250 article-title: Tunable photoluminescence from graphene oxide publication-title: Angew. Chem. - Int. Ed. – volume: 111 start-page: 153101 year: 2017 ident: bib0335 article-title: Highly sensitive humidity sensor based on graphene oxide foam publication-title: Appl. Phys. Lett. – volume: 238 start-page: 344 year: 2016 end-page: 350 ident: bib0510 article-title: Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance publication-title: Sens. Actuators, A Phys. – volume: 493 start-page: 250 year: 2019 end-page: 260 ident: bib0505 article-title: Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature publication-title: Appl. Surf. Sci. – volume: 145 start-page: 656 year: 2020 end-page: 666 ident: bib0035 article-title: “Vanishing mass” in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility publication-title: Analyst – volume: 41 start-page: 250 year: 1994 end-page: 255 ident: bib0060 article-title: Low temperature limitation on the quality factor of quartz resonators publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: bib0270 article-title: Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment publication-title: Sci. Rep. – volume: 77 start-page: 1 year: 2008 end-page: 6 ident: bib0200 article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. – volume: 444 start-page: 578 year: 2018 end-page: 583 ident: bib0445 article-title: Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations publication-title: Appl. Surf. Sci. – year: 2019 ident: bib0275 article-title: Comprehensive Application of Graphene: Emphasis on Biomedical Concerns – volume: 5 start-page: 722 year: 2010 end-page: 726 ident: bib0210 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. – volume: 44 start-page: 5872 year: 2009 end-page: 5876 ident: bib0120 article-title: A new polysiloxane coating on QCM sensor for DMMP vapor detection publication-title: J. Mater. Sci. – volume: 153 start-page: 209 year: 2015 end-page: 220 ident: bib0405 article-title: Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method publication-title: Mater. Chem. Phys. – volume: 302 start-page: 127192 year: 2020 ident: bib0135 article-title: Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure publication-title: Sens. Actuators, B Chem. – volume: 243 start-page: 721 year: 2017 end-page: 730 ident: bib0470 article-title: Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors publication-title: Sens. Actuators, B Chem. – volume: 8 start-page: 243 year: 2019 end-page: 250 ident: bib0145 article-title: Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor publication-title: J. Sens. Sens. Syst. – volume: 18 start-page: 1279 year: 2020 ident: bib0530 article-title: Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 228 start-page: 486 year: 2016 end-page: 490 ident: bib0545 article-title: Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde publication-title: Sens. Actuators, B Chem. – volume: 287 start-page: 93 year: 2019 end-page: 101 ident: bib0620 article-title: A QCM humidity sensor constructed by graphene quantum dots and chitosan composites publication-title: Sens. Actuators, A Phys. – volume: 234 start-page: 145 year: 2016 end-page: 154 ident: bib0590 article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film publication-title: Sens. Actuators, B Chem. – volume: 174 start-page: 28 year: 2016 end-page: 31 ident: bib0480 article-title: Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor publication-title: Mater. Lett. – volume: 13 start-page: 4749 year: 2013 end-page: 4756 ident: bib0595 article-title: Multi-walled carbon Nanotubes/Graphene oxide composites for humidity sensing publication-title: IEEE Sens. J. – volume: 5 start-page: 40620 year: 2015 end-page: 40627 ident: bib0540 article-title: Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection publication-title: RSC Adv. – volume: 108 start-page: 347 year: 2018 end-page: 369 ident: bib0185 article-title: Review of nanomaterials as sorbents in solid-phase extraction for environmental samples publication-title: TrAC - Trends Anal. Chem. – volume: 9 start-page: 422 year: 2019 ident: bib0150 article-title: Recent advances in graphene-based humidity sensors publication-title: Nanomaterials – volume: 6 start-page: 1747 year: 2006 end-page: 1751 ident: bib0625 article-title: Role of defects in single-walled carbon nanotube chemical sensors publication-title: Nano Lett. – volume: 510 start-page: 145257 year: 2020 ident: bib0565 article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis publication-title: Appl. Surf. Sci. – volume: 135 start-page: 110026 year: 2021 ident: bib0285 article-title: Application of graphene in energy storage device – a review publication-title: Renewable Sustainable Energy Rev. – volume: 3 start-page: 538 year: 2008 end-page: 542 ident: bib0425 article-title: Highly conducting graphene sheets and Langmuir–Blodgett films publication-title: Nat. Nanotechnol. – volume: 5 start-page: 92303 year: 2015 end-page: 92311 ident: bib0100 article-title: Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection publication-title: RSC Adv. – volume: 3 start-page: 12580 year: 2015 end-page: 12602 ident: bib0475 article-title: Graphene: A multipurpose material for protective coatings publication-title: J. Mater. Chem. A – volume: 133 start-page: 374 year: 2008 end-page: 380 ident: bib0115 article-title: Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies publication-title: Sens. Actuators, B Chem. – volume: 5 start-page: 36 year: 2019 ident: bib0330 article-title: Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension publication-title: Microsystems Nanoeng. – volume: 21 start-page: 3324 year: 2011 end-page: 3334 ident: bib0370 article-title: A review of chemical vapour deposition of graphene on copper publication-title: J. Mater. Chem. – volume: 3 start-page: 638 year: 2012 ident: bib0410 article-title: Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping publication-title: Nat. Commun. – volume: 257 start-page: 7778 year: 2011 end-page: 7782 ident: bib0500 article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection publication-title: Appl. Surf. Sci. – volume: 306 start-page: 127579 year: 2020 ident: bib0550 article-title: Hydrophobic amino-functionalized graphene oxide nanocomposite for aldehydes detection in fish fillets publication-title: Sens. Actuators, B Chem. – volume: 353 start-page: 1413 year: 2016 end-page: 1416 ident: bib0435 article-title: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide publication-title: Science (80-.) – volume: 7 start-page: 181 year: 2018 ident: bib0170 article-title: Chitosan-based quartz crystal microbalance for alcohol sensing publication-title: Electronics – volume: 18 start-page: 9471 year: 2018 end-page: 9476 ident: bib0575 article-title: Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC /graphene oxide film publication-title: IEEE Sens. J. – volume: 7 start-page: 20 year: 2019 ident: bib0165 article-title: Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air publication-title: Chemosensors – volume: 255 start-page: 2203 year: 2018 end-page: 2210 ident: bib0615 article-title: Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance publication-title: Sens. Actuators, B Chem. – volume: 9 start-page: 15407 year: 2019 ident: bib0065 article-title: A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM publication-title: Sci. Rep. – volume: 185 start-page: 110596 year: 2020 ident: bib0295 article-title: Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics publication-title: Colloids Surf. B Biointerfaces – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib0190 article-title: Electric field effect in atomically thin carbon films publication-title: Science (80-.) – volume: 10 start-page: 1 year: 2020 end-page: 27 ident: bib0280 article-title: Review of the application of graphene-based coatings as anticorrosion layers publication-title: Coatings – volume: 493 start-page: 365 year: 2017 end-page: 370 ident: bib0235 article-title: Altering and investigating the surfactant properties of graphene oxide publication-title: J. Colloid Interface Sci. – volume: 191 start-page: 779 year: 2014 end-page: 783 ident: bib0555 article-title: Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films publication-title: Sens. Actuators, B Chem. – volume: 93 start-page: 113103 year: 2008 ident: bib0375 article-title: Graphene segregated on Ni surfaces and transferred to insulators publication-title: Appl. Phys. Lett. – volume: 71 start-page: 622 year: 1947 end-page: 634 ident: bib0195 article-title: The band theory of graphite publication-title: Phys. Rev. – volume: 319 start-page: 128286 year: 2020 ident: bib0140 article-title: Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers publication-title: Sens. Actuators B Chem. – volume: 1 start-page: 73 year: 2010 ident: bib0415 article-title: Reduced graphene oxide by chemical graphitization publication-title: Nat. Commun. – volume: 20 start-page: 2711 year: 2020 ident: bib0160 article-title: Influence of humidity on the acoustic properties of mushroom mycelium films used as sensitive layers for acoustic humidity sensors publication-title: Sensors – volume: 560 start-page: 284 year: 2020 end-page: 292 ident: bib0130 article-title: Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection publication-title: J. Colloid Interface Sci. – volume: 568 start-page: 6 year: 2014 end-page: 12 ident: bib0450 article-title: Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature publication-title: Thin Solid Films – volume: 307 start-page: 111984 year: 2020 ident: bib0020 article-title: Metal-organic frameworks for QCM-based gas sensors: a review, sensors actuators publication-title: A Phys. – year: 2018 ident: bib0260 article-title: A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years publication-title: Mater. Res. Express – volume: 32 start-page: 1 year: 2020 end-page: 16 ident: bib0265 article-title: Graphene-based fibers: recent advances in preparation and application publication-title: Adv. Mater. – volume: 251 start-page: 422 year: 2014 end-page: 434 ident: bib0440 article-title: Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation publication-title: Chem. Eng. J. – start-page: 30 year: 2000 end-page: 33 ident: bib0055 article-title: A review of sensor sensitivity and stability publication-title: Proc. 2000 IEEE/EIA Int. Freq. Control Symp. Exhib. (Cat. No.00CH37052), IEEE – volume: 320 start-page: 128373 year: 2020 ident: bib0350 article-title: Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye publication-title: Sens. Actuators B Chem. – volume: 168 start-page: 85 year: 2009 end-page: 88 ident: bib0095 article-title: A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance publication-title: J. Hazard. Mater. – volume: 3 start-page: 5687 year: 2020 end-page: 5697 ident: bib0080 article-title: Quartz crystal microbalances functionalized with citric acid-doped polyvinyl acetate nanofibers for Ammonia Sensing publication-title: ACS Appl. Nano Mater. – volume: 334 start-page: 127615 year: 2021 ident: bib0015 article-title: Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: a review publication-title: Food Chem. – volume: 18 start-page: 1150 year: 2018 ident: bib0175 article-title: Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole publication-title: Sensors – volume: 64 start-page: 225 year: 2013 end-page: 229 ident: bib0400 article-title: An improved Hummers method for eco-friendly synthesis of graphene oxide publication-title: Carbon – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: bib0220 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. – volume: 50 start-page: 1447 year: 2014 end-page: 1449 ident: bib0570 article-title: Cross-sensitivity reduction of QCM humidity sensor using graphene oxide membrane as filter layer publication-title: Electron. Lett. – volume: 45 start-page: 6088 year: 2011 end-page: 6094 ident: bib0110 article-title: CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas publication-title: Environ. Sci. Technol. – volume: 148 start-page: 263 year: 2016 end-page: 269 ident: bib0525 article-title: Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor publication-title: Colloids Surf. B Biointerfaces – year: 2020 ident: bib0300 article-title: Application of graphene/zinc-based Metal-organic Framework Nanocomposite for Electrochemical Sensing of As(III) in Water Resources – start-page: 3 year: 2019 end-page: 7 ident: bib0245 article-title: The study on tuning photoluminescence of colloidal graphene quantum dots synthesized through laser ablation publication-title: Mater. Sci. Forum. 966 MSF – volume: 26 start-page: 101770 year: 2021 ident: bib0010 article-title: Stability evaluation of quartz crystal microbalances coated with polyvinyl acetate nanofibrous mats as butanol vapor sensors publication-title: Mater. Today Commun. – volume: 140 start-page: 101 year: 2017 end-page: 105 ident: bib0560 article-title: A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer publication-title: Vacuum – volume: 301 start-page: 111742 year: 2020 ident: bib0090 article-title: Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor publication-title: Sens. Actuators A Phys. – volume: 141 start-page: 331 year: 2019 end-page: 338 ident: bib0255 article-title: Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination publication-title: Carbon – volume: 8 start-page: 103743 year: 2020 ident: bib0290 article-title: Graphene based nanomaterials for strain sensor application - A review publication-title: J. Environ. Chem. Eng. – volume: 12 start-page: 38708 year: 2020 end-page: 38713 ident: bib0320 article-title: High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1764 year: 2012 end-page: 1772 ident: bib0340 article-title: Graphene-based electronic sensors publication-title: Chem. Sci. – volume: 349 start-page: 1083 year: 2015 end-page: 1087 ident: bib0420 article-title: Highly thermally conductive and mechanically strong graphene fibers publication-title: Science (80-.) – volume: 660 start-page: 199 year: 2016 end-page: 204 ident: bib0485 article-title: Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance publication-title: Chem. Phys. Lett. – volume: 211 start-page: 52 year: 2015 end-page: 58 ident: bib0600 article-title: Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film publication-title: Sens. Actuators, B Chem. – volume: 213 year: 2021 ident: bib0315 article-title: QCM nanocomposite gas sensors – expanding the application of waterborne polymer composites based on graphene nanoribbon publication-title: Polymer (Guildf). – volume: 165 start-page: 317 year: 2020 end-page: 327 ident: bib0040 article-title: Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D) publication-title: Carbon – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: bib0385 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science (80-.) – volume: 32 start-page: 924 year: 2016 end-page: 928 ident: bib0460 article-title: Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature publication-title: Chem. Res. Chin. Univ. – volume: 146 start-page: 351 year: 2008 end-page: 355 ident: bib0205 article-title: Ultrahigh electron mobility in suspended graphene publication-title: Solid State Commun. – volume: 3 start-page: 1746 year: 2012 end-page: 1753 ident: bib0360 article-title: Graphene-based chemical sensors publication-title: J. Phys. Chem. Lett. – volume: 293 start-page: 71 year: 2019 end-page: 82 ident: bib0180 article-title: QCM formaldehyde sensing materials: design and sensing mechanism publication-title: Sens. Actuators, B Chem. – volume: 217 start-page: 1900869 year: 2020 ident: bib0325 article-title: Ultrafast‐response humidity sensor with high humidity durability based on a freestanding film of graphene oxide supramolecular publication-title: Phys. Status Solidi – volume: 262 start-page: 531 year: 2018 end-page: 541 ident: bib0585 article-title: High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method publication-title: Sens. Actuators, B Chem. – volume: 6 start-page: 652 year: 2007 end-page: 655 ident: bib0365 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. – volume: 9 start-page: 30 year: 2009 end-page: 35 ident: bib0380 article-title: Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition publication-title: Nano Lett. – volume: 196 start-page: 183 year: 2014 end-page: 188 ident: bib0465 article-title: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer publication-title: Sens. Actuators B Chem. – volume: 255 start-page: 1869 year: 2018 end-page: 1877 ident: bib0520 article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film publication-title: Sens. Actuators, B Chem. – volume: 81 start-page: 135 year: 2017 end-page: 139 ident: bib0630 article-title: Super high sensitive plate acoustic wave humidity sensor based on graphene oxide film publication-title: Ultrasonics – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib0215 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science (80-.) – volume: 15 start-page: 102680 year: 2019 ident: bib0070 article-title: Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor publication-title: Results Phys. – volume: 214 start-page: 1 year: 2017 end-page: 5 ident: bib0240 article-title: Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications publication-title: Phys. Status Solidi Appl. Mater. Sci. – volume: 20 start-page: 4781 year: 2010 ident: bib0430 article-title: Ultrafast, dry microwave synthesis of graphene sheets publication-title: J. Mater. Chem. – volume: 21 start-page: 16231 year: 2011 ident: bib0635 article-title: Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine publication-title: J. Mater. Chem. – year: 2021 ident: bib0310 article-title: GC-like graphene-coated quartz crystal microbalance sensor with microcolumns publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4359 year: 2009 end-page: 4363 ident: bib0225 article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes publication-title: Nano Lett. – volume: 178 start-page: 485 year: 2013 end-page: 493 ident: bib0455 article-title: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite publication-title: Sens. Actuators B Chem. – volume: 155 start-page: 206 year: 1959 end-page: 222 ident: bib0025 article-title: Verwendung Von Schwingquarzen Zur Wägung dünner schichten und zur Mikrowägung publication-title: Zeitschrift Für Phys. – volume: 230 start-page: 501 year: 2016 end-page: 509 ident: bib0580 article-title: Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film publication-title: Sens. Actuators, B Chem. – volume: 29 start-page: 954 year: 2010 end-page: 965 ident: bib0345 article-title: Graphene for electrochemical sensing and biosensing publication-title: TrAC - Trends Anal. Chem. – volume: 46 start-page: 2329 year: 2013 end-page: 2339 ident: bib0390 article-title: Review of chemical vapor deposition of graphene and related applications publication-title: Acc. Chem. Res. – volume: 27 start-page: 5845 year: 2015 end-page: 5848 ident: bib0085 article-title: Hollow and microporous Zn-Porphyrin networks: outer shape dependent Ammonia Sensing by quartz crystal microbalance publication-title: Chem. Mater. – volume: 33 start-page: 101044 year: 2020 ident: bib0305 article-title: Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection publication-title: J. Water Process Eng. – volume: 25 start-page: 100294 year: 2019 ident: bib0075 article-title: A study of quartz crystal microbalance modified with polyvinyl acetate nanofiber to differentiate short-chain alcohol isomers publication-title: Sens. Biosensing Res. – volume: 3 start-page: 11700 year: 2015 end-page: 11715 ident: bib0355 article-title: A review on mechanical exfoliation for the scalable production of graphene publication-title: J. Mater. Chem. A – volume: 5 start-page: 1 year: 2019 end-page: 5 ident: bib0535 article-title: Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature publication-title: Front. Mater. – volume: 230 start-page: 501 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0580 article-title: Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.01.105 – volume: 20 start-page: 2711 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0160 article-title: Influence of humidity on the acoustic properties of mushroom mycelium films used as sensitive layers for acoustic humidity sensors publication-title: Sensors doi: 10.3390/s20092711 – volume: 44 start-page: 5872 year: 2009 ident: 10.1016/j.sna.2021.112837_bib0120 article-title: A new polysiloxane coating on QCM sensor for DMMP vapor detection publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3829-5 – volume: 111 start-page: 153101 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0335 article-title: Highly sensitive humidity sensor based on graphene oxide foam publication-title: Appl. Phys. Lett. doi: 10.1063/1.4996603 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0280 article-title: Review of the application of graphene-based coatings as anticorrosion layers publication-title: Coatings doi: 10.3390/coatings10090883 – volume: 3 start-page: 1746 year: 2012 ident: 10.1016/j.sna.2021.112837_bib0360 article-title: Graphene-based chemical sensors publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300358t – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0215 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science (80-.) doi: 10.1126/science.1157996 – volume: 145 start-page: 656 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0035 article-title: “Vanishing mass” in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility publication-title: Analyst doi: 10.1039/C9AN01366K – volume: 3 start-page: 2437 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0105 article-title: Superhydrophobic polymerized n-Octadecylsilane surface for BTEX sensing and stable Toluene/Water selective detection based on QCM sensor publication-title: ACS Omega doi: 10.1021/acsomega.8b00061 – volume: 334 start-page: 127615 year: 2021 ident: 10.1016/j.sna.2021.112837_bib0015 article-title: Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: a review publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127615 – volume: 3 start-page: 538 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0425 article-title: Highly conducting graphene sheets and Langmuir–Blodgett films publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.210 – volume: 3 start-page: 1764 year: 2012 ident: 10.1016/j.sna.2021.112837_bib0340 article-title: Graphene-based electronic sensors publication-title: Chem. Sci. doi: 10.1039/c2sc20205k – volume: 135 start-page: 110026 year: 2021 ident: 10.1016/j.sna.2021.112837_bib0285 article-title: Application of graphene in energy storage device – a review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.110026 – volume: 8 start-page: 902 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0220 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 660 start-page: 199 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0485 article-title: Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.08.025 – volume: 41 start-page: 250 year: 1994 ident: 10.1016/j.sna.2021.112837_bib0060 article-title: Low temperature limitation on the quality factor of quartz resonators publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.279139 – volume: 214 start-page: 1 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0240 article-title: Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications publication-title: Phys. Status Solidi Appl. Mater. Sci. – volume: 266 start-page: 534 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0605 article-title: A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.03.143 – volume: 444 start-page: 578 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0445 article-title: Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.090 – volume: 493 start-page: 365 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0235 article-title: Altering and investigating the surfactant properties of graphene oxide publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.01.043 – volume: 15 start-page: 102680 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0070 article-title: Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102680 – volume: 9 start-page: 4359 year: 2009 ident: 10.1016/j.sna.2021.112837_bib0225 article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes publication-title: Nano Lett. doi: 10.1021/nl902623y – volume: 3 start-page: 11700 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0355 article-title: A review on mechanical exfoliation for the scalable production of graphene publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00252D – volume: 6 start-page: 652 year: 2007 ident: 10.1016/j.sna.2021.112837_bib0365 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. doi: 10.1038/nmat1967 – start-page: 145257 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0125 article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145257 – volume: 45 start-page: 6088 year: 2011 ident: 10.1016/j.sna.2021.112837_bib0110 article-title: CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas publication-title: Environ. Sci. Technol. doi: 10.1021/es201121w – volume: 283 start-page: 659 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0155 article-title: A fast-response and highly linear humidity sensor based on quartz crystal microbalance publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.12.081 – volume: 64 start-page: 225 year: 2013 ident: 10.1016/j.sna.2021.112837_bib0400 article-title: An improved Hummers method for eco-friendly synthesis of graphene oxide publication-title: Carbon doi: 10.1016/j.carbon.2013.07.055 – volume: 50 start-page: 1447 year: 2014 ident: 10.1016/j.sna.2021.112837_bib0570 article-title: Cross-sensitivity reduction of QCM humidity sensor using graphene oxide membrane as filter layer publication-title: Electron. Lett. doi: 10.1049/el.2014.2735 – volume: 510 start-page: 145257 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0565 article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145257 – volume: 211 start-page: 52 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0600 article-title: Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2014.12.134 – volume: 71 start-page: 2488 year: 1999 ident: 10.1016/j.sna.2021.112837_bib0045 article-title: Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors publication-title: Anal. Chem. doi: 10.1021/ac981245l – volume: 301 start-page: 111742 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0090 article-title: Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111742 – volume: 324 start-page: 1312 year: 2009 ident: 10.1016/j.sna.2021.112837_bib0385 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science (80-.) doi: 10.1126/science.1171245 – volume: 148 start-page: 263 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0525 article-title: Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.09.007 – volume: 25 start-page: 100294 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0075 article-title: A study of quartz crystal microbalance modified with polyvinyl acetate nanofiber to differentiate short-chain alcohol isomers publication-title: Sens. Biosensing Res. doi: 10.1016/j.sbsr.2019.100294 – volume: 307 start-page: 111984 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0020 article-title: Metal-organic frameworks for QCM-based gas sensors: a review, sensors actuators publication-title: A Phys. – start-page: 3 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0245 article-title: The study on tuning photoluminescence of colloidal graphene quantum dots synthesized through laser ablation publication-title: Mater. Sci. Forum. 966 MSF doi: 10.4028/www.scientific.net/MSF.966.3 – volume: 6 start-page: 1747 year: 2006 ident: 10.1016/j.sna.2021.112837_bib0625 article-title: Role of defects in single-walled carbon nanotube chemical sensors publication-title: Nano Lett. doi: 10.1021/nl0612289 – volume: 349 start-page: 1083 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0420 article-title: Highly thermally conductive and mechanically strong graphene fibers publication-title: Science (80-.) doi: 10.1126/science.aaa6502 – volume: 191 start-page: 779 year: 2014 ident: 10.1016/j.sna.2021.112837_bib0555 article-title: Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2013.10.076 – volume: 81 start-page: 135 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0630 article-title: Super high sensitive plate acoustic wave humidity sensor based on graphene oxide film publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.06.019 – volume: 8 start-page: 103743 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0290 article-title: Graphene based nanomaterials for strain sensor application - A review publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.103743 – volume: 255 start-page: 1869 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0520 article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2017.08.212 – volume: 21 start-page: 3324 year: 2011 ident: 10.1016/j.sna.2021.112837_bib0370 article-title: A review of chemical vapour deposition of graphene on copper publication-title: J. Mater. Chem. doi: 10.1039/C0JM02126A – volume: 18 start-page: 1150 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0175 article-title: Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole publication-title: Sensors doi: 10.3390/s18041150 – volume: 168 start-page: 85 year: 2009 ident: 10.1016/j.sna.2021.112837_bib0095 article-title: A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.003 – volume: 178 start-page: 485 year: 2013 ident: 10.1016/j.sna.2021.112837_bib0455 article-title: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.01.014 – volume: 306 start-page: 127579 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0550 article-title: Hydrophobic amino-functionalized graphene oxide nanocomposite for aldehydes detection in fish fillets publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.127579 – volume: 18 start-page: 9471 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0575 article-title: Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC /graphene oxide film publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2872854 – volume: 133 start-page: 374 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0115 article-title: Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2008.02.037 – volume: 304 start-page: 127313 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0610 article-title: Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.127313 – volume: 9 start-page: 422 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0150 article-title: Recent advances in graphene-based humidity sensors publication-title: Nanomaterials doi: 10.3390/nano9030422 – volume: 284 start-page: 386 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0495 article-title: Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.12.154 – volume: 7 start-page: 20 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0165 article-title: Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air publication-title: Chemosensors doi: 10.3390/chemosensors7020020 – volume: 6 start-page: 1900849 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0005 article-title: Advanced nanoporous material–based QCM devices: a new horizon of interfacial mass sensing technology publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900849 – volume: 493 start-page: 250 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0505 article-title: Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.280 – volume: 228 start-page: 486 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0545 article-title: Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.01.046 – volume: 1 start-page: 31 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0395 article-title: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites publication-title: Int. J. Green Nanotechnol. Mater. Sci. Eng. – year: 2021 ident: 10.1016/j.sna.2021.112837_bib0310 article-title: GC-like graphene-coated quartz crystal microbalance sensor with microcolumns publication-title: ACS Appl. Mater. Interfaces – volume: 262 start-page: 531 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0585 article-title: High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.02.012 – volume: 3 start-page: 5687 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0080 article-title: Quartz crystal microbalances functionalized with citric acid-doped polyvinyl acetate nanofibers for Ammonia Sensing publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00896 – volume: 293 start-page: 71 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0180 article-title: QCM formaldehyde sensing materials: design and sensing mechanism publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.04.050 – volume: 319 start-page: 128286 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0140 article-title: Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128286 – volume: 238 start-page: 344 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0510 article-title: Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance publication-title: Sens. Actuators, A Phys. doi: 10.1016/j.sna.2015.11.034 – volume: 21 start-page: 16231 year: 2011 ident: 10.1016/j.sna.2021.112837_bib0635 article-title: Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine publication-title: J. Mater. Chem. doi: 10.1039/c1jm13037d – volume: 51 start-page: 6662 year: 2012 ident: 10.1016/j.sna.2021.112837_bib0250 article-title: Tunable photoluminescence from graphene oxide publication-title: Angew. Chem. - Int. Ed. doi: 10.1002/anie.201200474 – volume: 27 start-page: 5845 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0085 article-title: Hollow and microporous Zn-Porphyrin networks: outer shape dependent Ammonia Sensing by quartz crystal microbalance publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02385 – volume: 12 start-page: 38708 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0320 article-title: High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12196 – volume: 165 start-page: 317 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0040 article-title: Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D) publication-title: Carbon doi: 10.1016/j.carbon.2020.04.093 – volume: 560 start-page: 284 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0130 article-title: Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.10.080 – volume: 46 start-page: 2329 year: 2013 ident: 10.1016/j.sna.2021.112837_bib0390 article-title: Review of chemical vapor deposition of graphene and related applications publication-title: Acc. Chem. Res. doi: 10.1021/ar300203n – volume: 302 start-page: 127192 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0135 article-title: Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.127192 – volume: 20 start-page: 4781 year: 2010 ident: 10.1016/j.sna.2021.112837_bib0430 article-title: Ultrafast, dry microwave synthesis of graphene sheets publication-title: J. Mater. Chem. doi: 10.1039/c0jm00168f – volume: 141 start-page: 331 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0255 article-title: Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination publication-title: Carbon doi: 10.1016/j.carbon.2018.09.068 – volume: 108 start-page: 347 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0185 article-title: Review of nanomaterials as sorbents in solid-phase extraction for environmental samples publication-title: TrAC - Trends Anal. Chem. doi: 10.1016/j.trac.2018.08.009 – volume: 7 start-page: 181 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0170 article-title: Chitosan-based quartz crystal microbalance for alcohol sensing publication-title: Electronics doi: 10.3390/electronics7090181 – volume: 217 start-page: 1900869 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0325 article-title: Ultrafast‐response humidity sensor with high humidity durability based on a freestanding film of graphene oxide supramolecular publication-title: Phys. Status Solidi doi: 10.1002/pssa.201900869 – volume: 155 start-page: 206 year: 1959 ident: 10.1016/j.sna.2021.112837_bib0025 article-title: Verwendung Von Schwingquarzen Zur Wägung dünner schichten und zur Mikrowägung publication-title: Zeitschrift Für Phys. doi: 10.1007/BF01337937 – volume: 1 start-page: 73 year: 2010 ident: 10.1016/j.sna.2021.112837_bib0415 article-title: Reduced graphene oxide by chemical graphitization publication-title: Nat. Commun. doi: 10.1038/ncomms1067 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0270 article-title: Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment publication-title: Sci. Rep. doi: 10.1038/s41598-020-58472-y – volume: 9 start-page: 30 year: 2009 ident: 10.1016/j.sna.2021.112837_bib0380 article-title: Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 255 start-page: 2203 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0615 article-title: Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2017.09.028 – volume: 196 start-page: 183 year: 2014 ident: 10.1016/j.sna.2021.112837_bib0465 article-title: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.01.088 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.sna.2021.112837_bib0190 article-title: Electric field effect in atomically thin carbon films publication-title: Science (80-.) doi: 10.1126/science.1102896 – volume: 320 start-page: 1308 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0230 article-title: Fine structure constant defines visual transparency of graphene publication-title: Science (80-.). doi: 10.1126/science.1156965 – volume: 140 start-page: 101 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0560 article-title: A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer publication-title: Vacuum doi: 10.1016/j.vacuum.2016.10.017 – volume: 353 start-page: 1413 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0435 article-title: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide publication-title: Science (80-.) doi: 10.1126/science.aah3398 – volume: 153 start-page: 209 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0405 article-title: Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.01.005 – volume: 5 start-page: 36 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0330 article-title: Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension publication-title: Microsystems Nanoeng. doi: 10.1038/s41378-019-0075-0 – volume: 77 start-page: 1 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0200 article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.77.115449 – volume: 213 year: 2021 ident: 10.1016/j.sna.2021.112837_bib0315 article-title: QCM nanocomposite gas sensors – expanding the application of waterborne polymer composites based on graphene nanoribbon publication-title: Polymer (Guildf). doi: 10.1016/j.polymer.2020.123335 – volume: 3 start-page: 638 year: 2012 ident: 10.1016/j.sna.2021.112837_bib0410 article-title: Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping publication-title: Nat. Commun. doi: 10.1038/ncomms1643 – volume: 568 start-page: 6 year: 2014 ident: 10.1016/j.sna.2021.112837_bib0450 article-title: Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.07.036 – volume: 32 start-page: 1 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0265 article-title: Graphene-based fibers: recent advances in preparation and application publication-title: Adv. Mater. – volume: 29 start-page: 954 year: 2010 ident: 10.1016/j.sna.2021.112837_bib0345 article-title: Graphene for electrochemical sensing and biosensing publication-title: TrAC - Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.011 – volume: 251 start-page: 422 year: 2014 ident: 10.1016/j.sna.2021.112837_bib0440 article-title: Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.004 – volume: 5 start-page: 40620 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0540 article-title: Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection publication-title: RSC Adv. doi: 10.1039/C5RA04890G – volume: 8 start-page: 243 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0145 article-title: Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-8-243-2019 – volume: 71 start-page: 622 year: 1947 ident: 10.1016/j.sna.2021.112837_bib0195 article-title: The band theory of graphite publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.622 – volume: 174 start-page: 28 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0480 article-title: Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.122 – volume: 19 start-page: 4395 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0050 article-title: An overview of high frequency acoustic sensors—QCMs, SAWs and FBARs—chemical and biochemical applications publication-title: Sensors doi: 10.3390/s19204395 – volume: 273 start-page: 498 year: 2018 ident: 10.1016/j.sna.2021.112837_bib0515 article-title: GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2018.06.062 – volume: 243 start-page: 721 year: 2017 ident: 10.1016/j.sna.2021.112837_bib0470 article-title: Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.12.063 – year: 2020 ident: 10.1016/j.sna.2021.112837_bib0300 – volume: 32 start-page: 924 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0460 article-title: Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-016-6129-z – volume: 13 start-page: 4749 year: 2013 ident: 10.1016/j.sna.2021.112837_bib0595 article-title: Multi-walled carbon Nanotubes/Graphene oxide composites for humidity sensing publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2273615 – volume: 9 start-page: 15407 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0065 article-title: A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM publication-title: Sci. Rep. doi: 10.1038/s41598-019-51851-0 – volume: 320 start-page: 128373 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0350 article-title: Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128373 – volume: 5 start-page: 92303 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0100 article-title: Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection publication-title: RSC Adv. doi: 10.1039/C5RA19132G – volume: 257 start-page: 7778 year: 2011 ident: 10.1016/j.sna.2021.112837_bib0500 article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.04.028 – volume: 5 start-page: 1 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0535 article-title: Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature publication-title: Front. Mater. doi: 10.3389/fmats.2018.00082 – volume: 33 start-page: 101044 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0305 article-title: Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.101044 – volume: 26 start-page: 101770 year: 2021 ident: 10.1016/j.sna.2021.112837_bib0010 article-title: Stability evaluation of quartz crystal microbalances coated with polyvinyl acetate nanofibrous mats as butanol vapor sensors publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101770 – volume: 19 start-page: 97 year: 2001 ident: 10.1016/j.sna.2021.112837_bib0030 article-title: Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1335681 – volume: 146 start-page: 351 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0205 article-title: Ultrahigh electron mobility in suspended graphene publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 18 start-page: 1279 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0530 article-title: Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature publication-title: Indones. J. Electr. Eng. Comput. Sci. – volume: 234 start-page: 145 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0590 article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.04.070 – volume: 185 start-page: 110596 year: 2020 ident: 10.1016/j.sna.2021.112837_bib0295 article-title: Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2019.110596 – volume: 3 start-page: 12580 year: 2015 ident: 10.1016/j.sna.2021.112837_bib0475 article-title: Graphene: A multipurpose material for protective coatings publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01010A – start-page: 30 year: 2000 ident: 10.1016/j.sna.2021.112837_bib0055 article-title: A review of sensor sensitivity and stability publication-title: Proc. 2000 IEEE/EIA Int. Freq. Control Symp. Exhib. (Cat. No.00CH37052), IEEE doi: 10.1109/FREQ.2000.887325 – volume: 93 start-page: 113103 year: 2008 ident: 10.1016/j.sna.2021.112837_bib0375 article-title: Graphene segregated on Ni surfaces and transferred to insulators publication-title: Appl. Phys. Lett. doi: 10.1063/1.2982585 – year: 2018 ident: 10.1016/j.sna.2021.112837_bib0260 article-title: A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aadb2b – volume: 59 start-page: 1377 year: 2016 ident: 10.1016/j.sna.2021.112837_bib0490 article-title: Polyvinylpyrrolidone/graphene oxide thin films coated on quartz crystal microbalance electrode for NH3 detection at room temperature publication-title: Sci. China Ser. A-Math. Phys. Astron. Technol. Sci. doi: 10.1007/s11431-016-0281-7 – volume: 287 start-page: 93 year: 2019 ident: 10.1016/j.sna.2021.112837_bib0620 article-title: A QCM humidity sensor constructed by graphene quantum dots and chitosan composites publication-title: Sens. Actuators, A Phys. doi: 10.1016/j.sna.2019.01.009 – year: 2019 ident: 10.1016/j.sna.2021.112837_bib0275 – volume: 5 start-page: 722 year: 2010 ident: 10.1016/j.sna.2021.112837_bib0210 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 |
SSID | ssj0003377 |
Score | 2.6326525 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the... Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112837 |
SubjectTerms | Carbon Gas sensor Gas sensors Graphene Graphene composites Graphene oxide Humidity Humidity sensor Metal oxides Microbalances Nanocomposites Polymer matrix composites QCM Quartz Quartz crystals Reduced graphene oxide Sensors Studies |
Title | Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials – A mini review |
URI | https://dx.doi.org/10.1016/j.sna.2021.112837 https://www.proquest.com/docview/2556438192 |
Volume | 330 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFRZQ8eVIhNmt08jqWoVakgKnhb9lWttKnaVtCD-B_8h_4SZzaJL8SDx4TZEGZn55F88w0hmynTsTbaQG2iuMdkxDypUgf7U4qlNtB1bE5un0StC3Z0yS8rpFn2wiCssvD9uU933rq4Uyu0WbvtdmtnPpQOrM6ghEFLdU18jMVo5bvPnzCPMHTTF1HYQ-nyz6bDeA0zpB6qB9hIk-Ao9N9j0w8v7ULP_iyZKXJG2shfa45UbDZPpr8wCS6QhwM5pDIz9Hrc7xrIrOkQkenZFcUPrfQOoZtPVN8_QjLYo31E4SkENWpLt06b7W2qB5B0mlzakViDD_QwxBkKOW1upvTt5ZU2KLKR0LzlZZFc7O-dN1teMVLB02Gdjzwd-DLWaaoSq5UJOh0r40SnMjG-hcomCnUY2DBUkQziiJtIWTix2ueWh1YbCO1LZCIbZHaZ0ECB9nkHwr-EEg6ytMTwmFmLVhFJ318hfqlMoQu-cRx70RMlsOxGgP4F6l_k-l8hOx9LbnOyjb-EWblD4pvFCAgGfy2rlrspiuM6FMjDxhw33Or_nrpGpvAKg1rAq2RidD-265CtjNSGM8cNMtk4PG6dvAP3aOof |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHtSD-MT63IMHFWKTZjePoxRr1VYQFbwt-6pW2rTaKuhB_A_-Q3-JM3n4Qjx4TWZDmJ2dR_LNN4RsxkyH2mgDtYniDpMBc6SKU9ifUiy2nq5ic3LrJGhcsKNLfjlGakUvDMIqc9-f-fTUW-dXKrk2K4NOp3LmQunAqgxKGLRUbOIbZ3B8cYzB7vMnzsP30_GLKO2gePFrMwV5DRPkHqp62EkT4Sz034PTDzedxp76DJnOk0a6l73XLBmzyRyZ-kIlOE8eDuSQysTQ6_tex0BqTYcITU-uKH5ppbeI3Xyi-u4RssEu7SEMTyGqUVu6dVprbVPdh6zTZNIpizU4QQdjnKGQ1GZ2St9eXukeRToSmvW8LJCL-v55reHkMxUc7Vf5yNGeK0MdxyqyWhmv3bYyjHQsI-NaKG0CX_ue9X0VSC8MuAmUhSOrXW65b7WB2L5ISkk_sUuEegrUz9sQ_yXUcJCmRYaHzFo0i0C6bpm4hTKFzgnHce5FVxTIshsB-heof5Hpv0x2PpYMMraNv4RZsUPim8kIiAZ_LVstdlPk53UokIiNpeRwy_976gaZaJy3mqJ5eHK8QibxDkY4j6-S0uju3q5B6jJS66lpvgNdp-ut |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+and+humidity+sensing+with+quartz+crystal+microbalance+%28QCM%29+coated+with+graphene-based+materials+%E2%80%93+A+mini+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Fauzi%2C+Fika&rft.au=Rianjanu%2C+Aditya&rft.au=Santoso%2C+Iman&rft.au=Triyana%2C+Kuwat&rft.date=2021-10-15&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=330&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2021.112837&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |