Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials – A mini review

[Display omitted] •The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based mate...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 330; p. 112837
Main Authors Fauzi, Fika, Rianjanu, Aditya, Santoso, Iman, Triyana, Kuwat
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based materials interact with specific analytes also discussed. Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated.
AbstractList [Display omitted] •The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the graphene-based materials to detect specific gas and humidity are discussed in detail.•The probable sensing mechanism of the graphene-based materials interact with specific analytes also discussed. Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated.
Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal microbalance (QCM) sensors have been massively developed because they have high sensitivity, consume low energy, and can be readily modified. Recently, QCM coated by graphene composites has been explored to sensitively and selectively detect various gases and humidity. Herein, we summarize the recent progress on QCM gas sensors and QCM humidity sensors based on graphene materials and graphene composites. We start from an introduction to the sensing principle of QCM, synthesis and preparation of graphene materials used for QCM sensing material, application of graphene materials and graphene composites for sensing materials of QCM gas sensors and humidity sensors, and the mechanism of those sensors. We mainly summarize the recent advances in the performances of QCM gas sensor and QCM humidity sensor coated with pristine graphene, graphene oxide, reduced graphene oxide, and various graphene-based composite materials, including chemical, polymer, metal oxide, and other carbon-based materials. The challenges for future works related to the development of QCM sensors coated by graphene materials or graphene composites are also elaborated.
ArticleNumber 112837
Author Triyana, Kuwat
Santoso, Iman
Fauzi, Fika
Rianjanu, Aditya
Author_xml – sequence: 1
  givenname: Fika
  orcidid: 0000-0002-0426-9248
  surname: Fauzi
  fullname: Fauzi, Fika
  email: fika.fauzi@uny.ac.id
  organization: Physics Education Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta, 55281, Indonesia
– sequence: 2
  givenname: Aditya
  orcidid: 0000-0001-7852-3619
  surname: Rianjanu
  fullname: Rianjanu, Aditya
  email: aditya.rianjanu@mt.itera.ac.id
  organization: Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung, 35365, Indonesia
– sequence: 3
  givenname: Iman
  orcidid: 0000-0003-2695-8965
  surname: Santoso
  fullname: Santoso, Iman
  organization: Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
– sequence: 4
  givenname: Kuwat
  surname: Triyana
  fullname: Triyana, Kuwat
  organization: Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
BookMark eNp9kM1KAzEQx4MoWD8ewFvAix625qO72cWTFL9AEUHPYTaZ2pQ2W5O0Uk--g2_okxhZTx48Dcz8fzPMb49s-84jIUecDTnj1dlsGD0MBRN8yLmopdoiA14rWUhWNdtkwBoxKkZipHbJXowzxpiUSg3I-hoiBW_pdLVw1qUNjeij8y_0zaUpfV1BSO_UhE1MMKcLZ0LXwhy8QXryOL4_paaDhLZPvwRYTtFj0ULMvUWeBAfzSL8-PulFpr2jAdcO3w7IziQP8PC37pPnq8un8U1x93B9O764K4wUZSoMZ6BM07Q1mtbyyQRB1aaB2jIUFaukkRylbCvgqipt1SLjyrASS4nG1qXcJ8f93mXoXlcYk551q-DzSS3KshrJmjcip3ifyt_FGHCil8EtIGw0Z_pHr57prFf_6NW93syoP4xxCZLrfArg5v-S5z2J-fEsI-hoHGaj1gU0SdvO_UN_A_sBmJ4
CitedBy_id crossref_primary_10_1021_acsanm_4c01760
crossref_primary_10_3390_membranes12020125
crossref_primary_10_1016_j_sna_2024_115713
crossref_primary_10_3390_mi14061274
crossref_primary_10_1007_s10853_024_10465_2
crossref_primary_10_2139_ssrn_4122740
crossref_primary_10_1016_j_surfin_2022_102035
crossref_primary_10_1039_D3CP05458F
crossref_primary_10_3390_molecules27175437
crossref_primary_10_35848_1347_4065_ac1a8e
crossref_primary_10_1016_j_snb_2023_134194
crossref_primary_10_1021_acsanm_2c05423
crossref_primary_10_1186_s11671_023_03779_8
crossref_primary_10_3390_s23062996
crossref_primary_10_1002_slct_202103615
crossref_primary_10_1016_j_bios_2022_114749
crossref_primary_10_1021_acsanm_1c01895
crossref_primary_10_1039_D4NJ04001E
crossref_primary_10_1016_j_nanoso_2022_100908
crossref_primary_10_1016_j_snb_2022_132851
crossref_primary_10_1007_s10853_024_09921_w
crossref_primary_10_2139_ssrn_4100441
crossref_primary_10_3390_s22010390
crossref_primary_10_1007_s11164_023_05054_y
crossref_primary_10_1016_j_icheatmasstransfer_2022_106507
crossref_primary_10_1039_D2AY01382G
crossref_primary_10_1021_acsomega_3c06571
crossref_primary_10_1021_acs_energyfuels_4c00060
crossref_primary_10_1109_TIM_2024_3428629
crossref_primary_10_1021_acsanm_4c07191
crossref_primary_10_1109_JSEN_2024_3363056
crossref_primary_10_1021_acs_chemrev_2c00618
crossref_primary_10_1021_acsami_4c04630
crossref_primary_10_1002_adem_202101216
crossref_primary_10_1016_j_biosx_2022_100110
crossref_primary_10_3390_s22145112
crossref_primary_10_1007_s42247_023_00454_7
crossref_primary_10_1016_j_measurement_2025_117039
crossref_primary_10_1016_j_surfin_2023_103542
crossref_primary_10_1007_s10934_023_01451_1
crossref_primary_10_1007_s00216_024_05407_5
crossref_primary_10_1021_acs_langmuir_4c02116
crossref_primary_10_1039_D4TA05042H
crossref_primary_10_1109_JSEN_2022_3214210
crossref_primary_10_1016_j_ijoes_2025_100980
crossref_primary_10_1039_D3NA00507K
crossref_primary_10_1016_j_snb_2024_136033
crossref_primary_10_1021_acsami_2c15237
crossref_primary_10_1016_j_snb_2023_134188
crossref_primary_10_1142_S1793292024300093
crossref_primary_10_3390_s21238049
crossref_primary_10_1039_D3NJ01350B
crossref_primary_10_3390_s22155728
crossref_primary_10_1021_acssensors_3c00853
crossref_primary_10_2139_ssrn_4020633
crossref_primary_10_1109_JSEN_2022_3148039
crossref_primary_10_1016_j_measurement_2022_111674
crossref_primary_10_1016_j_tifs_2023_06_034
crossref_primary_10_3390_chemosensors9080194
crossref_primary_10_1016_j_hybadv_2023_100089
crossref_primary_10_1557_s43579_023_00367_w
crossref_primary_10_1016_j_microc_2023_109237
crossref_primary_10_3390_s22249939
crossref_primary_10_1109_TIM_2023_3348895
crossref_primary_10_1016_j_talanta_2024_127081
crossref_primary_10_1016_j_snb_2022_132253
crossref_primary_10_3390_s24227263
crossref_primary_10_1103_PhysRevApplied_20_044047
crossref_primary_10_35848_1347_4065_adb636
crossref_primary_10_1016_j_trac_2022_116805
crossref_primary_10_3390_chemosensors10120522
crossref_primary_10_3390_s24165119
crossref_primary_10_3390_electronics12122666
crossref_primary_10_1021_acsami_3c14766
crossref_primary_10_1021_acssensors_1c02715
crossref_primary_10_1021_acsnano_3c11832
crossref_primary_10_1016_j_snb_2024_135874
crossref_primary_10_3390_chemosensors11010016
crossref_primary_10_1016_j_aca_2022_339759
crossref_primary_10_1016_j_jaerosci_2024_106495
crossref_primary_10_1007_s11164_024_05422_2
crossref_primary_10_1002_slct_202304694
crossref_primary_10_1109_TED_2024_3446744
crossref_primary_10_1002_app_54390
crossref_primary_10_1016_j_microc_2024_110364
crossref_primary_10_1016_j_trac_2024_117958
crossref_primary_10_3390_chemosensors10080315
crossref_primary_10_1109_TIM_2023_3347786
crossref_primary_10_1016_j_trac_2024_117792
crossref_primary_10_3390_nano12060975
crossref_primary_10_1016_j_trac_2024_117790
crossref_primary_10_3233_JIFS_222539
crossref_primary_10_1002_adsr_202400148
crossref_primary_10_1016_j_jfca_2024_106392
crossref_primary_10_1016_j_sna_2023_114676
crossref_primary_10_1016_j_snb_2023_135233
crossref_primary_10_3390_mi13101651
crossref_primary_10_3390_mi13091441
crossref_primary_10_1021_acsanm_3c05682
crossref_primary_10_1109_JSEN_2023_3332774
crossref_primary_10_1016_j_measurement_2024_116415
crossref_primary_10_1080_09593330_2021_1983025
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1109_JSEN_2024_3441716
crossref_primary_10_1109_TIM_2022_3200358
crossref_primary_10_1016_j_fuel_2021_122998
crossref_primary_10_1016_j_mee_2023_111959
crossref_primary_10_1007_s10854_024_13087_1
crossref_primary_10_1016_j_ccr_2022_214502
crossref_primary_10_56171_ojn_1598824
crossref_primary_10_1016_j_envpol_2022_119931
crossref_primary_10_1016_j_snb_2022_132748
crossref_primary_10_3390_molecules28041978
crossref_primary_10_3390_photonics10090975
crossref_primary_10_1016_j_diamond_2024_111438
Cites_doi 10.1016/j.snb.2016.01.105
10.3390/s20092711
10.1007/s10853-009-3829-5
10.1063/1.4996603
10.3390/coatings10090883
10.1021/jz300358t
10.1126/science.1157996
10.1039/C9AN01366K
10.1021/acsomega.8b00061
10.1016/j.foodchem.2020.127615
10.1038/nnano.2008.210
10.1039/c2sc20205k
10.1016/j.rser.2020.110026
10.1021/nl0731872
10.1016/j.cplett.2016.08.025
10.1109/58.279139
10.1016/j.snb.2018.03.143
10.1016/j.apsusc.2018.03.090
10.1016/j.jcis.2017.01.043
10.1016/j.rinp.2019.102680
10.1021/nl902623y
10.1039/C5TA00252D
10.1038/nmat1967
10.1016/j.apsusc.2020.145257
10.1021/es201121w
10.1016/j.snb.2018.12.081
10.1016/j.carbon.2013.07.055
10.1049/el.2014.2735
10.1016/j.snb.2014.12.134
10.1021/ac981245l
10.1016/j.sna.2019.111742
10.1126/science.1171245
10.1016/j.colsurfb.2016.09.007
10.1016/j.sbsr.2019.100294
10.4028/www.scientific.net/MSF.966.3
10.1021/nl0612289
10.1126/science.aaa6502
10.1016/j.snb.2013.10.076
10.1016/j.ultras.2017.06.019
10.1016/j.jece.2020.103743
10.1016/j.snb.2017.08.212
10.1039/C0JM02126A
10.3390/s18041150
10.1016/j.jhazmat.2009.02.003
10.1016/j.snb.2013.01.014
10.1016/j.snb.2019.127579
10.1109/JSEN.2018.2872854
10.1016/j.snb.2008.02.037
10.1016/j.snb.2019.127313
10.3390/nano9030422
10.1016/j.snb.2018.12.154
10.3390/chemosensors7020020
10.1002/admi.201900849
10.1016/j.apsusc.2019.06.280
10.1016/j.snb.2016.01.046
10.1016/j.snb.2018.02.012
10.1021/acsanm.0c00896
10.1016/j.snb.2019.04.050
10.1016/j.snb.2020.128286
10.1016/j.sna.2015.11.034
10.1039/c1jm13037d
10.1002/anie.201200474
10.1021/acs.chemmater.5b02385
10.1021/acsami.0c12196
10.1016/j.carbon.2020.04.093
10.1016/j.jcis.2019.10.080
10.1021/ar300203n
10.1016/j.snb.2019.127192
10.1039/c0jm00168f
10.1016/j.carbon.2018.09.068
10.1016/j.trac.2018.08.009
10.3390/electronics7090181
10.1002/pssa.201900869
10.1007/BF01337937
10.1038/ncomms1067
10.1038/s41598-020-58472-y
10.1021/nl801827v
10.1016/j.snb.2017.09.028
10.1016/j.snb.2014.01.088
10.1126/science.1102896
10.1126/science.1156965
10.1016/j.vacuum.2016.10.017
10.1126/science.aah3398
10.1016/j.matchemphys.2015.01.005
10.1038/s41378-019-0075-0
10.1103/PhysRevB.77.115449
10.1016/j.polymer.2020.123335
10.1038/ncomms1643
10.1016/j.tsf.2014.07.036
10.1016/j.trac.2010.05.011
10.1016/j.cej.2014.04.004
10.1039/C5RA04890G
10.5194/jsss-8-243-2019
10.1103/PhysRev.71.622
10.1016/j.matlet.2016.01.122
10.3390/s19204395
10.1016/j.snb.2018.06.062
10.1016/j.snb.2016.12.063
10.1007/s40242-016-6129-z
10.1109/JSEN.2013.2273615
10.1038/s41598-019-51851-0
10.1016/j.snb.2020.128373
10.1039/C5RA19132G
10.1016/j.apsusc.2011.04.028
10.3389/fmats.2018.00082
10.1016/j.jwpe.2019.101044
10.1016/j.mtcomm.2020.101770
10.1116/1.1335681
10.1016/j.ssc.2008.02.024
10.1016/j.snb.2016.04.070
10.1016/j.colsurfb.2019.110596
10.1039/C5TA01010A
10.1109/FREQ.2000.887325
10.1063/1.2982585
10.1088/2053-1591/aadb2b
10.1007/s11431-016-0281-7
10.1016/j.sna.2019.01.009
10.1038/nnano.2010.172
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Oct 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 15, 2021
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2021.112837
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2021_112837
S0924424721003009
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-c10a7c99b8ecbd1ffea78c9a8d0e26063c31e33b6a1765d6be017c05e53ecd853
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 07:52:20 EDT 2025
Tue Jul 01 01:05:34 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Fri Feb 23 02:46:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Humidity sensor
Graphene composites
Graphene
QCM
Gas sensor
Graphene oxide
Reduced graphene oxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-c10a7c99b8ecbd1ffea78c9a8d0e26063c31e33b6a1765d6be017c05e53ecd853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0426-9248
0000-0003-2695-8965
0000-0001-7852-3619
PQID 2556438192
PQPubID 2045401
ParticipantIDs proquest_journals_2556438192
crossref_primary_10_1016_j_sna_2021_112837
crossref_citationtrail_10_1016_j_sna_2021_112837
elsevier_sciencedirect_doi_10_1016_j_sna_2021_112837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Park, Ko, Hong, Shin, Park, Kang, Lee, Kim, Son (bib0085) 2015; 27
El Habti, Bastien (bib0060) 1994; 41
Voiry, Yang, Kupferberg, Fullon, Lee, Jeong, Shin, Chhowalla (bib0435) 2016; 353
Rianjanu, Hasanah, Nugroho, Kusumaatmaja, Roto, Triyana (bib0165) 2019; 7
Syama, Mohanan (bib0275) 2019
Yavari, Koratkar (bib0360) 2012; 3
Wang (bib0020) 2020; 307
Wang, Gao, Xu (bib0180) 2019; 293
Ayad, El-Hefnawey, Torad (bib0095) 2009; 168
Wallace (bib0195) 1947; 71
Jin, Tao, Feng, Yu, Wang, Dong, Luo (bib0560) 2017; 140
Triyana, Sembiring, Rianjanu, Hidayat, Riowirawan, Julian, Kusumaatmaja, Santoso, Roto (bib0170) 2018; 7
Mehmood, Mubarak, Khalid, Walvekar, Abdullah, Siddiqui, Baloch, Nizamuddin, Mazari (bib0290) 2020; 8
Zhang, Wang, Li, Zhou, Zong, Dong (bib0520) 2018; 255
Murdaka, Nugroho, Kusumaatmaja, Isnaeni, Santoso (bib0245) 2019
Guerrero-Contreras, Caballero-Briones (bib0405) 2015; 153
Ho, Wu (bib0565) 2020; 510
Xu, Zhang, Qu (bib0265) 2020; 32
Ren, Zhang, Wang, Li, Liu (bib0575) 2018; 18
Pumera, Ambrosi, Bonanni, Chng, Poh (bib0345) 2010; 29
Zhang, Zhang, Zhou (bib0390) 2013; 46
Li, Yao, Lin, Moon, Lin, Wong (bib0430) 2010; 20
Ding, Chen, Chen, Zhao, Li (bib0605) 2018; 266
Vig, Walls (bib0055) 2000
Yao, Chen, Guo, Wu (bib0500) 2011; 257
Kuznetsova, Zaitsev, Krasnopolskaya, Teplykh, Semyonov, Avtonomova, Ziangirova, Smirnov, Kolesov (bib0160) 2020; 20
Gupta, Athirah, Fahmi Hawari (bib0530) 2020; 18
Zhang, Hu, Fan, Li (bib0470) 2017; 243
He, Wu, Yin, Zhang (bib0340) 2012; 3
Trajcheva, Politakos, Pérez, Joseph, Blazevska Gilev, Tomovska (bib0315) 2021; 213
Kuznetsova, Kolesov, Zaitsev, Tkachev, Kashin, Shikhabudinov, Fionov, Gubin, Sun (bib0240) 2017; 214
Jayawardena, Siriwardena, Rajapakse, Kubono, Shimomura (bib0505) 2019; 493
Yuan, Tai, Bao, Liu, Ye, Jiang (bib0480) 2016; 174
Sauerbrey (bib0025) 1959; 155
Yao, Xue (bib0600) 2015; 211
Ollik, Lieder (bib0280) 2020; 10
Mattevi, Kim, Chhowalla (bib0370) 2011; 21
Kuznetsova, Anisimkin, Gubin, Tkachev, Kolesov, Kashin, Zaitsev, Shikhabudinov, Verona, Sun (bib0630) 2017; 81
Li, Cai, An, Kim, Nah, Yang, Piner, Velamakanni, Jung, Tutuc, Banerjee, Colombo, Ruoff (bib0385) 2009; 324
Olabi, Abdelkareem, Wilberforce, Sayed (bib0285) 2021; 135
Nine, Cole, Tran, Losic (bib0475) 2015; 3
Reina, Jia, Ho, Nezich, Son, Bulovic, Dresselhaus, Kong (bib0380) 2009; 9
Tai, Zhen, Liu, Ye, Xie, Du, Jiang (bib0580) 2016; 230
Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (bib0205) 2008; 146
Li, Chen, Yao, Li, Chen, Bi (bib0595) 2013; 13
Yuan, Tai, Ye, Liu, Xie, Du, Jiang (bib0590) 2016; 234
Yang, He, Hu, Yan, Cheng (bib0110) 2011; 45
Dean, Young, Meric, Lee, Wang, Sorgenfrei, Watanabe, Taniguchi, Kim, Shepard, Hone (bib0210) 2010; 5
Zheng, Fan, Li, Yang, Li, Lin, Zhou, Lv (bib0155) 2019; 283
Chen, Yao, Li, Shi (bib0400) 2013; 64
Larki, Sabri, Kabir, Nafady, Kandjani, Bhargava (bib0100) 2015; 5
Li, Chen, Yao, Li, Chen (bib0465) 2014; 196
Kravchenko, Snopok (bib0035) 2020; 145
Gao, Liu, Bai, Xu, Kong, Liu, Lv, Long, Yang, Li (bib0255) 2019; 141
Wu, Chen, Zhu, Zhou, Yao, Quan, Liu (bib0455) 2013; 178
Ma, Xie, Su, Du, Xie, Jiang (bib0490) 2016; 59
Marjani, Nakhjiri, Adimi, Jirandehi, Shirazian (bib0270) 2020; 10
Li, Zhang, Bai, Sun, Wang, Wang, Dai (bib0425) 2008; 3
Novoselov (bib0190) 2004; 306
Zhang, Hou, Zhang, Zhao (bib0335) 2017; 111
Rianjanu, Nugroho, Kusumaatmaja, Roto, Triyana (bib0075) 2019; 25
Chen, Wang, Gu, Wang, Wang, Wei (bib0550) 2020; 306
Lucklum, Behling, Hauptmann (bib0045) 1999; 71
Rianjanu, Julian, Hidayat, Yulianto, Majid, Syamsu, Wasisto, Triyana (bib0140) 2020; 319
Ho, Wu (bib0125) 2020
Rianjanu, Nurfani, Arif, Triyana, Wasisto (bib0010) 2021; 26
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (bib0220) 2008; 8
Magna, Belugina, Mandoj, Catini, Legin, Paolesse, Di Natale (bib0350) 2020; 320
Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (bib0365) 2007; 6
Yao, Chen, Li, Chen, Li (bib0555) 2014; 191
Chien, Li, Lai, Yeh, Chen, Chen, Chen, Chen, Nemoto, Isoda, Chen, Fujita, Eda, Yamaguchi, Chhowalla, Chen (bib0250) 2012; 51
Wang, Xie, Su, Su, Zhang, Du, Tai, Jiang (bib0615) 2018; 255
Nugroho, Rianjanu, Triyana, Kusumaatmaja, Roto (bib0070) 2019; 15
Le, Liu, Peng, Pang, Xu, Gao, Xie (bib0330) 2019; 5
Hwang, Das Sarma (bib0200) 2008; 77
Zhang, Wang, Zong, Dong, Zhang (bib0585) 2018; 262
Jia, Chen, Yu, Zhang, Dong (bib0540) 2015; 5
Robinson, Snow, Bǎdescu, Reinecke, Perkins (bib0625) 2006; 6
Mujahid, Afzal, Dickert (bib0050) 2019; 19
Rianjanu, Roto, Julian, Hidayat, Kusumaatmaja, Suyono, Triyana (bib0175) 2018; 18
Lv, Hu, Luo, Liu, Qiao, Zhang, Song, Shi, Cai, Watanabe (bib0150) 2019; 9
Smith, LaChance, Zeng, Liu, Sun (bib0395) 2019; 1
Van Quang, Hung, Tuan, Phan, Huy, Van Quy (bib0450) 2014; 568
Qi, Xu, Zhang, Fei, Wang (bib0130) 2020; 560
Julian, Rianjanu, Hidayat, Kusumaatmaja, Roto, Triyana (bib0145) 2019; 8
Rianjanu, Triyana, Nugroho, Kusumaatmaja, Roto (bib0090) 2020; 301
Fang, Lin, Hu, Liu, Tang, Shi, Liao (bib0610) 2020; 304
Yao, he Huang, ya Zhang, Zhang, Hou, kun Zhou (bib0135) 2020; 302
Ain, Farooq, Jalees (bib0305) 2020; 33
Du, Wang, Huang, Tao, Tang, Jiang (bib0120) 2009; 44
Toh, Loh, Kamarudin, Daud (bib0440) 2014; 251
Triyana, Rianjanu, Nugroho, As’ari, Kusumaatmaja, Roto, Suryana, Wasisto (bib0065) 2019; 9
Lee, Wei, Kysar, Hone (bib0215) 2008; 321
Qi, Wang, Wang, Xu, Zhang (bib0460) 2016; 32
Moon, Lee, Ruoff, Lee (bib0415) 2010; 1
Yang, He (bib0545) 2016; 228
Roto, Rianjanu, Rahmawati, Fatyadi, Yulianto, Majid, Syamsu, Wasisto, Triyana (bib0080) 2020; 3
Tang, Zhang, Zhang, Zhao, Hou, Zhan (bib0325) 2020; 217
Yi, Shen (bib0355) 2015; 3
Jia, Yu, Zhang, Dong, Li (bib0525) 2016; 148
Tang, Ma, Xie, Su, Jiang (bib0485) 2016; 660
Lee, Il Choi, Kim, Woo, Kim, Yoo, Seo (bib0495) 2019; 284
Xu, Wang, Cha, Wu, Xu, Cheng, Xiang (bib0105) 2018; 3
Wang, Ding, Yu, Wang (bib0635) 2011; 21
Yu, Lian, Siriponglert, Li, Chen, Pei (bib0375) 2008; 93
Song, Shen, Wang, Chu, Xie, Zhou, Shen (bib0295) 2020; 185
Liu, Zhang (bib0015) 2021; 334
Park, Hu, Hwang, Lee, Casabianca, Cai, Potts, Ha, Chen, Oh, Kim, Kim, Ishii, Ruoff (bib0410) 2012; 3
Su, Te Lin (bib0510) 2016; 238
Zhao, He, Jiang, Yuan, Wu, Su, Tai (bib0535) 2019; 5
Zheng, Li, Ma, Wang, Wu, Cheng (bib0115) 2008; 133
Baghayeri, Ghanei-Motlagh, Tayebee, Fayazi, Narenji (bib0300) 2020
Azzouz, Kailasa, Lee, Rascón, Ballesteros, Zhang, Kim (bib0185) 2018; 108
Kumar, Huang, Ward, Adamson (bib0235) 2017; 493
Xin, Yao, Sun, Scott, Shao, Wang, Lian (bib0420) 2015; 349
Fauzi, Suhendar, Kusumaatmaja, Nugroho, Triyana, Nugroho, Santoso (bib0260) 2018
Hampitak, Melendrez, Iliut, Fresquet, Parsons, Spencer, Jowitt, Vijayaraghavan (bib0040) 2020; 165
Zhu, Zhang, Xie, Hou (bib0320) 2020; 12
Yang, Tseng, Chen (bib0445) 2018; 444
Yao, Chen, Li, Liu, Li (bib0570) 2014; 50
Chen, Deng, Xu, Wang, Wei, Wang (bib0515) 2018; 273
Son, Ji, Kim, Kim, Kim, Song, Lee, Lim, An, Myung (bib0310) 2021
Qi, Zhang, Shao, Yang, Fei, Wang (bib0620) 2019; 287
Torad, Zhang, Amer, Ayad, Kim, Kim, Ding, Zhang, Kimura, Yamauchi (bib0005) 2019; 6
Srivastava, Sakthivel (bib0030) 2001; 19
Li, Zhu, Cai, Borysiak, Han, Chen, Piner, Colombo, Ruoff (bib0225) 2009; 9
Nair, Blake, Grigorenko, Novoselov, Booth, Stauber, Peres, Geim (bib0230) 2008; 320
Lee (10.1016/j.sna.2021.112837_bib0215) 2008; 321
Son (10.1016/j.sna.2021.112837_bib0310) 2021
Zhang (10.1016/j.sna.2021.112837_bib0585) 2018; 262
Guerrero-Contreras (10.1016/j.sna.2021.112837_bib0405) 2015; 153
Hampitak (10.1016/j.sna.2021.112837_bib0040) 2020; 165
Lucklum (10.1016/j.sna.2021.112837_bib0045) 1999; 71
Fauzi (10.1016/j.sna.2021.112837_bib0260) 2018
Rianjanu (10.1016/j.sna.2021.112837_bib0165) 2019; 7
Ho (10.1016/j.sna.2021.112837_bib0565) 2020; 510
Moon (10.1016/j.sna.2021.112837_bib0415) 2010; 1
Yao (10.1016/j.sna.2021.112837_bib0500) 2011; 257
Reina (10.1016/j.sna.2021.112837_bib0380) 2009; 9
Robinson (10.1016/j.sna.2021.112837_bib0625) 2006; 6
Rianjanu (10.1016/j.sna.2021.112837_bib0075) 2019; 25
Murdaka (10.1016/j.sna.2021.112837_bib0245) 2019
Wang (10.1016/j.sna.2021.112837_bib0615) 2018; 255
Fang (10.1016/j.sna.2021.112837_bib0610) 2020; 304
El Habti (10.1016/j.sna.2021.112837_bib0060) 1994; 41
Wallace (10.1016/j.sna.2021.112837_bib0195) 1947; 71
Li (10.1016/j.sna.2021.112837_bib0430) 2010; 20
Gao (10.1016/j.sna.2021.112837_bib0255) 2019; 141
Rianjanu (10.1016/j.sna.2021.112837_bib0010) 2021; 26
Zheng (10.1016/j.sna.2021.112837_bib0155) 2019; 283
Ding (10.1016/j.sna.2021.112837_bib0605) 2018; 266
Sauerbrey (10.1016/j.sna.2021.112837_bib0025) 1959; 155
Mattevi (10.1016/j.sna.2021.112837_bib0370) 2011; 21
Trajcheva (10.1016/j.sna.2021.112837_bib0315) 2021; 213
Kuznetsova (10.1016/j.sna.2021.112837_bib0160) 2020; 20
Yao (10.1016/j.sna.2021.112837_bib0600) 2015; 211
Yao (10.1016/j.sna.2021.112837_bib0135) 2020; 302
Yao (10.1016/j.sna.2021.112837_bib0570) 2014; 50
Van Quang (10.1016/j.sna.2021.112837_bib0450) 2014; 568
Srivastava (10.1016/j.sna.2021.112837_bib0030) 2001; 19
Kravchenko (10.1016/j.sna.2021.112837_bib0035) 2020; 145
Torad (10.1016/j.sna.2021.112837_bib0005) 2019; 6
Zhao (10.1016/j.sna.2021.112837_bib0535) 2019; 5
Zhang (10.1016/j.sna.2021.112837_bib0390) 2013; 46
Triyana (10.1016/j.sna.2021.112837_bib0065) 2019; 9
Jayawardena (10.1016/j.sna.2021.112837_bib0505) 2019; 493
Qi (10.1016/j.sna.2021.112837_bib0620) 2019; 287
Tai (10.1016/j.sna.2021.112837_bib0580) 2016; 230
Zhang (10.1016/j.sna.2021.112837_bib0335) 2017; 111
Chen (10.1016/j.sna.2021.112837_bib0515) 2018; 273
Ain (10.1016/j.sna.2021.112837_bib0305) 2020; 33
Tang (10.1016/j.sna.2021.112837_bib0485) 2016; 660
Wu (10.1016/j.sna.2021.112837_bib0455) 2013; 178
Zhu (10.1016/j.sna.2021.112837_bib0320) 2020; 12
Yuan (10.1016/j.sna.2021.112837_bib0590) 2016; 234
Larki (10.1016/j.sna.2021.112837_bib0100) 2015; 5
Park (10.1016/j.sna.2021.112837_bib0410) 2012; 3
Jia (10.1016/j.sna.2021.112837_bib0540) 2015; 5
Yang (10.1016/j.sna.2021.112837_bib0445) 2018; 444
Balandin (10.1016/j.sna.2021.112837_bib0220) 2008; 8
Lv (10.1016/j.sna.2021.112837_bib0150) 2019; 9
Wang (10.1016/j.sna.2021.112837_bib0180) 2019; 293
Rianjanu (10.1016/j.sna.2021.112837_bib0175) 2018; 18
Dean (10.1016/j.sna.2021.112837_bib0210) 2010; 5
Jin (10.1016/j.sna.2021.112837_bib0560) 2017; 140
Tang (10.1016/j.sna.2021.112837_bib0325) 2020; 217
Yang (10.1016/j.sna.2021.112837_bib0545) 2016; 228
Qi (10.1016/j.sna.2021.112837_bib0460) 2016; 32
Xin (10.1016/j.sna.2021.112837_bib0420) 2015; 349
Ho (10.1016/j.sna.2021.112837_bib0125) 2020
Hwang (10.1016/j.sna.2021.112837_bib0200) 2008; 77
Julian (10.1016/j.sna.2021.112837_bib0145) 2019; 8
Chen (10.1016/j.sna.2021.112837_bib0550) 2020; 306
Rianjanu (10.1016/j.sna.2021.112837_bib0090) 2020; 301
Li (10.1016/j.sna.2021.112837_bib0225) 2009; 9
Xu (10.1016/j.sna.2021.112837_bib0265) 2020; 32
Azzouz (10.1016/j.sna.2021.112837_bib0185) 2018; 108
Yi (10.1016/j.sna.2021.112837_bib0355) 2015; 3
Li (10.1016/j.sna.2021.112837_bib0595) 2013; 13
Yu (10.1016/j.sna.2021.112837_bib0375) 2008; 93
Pumera (10.1016/j.sna.2021.112837_bib0345) 2010; 29
Zhang (10.1016/j.sna.2021.112837_bib0520) 2018; 255
Syama (10.1016/j.sna.2021.112837_bib0275) 2019
Ma (10.1016/j.sna.2021.112837_bib0490) 2016; 59
Kumar (10.1016/j.sna.2021.112837_bib0235) 2017; 493
Baghayeri (10.1016/j.sna.2021.112837_bib0300) 2020
Nine (10.1016/j.sna.2021.112837_bib0475) 2015; 3
Kuznetsova (10.1016/j.sna.2021.112837_bib0240) 2017; 214
Le (10.1016/j.sna.2021.112837_bib0330) 2019; 5
Olabi (10.1016/j.sna.2021.112837_bib0285) 2021; 135
Li (10.1016/j.sna.2021.112837_bib0385) 2009; 324
Chien (10.1016/j.sna.2021.112837_bib0250) 2012; 51
Roto (10.1016/j.sna.2021.112837_bib0080) 2020; 3
Yavari (10.1016/j.sna.2021.112837_bib0360) 2012; 3
Schedin (10.1016/j.sna.2021.112837_bib0365) 2007; 6
Su (10.1016/j.sna.2021.112837_bib0510) 2016; 238
Li (10.1016/j.sna.2021.112837_bib0425) 2008; 3
Vig (10.1016/j.sna.2021.112837_bib0055) 2000
Zhang (10.1016/j.sna.2021.112837_bib0470) 2017; 243
He (10.1016/j.sna.2021.112837_bib0340) 2012; 3
Bolotin (10.1016/j.sna.2021.112837_bib0205) 2008; 146
Toh (10.1016/j.sna.2021.112837_bib0440) 2014; 251
Kuznetsova (10.1016/j.sna.2021.112837_bib0630) 2017; 81
Wang (10.1016/j.sna.2021.112837_bib0020) 2020; 307
Park (10.1016/j.sna.2021.112837_bib0085) 2015; 27
Lee (10.1016/j.sna.2021.112837_bib0495) 2019; 284
Rianjanu (10.1016/j.sna.2021.112837_bib0140) 2020; 319
Liu (10.1016/j.sna.2021.112837_bib0015) 2021; 334
Mujahid (10.1016/j.sna.2021.112837_bib0050) 2019; 19
Li (10.1016/j.sna.2021.112837_bib0465) 2014; 196
Du (10.1016/j.sna.2021.112837_bib0120) 2009; 44
Song (10.1016/j.sna.2021.112837_bib0295) 2020; 185
Novoselov (10.1016/j.sna.2021.112837_bib0190) 2004; 306
Yuan (10.1016/j.sna.2021.112837_bib0480) 2016; 174
Yang (10.1016/j.sna.2021.112837_bib0110) 2011; 45
Ollik (10.1016/j.sna.2021.112837_bib0280) 2020; 10
Marjani (10.1016/j.sna.2021.112837_bib0270) 2020; 10
Mehmood (10.1016/j.sna.2021.112837_bib0290) 2020; 8
Magna (10.1016/j.sna.2021.112837_bib0350) 2020; 320
Ren (10.1016/j.sna.2021.112837_bib0575) 2018; 18
Gupta (10.1016/j.sna.2021.112837_bib0530) 2020; 18
Smith (10.1016/j.sna.2021.112837_bib0395) 2019; 1
Wang (10.1016/j.sna.2021.112837_bib0635) 2011; 21
Nair (10.1016/j.sna.2021.112837_bib0230) 2008; 320
Nugroho (10.1016/j.sna.2021.112837_bib0070) 2019; 15
Xu (10.1016/j.sna.2021.112837_bib0105) 2018; 3
Triyana (10.1016/j.sna.2021.112837_bib0170) 2018; 7
Qi (10.1016/j.sna.2021.112837_bib0130) 2020; 560
Chen (10.1016/j.sna.2021.112837_bib0400) 2013; 64
Ayad (10.1016/j.sna.2021.112837_bib0095) 2009; 168
Yao (10.1016/j.sna.2021.112837_bib0555) 2014; 191
Zheng (10.1016/j.sna.2021.112837_bib0115) 2008; 133
Jia (10.1016/j.sna.2021.112837_bib0525) 2016; 148
Voiry (10.1016/j.sna.2021.112837_bib0435) 2016; 353
References_xml – volume: 304
  start-page: 127313
  year: 2020
  ident: bib0610
  article-title: Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring
  publication-title: Sens. Actuators, B Chem.
– volume: 320
  start-page: 1308
  year: 2008
  ident: bib0230
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science (80-.).
– volume: 6
  start-page: 1900849
  year: 2019
  ident: bib0005
  article-title: Advanced nanoporous material–based QCM devices: a new horizon of interfacial mass sensing technology
  publication-title: Adv. Mater. Interfaces
– volume: 1
  start-page: 31
  year: 2019
  end-page: 47
  ident: bib0395
  article-title: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
  publication-title: Int. J. Green Nanotechnol. Mater. Sci. Eng.
– volume: 59
  start-page: 1377
  year: 2016
  end-page: 1382
  ident: bib0490
  article-title: Polyvinylpyrrolidone/graphene oxide thin films coated on quartz crystal microbalance electrode for NH3 detection at room temperature
  publication-title: Sci. China Ser. A-Math. Phys. Astron. Technol. Sci.
– volume: 273
  start-page: 498
  year: 2018
  end-page: 504
  ident: bib0515
  article-title: GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations
  publication-title: Sens. Actuators, B Chem.
– volume: 3
  start-page: 2437
  year: 2018
  end-page: 2443
  ident: bib0105
  article-title: Superhydrophobic polymerized n-Octadecylsilane surface for BTEX sensing and stable Toluene/Water selective detection based on QCM sensor
  publication-title: ACS Omega
– volume: 284
  start-page: 386
  year: 2019
  end-page: 394
  ident: bib0495
  article-title: Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides
  publication-title: Sens. Actuators, B Chem.
– volume: 266
  start-page: 534
  year: 2018
  end-page: 542
  ident: bib0605
  article-title: A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor
  publication-title: Sens. Actuators, B Chem.
– volume: 71
  start-page: 2488
  year: 1999
  end-page: 2496
  ident: bib0045
  article-title: Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors
  publication-title: Anal. Chem.
– start-page: 145257
  year: 2020
  ident: bib0125
  article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 97
  year: 2001
  end-page: 100
  ident: bib0030
  article-title: Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools
  publication-title: J. Vac. Sci. Technol. A
– volume: 19
  start-page: 4395
  year: 2019
  ident: bib0050
  article-title: An overview of high frequency acoustic sensors—QCMs, SAWs and FBARs—chemical and biochemical applications
  publication-title: Sensors
– volume: 283
  start-page: 659
  year: 2019
  end-page: 665
  ident: bib0155
  article-title: A fast-response and highly linear humidity sensor based on quartz crystal microbalance
  publication-title: Sens. Actuators B Chem.
– volume: 51
  start-page: 6662
  year: 2012
  end-page: 6666
  ident: bib0250
  article-title: Tunable photoluminescence from graphene oxide
  publication-title: Angew. Chem. - Int. Ed.
– volume: 111
  start-page: 153101
  year: 2017
  ident: bib0335
  article-title: Highly sensitive humidity sensor based on graphene oxide foam
  publication-title: Appl. Phys. Lett.
– volume: 238
  start-page: 344
  year: 2016
  end-page: 350
  ident: bib0510
  article-title: Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance
  publication-title: Sens. Actuators, A Phys.
– volume: 493
  start-page: 250
  year: 2019
  end-page: 260
  ident: bib0505
  article-title: Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature
  publication-title: Appl. Surf. Sci.
– volume: 145
  start-page: 656
  year: 2020
  end-page: 666
  ident: bib0035
  article-title: “Vanishing mass” in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility
  publication-title: Analyst
– volume: 41
  start-page: 250
  year: 1994
  end-page: 255
  ident: bib0060
  article-title: Low temperature limitation on the quality factor of quartz resonators
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0270
  article-title: Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment
  publication-title: Sci. Rep.
– volume: 77
  start-page: 1
  year: 2008
  end-page: 6
  ident: bib0200
  article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
– volume: 444
  start-page: 578
  year: 2018
  end-page: 583
  ident: bib0445
  article-title: Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations
  publication-title: Appl. Surf. Sci.
– year: 2019
  ident: bib0275
  article-title: Comprehensive Application of Graphene: Emphasis on Biomedical Concerns
– volume: 5
  start-page: 722
  year: 2010
  end-page: 726
  ident: bib0210
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
– volume: 44
  start-page: 5872
  year: 2009
  end-page: 5876
  ident: bib0120
  article-title: A new polysiloxane coating on QCM sensor for DMMP vapor detection
  publication-title: J. Mater. Sci.
– volume: 153
  start-page: 209
  year: 2015
  end-page: 220
  ident: bib0405
  article-title: Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method
  publication-title: Mater. Chem. Phys.
– volume: 302
  start-page: 127192
  year: 2020
  ident: bib0135
  article-title: Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure
  publication-title: Sens. Actuators, B Chem.
– volume: 243
  start-page: 721
  year: 2017
  end-page: 730
  ident: bib0470
  article-title: Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors
  publication-title: Sens. Actuators, B Chem.
– volume: 8
  start-page: 243
  year: 2019
  end-page: 250
  ident: bib0145
  article-title: Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor
  publication-title: J. Sens. Sens. Syst.
– volume: 18
  start-page: 1279
  year: 2020
  ident: bib0530
  article-title: Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 228
  start-page: 486
  year: 2016
  end-page: 490
  ident: bib0545
  article-title: Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde
  publication-title: Sens. Actuators, B Chem.
– volume: 287
  start-page: 93
  year: 2019
  end-page: 101
  ident: bib0620
  article-title: A QCM humidity sensor constructed by graphene quantum dots and chitosan composites
  publication-title: Sens. Actuators, A Phys.
– volume: 234
  start-page: 145
  year: 2016
  end-page: 154
  ident: bib0590
  article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film
  publication-title: Sens. Actuators, B Chem.
– volume: 174
  start-page: 28
  year: 2016
  end-page: 31
  ident: bib0480
  article-title: Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor
  publication-title: Mater. Lett.
– volume: 13
  start-page: 4749
  year: 2013
  end-page: 4756
  ident: bib0595
  article-title: Multi-walled carbon Nanotubes/Graphene oxide composites for humidity sensing
  publication-title: IEEE Sens. J.
– volume: 5
  start-page: 40620
  year: 2015
  end-page: 40627
  ident: bib0540
  article-title: Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection
  publication-title: RSC Adv.
– volume: 108
  start-page: 347
  year: 2018
  end-page: 369
  ident: bib0185
  article-title: Review of nanomaterials as sorbents in solid-phase extraction for environmental samples
  publication-title: TrAC - Trends Anal. Chem.
– volume: 9
  start-page: 422
  year: 2019
  ident: bib0150
  article-title: Recent advances in graphene-based humidity sensors
  publication-title: Nanomaterials
– volume: 6
  start-page: 1747
  year: 2006
  end-page: 1751
  ident: bib0625
  article-title: Role of defects in single-walled carbon nanotube chemical sensors
  publication-title: Nano Lett.
– volume: 510
  start-page: 145257
  year: 2020
  ident: bib0565
  article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis
  publication-title: Appl. Surf. Sci.
– volume: 135
  start-page: 110026
  year: 2021
  ident: bib0285
  article-title: Application of graphene in energy storage device – a review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 3
  start-page: 538
  year: 2008
  end-page: 542
  ident: bib0425
  article-title: Highly conducting graphene sheets and Langmuir–Blodgett films
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 92303
  year: 2015
  end-page: 92311
  ident: bib0100
  article-title: Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection
  publication-title: RSC Adv.
– volume: 3
  start-page: 12580
  year: 2015
  end-page: 12602
  ident: bib0475
  article-title: Graphene: A multipurpose material for protective coatings
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 374
  year: 2008
  end-page: 380
  ident: bib0115
  article-title: Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies
  publication-title: Sens. Actuators, B Chem.
– volume: 5
  start-page: 36
  year: 2019
  ident: bib0330
  article-title: Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension
  publication-title: Microsystems Nanoeng.
– volume: 21
  start-page: 3324
  year: 2011
  end-page: 3334
  ident: bib0370
  article-title: A review of chemical vapour deposition of graphene on copper
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 638
  year: 2012
  ident: bib0410
  article-title: Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping
  publication-title: Nat. Commun.
– volume: 257
  start-page: 7778
  year: 2011
  end-page: 7782
  ident: bib0500
  article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection
  publication-title: Appl. Surf. Sci.
– volume: 306
  start-page: 127579
  year: 2020
  ident: bib0550
  article-title: Hydrophobic amino-functionalized graphene oxide nanocomposite for aldehydes detection in fish fillets
  publication-title: Sens. Actuators, B Chem.
– volume: 353
  start-page: 1413
  year: 2016
  end-page: 1416
  ident: bib0435
  article-title: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide
  publication-title: Science (80-.)
– volume: 7
  start-page: 181
  year: 2018
  ident: bib0170
  article-title: Chitosan-based quartz crystal microbalance for alcohol sensing
  publication-title: Electronics
– volume: 18
  start-page: 9471
  year: 2018
  end-page: 9476
  ident: bib0575
  article-title: Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC /graphene oxide film
  publication-title: IEEE Sens. J.
– volume: 7
  start-page: 20
  year: 2019
  ident: bib0165
  article-title: Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air
  publication-title: Chemosensors
– volume: 255
  start-page: 2203
  year: 2018
  end-page: 2210
  ident: bib0615
  article-title: Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance
  publication-title: Sens. Actuators, B Chem.
– volume: 9
  start-page: 15407
  year: 2019
  ident: bib0065
  article-title: A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM
  publication-title: Sci. Rep.
– volume: 185
  start-page: 110596
  year: 2020
  ident: bib0295
  article-title: Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics
  publication-title: Colloids Surf. B Biointerfaces
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib0190
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science (80-.)
– volume: 10
  start-page: 1
  year: 2020
  end-page: 27
  ident: bib0280
  article-title: Review of the application of graphene-based coatings as anticorrosion layers
  publication-title: Coatings
– volume: 493
  start-page: 365
  year: 2017
  end-page: 370
  ident: bib0235
  article-title: Altering and investigating the surfactant properties of graphene oxide
  publication-title: J. Colloid Interface Sci.
– volume: 191
  start-page: 779
  year: 2014
  end-page: 783
  ident: bib0555
  article-title: Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films
  publication-title: Sens. Actuators, B Chem.
– volume: 93
  start-page: 113103
  year: 2008
  ident: bib0375
  article-title: Graphene segregated on Ni surfaces and transferred to insulators
  publication-title: Appl. Phys. Lett.
– volume: 71
  start-page: 622
  year: 1947
  end-page: 634
  ident: bib0195
  article-title: The band theory of graphite
  publication-title: Phys. Rev.
– volume: 319
  start-page: 128286
  year: 2020
  ident: bib0140
  article-title: Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers
  publication-title: Sens. Actuators B Chem.
– volume: 1
  start-page: 73
  year: 2010
  ident: bib0415
  article-title: Reduced graphene oxide by chemical graphitization
  publication-title: Nat. Commun.
– volume: 20
  start-page: 2711
  year: 2020
  ident: bib0160
  article-title: Influence of humidity on the acoustic properties of mushroom mycelium films used as sensitive layers for acoustic humidity sensors
  publication-title: Sensors
– volume: 560
  start-page: 284
  year: 2020
  end-page: 292
  ident: bib0130
  article-title: Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection
  publication-title: J. Colloid Interface Sci.
– volume: 568
  start-page: 6
  year: 2014
  end-page: 12
  ident: bib0450
  article-title: Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature
  publication-title: Thin Solid Films
– volume: 307
  start-page: 111984
  year: 2020
  ident: bib0020
  article-title: Metal-organic frameworks for QCM-based gas sensors: a review, sensors actuators
  publication-title: A Phys.
– year: 2018
  ident: bib0260
  article-title: A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years
  publication-title: Mater. Res. Express
– volume: 32
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib0265
  article-title: Graphene-based fibers: recent advances in preparation and application
  publication-title: Adv. Mater.
– volume: 251
  start-page: 422
  year: 2014
  end-page: 434
  ident: bib0440
  article-title: Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation
  publication-title: Chem. Eng. J.
– start-page: 30
  year: 2000
  end-page: 33
  ident: bib0055
  article-title: A review of sensor sensitivity and stability
  publication-title: Proc. 2000 IEEE/EIA Int. Freq. Control Symp. Exhib. (Cat. No.00CH37052), IEEE
– volume: 320
  start-page: 128373
  year: 2020
  ident: bib0350
  article-title: Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye
  publication-title: Sens. Actuators B Chem.
– volume: 168
  start-page: 85
  year: 2009
  end-page: 88
  ident: bib0095
  article-title: A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 5687
  year: 2020
  end-page: 5697
  ident: bib0080
  article-title: Quartz crystal microbalances functionalized with citric acid-doped polyvinyl acetate nanofibers for Ammonia Sensing
  publication-title: ACS Appl. Nano Mater.
– volume: 334
  start-page: 127615
  year: 2021
  ident: bib0015
  article-title: Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: a review
  publication-title: Food Chem.
– volume: 18
  start-page: 1150
  year: 2018
  ident: bib0175
  article-title: Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole
  publication-title: Sensors
– volume: 64
  start-page: 225
  year: 2013
  end-page: 229
  ident: bib0400
  article-title: An improved Hummers method for eco-friendly synthesis of graphene oxide
  publication-title: Carbon
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: bib0220
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
– volume: 50
  start-page: 1447
  year: 2014
  end-page: 1449
  ident: bib0570
  article-title: Cross-sensitivity reduction of QCM humidity sensor using graphene oxide membrane as filter layer
  publication-title: Electron. Lett.
– volume: 45
  start-page: 6088
  year: 2011
  end-page: 6094
  ident: bib0110
  article-title: CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 263
  year: 2016
  end-page: 269
  ident: bib0525
  article-title: Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor
  publication-title: Colloids Surf. B Biointerfaces
– year: 2020
  ident: bib0300
  article-title: Application of graphene/zinc-based Metal-organic Framework Nanocomposite for Electrochemical Sensing of As(III) in Water Resources
– start-page: 3
  year: 2019
  end-page: 7
  ident: bib0245
  article-title: The study on tuning photoluminescence of colloidal graphene quantum dots synthesized through laser ablation
  publication-title: Mater. Sci. Forum. 966 MSF
– volume: 26
  start-page: 101770
  year: 2021
  ident: bib0010
  article-title: Stability evaluation of quartz crystal microbalances coated with polyvinyl acetate nanofibrous mats as butanol vapor sensors
  publication-title: Mater. Today Commun.
– volume: 140
  start-page: 101
  year: 2017
  end-page: 105
  ident: bib0560
  article-title: A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer
  publication-title: Vacuum
– volume: 301
  start-page: 111742
  year: 2020
  ident: bib0090
  article-title: Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor
  publication-title: Sens. Actuators A Phys.
– volume: 141
  start-page: 331
  year: 2019
  end-page: 338
  ident: bib0255
  article-title: Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination
  publication-title: Carbon
– volume: 8
  start-page: 103743
  year: 2020
  ident: bib0290
  article-title: Graphene based nanomaterials for strain sensor application - A review
  publication-title: J. Environ. Chem. Eng.
– volume: 12
  start-page: 38708
  year: 2020
  end-page: 38713
  ident: bib0320
  article-title: High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1764
  year: 2012
  end-page: 1772
  ident: bib0340
  article-title: Graphene-based electronic sensors
  publication-title: Chem. Sci.
– volume: 349
  start-page: 1083
  year: 2015
  end-page: 1087
  ident: bib0420
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science (80-.)
– volume: 660
  start-page: 199
  year: 2016
  end-page: 204
  ident: bib0485
  article-title: Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance
  publication-title: Chem. Phys. Lett.
– volume: 211
  start-page: 52
  year: 2015
  end-page: 58
  ident: bib0600
  article-title: Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film
  publication-title: Sens. Actuators, B Chem.
– volume: 213
  year: 2021
  ident: bib0315
  article-title: QCM nanocomposite gas sensors – expanding the application of waterborne polymer composites based on graphene nanoribbon
  publication-title: Polymer (Guildf).
– volume: 165
  start-page: 317
  year: 2020
  end-page: 327
  ident: bib0040
  article-title: Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D)
  publication-title: Carbon
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  ident: bib0385
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science (80-.)
– volume: 32
  start-page: 924
  year: 2016
  end-page: 928
  ident: bib0460
  article-title: Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature
  publication-title: Chem. Res. Chin. Univ.
– volume: 146
  start-page: 351
  year: 2008
  end-page: 355
  ident: bib0205
  article-title: Ultrahigh electron mobility in suspended graphene
  publication-title: Solid State Commun.
– volume: 3
  start-page: 1746
  year: 2012
  end-page: 1753
  ident: bib0360
  article-title: Graphene-based chemical sensors
  publication-title: J. Phys. Chem. Lett.
– volume: 293
  start-page: 71
  year: 2019
  end-page: 82
  ident: bib0180
  article-title: QCM formaldehyde sensing materials: design and sensing mechanism
  publication-title: Sens. Actuators, B Chem.
– volume: 217
  start-page: 1900869
  year: 2020
  ident: bib0325
  article-title: Ultrafast‐response humidity sensor with high humidity durability based on a freestanding film of graphene oxide supramolecular
  publication-title: Phys. Status Solidi
– volume: 262
  start-page: 531
  year: 2018
  end-page: 541
  ident: bib0585
  article-title: High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method
  publication-title: Sens. Actuators, B Chem.
– volume: 6
  start-page: 652
  year: 2007
  end-page: 655
  ident: bib0365
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
– volume: 9
  start-page: 30
  year: 2009
  end-page: 35
  ident: bib0380
  article-title: Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
  publication-title: Nano Lett.
– volume: 196
  start-page: 183
  year: 2014
  end-page: 188
  ident: bib0465
  article-title: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer
  publication-title: Sens. Actuators B Chem.
– volume: 255
  start-page: 1869
  year: 2018
  end-page: 1877
  ident: bib0520
  article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film
  publication-title: Sens. Actuators, B Chem.
– volume: 81
  start-page: 135
  year: 2017
  end-page: 139
  ident: bib0630
  article-title: Super high sensitive plate acoustic wave humidity sensor based on graphene oxide film
  publication-title: Ultrasonics
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: bib0215
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science (80-.)
– volume: 15
  start-page: 102680
  year: 2019
  ident: bib0070
  article-title: Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor
  publication-title: Results Phys.
– volume: 214
  start-page: 1
  year: 2017
  end-page: 5
  ident: bib0240
  article-title: Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
– volume: 20
  start-page: 4781
  year: 2010
  ident: bib0430
  article-title: Ultrafast, dry microwave synthesis of graphene sheets
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 16231
  year: 2011
  ident: bib0635
  article-title: Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine
  publication-title: J. Mater. Chem.
– year: 2021
  ident: bib0310
  article-title: GC-like graphene-coated quartz crystal microbalance sensor with microcolumns
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4359
  year: 2009
  end-page: 4363
  ident: bib0225
  article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes
  publication-title: Nano Lett.
– volume: 178
  start-page: 485
  year: 2013
  end-page: 493
  ident: bib0455
  article-title: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite
  publication-title: Sens. Actuators B Chem.
– volume: 155
  start-page: 206
  year: 1959
  end-page: 222
  ident: bib0025
  article-title: Verwendung Von Schwingquarzen Zur Wägung dünner schichten und zur Mikrowägung
  publication-title: Zeitschrift Für Phys.
– volume: 230
  start-page: 501
  year: 2016
  end-page: 509
  ident: bib0580
  article-title: Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film
  publication-title: Sens. Actuators, B Chem.
– volume: 29
  start-page: 954
  year: 2010
  end-page: 965
  ident: bib0345
  article-title: Graphene for electrochemical sensing and biosensing
  publication-title: TrAC - Trends Anal. Chem.
– volume: 46
  start-page: 2329
  year: 2013
  end-page: 2339
  ident: bib0390
  article-title: Review of chemical vapor deposition of graphene and related applications
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 5845
  year: 2015
  end-page: 5848
  ident: bib0085
  article-title: Hollow and microporous Zn-Porphyrin networks: outer shape dependent Ammonia Sensing by quartz crystal microbalance
  publication-title: Chem. Mater.
– volume: 33
  start-page: 101044
  year: 2020
  ident: bib0305
  article-title: Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection
  publication-title: J. Water Process Eng.
– volume: 25
  start-page: 100294
  year: 2019
  ident: bib0075
  article-title: A study of quartz crystal microbalance modified with polyvinyl acetate nanofiber to differentiate short-chain alcohol isomers
  publication-title: Sens. Biosensing Res.
– volume: 3
  start-page: 11700
  year: 2015
  end-page: 11715
  ident: bib0355
  article-title: A review on mechanical exfoliation for the scalable production of graphene
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1
  year: 2019
  end-page: 5
  ident: bib0535
  article-title: Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature
  publication-title: Front. Mater.
– volume: 230
  start-page: 501
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0580
  article-title: Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2016.01.105
– volume: 20
  start-page: 2711
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0160
  article-title: Influence of humidity on the acoustic properties of mushroom mycelium films used as sensitive layers for acoustic humidity sensors
  publication-title: Sensors
  doi: 10.3390/s20092711
– volume: 44
  start-page: 5872
  year: 2009
  ident: 10.1016/j.sna.2021.112837_bib0120
  article-title: A new polysiloxane coating on QCM sensor for DMMP vapor detection
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3829-5
– volume: 111
  start-page: 153101
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0335
  article-title: Highly sensitive humidity sensor based on graphene oxide foam
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4996603
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0280
  article-title: Review of the application of graphene-based coatings as anticorrosion layers
  publication-title: Coatings
  doi: 10.3390/coatings10090883
– volume: 3
  start-page: 1746
  year: 2012
  ident: 10.1016/j.sna.2021.112837_bib0360
  article-title: Graphene-based chemical sensors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300358t
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0215
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science (80-.)
  doi: 10.1126/science.1157996
– volume: 145
  start-page: 656
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0035
  article-title: “Vanishing mass” in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility
  publication-title: Analyst
  doi: 10.1039/C9AN01366K
– volume: 3
  start-page: 2437
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0105
  article-title: Superhydrophobic polymerized n-Octadecylsilane surface for BTEX sensing and stable Toluene/Water selective detection based on QCM sensor
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00061
– volume: 334
  start-page: 127615
  year: 2021
  ident: 10.1016/j.sna.2021.112837_bib0015
  article-title: Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: a review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127615
– volume: 3
  start-page: 538
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0425
  article-title: Highly conducting graphene sheets and Langmuir–Blodgett films
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.210
– volume: 3
  start-page: 1764
  year: 2012
  ident: 10.1016/j.sna.2021.112837_bib0340
  article-title: Graphene-based electronic sensors
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20205k
– volume: 135
  start-page: 110026
  year: 2021
  ident: 10.1016/j.sna.2021.112837_bib0285
  article-title: Application of graphene in energy storage device – a review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2020.110026
– volume: 8
  start-page: 902
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0220
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 660
  start-page: 199
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0485
  article-title: Acetylcholinesterase-reduced graphene oxide hybrid films for organophosphorus neurotoxin sensing via quartz crystal microbalance
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.08.025
– volume: 41
  start-page: 250
  year: 1994
  ident: 10.1016/j.sna.2021.112837_bib0060
  article-title: Low temperature limitation on the quality factor of quartz resonators
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.279139
– volume: 214
  start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0240
  article-title: Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
– volume: 266
  start-page: 534
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0605
  article-title: A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.03.143
– volume: 444
  start-page: 578
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0445
  article-title: Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.090
– volume: 493
  start-page: 365
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0235
  article-title: Altering and investigating the surfactant properties of graphene oxide
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.01.043
– volume: 15
  start-page: 102680
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0070
  article-title: Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102680
– volume: 9
  start-page: 4359
  year: 2009
  ident: 10.1016/j.sna.2021.112837_bib0225
  article-title: Transfer of large-area graphene films for high-performance transparent conductive electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl902623y
– volume: 3
  start-page: 11700
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0355
  article-title: A review on mechanical exfoliation for the scalable production of graphene
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00252D
– volume: 6
  start-page: 652
  year: 2007
  ident: 10.1016/j.sna.2021.112837_bib0365
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– start-page: 145257
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0125
  article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145257
– volume: 45
  start-page: 6088
  year: 2011
  ident: 10.1016/j.sna.2021.112837_bib0110
  article-title: CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201121w
– volume: 283
  start-page: 659
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0155
  article-title: A fast-response and highly linear humidity sensor based on quartz crystal microbalance
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.12.081
– volume: 64
  start-page: 225
  year: 2013
  ident: 10.1016/j.sna.2021.112837_bib0400
  article-title: An improved Hummers method for eco-friendly synthesis of graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.055
– volume: 50
  start-page: 1447
  year: 2014
  ident: 10.1016/j.sna.2021.112837_bib0570
  article-title: Cross-sensitivity reduction of QCM humidity sensor using graphene oxide membrane as filter layer
  publication-title: Electron. Lett.
  doi: 10.1049/el.2014.2735
– volume: 510
  start-page: 145257
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0565
  article-title: Diamine decorated graphene oxide film on quartz crystal microbalance for humidity-sensing analysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145257
– volume: 211
  start-page: 52
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0600
  article-title: Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2014.12.134
– volume: 71
  start-page: 2488
  year: 1999
  ident: 10.1016/j.sna.2021.112837_bib0045
  article-title: Role of mass accumulation and viscoelastic film properties for the response of acoustic-wave-based chemical sensors
  publication-title: Anal. Chem.
  doi: 10.1021/ac981245l
– volume: 301
  start-page: 111742
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0090
  article-title: Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111742
– volume: 324
  start-page: 1312
  year: 2009
  ident: 10.1016/j.sna.2021.112837_bib0385
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science (80-.)
  doi: 10.1126/science.1171245
– volume: 148
  start-page: 263
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0525
  article-title: Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.09.007
– volume: 25
  start-page: 100294
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0075
  article-title: A study of quartz crystal microbalance modified with polyvinyl acetate nanofiber to differentiate short-chain alcohol isomers
  publication-title: Sens. Biosensing Res.
  doi: 10.1016/j.sbsr.2019.100294
– volume: 307
  start-page: 111984
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0020
  article-title: Metal-organic frameworks for QCM-based gas sensors: a review, sensors actuators
  publication-title: A Phys.
– start-page: 3
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0245
  article-title: The study on tuning photoluminescence of colloidal graphene quantum dots synthesized through laser ablation
  publication-title: Mater. Sci. Forum. 966 MSF
  doi: 10.4028/www.scientific.net/MSF.966.3
– volume: 6
  start-page: 1747
  year: 2006
  ident: 10.1016/j.sna.2021.112837_bib0625
  article-title: Role of defects in single-walled carbon nanotube chemical sensors
  publication-title: Nano Lett.
  doi: 10.1021/nl0612289
– volume: 349
  start-page: 1083
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0420
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science (80-.)
  doi: 10.1126/science.aaa6502
– volume: 191
  start-page: 779
  year: 2014
  ident: 10.1016/j.sna.2021.112837_bib0555
  article-title: Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2013.10.076
– volume: 81
  start-page: 135
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0630
  article-title: Super high sensitive plate acoustic wave humidity sensor based on graphene oxide film
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.06.019
– volume: 8
  start-page: 103743
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0290
  article-title: Graphene based nanomaterials for strain sensor application - A review
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.103743
– volume: 255
  start-page: 1869
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0520
  article-title: Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2017.08.212
– volume: 21
  start-page: 3324
  year: 2011
  ident: 10.1016/j.sna.2021.112837_bib0370
  article-title: A review of chemical vapour deposition of graphene on copper
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02126A
– volume: 18
  start-page: 1150
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0175
  article-title: Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole
  publication-title: Sensors
  doi: 10.3390/s18041150
– volume: 168
  start-page: 85
  year: 2009
  ident: 10.1016/j.sna.2021.112837_bib0095
  article-title: A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.003
– volume: 178
  start-page: 485
  year: 2013
  ident: 10.1016/j.sna.2021.112837_bib0455
  article-title: Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.01.014
– volume: 306
  start-page: 127579
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0550
  article-title: Hydrophobic amino-functionalized graphene oxide nanocomposite for aldehydes detection in fish fillets
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2019.127579
– volume: 18
  start-page: 9471
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0575
  article-title: Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC /graphene oxide film
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2872854
– volume: 133
  start-page: 374
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0115
  article-title: Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2008.02.037
– volume: 304
  start-page: 127313
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0610
  article-title: Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2019.127313
– volume: 9
  start-page: 422
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0150
  article-title: Recent advances in graphene-based humidity sensors
  publication-title: Nanomaterials
  doi: 10.3390/nano9030422
– volume: 284
  start-page: 386
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0495
  article-title: Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.12.154
– volume: 7
  start-page: 20
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0165
  article-title: Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air
  publication-title: Chemosensors
  doi: 10.3390/chemosensors7020020
– volume: 6
  start-page: 1900849
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0005
  article-title: Advanced nanoporous material–based QCM devices: a new horizon of interfacial mass sensing technology
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900849
– volume: 493
  start-page: 250
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0505
  article-title: Fabrication of a quartz crystal microbalance sensor based on graphene oxide/TiO2 composite for the detection of chemical vapors at room temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.06.280
– volume: 228
  start-page: 486
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0545
  article-title: Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2016.01.046
– volume: 1
  start-page: 31
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0395
  article-title: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites
  publication-title: Int. J. Green Nanotechnol. Mater. Sci. Eng.
– year: 2021
  ident: 10.1016/j.sna.2021.112837_bib0310
  article-title: GC-like graphene-coated quartz crystal microbalance sensor with microcolumns
  publication-title: ACS Appl. Mater. Interfaces
– volume: 262
  start-page: 531
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0585
  article-title: High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.02.012
– volume: 3
  start-page: 5687
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0080
  article-title: Quartz crystal microbalances functionalized with citric acid-doped polyvinyl acetate nanofibers for Ammonia Sensing
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00896
– volume: 293
  start-page: 71
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0180
  article-title: QCM formaldehyde sensing materials: design and sensing mechanism
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2019.04.050
– volume: 319
  start-page: 128286
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0140
  article-title: Quartz crystal microbalance humidity sensors integrated with hydrophilic polyethyleneimine-grafted polyacrylonitrile nanofibers
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128286
– volume: 238
  start-page: 344
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0510
  article-title: Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance
  publication-title: Sens. Actuators, A Phys.
  doi: 10.1016/j.sna.2015.11.034
– volume: 21
  start-page: 16231
  year: 2011
  ident: 10.1016/j.sna.2021.112837_bib0635
  article-title: Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm13037d
– volume: 51
  start-page: 6662
  year: 2012
  ident: 10.1016/j.sna.2021.112837_bib0250
  article-title: Tunable photoluminescence from graphene oxide
  publication-title: Angew. Chem. - Int. Ed.
  doi: 10.1002/anie.201200474
– volume: 27
  start-page: 5845
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0085
  article-title: Hollow and microporous Zn-Porphyrin networks: outer shape dependent Ammonia Sensing by quartz crystal microbalance
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02385
– volume: 12
  start-page: 38708
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0320
  article-title: High-sensitivity and ultrafast-response ethanol sensors based on graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12196
– volume: 165
  start-page: 317
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0040
  article-title: Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D)
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.04.093
– volume: 560
  start-page: 284
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0130
  article-title: Chitosan wrapped multiwalled carbon nanotubes as quartz crystal microbalance sensing material for humidity detection
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.10.080
– volume: 46
  start-page: 2329
  year: 2013
  ident: 10.1016/j.sna.2021.112837_bib0390
  article-title: Review of chemical vapor deposition of graphene and related applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300203n
– volume: 302
  start-page: 127192
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0135
  article-title: Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2019.127192
– volume: 20
  start-page: 4781
  year: 2010
  ident: 10.1016/j.sna.2021.112837_bib0430
  article-title: Ultrafast, dry microwave synthesis of graphene sheets
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00168f
– volume: 141
  start-page: 331
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0255
  article-title: Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.068
– volume: 108
  start-page: 347
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0185
  article-title: Review of nanomaterials as sorbents in solid-phase extraction for environmental samples
  publication-title: TrAC - Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.08.009
– volume: 7
  start-page: 181
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0170
  article-title: Chitosan-based quartz crystal microbalance for alcohol sensing
  publication-title: Electronics
  doi: 10.3390/electronics7090181
– volume: 217
  start-page: 1900869
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0325
  article-title: Ultrafast‐response humidity sensor with high humidity durability based on a freestanding film of graphene oxide supramolecular
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201900869
– volume: 155
  start-page: 206
  year: 1959
  ident: 10.1016/j.sna.2021.112837_bib0025
  article-title: Verwendung Von Schwingquarzen Zur Wägung dünner schichten und zur Mikrowägung
  publication-title: Zeitschrift Für Phys.
  doi: 10.1007/BF01337937
– volume: 1
  start-page: 73
  year: 2010
  ident: 10.1016/j.sna.2021.112837_bib0415
  article-title: Reduced graphene oxide by chemical graphitization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1067
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0270
  article-title: Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58472-y
– volume: 9
  start-page: 30
  year: 2009
  ident: 10.1016/j.sna.2021.112837_bib0380
  article-title: Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 255
  start-page: 2203
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0615
  article-title: Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2017.09.028
– volume: 196
  start-page: 183
  year: 2014
  ident: 10.1016/j.sna.2021.112837_bib0465
  article-title: High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.01.088
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.sna.2021.112837_bib0190
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science (80-.)
  doi: 10.1126/science.1102896
– volume: 320
  start-page: 1308
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0230
  article-title: Fine structure constant defines visual transparency of graphene
  publication-title: Science (80-.).
  doi: 10.1126/science.1156965
– volume: 140
  start-page: 101
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0560
  article-title: A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.10.017
– volume: 353
  start-page: 1413
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0435
  article-title: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide
  publication-title: Science (80-.)
  doi: 10.1126/science.aah3398
– volume: 153
  start-page: 209
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0405
  article-title: Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.01.005
– volume: 5
  start-page: 36
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0330
  article-title: Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension
  publication-title: Microsystems Nanoeng.
  doi: 10.1038/s41378-019-0075-0
– volume: 77
  start-page: 1
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0200
  article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.77.115449
– volume: 213
  year: 2021
  ident: 10.1016/j.sna.2021.112837_bib0315
  article-title: QCM nanocomposite gas sensors – expanding the application of waterborne polymer composites based on graphene nanoribbon
  publication-title: Polymer (Guildf).
  doi: 10.1016/j.polymer.2020.123335
– volume: 3
  start-page: 638
  year: 2012
  ident: 10.1016/j.sna.2021.112837_bib0410
  article-title: Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1643
– volume: 568
  start-page: 6
  year: 2014
  ident: 10.1016/j.sna.2021.112837_bib0450
  article-title: Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.07.036
– volume: 32
  start-page: 1
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0265
  article-title: Graphene-based fibers: recent advances in preparation and application
  publication-title: Adv. Mater.
– volume: 29
  start-page: 954
  year: 2010
  ident: 10.1016/j.sna.2021.112837_bib0345
  article-title: Graphene for electrochemical sensing and biosensing
  publication-title: TrAC - Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.011
– volume: 251
  start-page: 422
  year: 2014
  ident: 10.1016/j.sna.2021.112837_bib0440
  article-title: Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.004
– volume: 5
  start-page: 40620
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0540
  article-title: Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04890G
– volume: 8
  start-page: 243
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0145
  article-title: Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-8-243-2019
– volume: 71
  start-page: 622
  year: 1947
  ident: 10.1016/j.sna.2021.112837_bib0195
  article-title: The band theory of graphite
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.71.622
– volume: 174
  start-page: 28
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0480
  article-title: Enhanced humidity-sensing properties of novel graphene oxide/zinc oxide nanoparticles layered thin film QCM sensor
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.122
– volume: 19
  start-page: 4395
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0050
  article-title: An overview of high frequency acoustic sensors—QCMs, SAWs and FBARs—chemical and biochemical applications
  publication-title: Sensors
  doi: 10.3390/s19204395
– volume: 273
  start-page: 498
  year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0515
  article-title: GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2018.06.062
– volume: 243
  start-page: 721
  year: 2017
  ident: 10.1016/j.sna.2021.112837_bib0470
  article-title: Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2016.12.063
– year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0300
– volume: 32
  start-page: 924
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0460
  article-title: Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-016-6129-z
– volume: 13
  start-page: 4749
  year: 2013
  ident: 10.1016/j.sna.2021.112837_bib0595
  article-title: Multi-walled carbon Nanotubes/Graphene oxide composites for humidity sensing
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2273615
– volume: 9
  start-page: 15407
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0065
  article-title: A highly sensitive safrole sensor based on polyvinyl acetate (PVAc) nanofiber-coated QCM
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51851-0
– volume: 320
  start-page: 128373
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0350
  article-title: Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.128373
– volume: 5
  start-page: 92303
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0100
  article-title: Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19132G
– volume: 257
  start-page: 7778
  year: 2011
  ident: 10.1016/j.sna.2021.112837_bib0500
  article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.028
– volume: 5
  start-page: 1
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0535
  article-title: Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2018.00082
– volume: 33
  start-page: 101044
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0305
  article-title: Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2019.101044
– volume: 26
  start-page: 101770
  year: 2021
  ident: 10.1016/j.sna.2021.112837_bib0010
  article-title: Stability evaluation of quartz crystal microbalances coated with polyvinyl acetate nanofibrous mats as butanol vapor sensors
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101770
– volume: 19
  start-page: 97
  year: 2001
  ident: 10.1016/j.sna.2021.112837_bib0030
  article-title: Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1335681
– volume: 146
  start-page: 351
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0205
  article-title: Ultrahigh electron mobility in suspended graphene
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
– volume: 18
  start-page: 1279
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0530
  article-title: Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 234
  start-page: 145
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0590
  article-title: Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film
  publication-title: Sens. Actuators, B Chem.
  doi: 10.1016/j.snb.2016.04.070
– volume: 185
  start-page: 110596
  year: 2020
  ident: 10.1016/j.sna.2021.112837_bib0295
  article-title: Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2019.110596
– volume: 3
  start-page: 12580
  year: 2015
  ident: 10.1016/j.sna.2021.112837_bib0475
  article-title: Graphene: A multipurpose material for protective coatings
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01010A
– start-page: 30
  year: 2000
  ident: 10.1016/j.sna.2021.112837_bib0055
  article-title: A review of sensor sensitivity and stability
  publication-title: Proc. 2000 IEEE/EIA Int. Freq. Control Symp. Exhib. (Cat. No.00CH37052), IEEE
  doi: 10.1109/FREQ.2000.887325
– volume: 93
  start-page: 113103
  year: 2008
  ident: 10.1016/j.sna.2021.112837_bib0375
  article-title: Graphene segregated on Ni surfaces and transferred to insulators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2982585
– year: 2018
  ident: 10.1016/j.sna.2021.112837_bib0260
  article-title: A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aadb2b
– volume: 59
  start-page: 1377
  year: 2016
  ident: 10.1016/j.sna.2021.112837_bib0490
  article-title: Polyvinylpyrrolidone/graphene oxide thin films coated on quartz crystal microbalance electrode for NH3 detection at room temperature
  publication-title: Sci. China Ser. A-Math. Phys. Astron. Technol. Sci.
  doi: 10.1007/s11431-016-0281-7
– volume: 287
  start-page: 93
  year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0620
  article-title: A QCM humidity sensor constructed by graphene quantum dots and chitosan composites
  publication-title: Sens. Actuators, A Phys.
  doi: 10.1016/j.sna.2019.01.009
– year: 2019
  ident: 10.1016/j.sna.2021.112837_bib0275
– volume: 5
  start-page: 722
  year: 2010
  ident: 10.1016/j.sna.2021.112837_bib0210
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
SSID ssj0003377
Score 2.6326525
SecondaryResourceType review_article
Snippet [Display omitted] •The used of graphene-based materials as QCM sensing active layer for gas and humidity sensors are studied.•The sensing performance of the...
Graphene and graphene-based materials have shown great potential for detecting gases and humidity due to their high specific surface areas. Quartz crystal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112837
SubjectTerms Carbon
Gas sensor
Gas sensors
Graphene
Graphene composites
Graphene oxide
Humidity
Humidity sensor
Metal oxides
Microbalances
Nanocomposites
Polymer matrix composites
QCM
Quartz
Quartz crystals
Reduced graphene oxide
Sensors
Studies
Title Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials – A mini review
URI https://dx.doi.org/10.1016/j.sna.2021.112837
https://www.proquest.com/docview/2556438192
Volume 330
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFRZQ8eVIhNmt08jqWoVakgKnhb9lWttKnaVtCD-B_8h_4SZzaJL8SDx4TZEGZn55F88w0hmynTsTbaQG2iuMdkxDypUgf7U4qlNtB1bE5un0StC3Z0yS8rpFn2wiCssvD9uU933rq4Uyu0WbvtdmtnPpQOrM6ghEFLdU18jMVo5bvPnzCPMHTTF1HYQ-nyz6bDeA0zpB6qB9hIk-Ao9N9j0w8v7ULP_iyZKXJG2shfa45UbDZPpr8wCS6QhwM5pDIz9Hrc7xrIrOkQkenZFcUPrfQOoZtPVN8_QjLYo31E4SkENWpLt06b7W2qB5B0mlzakViDD_QwxBkKOW1upvTt5ZU2KLKR0LzlZZFc7O-dN1teMVLB02Gdjzwd-DLWaaoSq5UJOh0r40SnMjG-hcomCnUY2DBUkQziiJtIWTix2ueWh1YbCO1LZCIbZHaZ0ECB9nkHwr-EEg6ytMTwmFmLVhFJ318hfqlMoQu-cRx70RMlsOxGgP4F6l_k-l8hOx9LbnOyjb-EWblD4pvFCAgGfy2rlrspiuM6FMjDxhw33Or_nrpGpvAKg1rAq2RidD-265CtjNSGM8cNMtk4PG6dvAP3aOof
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHtSD-MT63IMHFWKTZjePoxRr1VYQFbwt-6pW2rTaKuhB_A_-Q3-JM3n4Qjx4TWZDmJ2dR_LNN4RsxkyH2mgDtYniDpMBc6SKU9ifUiy2nq5ic3LrJGhcsKNLfjlGakUvDMIqc9-f-fTUW-dXKrk2K4NOp3LmQunAqgxKGLRUbOIbZ3B8cYzB7vMnzsP30_GLKO2gePFrMwV5DRPkHqp62EkT4Sz034PTDzedxp76DJnOk0a6l73XLBmzyRyZ-kIlOE8eDuSQysTQ6_tex0BqTYcITU-uKH5ppbeI3Xyi-u4RssEu7SEMTyGqUVu6dVprbVPdh6zTZNIpizU4QQdjnKGQ1GZ2St9eXukeRToSmvW8LJCL-v55reHkMxUc7Vf5yNGeK0MdxyqyWhmv3bYyjHQsI-NaKG0CX_ue9X0VSC8MuAmUhSOrXW65b7WB2L5ISkk_sUuEegrUz9sQ_yXUcJCmRYaHzFo0i0C6bpm4hTKFzgnHce5FVxTIshsB-heof5Hpv0x2PpYMMraNv4RZsUPim8kIiAZ_LVstdlPk53UokIiNpeRwy_976gaZaJy3mqJ5eHK8QibxDkY4j6-S0uju3q5B6jJS66lpvgNdp-ut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+and+humidity+sensing+with+quartz+crystal+microbalance+%28QCM%29+coated+with+graphene-based+materials+%E2%80%93+A+mini+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Fauzi%2C+Fika&rft.au=Rianjanu%2C+Aditya&rft.au=Santoso%2C+Iman&rft.au=Triyana%2C+Kuwat&rft.date=2021-10-15&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=330&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2021.112837&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon