Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
•Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural...
Saved in:
Published in | Journal of computational physics Vol. 436; p. 110318 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
01.07.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1016/j.jcp.2021.110318 |
Cover
Loading…
Abstract | •Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural networks.
Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently. |
---|---|
AbstractList | Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently. •Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural networks. Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently. |
ArticleNumber | 110318 |
Author | Xu, Rui Wang, Nanzhe Zhang, Dongxiao Rong, Miao |
Author_xml | – sequence: 1 givenname: Rui surname: Xu fullname: Xu, Rui organization: Intelligent Energy Laboratory, Peng Cheng Laboratory, Guangdong, PR China – sequence: 2 givenname: Dongxiao orcidid: 0000-0001-6930-5994 surname: Zhang fullname: Zhang, Dongxiao email: zhangdx@sustech.edu.cn organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Guangdong, PR China – sequence: 3 givenname: Miao surname: Rong fullname: Rong, Miao organization: Intelligent Energy Laboratory, Peng Cheng Laboratory, Guangdong, PR China – sequence: 4 givenname: Nanzhe orcidid: 0000-0002-5177-946X surname: Wang fullname: Wang, Nanzhe organization: College of Engineering, Peking University, Beijing, PR China |
BookMark | eNp9kMFu2zAMhoUhBZa0fYDdBOyyHZSKtmPL2GkI1m1A0V4C9CjIEpXKcSVPshf07asgO-2QA0mA_D8S_Fdk4YNHQj4BXwOH-q5f93pcF7yANQAvQXwgS-AtZ0UD9YIseZ6wtm3hI1ml1HPOxaYSS3J4RnWgNsRXOr1giG9sPzuDhnqcoxpymY4hHuiX3f7xkR3t15OWGsSRDqiid35Pg6Vp7tIcrdJIU24NyKjyhmaWjS8qIbVDON6QK6uGhLf_6jXZ3f_YbX-xh6efv7ffH5gui83EOmVQ8LqsBdfctB3YripMIVSlmpxVgwKrHDXnDda2gUpsSmOUgbbAriyvyefz2jGGPzOmSfZhjj5flMWmbEuAWrRZ1ZxVOoaUIlqp3aQmF_wUlRskcHkyVvYyGytPxsqzsZmE_8gxulcV3y4y384M5r__OowyaYdeo3ER9SRNcBfodyU7kq8 |
CitedBy_id | crossref_primary_10_1016_j_enganabound_2025_106178 crossref_primary_10_1016_j_jhydrol_2022_128321 crossref_primary_10_1016_j_eml_2023_102051 crossref_primary_10_1103_PhysRevA_104_063316 crossref_primary_10_1016_j_envsoft_2024_105982 crossref_primary_10_5194_hess_26_5449_2022 crossref_primary_10_1016_j_advwatres_2021_103941 crossref_primary_10_1140_epjd_s10053_024_00841_7 crossref_primary_10_1016_j_cageo_2024_105611 crossref_primary_10_3233_JCM237076 crossref_primary_10_1016_j_aei_2023_102035 crossref_primary_10_1016_j_jhydrol_2024_131370 crossref_primary_10_1016_j_enganabound_2024_105922 crossref_primary_10_1007_s44207_024_00003_y crossref_primary_10_1063_5_0257028 crossref_primary_10_1103_PhysRevE_106_025305 crossref_primary_10_1002_gamm_202100001 crossref_primary_10_1016_j_est_2023_106654 crossref_primary_10_1016_j_jhydrol_2022_128828 crossref_primary_10_1007_s11269_024_03953_2 crossref_primary_10_1109_TAI_2022_3209167 crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1142_S1758825123500655 crossref_primary_10_1007_s10040_021_02403_2 crossref_primary_10_1155_2022_3186250 crossref_primary_10_2118_203904_PA crossref_primary_10_1016_j_camwa_2024_04_025 crossref_primary_10_1080_00036811_2024_2302405 crossref_primary_10_1016_j_jhydrol_2024_131501 crossref_primary_10_1063_5_0134421 crossref_primary_10_32604_cmes_2023_031093 crossref_primary_10_3390_math11214418 crossref_primary_10_1016_j_jcp_2022_111419 crossref_primary_10_2118_208602_PA crossref_primary_10_1016_j_petsci_2023_10_019 crossref_primary_10_1016_j_chaos_2024_115669 crossref_primary_10_1016_j_jhydrol_2021_126857 crossref_primary_10_1109_ACCESS_2023_3244681 crossref_primary_10_1016_j_aiig_2024_100070 crossref_primary_10_1016_j_envres_2025_121194 |
Cites_doi | 10.1007/s10596-015-9478-7 10.1016/j.jcp.2019.109120 10.1615/JMachLearnModelComput.2020033905 10.1029/2018WR023528 10.1103/PhysRevE.101.010203 10.1007/s10489-017-1028-7 10.1109/TKDE.2017.2720168 10.1016/j.jcp.2018.08.029 10.1016/j.cma.2020.113492 10.1016/j.jhydrol.2020.124700 10.1016/j.jcp.2003.09.015 10.1016/j.jcp.2019.05.024 10.2118/59250-PA 10.1007/BF00611965 10.1029/2020JB020549 10.1038/nature14539 10.1016/j.jcp.2019.109136 10.1016/j.jcp.2017.11.039 10.2118/942107-G 10.2118/59802-PA 10.1016/j.sigpro.2012.09.021 10.1016/j.jfa.2010.02.001 10.1016/S1359-0294(01)00084-X 10.1016/j.jcp.2018.10.045 10.2352/ISSN.2470-1173.2017.19.AVM-023 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright Elsevier Science Ltd. Jul 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Jul 1, 2021 |
DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2021.110318 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
ExternalDocumentID | 10_1016_j_jcp_2021_110318 S0021999121002138 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- RIG SBC SEW SHN SPG SSH T9H UQL WUQ ZY4 7SC 7SP 7U5 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-bade8063680c0d9b1fb42d28a4a728aa7e8e4e8e6007e6f714853ddad192eb33 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Jul 25 05:21:22 EDT 2025 Tue Jul 01 01:54:50 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 23 02:41:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lagrangian duality Weak form Theory-guided neural network Single-phase flow Two-phase flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-bade8063680c0d9b1fb42d28a4a728aa7e8e4e8e6007e6f714853ddad192eb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5177-946X 0000-0001-6930-5994 |
PQID | 2539311689 |
PQPubID | 2047462 |
ParticipantIDs | proquest_journals_2539311689 crossref_citationtrail_10_1016_j_jcp_2021_110318 crossref_primary_10_1016_j_jcp_2021_110318 elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of computational physics |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Aziz, Settari (br0020) 1979 Wang, Zhang, Chang, Li (br0370) 2020; 584 Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (br0190) 2017; 29 Collobert, Weston (br0070) 2008 Wang, Chang, Zhang (br0350) 2021; 373 Ghanem, Spanos (br0120) 2003 Raissi, Perdikaris, Karniadakis (br0280) 2019; 378 Zhang, Lu (br0400) 2004; 194 Kharazmi, Zhang, Karniadakis (br0210) 2019 Mo, Zhu, Zabaras, Shi, Wu (br0250) 2019; 55 Pang, Lu, Karniadakis (br0260) 2018 Rong, Zhang, Wang (br0310) 2020 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Chintala (br0270) 2019 He, Zhang, Ren, Sun (br0160) 2016 Daubechies (br0080) 1992 Blunt (br0040) 2001; 6 Goodfellow, Bengio, Courville (br0130) 2016 Zhao, Liu, Li, Luo (br0420) 2018; 48 Fioretto, Van Hentenryck, Mak, Tran, Baldo, Lombardi (br0100) 2020 Karumuri, Tripathy, Bilionis, Panchal (br0200) 2020; 404 Buckley, Leverett (br0050) 1942; 146 Jo, Son, Hwang, Kim (br0180) 2019 Sallab, Abdou, Perot, Yogamani (br0320) 2017; 2017 Xu (br0380) 2020 E, Yu (br0090) 2017 Sirignano, Spiliopoulos (br0340) 2018; 375 Zhu, Zabaras, Koutsourelakis, Perdikaris (br0430) 2019; 394 Almasri, Kaluarachchi (br0010) 2005 Chang, Zhang (br0060) 2015; 19 LeCun, Bengio, Hinton (br0240) 2015; 521 Kharazmi, Zhang, Karniadakis (br0220) 2020 Wang, Chang, Zhang (br0360) 2021; 126 Langtangen, Tveito, Winther (br0230) 1992; 9 Zhang, Li, Tchelepi (br0390) 2000; 5 Jagtap, Kawaguchi, Karniadakis (br0170) 2020; 404 Hangelbroek, Ron (br0140) 2010; 259 Harbaugh (br0150) 2005 Raissi, Karniadakis (br0290) 2018; 357 Zhang, Tchelepi (br0410) 1999; 4 Fuks, Tchelepi (br0110) 2020; 1 Scarpiniti, Comminiello, Parisi, Uncini (br0330) 2013; 93 Reinbold, Gurevich, Grigoriev (br0300) 2020; 101 Bao, Ye, Zang, Zhou (br0030) 2020 Karpatne (10.1016/j.jcp.2021.110318_br0190) 2017; 29 Zhao (10.1016/j.jcp.2021.110318_br0420) 2018; 48 Paszke (10.1016/j.jcp.2021.110318_br0270) Fuks (10.1016/j.jcp.2021.110318_br0110) 2020; 1 Zhu (10.1016/j.jcp.2021.110318_br0430) 2019; 394 Pang (10.1016/j.jcp.2021.110318_br0260) Wang (10.1016/j.jcp.2021.110318_br0360) 2021; 126 Blunt (10.1016/j.jcp.2021.110318_br0040) 2001; 6 Karumuri (10.1016/j.jcp.2021.110318_br0200) 2020; 404 Ghanem (10.1016/j.jcp.2021.110318_br0120) 2003 He (10.1016/j.jcp.2021.110318_br0160) 2016 Raissi (10.1016/j.jcp.2021.110318_br0280) 2019; 378 Kharazmi (10.1016/j.jcp.2021.110318_br0220) Kharazmi (10.1016/j.jcp.2021.110318_br0210) Chang (10.1016/j.jcp.2021.110318_br0060) 2015; 19 Sirignano (10.1016/j.jcp.2021.110318_br0340) 2018; 375 Jo (10.1016/j.jcp.2021.110318_br0180) Jagtap (10.1016/j.jcp.2021.110318_br0170) 2020; 404 Zhang (10.1016/j.jcp.2021.110318_br0390) 2000; 5 Collobert (10.1016/j.jcp.2021.110318_br0070) 2008 Reinbold (10.1016/j.jcp.2021.110318_br0300) 2020; 101 Goodfellow (10.1016/j.jcp.2021.110318_br0130) 2016 Langtangen (10.1016/j.jcp.2021.110318_br0230) 1992; 9 Scarpiniti (10.1016/j.jcp.2021.110318_br0330) 2013; 93 Wang (10.1016/j.jcp.2021.110318_br0350) 2021; 373 Harbaugh (10.1016/j.jcp.2021.110318_br0150) 2005 Zhang (10.1016/j.jcp.2021.110318_br0400) 2004; 194 Mo (10.1016/j.jcp.2021.110318_br0250) 2019; 55 Bao (10.1016/j.jcp.2021.110318_br0030) Daubechies (10.1016/j.jcp.2021.110318_br0080) 1992 Zhang (10.1016/j.jcp.2021.110318_br0410) 1999; 4 Aziz (10.1016/j.jcp.2021.110318_br0020) 1979 Raissi (10.1016/j.jcp.2021.110318_br0290) 2018; 357 Fioretto (10.1016/j.jcp.2021.110318_br0100) Almasri (10.1016/j.jcp.2021.110318_br0010) 2005 Wang (10.1016/j.jcp.2021.110318_br0370) 2020; 584 LeCun (10.1016/j.jcp.2021.110318_br0240) 2015; 521 Xu (10.1016/j.jcp.2021.110318_br0380) Buckley (10.1016/j.jcp.2021.110318_br0050) 1942; 146 Hangelbroek (10.1016/j.jcp.2021.110318_br0140) 2010; 259 Sallab (10.1016/j.jcp.2021.110318_br0320) 2017; 2017 E (10.1016/j.jcp.2021.110318_br0090) Rong (10.1016/j.jcp.2021.110318_br0310) |
References_xml | – volume: 1 year: 2020 ident: br0110 article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media publication-title: J. Mach. Learn. Model. Comput. – volume: 404 year: 2020 ident: br0200 article-title: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks publication-title: J. Comput. Phys. – volume: 101 year: 2020 ident: br0300 article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics publication-title: Phys. Rev. E – year: 2019 ident: br0180 article-title: Deep neural network approach to forward-inverse problems – volume: 584 year: 2020 ident: br0370 article-title: Deep learning of subsurface flow via theory-guided neural network publication-title: J. Hydrol. – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: br0430 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. – volume: 93 start-page: 772 year: 2013 end-page: 783 ident: br0330 article-title: Nonlinear spline adaptive filtering publication-title: Signal Process. – volume: 5 start-page: 60 year: 2000 end-page: 70 ident: br0390 article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs publication-title: SPE J. – volume: 146 start-page: 107 year: 1942 end-page: 116 ident: br0050 article-title: Mechanism of fluid displacement in sands publication-title: Trans. AIME – volume: 194 start-page: 773 year: 2004 end-page: 794 ident: br0400 article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions publication-title: J. Comput. Phys. – year: 2020 ident: br0100 article-title: Lagrangian duality for constrained deep learning – year: 2020 ident: br0310 article-title: A Lagrangian dual-based theory-guided deep neural network – volume: 404 year: 2020 ident: br0170 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. – start-page: 770 year: 2016 end-page: 778 ident: br0160 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: br0290 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 1979 ident: br0020 article-title: Petroleum Reservoir Simulation – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0240 article-title: Deep learning publication-title: Nature – year: 2020 ident: br0220 article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition – volume: 48 start-page: 1707 year: 2018 end-page: 1720 ident: br0420 article-title: A novel softplus linear unit for deep convolutional neural networks publication-title: Appl. Intell. – year: 2016 ident: br0130 article-title: Deep Learning – year: 2019 ident: br0210 article-title: Variational physics-informed neural networks for solving partial differential equations – volume: 29 start-page: 2318 year: 2017 end-page: 2331 ident: br0190 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: br0280 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 514 year: 2005 end-page: 518 ident: br0010 article-title: Groundwater flow and transport process publication-title: Water Encyclopedia – volume: 9 start-page: 165 year: 1992 end-page: 185 ident: br0230 article-title: Instability of Buckley-Leverett flow in a heterogeneous medium publication-title: Transp. Porous Media – volume: 19 start-page: 727 year: 2015 end-page: 746 ident: br0060 article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching publication-title: Comput. Geosci. – year: 2018 ident: br0260 article-title: fPINNs: fractional physics-informed neural networks – start-page: 160 year: 2008 end-page: 167 ident: br0070 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning publication-title: Proceedings of the 25th International Conference on Machine Learning – year: 2020 ident: br0380 article-title: Data for paper entitled “Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single and two-phase flow” – year: 1992 ident: br0080 article-title: Ten Lectures on Wavelets – volume: 2017 start-page: 70 year: 2017 end-page: 76 ident: br0320 article-title: Deep reinforcement learning framework for autonomous driving publication-title: Electron. Imaging – year: 2020 ident: br0030 article-title: Numerical solution of inverse problems by weak adversarial networks – volume: 259 start-page: 203 year: 2010 end-page: 219 ident: br0140 article-title: Nonlinear approximation using Gaussian kernels publication-title: J. Funct. Anal. – volume: 373 year: 2021 ident: br0350 article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network publication-title: Comput. Methods Appl. Mech. Eng. – year: 2005 ident: br0150 article-title: MODFLOW-2005: The U.S. Geological Survey modular ground-water model—the ground-water flow process (No. 6-A16) – year: 2003 ident: br0120 article-title: Stochastic Finite Elements: A Spectral Approach – year: 2019 ident: br0270 article-title: PyTorch: an imperative style, high-performance deep learning library – volume: 6 start-page: 197 year: 2001 end-page: 207 ident: br0040 article-title: Flow in porous media—pore-network models and multiphase flow publication-title: Curr. Opin. Colloid Interface Sci. – volume: 55 start-page: 703 year: 2019 end-page: 728 ident: br0250 article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media publication-title: Water Resour. Res. – volume: 4 start-page: 380 year: 1999 end-page: 388 ident: br0410 article-title: Stochastic analysis of immiscible two-phase flow in heterogeneous media publication-title: SPE J. – year: 2017 ident: br0090 article-title: The Deep Ritz method: a deep learning-based numerical algorithm for solving variational problems – volume: 126 year: 2021 ident: br0360 article-title: Deep-learning-based inverse modeling approaches: a subsurface flow example publication-title: J. Geophys. Res., Solid Earth – volume: 375 start-page: 1339 year: 2018 end-page: 1364 ident: br0340 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. – start-page: 514 year: 2005 ident: 10.1016/j.jcp.2021.110318_br0010 article-title: Groundwater flow and transport process – year: 2003 ident: 10.1016/j.jcp.2021.110318_br0120 – start-page: 160 year: 2008 ident: 10.1016/j.jcp.2021.110318_br0070 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning – year: 1979 ident: 10.1016/j.jcp.2021.110318_br0020 – volume: 19 start-page: 727 issue: 4 year: 2015 ident: 10.1016/j.jcp.2021.110318_br0060 article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9478-7 – volume: 404 year: 2020 ident: 10.1016/j.jcp.2021.110318_br0200 article-title: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109120 – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.jcp.2021.110318_br0110 article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media publication-title: J. Mach. Learn. Model. Comput. doi: 10.1615/JMachLearnModelComput.2020033905 – volume: 55 start-page: 703 issue: 1 year: 2019 ident: 10.1016/j.jcp.2021.110318_br0250 article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media publication-title: Water Resour. Res. doi: 10.1029/2018WR023528 – volume: 101 issue: 1 year: 2020 ident: 10.1016/j.jcp.2021.110318_br0300 article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.010203 – volume: 48 start-page: 1707 issue: 7 year: 2018 ident: 10.1016/j.jcp.2021.110318_br0420 article-title: A novel softplus linear unit for deep convolutional neural networks publication-title: Appl. Intell. doi: 10.1007/s10489-017-1028-7 – ident: 10.1016/j.jcp.2021.110318_br0260 – volume: 29 start-page: 2318 issue: 10 year: 2017 ident: 10.1016/j.jcp.2021.110318_br0190 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2720168 – volume: 375 start-page: 1339 year: 2018 ident: 10.1016/j.jcp.2021.110318_br0340 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume: 373 year: 2021 ident: 10.1016/j.jcp.2021.110318_br0350 article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113492 – ident: 10.1016/j.jcp.2021.110318_br0100 – volume: 584 year: 2020 ident: 10.1016/j.jcp.2021.110318_br0370 article-title: Deep learning of subsurface flow via theory-guided neural network publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124700 – volume: 194 start-page: 773 issue: 2 year: 2004 ident: 10.1016/j.jcp.2021.110318_br0400 article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.015 – year: 2016 ident: 10.1016/j.jcp.2021.110318_br0130 – ident: 10.1016/j.jcp.2021.110318_br0210 – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.jcp.2021.110318_br0430 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – year: 2005 ident: 10.1016/j.jcp.2021.110318_br0150 – year: 1992 ident: 10.1016/j.jcp.2021.110318_br0080 – volume: 4 start-page: 380 issue: 04 year: 1999 ident: 10.1016/j.jcp.2021.110318_br0410 article-title: Stochastic analysis of immiscible two-phase flow in heterogeneous media publication-title: SPE J. doi: 10.2118/59250-PA – ident: 10.1016/j.jcp.2021.110318_br0180 – volume: 9 start-page: 165 issue: 3 year: 1992 ident: 10.1016/j.jcp.2021.110318_br0230 article-title: Instability of Buckley-Leverett flow in a heterogeneous medium publication-title: Transp. Porous Media doi: 10.1007/BF00611965 – volume: 126 issue: 2 year: 2021 ident: 10.1016/j.jcp.2021.110318_br0360 article-title: Deep-learning-based inverse modeling approaches: a subsurface flow example publication-title: J. Geophys. Res., Solid Earth doi: 10.1029/2020JB020549 – ident: 10.1016/j.jcp.2021.110318_br0030 – start-page: 770 year: 2016 ident: 10.1016/j.jcp.2021.110318_br0160 article-title: Deep residual learning for image recognition – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.jcp.2021.110318_br0240 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.jcp.2021.110318_br0270 – volume: 404 year: 2020 ident: 10.1016/j.jcp.2021.110318_br0170 article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109136 – volume: 357 start-page: 125 year: 2018 ident: 10.1016/j.jcp.2021.110318_br0290 article-title: Hidden physics models: machine learning of nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.11.039 – volume: 146 start-page: 107 issue: 01 year: 1942 ident: 10.1016/j.jcp.2021.110318_br0050 article-title: Mechanism of fluid displacement in sands publication-title: Trans. AIME doi: 10.2118/942107-G – volume: 5 start-page: 60 issue: 01 year: 2000 ident: 10.1016/j.jcp.2021.110318_br0390 article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs publication-title: SPE J. doi: 10.2118/59802-PA – volume: 93 start-page: 772 issue: 4 year: 2013 ident: 10.1016/j.jcp.2021.110318_br0330 article-title: Nonlinear spline adaptive filtering publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.09.021 – ident: 10.1016/j.jcp.2021.110318_br0220 – ident: 10.1016/j.jcp.2021.110318_br0380 – volume: 259 start-page: 203 issue: 1 year: 2010 ident: 10.1016/j.jcp.2021.110318_br0140 article-title: Nonlinear approximation using Gaussian kernels publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2010.02.001 – volume: 6 start-page: 197 issue: 3 year: 2001 ident: 10.1016/j.jcp.2021.110318_br0040 article-title: Flow in porous media—pore-network models and multiphase flow publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(01)00084-X – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jcp.2021.110318_br0280 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – ident: 10.1016/j.jcp.2021.110318_br0090 – ident: 10.1016/j.jcp.2021.110318_br0310 – volume: 2017 start-page: 70 issue: 19 year: 2017 ident: 10.1016/j.jcp.2021.110318_br0320 article-title: Deep reinforcement learning framework for autonomous driving publication-title: Electron. Imaging doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023 |
SSID | ssj0008548 |
Score | 2.5722103 |
Snippet | •Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational... Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110318 |
SubjectTerms | Artificial neural networks Boundary conditions Computational physics Conservation laws Deep learning Discontinuity Domain decomposition methods Lagrangian duality Machine learning Neural networks Partial differential equations Robustness (mathematics) Single-phase flow Solution space Theory-guided neural network Two dimensional flow Two phase flow Weak form |
Title | Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow |
URI | https://dx.doi.org/10.1016/j.jcp.2021.110318 https://www.proquest.com/docview/2539311689 |
Volume | 436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXLgsj90Vb_mwhwXJS2rneUQIVBbRUxHcLDsel9IqrWgrxIXfzkzigECIA4dESTS2orE9_iaZ-YaxPy6xAFKCkIlFB8WlUiDKt8IUMnEWAUVR0zVd9dLudfz_NrldYqdtLgyFVQbb39j02lqHJ8dBm8fT4ZByfCXl0BMDFl4pSvgl9jqc0_-e38I88iRurDGFIqB0-2ezjvG6L4myUnYoGF5R3Y_P96YPVrrees7X2Y-AGflJ81obbAmqTbYW8CMPq3P2k41uwIw4oVBe5yc-icFi6FCESCuxg6oJ-eZ_-4NeTzz6Q5LlDmDKQ_GIAZ94PkNbsnjwpgROHxLGILipHMe2YnqHmx7348njL9Y_P-ufdkUopiBKJZO5sMZBjngkzaMycoXteBtLJ3MTmwzPJoMcYjyIrx5Sn6GblCjnjEMIiA63-s2Wq0kFW4wbUD4qvY2kd3HmsjwFckJLm0ll0PvZZlGrRV0GonGqdzHWbUTZvUbFa1K8bhS_zY5em0wblo2vhON2aPS7qaJxF_iq2V47jDqs05mWiSpUp5Pmxc73et1lq3TXBPDuseX5wwL2EabM7UE9Dw_YysnFZbf3Armd5Z0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuvBGFAj5wACSrWTvPY1VRbWmb0yJ6s-x4vGy7yq66u6r67zuTOJVAqAcOiaLEtqKxPfNNMvMNwGefOUSlUKrMkYPicyUJ5TtpK5V5R4Ci6uiazut88jP9cZFd7MDRkAvDYZVR9_c6vdPW8c5BlObBaj7nHF_FOfTMgEVXunwEu8xOlY5g9_DkdFLfK-QyS3uFzNEI1GH4udmFeV02zFqpxhwPr7n0x7_N01-KurM-x8_haYSN4rB_sxewg-1LeBYhpIgbdP0Krn6hvRIMREWXongrZ9u5pybMW0kDtH3Ut_gyndW1vAlfua3wiCsR60fMxDKINamT7XWwDQr-lrBAKWzrBfWVq99k90RYLG9ew_T4-_RoImM9BdlolW2ksx5LgiR5mTSJr9w4uFR5VdrUFnS2BZaY0sGU9ZiHgjylTHtvPaFA8rn1Gxi1yxbfgrCoQ9IEl6jg08IXZY7shzauUNqSA7QHySBF00SucS55sTBDUNmlIcEbFrzpBb8H3-67rHqijYcap8PUmD9WiyFD8FC3_WEaTdyqa6MyXenxOC-rd_836id4PJmen5mzk_r0PTzhJ3087z6MNtdb_ECoZeM-xlV5B6G26E4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+form+theory-guided+neural+network+%28TgNN-wf%29+for+deep+learning+of+subsurface+single-+and+two-phase+flow&rft.jtitle=Journal+of+computational+physics&rft.au=Xu%2C+Rui&rft.au=Zhang%2C+Dongxiao&rft.au=Rong%2C+Miao&rft.au=Wang%2C+Nanzhe&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=436&rft_id=info:doi/10.1016%2Fj.jcp.2021.110318&rft.externalDocID=S0021999121002138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |