Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow

•Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 436; p. 110318
Main Authors Xu, Rui, Zhang, Dongxiao, Rong, Miao, Wang, Nanzhe
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.07.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2021.110318

Cover

Loading…
Abstract •Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural networks. Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently.
AbstractList Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently.
•Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational cost and captures local discontinuity.•Our model shows improved accuracy and robustness to noises compared to strong form theory-guided neural networks. Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently.
ArticleNumber 110318
Author Xu, Rui
Wang, Nanzhe
Zhang, Dongxiao
Rong, Miao
Author_xml – sequence: 1
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Intelligent Energy Laboratory, Peng Cheng Laboratory, Guangdong, PR China
– sequence: 2
  givenname: Dongxiao
  orcidid: 0000-0001-6930-5994
  surname: Zhang
  fullname: Zhang, Dongxiao
  email: zhangdx@sustech.edu.cn
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Guangdong, PR China
– sequence: 3
  givenname: Miao
  surname: Rong
  fullname: Rong, Miao
  organization: Intelligent Energy Laboratory, Peng Cheng Laboratory, Guangdong, PR China
– sequence: 4
  givenname: Nanzhe
  orcidid: 0000-0002-5177-946X
  surname: Wang
  fullname: Wang, Nanzhe
  organization: College of Engineering, Peking University, Beijing, PR China
BookMark eNp9kMFu2zAMhoUhBZa0fYDdBOyyHZSKtmPL2GkI1m1A0V4C9CjIEpXKcSVPshf07asgO-2QA0mA_D8S_Fdk4YNHQj4BXwOH-q5f93pcF7yANQAvQXwgS-AtZ0UD9YIseZ6wtm3hI1ml1HPOxaYSS3J4RnWgNsRXOr1giG9sPzuDhnqcoxpymY4hHuiX3f7xkR3t15OWGsSRDqiid35Pg6Vp7tIcrdJIU24NyKjyhmaWjS8qIbVDON6QK6uGhLf_6jXZ3f_YbX-xh6efv7ffH5gui83EOmVQ8LqsBdfctB3YripMIVSlmpxVgwKrHDXnDda2gUpsSmOUgbbAriyvyefz2jGGPzOmSfZhjj5flMWmbEuAWrRZ1ZxVOoaUIlqp3aQmF_wUlRskcHkyVvYyGytPxsqzsZmE_8gxulcV3y4y384M5r__OowyaYdeo3ER9SRNcBfodyU7kq8
CitedBy_id crossref_primary_10_1016_j_enganabound_2025_106178
crossref_primary_10_1016_j_jhydrol_2022_128321
crossref_primary_10_1016_j_eml_2023_102051
crossref_primary_10_1103_PhysRevA_104_063316
crossref_primary_10_1016_j_envsoft_2024_105982
crossref_primary_10_5194_hess_26_5449_2022
crossref_primary_10_1016_j_advwatres_2021_103941
crossref_primary_10_1140_epjd_s10053_024_00841_7
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_3233_JCM237076
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1016_j_jhydrol_2024_131370
crossref_primary_10_1016_j_enganabound_2024_105922
crossref_primary_10_1007_s44207_024_00003_y
crossref_primary_10_1063_5_0257028
crossref_primary_10_1103_PhysRevE_106_025305
crossref_primary_10_1002_gamm_202100001
crossref_primary_10_1016_j_est_2023_106654
crossref_primary_10_1016_j_jhydrol_2022_128828
crossref_primary_10_1007_s11269_024_03953_2
crossref_primary_10_1109_TAI_2022_3209167
crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1142_S1758825123500655
crossref_primary_10_1007_s10040_021_02403_2
crossref_primary_10_1155_2022_3186250
crossref_primary_10_2118_203904_PA
crossref_primary_10_1016_j_camwa_2024_04_025
crossref_primary_10_1080_00036811_2024_2302405
crossref_primary_10_1016_j_jhydrol_2024_131501
crossref_primary_10_1063_5_0134421
crossref_primary_10_32604_cmes_2023_031093
crossref_primary_10_3390_math11214418
crossref_primary_10_1016_j_jcp_2022_111419
crossref_primary_10_2118_208602_PA
crossref_primary_10_1016_j_petsci_2023_10_019
crossref_primary_10_1016_j_chaos_2024_115669
crossref_primary_10_1016_j_jhydrol_2021_126857
crossref_primary_10_1109_ACCESS_2023_3244681
crossref_primary_10_1016_j_aiig_2024_100070
crossref_primary_10_1016_j_envres_2025_121194
Cites_doi 10.1007/s10596-015-9478-7
10.1016/j.jcp.2019.109120
10.1615/JMachLearnModelComput.2020033905
10.1029/2018WR023528
10.1103/PhysRevE.101.010203
10.1007/s10489-017-1028-7
10.1109/TKDE.2017.2720168
10.1016/j.jcp.2018.08.029
10.1016/j.cma.2020.113492
10.1016/j.jhydrol.2020.124700
10.1016/j.jcp.2003.09.015
10.1016/j.jcp.2019.05.024
10.2118/59250-PA
10.1007/BF00611965
10.1029/2020JB020549
10.1038/nature14539
10.1016/j.jcp.2019.109136
10.1016/j.jcp.2017.11.039
10.2118/942107-G
10.2118/59802-PA
10.1016/j.sigpro.2012.09.021
10.1016/j.jfa.2010.02.001
10.1016/S1359-0294(01)00084-X
10.1016/j.jcp.2018.10.045
10.2352/ISSN.2470-1173.2017.19.AVM-023
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier Science Ltd. Jul 1, 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Jul 1, 2021
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2021.110318
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2021_110318
S0021999121002138
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
RIG
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-bade8063680c0d9b1fb42d28a4a728aa7e8e4e8e6007e6f714853ddad192eb33
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri Jul 25 05:21:22 EDT 2025
Tue Jul 01 01:54:50 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 23 02:41:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lagrangian duality
Weak form
Theory-guided neural network
Single-phase flow
Two-phase flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-bade8063680c0d9b1fb42d28a4a728aa7e8e4e8e6007e6f714853ddad192eb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5177-946X
0000-0001-6930-5994
PQID 2539311689
PQPubID 2047462
ParticipantIDs proquest_journals_2539311689
crossref_citationtrail_10_1016_j_jcp_2021_110318
crossref_primary_10_1016_j_jcp_2021_110318
elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Aziz, Settari (br0020) 1979
Wang, Zhang, Chang, Li (br0370) 2020; 584
Karpatne, Atluri, Faghmous, Steinbach, Banerjee, Ganguly, Shekhar, Samatova, Kumar (br0190) 2017; 29
Collobert, Weston (br0070) 2008
Wang, Chang, Zhang (br0350) 2021; 373
Ghanem, Spanos (br0120) 2003
Raissi, Perdikaris, Karniadakis (br0280) 2019; 378
Zhang, Lu (br0400) 2004; 194
Kharazmi, Zhang, Karniadakis (br0210) 2019
Mo, Zhu, Zabaras, Shi, Wu (br0250) 2019; 55
Pang, Lu, Karniadakis (br0260) 2018
Rong, Zhang, Wang (br0310) 2020
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Chintala (br0270) 2019
He, Zhang, Ren, Sun (br0160) 2016
Daubechies (br0080) 1992
Blunt (br0040) 2001; 6
Goodfellow, Bengio, Courville (br0130) 2016
Zhao, Liu, Li, Luo (br0420) 2018; 48
Fioretto, Van Hentenryck, Mak, Tran, Baldo, Lombardi (br0100) 2020
Karumuri, Tripathy, Bilionis, Panchal (br0200) 2020; 404
Buckley, Leverett (br0050) 1942; 146
Jo, Son, Hwang, Kim (br0180) 2019
Sallab, Abdou, Perot, Yogamani (br0320) 2017; 2017
Xu (br0380) 2020
E, Yu (br0090) 2017
Sirignano, Spiliopoulos (br0340) 2018; 375
Zhu, Zabaras, Koutsourelakis, Perdikaris (br0430) 2019; 394
Almasri, Kaluarachchi (br0010) 2005
Chang, Zhang (br0060) 2015; 19
LeCun, Bengio, Hinton (br0240) 2015; 521
Kharazmi, Zhang, Karniadakis (br0220) 2020
Wang, Chang, Zhang (br0360) 2021; 126
Langtangen, Tveito, Winther (br0230) 1992; 9
Zhang, Li, Tchelepi (br0390) 2000; 5
Jagtap, Kawaguchi, Karniadakis (br0170) 2020; 404
Hangelbroek, Ron (br0140) 2010; 259
Harbaugh (br0150) 2005
Raissi, Karniadakis (br0290) 2018; 357
Zhang, Tchelepi (br0410) 1999; 4
Fuks, Tchelepi (br0110) 2020; 1
Scarpiniti, Comminiello, Parisi, Uncini (br0330) 2013; 93
Reinbold, Gurevich, Grigoriev (br0300) 2020; 101
Bao, Ye, Zang, Zhou (br0030) 2020
Karpatne (10.1016/j.jcp.2021.110318_br0190) 2017; 29
Zhao (10.1016/j.jcp.2021.110318_br0420) 2018; 48
Paszke (10.1016/j.jcp.2021.110318_br0270)
Fuks (10.1016/j.jcp.2021.110318_br0110) 2020; 1
Zhu (10.1016/j.jcp.2021.110318_br0430) 2019; 394
Pang (10.1016/j.jcp.2021.110318_br0260)
Wang (10.1016/j.jcp.2021.110318_br0360) 2021; 126
Blunt (10.1016/j.jcp.2021.110318_br0040) 2001; 6
Karumuri (10.1016/j.jcp.2021.110318_br0200) 2020; 404
Ghanem (10.1016/j.jcp.2021.110318_br0120) 2003
He (10.1016/j.jcp.2021.110318_br0160) 2016
Raissi (10.1016/j.jcp.2021.110318_br0280) 2019; 378
Kharazmi (10.1016/j.jcp.2021.110318_br0220)
Kharazmi (10.1016/j.jcp.2021.110318_br0210)
Chang (10.1016/j.jcp.2021.110318_br0060) 2015; 19
Sirignano (10.1016/j.jcp.2021.110318_br0340) 2018; 375
Jo (10.1016/j.jcp.2021.110318_br0180)
Jagtap (10.1016/j.jcp.2021.110318_br0170) 2020; 404
Zhang (10.1016/j.jcp.2021.110318_br0390) 2000; 5
Collobert (10.1016/j.jcp.2021.110318_br0070) 2008
Reinbold (10.1016/j.jcp.2021.110318_br0300) 2020; 101
Goodfellow (10.1016/j.jcp.2021.110318_br0130) 2016
Langtangen (10.1016/j.jcp.2021.110318_br0230) 1992; 9
Scarpiniti (10.1016/j.jcp.2021.110318_br0330) 2013; 93
Wang (10.1016/j.jcp.2021.110318_br0350) 2021; 373
Harbaugh (10.1016/j.jcp.2021.110318_br0150) 2005
Zhang (10.1016/j.jcp.2021.110318_br0400) 2004; 194
Mo (10.1016/j.jcp.2021.110318_br0250) 2019; 55
Bao (10.1016/j.jcp.2021.110318_br0030)
Daubechies (10.1016/j.jcp.2021.110318_br0080) 1992
Zhang (10.1016/j.jcp.2021.110318_br0410) 1999; 4
Aziz (10.1016/j.jcp.2021.110318_br0020) 1979
Raissi (10.1016/j.jcp.2021.110318_br0290) 2018; 357
Fioretto (10.1016/j.jcp.2021.110318_br0100)
Almasri (10.1016/j.jcp.2021.110318_br0010) 2005
Wang (10.1016/j.jcp.2021.110318_br0370) 2020; 584
LeCun (10.1016/j.jcp.2021.110318_br0240) 2015; 521
Xu (10.1016/j.jcp.2021.110318_br0380)
Buckley (10.1016/j.jcp.2021.110318_br0050) 1942; 146
Hangelbroek (10.1016/j.jcp.2021.110318_br0140) 2010; 259
Sallab (10.1016/j.jcp.2021.110318_br0320) 2017; 2017
E (10.1016/j.jcp.2021.110318_br0090)
Rong (10.1016/j.jcp.2021.110318_br0310)
References_xml – volume: 1
  year: 2020
  ident: br0110
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: J. Mach. Learn. Model. Comput.
– volume: 404
  year: 2020
  ident: br0200
  article-title: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks
  publication-title: J. Comput. Phys.
– volume: 101
  year: 2020
  ident: br0300
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys. Rev. E
– year: 2019
  ident: br0180
  article-title: Deep neural network approach to forward-inverse problems
– volume: 584
  year: 2020
  ident: br0370
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: br0430
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– volume: 93
  start-page: 772
  year: 2013
  end-page: 783
  ident: br0330
  article-title: Nonlinear spline adaptive filtering
  publication-title: Signal Process.
– volume: 5
  start-page: 60
  year: 2000
  end-page: 70
  ident: br0390
  article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs
  publication-title: SPE J.
– volume: 146
  start-page: 107
  year: 1942
  end-page: 116
  ident: br0050
  article-title: Mechanism of fluid displacement in sands
  publication-title: Trans. AIME
– volume: 194
  start-page: 773
  year: 2004
  end-page: 794
  ident: br0400
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions
  publication-title: J. Comput. Phys.
– year: 2020
  ident: br0100
  article-title: Lagrangian duality for constrained deep learning
– year: 2020
  ident: br0310
  article-title: A Lagrangian dual-based theory-guided deep neural network
– volume: 404
  year: 2020
  ident: br0170
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0160
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: br0290
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 1979
  ident: br0020
  article-title: Petroleum Reservoir Simulation
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0240
  article-title: Deep learning
  publication-title: Nature
– year: 2020
  ident: br0220
  article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition
– volume: 48
  start-page: 1707
  year: 2018
  end-page: 1720
  ident: br0420
  article-title: A novel softplus linear unit for deep convolutional neural networks
  publication-title: Appl. Intell.
– year: 2016
  ident: br0130
  article-title: Deep Learning
– year: 2019
  ident: br0210
  article-title: Variational physics-informed neural networks for solving partial differential equations
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: br0190
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: br0280
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 514
  year: 2005
  end-page: 518
  ident: br0010
  article-title: Groundwater flow and transport process
  publication-title: Water Encyclopedia
– volume: 9
  start-page: 165
  year: 1992
  end-page: 185
  ident: br0230
  article-title: Instability of Buckley-Leverett flow in a heterogeneous medium
  publication-title: Transp. Porous Media
– volume: 19
  start-page: 727
  year: 2015
  end-page: 746
  ident: br0060
  article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching
  publication-title: Comput. Geosci.
– year: 2018
  ident: br0260
  article-title: fPINNs: fractional physics-informed neural networks
– start-page: 160
  year: 2008
  end-page: 167
  ident: br0070
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– year: 2020
  ident: br0380
  article-title: Data for paper entitled “Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single and two-phase flow”
– year: 1992
  ident: br0080
  article-title: Ten Lectures on Wavelets
– volume: 2017
  start-page: 70
  year: 2017
  end-page: 76
  ident: br0320
  article-title: Deep reinforcement learning framework for autonomous driving
  publication-title: Electron. Imaging
– year: 2020
  ident: br0030
  article-title: Numerical solution of inverse problems by weak adversarial networks
– volume: 259
  start-page: 203
  year: 2010
  end-page: 219
  ident: br0140
  article-title: Nonlinear approximation using Gaussian kernels
  publication-title: J. Funct. Anal.
– volume: 373
  year: 2021
  ident: br0350
  article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2005
  ident: br0150
  article-title: MODFLOW-2005: The U.S. Geological Survey modular ground-water model—the ground-water flow process (No. 6-A16)
– year: 2003
  ident: br0120
  article-title: Stochastic Finite Elements: A Spectral Approach
– year: 2019
  ident: br0270
  article-title: PyTorch: an imperative style, high-performance deep learning library
– volume: 6
  start-page: 197
  year: 2001
  end-page: 207
  ident: br0040
  article-title: Flow in porous media—pore-network models and multiphase flow
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 55
  start-page: 703
  year: 2019
  end-page: 728
  ident: br0250
  article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
  publication-title: Water Resour. Res.
– volume: 4
  start-page: 380
  year: 1999
  end-page: 388
  ident: br0410
  article-title: Stochastic analysis of immiscible two-phase flow in heterogeneous media
  publication-title: SPE J.
– year: 2017
  ident: br0090
  article-title: The Deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
– volume: 126
  year: 2021
  ident: br0360
  article-title: Deep-learning-based inverse modeling approaches: a subsurface flow example
  publication-title: J. Geophys. Res., Solid Earth
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: br0340
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 514
  year: 2005
  ident: 10.1016/j.jcp.2021.110318_br0010
  article-title: Groundwater flow and transport process
– year: 2003
  ident: 10.1016/j.jcp.2021.110318_br0120
– start-page: 160
  year: 2008
  ident: 10.1016/j.jcp.2021.110318_br0070
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
– year: 1979
  ident: 10.1016/j.jcp.2021.110318_br0020
– volume: 19
  start-page: 727
  issue: 4
  year: 2015
  ident: 10.1016/j.jcp.2021.110318_br0060
  article-title: Jointly updating the mean size and spatial distribution of facies in reservoir history matching
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9478-7
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2021.110318_br0200
  article-title: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109120
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.jcp.2021.110318_br0110
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: J. Mach. Learn. Model. Comput.
  doi: 10.1615/JMachLearnModelComput.2020033905
– volume: 55
  start-page: 703
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2021.110318_br0250
  article-title: Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023528
– volume: 101
  issue: 1
  year: 2020
  ident: 10.1016/j.jcp.2021.110318_br0300
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.010203
– volume: 48
  start-page: 1707
  issue: 7
  year: 2018
  ident: 10.1016/j.jcp.2021.110318_br0420
  article-title: A novel softplus linear unit for deep convolutional neural networks
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1028-7
– ident: 10.1016/j.jcp.2021.110318_br0260
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  ident: 10.1016/j.jcp.2021.110318_br0190
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.jcp.2021.110318_br0340
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 373
  year: 2021
  ident: 10.1016/j.jcp.2021.110318_br0350
  article-title: Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113492
– ident: 10.1016/j.jcp.2021.110318_br0100
– volume: 584
  year: 2020
  ident: 10.1016/j.jcp.2021.110318_br0370
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124700
– volume: 194
  start-page: 773
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2021.110318_br0400
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.015
– year: 2016
  ident: 10.1016/j.jcp.2021.110318_br0130
– ident: 10.1016/j.jcp.2021.110318_br0210
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.jcp.2021.110318_br0430
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– year: 2005
  ident: 10.1016/j.jcp.2021.110318_br0150
– year: 1992
  ident: 10.1016/j.jcp.2021.110318_br0080
– volume: 4
  start-page: 380
  issue: 04
  year: 1999
  ident: 10.1016/j.jcp.2021.110318_br0410
  article-title: Stochastic analysis of immiscible two-phase flow in heterogeneous media
  publication-title: SPE J.
  doi: 10.2118/59250-PA
– ident: 10.1016/j.jcp.2021.110318_br0180
– volume: 9
  start-page: 165
  issue: 3
  year: 1992
  ident: 10.1016/j.jcp.2021.110318_br0230
  article-title: Instability of Buckley-Leverett flow in a heterogeneous medium
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00611965
– volume: 126
  issue: 2
  year: 2021
  ident: 10.1016/j.jcp.2021.110318_br0360
  article-title: Deep-learning-based inverse modeling approaches: a subsurface flow example
  publication-title: J. Geophys. Res., Solid Earth
  doi: 10.1029/2020JB020549
– ident: 10.1016/j.jcp.2021.110318_br0030
– start-page: 770
  year: 2016
  ident: 10.1016/j.jcp.2021.110318_br0160
  article-title: Deep residual learning for image recognition
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jcp.2021.110318_br0240
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.jcp.2021.110318_br0270
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2021.110318_br0170
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.jcp.2021.110318_br0290
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– volume: 146
  start-page: 107
  issue: 01
  year: 1942
  ident: 10.1016/j.jcp.2021.110318_br0050
  article-title: Mechanism of fluid displacement in sands
  publication-title: Trans. AIME
  doi: 10.2118/942107-G
– volume: 5
  start-page: 60
  issue: 01
  year: 2000
  ident: 10.1016/j.jcp.2021.110318_br0390
  article-title: Stochastic formulation for uncertainty analysis of two-phase flow in heterogeneous reservoirs
  publication-title: SPE J.
  doi: 10.2118/59802-PA
– volume: 93
  start-page: 772
  issue: 4
  year: 2013
  ident: 10.1016/j.jcp.2021.110318_br0330
  article-title: Nonlinear spline adaptive filtering
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.09.021
– ident: 10.1016/j.jcp.2021.110318_br0220
– ident: 10.1016/j.jcp.2021.110318_br0380
– volume: 259
  start-page: 203
  issue: 1
  year: 2010
  ident: 10.1016/j.jcp.2021.110318_br0140
  article-title: Nonlinear approximation using Gaussian kernels
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.02.001
– volume: 6
  start-page: 197
  issue: 3
  year: 2001
  ident: 10.1016/j.jcp.2021.110318_br0040
  article-title: Flow in porous media—pore-network models and multiphase flow
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(01)00084-X
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jcp.2021.110318_br0280
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– ident: 10.1016/j.jcp.2021.110318_br0090
– ident: 10.1016/j.jcp.2021.110318_br0310
– volume: 2017
  start-page: 70
  issue: 19
  year: 2017
  ident: 10.1016/j.jcp.2021.110318_br0320
  article-title: Deep reinforcement learning framework for autonomous driving
  publication-title: Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023
SSID ssj0008548
Score 2.5722103
Snippet •Weak form physics constraints are incorporated into a fully-connected neural network to predict future responses.•Domain decomposition reduces computational...
Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110318
SubjectTerms Artificial neural networks
Boundary conditions
Computational physics
Conservation laws
Deep learning
Discontinuity
Domain decomposition methods
Lagrangian duality
Machine learning
Neural networks
Partial differential equations
Robustness (mathematics)
Single-phase flow
Solution space
Theory-guided neural network
Two dimensional flow
Two phase flow
Weak form
Title Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
URI https://dx.doi.org/10.1016/j.jcp.2021.110318
https://www.proquest.com/docview/2539311689
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXLgsj90Vb_mwhwXJS2rneUQIVBbRUxHcLDsel9IqrWgrxIXfzkzigECIA4dESTS2orE9_iaZ-YaxPy6xAFKCkIlFB8WlUiDKt8IUMnEWAUVR0zVd9dLudfz_NrldYqdtLgyFVQbb39j02lqHJ8dBm8fT4ZByfCXl0BMDFl4pSvgl9jqc0_-e38I88iRurDGFIqB0-2ezjvG6L4myUnYoGF5R3Y_P96YPVrrees7X2Y-AGflJ81obbAmqTbYW8CMPq3P2k41uwIw4oVBe5yc-icFi6FCESCuxg6oJ-eZ_-4NeTzz6Q5LlDmDKQ_GIAZ94PkNbsnjwpgROHxLGILipHMe2YnqHmx7348njL9Y_P-ufdkUopiBKJZO5sMZBjngkzaMycoXteBtLJ3MTmwzPJoMcYjyIrx5Sn6GblCjnjEMIiA63-s2Wq0kFW4wbUD4qvY2kd3HmsjwFckJLm0ll0PvZZlGrRV0GonGqdzHWbUTZvUbFa1K8bhS_zY5em0wblo2vhON2aPS7qaJxF_iq2V47jDqs05mWiSpUp5Pmxc73et1lq3TXBPDuseX5wwL2EabM7UE9Dw_YysnFZbf3Armd5Z0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QEuvBGFAj5wACSrWTvPY1VRbWmb0yJ6s-x4vGy7yq66u6r67zuTOJVAqAcOiaLEtqKxPfNNMvMNwGefOUSlUKrMkYPicyUJ5TtpK5V5R4Ci6uiazut88jP9cZFd7MDRkAvDYZVR9_c6vdPW8c5BlObBaj7nHF_FOfTMgEVXunwEu8xOlY5g9_DkdFLfK-QyS3uFzNEI1GH4udmFeV02zFqpxhwPr7n0x7_N01-KurM-x8_haYSN4rB_sxewg-1LeBYhpIgbdP0Krn6hvRIMREWXongrZ9u5pybMW0kDtH3Ut_gyndW1vAlfua3wiCsR60fMxDKINamT7XWwDQr-lrBAKWzrBfWVq99k90RYLG9ew_T4-_RoImM9BdlolW2ksx5LgiR5mTSJr9w4uFR5VdrUFnS2BZaY0sGU9ZiHgjylTHtvPaFA8rn1Gxi1yxbfgrCoQ9IEl6jg08IXZY7shzauUNqSA7QHySBF00SucS55sTBDUNmlIcEbFrzpBb8H3-67rHqijYcap8PUmD9WiyFD8FC3_WEaTdyqa6MyXenxOC-rd_836id4PJmen5mzk_r0PTzhJ3087z6MNtdb_ECoZeM-xlV5B6G26E4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+form+theory-guided+neural+network+%28TgNN-wf%29+for+deep+learning+of+subsurface+single-+and+two-phase+flow&rft.jtitle=Journal+of+computational+physics&rft.au=Xu%2C+Rui&rft.au=Zhang%2C+Dongxiao&rft.au=Rong%2C+Miao&rft.au=Wang%2C+Nanzhe&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=436&rft_id=info:doi/10.1016%2Fj.jcp.2021.110318&rft.externalDocID=S0021999121002138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon