AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes
Abstract AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 4...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.07.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/). |
---|---|
AbstractList | Abstract
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/). AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/). AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/). AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew's correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew's correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/). |
Author | Arora, Chakit Sharma, Neelam Patiyal, Sumeet Dhall, Anjali Pande, Akshara Raghava, Gajendra P S |
Author_xml | – sequence: 1 givenname: Neelam orcidid: 0000-0002-1765-3644 surname: Sharma fullname: Sharma, Neelam email: neelams@iiitd.ac.in – sequence: 2 givenname: Sumeet orcidid: 0000-0003-1358-292X surname: Patiyal fullname: Patiyal, Sumeet email: sumeetp@iiitd.ac.in – sequence: 3 givenname: Anjali orcidid: 0000-0002-0400-2084 surname: Dhall fullname: Dhall, Anjali email: anjalid@iiitd.ac.in – sequence: 4 givenname: Akshara orcidid: 0000-0001-6426-7124 surname: Pande fullname: Pande, Akshara email: pandeakshara@gmail.com – sequence: 5 givenname: Chakit orcidid: 0000-0001-8613-0647 surname: Arora fullname: Arora, Chakit email: chakita@iiitd.ac.in – sequence: 6 givenname: Gajendra P S orcidid: 0000-0002-8902-2876 surname: Raghava fullname: Raghava, Gajendra P S email: raghava@iiitd.ac.in |
BookMark | eNp9kE9rGzEQxUVxoXHSU7_AQiAUyjrS6s9KvZmQtgZDekiuXUZayVVYS1tJDuTbR8Y5BZrLzPDm94bhLdEixGAR-kLwimBFr7XX11oDdIp9QGeE9X3LMGeL4yz6ljNBP6Flzo8Yd7iX5Az9WU-738mOTbfC3xsIjd_PKT5VYW_L3zg2LqZmroA3xYddA9Nk084Gb6oai_UhV1elYZ6P--iaze62sbMvcbb5An10MGX7-bWfo4cft_c3v9rt3c_NzXrbGtrx0mrFjADJHQPXaQ6Ujx2XWIs6uFEKRcFxqQkB12vClZAjUEmkMgYEkY6eo6-nu_Wpfweby7D32dhpgmDjIQ8dE4QqJXpZ0cs36GM8pFC_GzquMGa10EqRE2VSzDlZNxhfoPgYSgI_DQQPx8SHmvjwmnj1fHvjmZPfQ3r-D311ouNhfhd8AZm0keI |
CitedBy_id | crossref_primary_10_1007_s10989_021_10283_z crossref_primary_10_1016_j_fct_2022_113342 crossref_primary_10_3390_ijms222312814 crossref_primary_10_1016_j_imbio_2022_152221 crossref_primary_10_1016_j_virol_2024_110380 crossref_primary_10_3390_ijerph182212105 crossref_primary_10_3389_fimmu_2024_1427677 crossref_primary_10_1007_s00251_022_01282_5 crossref_primary_10_3389_fchem_2024_1493165 crossref_primary_10_1016_j_immuno_2022_100015 crossref_primary_10_34172_apb_2023_085 crossref_primary_10_3168_jds_2023_23733 crossref_primary_10_1016_j_meegid_2021_105037 crossref_primary_10_2174_0127722708283588240124095057 crossref_primary_10_1016_j_micpath_2024_106572 crossref_primary_10_3389_fimmu_2023_1056101 crossref_primary_10_1007_s12010_022_04116_y crossref_primary_10_1016_j_ijfoodmicro_2024_110980 crossref_primary_10_1186_s12917_024_04006_x crossref_primary_10_3389_fviro_2025_1520109 crossref_primary_10_1002_pep2_24329 crossref_primary_10_1002_bab_2604 crossref_primary_10_1016_j_future_2024_07_033 crossref_primary_10_1016_j_bioadv_2024_214153 crossref_primary_10_1021_acsomega_2c03398 crossref_primary_10_3389_fimmu_2022_830497 crossref_primary_10_1016_j_meegid_2021_105149 crossref_primary_10_1038_s41598_024_55788_x crossref_primary_10_1093_bib_bbac174 crossref_primary_10_1080_07391102_2023_2212305 crossref_primary_10_1016_j_compbiomed_2022_105893 crossref_primary_10_1016_j_ijbiomac_2024_129232 crossref_primary_10_1080_07391102_2022_2037462 crossref_primary_10_36303_SAPJ_0491 crossref_primary_10_1007_s10989_021_10359_w crossref_primary_10_1016_j_micpath_2021_105372 crossref_primary_10_1007_s12639_024_01696_w crossref_primary_10_3390_v16071030 crossref_primary_10_1016_j_ab_2024_115701 crossref_primary_10_1016_j_heliyon_2025_e41714 crossref_primary_10_1080_07391102_2024_2318482 crossref_primary_10_3390_bioengineering11040322 crossref_primary_10_1016_j_algal_2024_103440 crossref_primary_10_1016_j_imu_2022_100989 crossref_primary_10_3389_falgy_2024_1297547 crossref_primary_10_1080_07391102_2022_2048079 crossref_primary_10_1155_2021_1315618 crossref_primary_10_1016_j_procbio_2022_08_014 crossref_primary_10_1089_mab_2021_0039 crossref_primary_10_1007_s13205_022_03140_3 crossref_primary_10_1016_j_biologicals_2024_101782 crossref_primary_10_1016_j_indcrop_2024_119855 crossref_primary_10_3390_molecules27092667 crossref_primary_10_1080_07391102_2023_2248301 crossref_primary_10_2903_j_efsa_2022_7044 crossref_primary_10_1111_1541_4337_70100 crossref_primary_10_1080_07391102_2022_2154846 crossref_primary_10_3390_vaccines12101181 crossref_primary_10_1016_j_ebiom_2025_105638 crossref_primary_10_3390_ijms26031190 crossref_primary_10_1016_j_heliyon_2023_e17376 crossref_primary_10_1021_acsomega_2c07213 crossref_primary_10_2903_sp_efsa_2024_EN_8840 crossref_primary_10_1021_acs_jafc_3c07143 crossref_primary_10_7717_peerj_16419 crossref_primary_10_1016_j_compbiomed_2024_108056 crossref_primary_10_1016_j_tvjl_2024_106240 crossref_primary_10_1007_s11356_022_19979_1 crossref_primary_10_1016_j_compbiomed_2024_108738 crossref_primary_10_1186_s13567_022_01045_w crossref_primary_10_1016_j_biotechadv_2024_108437 crossref_primary_10_61186_ibj_4023 crossref_primary_10_1002_pmic_202300231 crossref_primary_10_1080_07391102_2023_2246587 crossref_primary_10_1038_s41598_024_77957_8 crossref_primary_10_1007_s12672_024_01455_6 crossref_primary_10_1016_j_micpath_2024_106777 crossref_primary_10_1371_journal_pone_0306254 crossref_primary_10_1016_j_ijbiomac_2024_139401 crossref_primary_10_1371_journal_pone_0312262 crossref_primary_10_3390_foods10040809 crossref_primary_10_1016_j_compbiomed_2022_105462 crossref_primary_10_1371_journal_pone_0273770 crossref_primary_10_1016_j_micpath_2024_107188 crossref_primary_10_1038_s41598_024_68443_2 crossref_primary_10_1038_s41598_022_14877_5 crossref_primary_10_2217_fmb_2023_0263 crossref_primary_10_1016_j_ijbiomac_2023_128753 crossref_primary_10_1039_D2FO02825E crossref_primary_10_1155_2023_3763634 crossref_primary_10_1007_s10989_021_10278_w crossref_primary_10_1002_pmic_202400261 crossref_primary_10_3389_fmicb_2022_921683 crossref_primary_10_3389_fsysb_2024_1309891 crossref_primary_10_1021_acs_jafc_4c02944 crossref_primary_10_1093_bib_bbac525 crossref_primary_10_1016_j_compbiomed_2022_105297 crossref_primary_10_3389_fbinf_2021_709951 crossref_primary_10_1016_j_compbiomed_2024_108083 crossref_primary_10_1080_07391102_2022_2141882 crossref_primary_10_1371_journal_pone_0319191 crossref_primary_10_1093_nar_gkac446 crossref_primary_10_1002_bab_2679 crossref_primary_10_1016_j_micpath_2022_105425 crossref_primary_10_1016_j_jbi_2022_104217 crossref_primary_10_1038_s41598_023_44775_3 crossref_primary_10_3389_fimmu_2021_780610 crossref_primary_10_1016_j_micpath_2021_105346 crossref_primary_10_1142_S2737416524500558 crossref_primary_10_7717_peerj_12548 crossref_primary_10_1016_j_sbi_2025_102990 crossref_primary_10_1155_2023_5560605 crossref_primary_10_3389_fimmu_2021_666742 crossref_primary_10_1016_j_vaccine_2024_05_025 crossref_primary_10_1038_s42003_025_07615_w crossref_primary_10_1080_07391102_2022_2055648 crossref_primary_10_61186_vacres_10_1_11 crossref_primary_10_1007_s13258_022_01255_8 crossref_primary_10_3390_allergies4010001 crossref_primary_10_1016_j_csbj_2023_07_020 crossref_primary_10_1016_j_ijbiomac_2024_133085 crossref_primary_10_1371_journal_pone_0317216 crossref_primary_10_1080_07391102_2023_2294838 crossref_primary_10_3390_nu14091962 crossref_primary_10_1590_0074_02760220025 crossref_primary_10_3389_fgene_2023_1294159 crossref_primary_10_1007_s12257_024_00153_y crossref_primary_10_1371_journal_pone_0289609 crossref_primary_10_1007_s00894_023_05690_6 crossref_primary_10_3390_ijerph192013054 crossref_primary_10_1093_bib_bbad246 crossref_primary_10_3390_ijms25115737 crossref_primary_10_1016_j_heliyon_2023_e22121 crossref_primary_10_1099_jgv_0_001802 crossref_primary_10_3389_fmed_2021_825876 crossref_primary_10_1016_j_ijbiomac_2024_135762 crossref_primary_10_1002_pro_4785 crossref_primary_10_1016_j_imu_2023_101435 crossref_primary_10_1021_acs_jcim_3c00419 crossref_primary_10_1016_j_compbiomed_2023_106864 crossref_primary_10_1007_s40203_023_00153_5 crossref_primary_10_1080_07391102_2023_2247081 crossref_primary_10_1016_j_imu_2023_101398 crossref_primary_10_1002_pmic_202400004 crossref_primary_10_1089_cmb_2022_0241 crossref_primary_10_1016_j_bcab_2023_102706 crossref_primary_10_1128_spectrum_00373_22 crossref_primary_10_21603_2074_9414_2022_1_46_57 crossref_primary_10_1093_bioadv_vbad151 crossref_primary_10_3389_fimmu_2022_900509 |
Cites_doi | 10.1093/nar/gky1006 10.1038/srep42851 10.1021/acs.jproteome.6b00686 10.1002/pro.3761 10.1186/1752-0509-7-S5-S9 10.1093/bioinformatics/btw730 10.1038/366421a0 10.1371/journal.pone.0057225 10.3389/fgene.2020.00221 10.1503/cmaj.171315 10.1111/j.1398-9995.2004.00526.x 10.1093/protein/gzh037 10.1186/1745-6150-8-27 10.3389/fimmu.2020.00071 10.4137/EBO.S7931 10.1186/s13062-016-0106-9 10.1007/s00726-009-0381-1 10.1093/bioinformatics/14.1.48 10.1002/jmr.1061 10.1111/jpc.12806 10.1038/srep22843 10.1016/j.pop.2016.04.005 10.1186/1471-2105-8-463 10.1056/NEJMcp1412282 10.1186/s12885-016-2082-y 10.1200/JCO.2012.43.4522 10.1016/j.alit.2019.10.005 10.1016/j.jaip.2015.03.012 10.1093/bioinformatics/btu004 10.1007/s00894-014-2278-5 10.1002/mnfr.201500769 10.1186/1471-2105-11-301 10.1093/bioinformatics/btl158 10.1371/journal.pone.0181748 10.1186/1745-6150-7-12 10.3389/fimmu.2018.02280 10.1097/ACI.0000000000000553 10.1093/bioinformatics/btt619 10.1371/journal.pone.0005861 10.1159/000086314 10.1007/s11894-018-0624-y 10.3389/fmicb.2018.00725 10.1093/bioinformatics/btr110 10.1093/nar/gky092 10.1002/prot.24783 10.1109/TCBB.2016.2527657 10.1016/j.iac.2014.09.004 10.1186/1471-2105-10-421 10.1146/annurev.pharmtox.42.082401.130208 10.1093/nar/gkl343 10.1016/bs.apcsb.2018.01.006 10.1093/database/bax066 10.1186/1471-2105-9-503 10.1186/s13062-015-0046-9 10.1093/bioinformatics/btl621 10.3389/fphar.2018.00954 10.1067/mai.2002.124772 10.1038/s41598-019-41538-x 10.1016/j.pcl.2019.06.004 10.1016/j.jaci.2018.10.020 10.1111/jpc.12178 10.1002/pmic.200700597 10.1186/1471-2105-14-S6-S4 10.1159/000086313 10.1186/1471-2105-9-201 10.1093/bioinformatics/btz029 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbaa294 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbaa294 10.1093/bib/bbaa294 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-b94c6a85f4af2b5a35d2580b635dfd8693af58b11af7b15968da38189cca618f3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 18:28:39 EDT 2025 Mon Jun 30 08:45:36 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Wed Aug 28 03:20:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | IgE epitope prediction MEME/MAST machine learning MERCI BLAST allergens |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-b94c6a85f4af2b5a35d2580b635dfd8693af58b11af7b15968da38189cca618f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8613-0647 0000-0002-0400-2084 0000-0003-1358-292X 0000-0002-1765-3644 0000-0002-8902-2876 0000-0001-6426-7124 |
PQID | 2590045903 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2461399678 proquest_journals_2590045903 crossref_citationtrail_10_1093_bib_bbaa294 crossref_primary_10_1093_bib_bbaa294 oup_primary_10_1093_bib_bbaa294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Singh (2021072117030286500_ref26) 2015; 83 Verma (2021072117030286500_ref47) 2010; 39 Agrawal (2021072117030286500_ref52) 2020 Zhang (2021072117030286500_ref46) 2017; 33 Dimitrov (2021072117030286500_ref20) 2014; 30 Kelleher (2021072117030286500_ref66) 2020; 69 Wheatley (2021072117030286500_ref59) 2015; 372 Waheed (2021072117030286500_ref61) 2016; 43 Vens (2021072117030286500_ref32) 2011; 27 Pande (2021072117030286500_ref43) 2019 Usmani (2021072117030286500_ref71) 2017; 12 Dimitrov (2021072117030286500_ref18) 2014; 20 Maurer-Stroh (2021072117030286500_ref21) 2019; 35 Wan (2021072117030286500_ref56) 2017; 14 Bouziane (2021072117030286500_ref58) 2011; 7 Keet (2021072117030286500_ref65) 2018; 142 Abrams (2021072117030286500_ref62) 2018; 190 Garg (2021072117030286500_ref27) 2008; 9 Usmani (2021072117030286500_ref53) 2018; 9 Mak (2021072117030286500_ref5) 2014 Dimitrov (2021072117030286500_ref17) 2013; 14 UniProt Consortium T (2021072117030286500_ref23) 2018; 46 Nagpal (2021072117030286500_ref50) 2017; 7 Tan (2021072117030286500_ref69) 2013; 49 Li (2021072117030286500_ref28) 2006; 22 Kadam (2021072117030286500_ref30) 2017; 2017 Bailey (2021072117030286500_ref13) 1998; 14 Singh (2021072117030286500_ref34) 2016; 16 Iweala (2021072117030286500_ref64) 2018; 20 Dhall (2021072117030286500_ref39) 2020; 11 Tankersley (2021072117030286500_ref68) 2015; 3 Singh (2021072117030286500_ref35) 2015; 10 Kaundal (2021072117030286500_ref45) 2009; 9 Roesner (2021072117030286500_ref67) 2019; 19 Saha (2021072117030286500_ref11) 2006; 34 Wang (2021072117030286500_ref19) 2013; 7 Nagpal (2021072117030286500_ref73) 2018; 9 Gupta (2021072117030286500_ref31) 2013; 8 Dang (2021072117030286500_ref8) 2014; 30 Bailey (2021072117030286500_ref12) 1994; 2 Savage (2021072117030286500_ref63) 2015; 35 FAO/WHO (2021072117030286500_ref9) 2001 Obermeyer (2021072117030286500_ref1) 2005; 137 Goodman (2021072117030286500_ref22) 2016; 60 Agrawal (2021072117030286500_ref37) 2019; 9 Chaudhary (2021072117030286500_ref36) 2016; 6 Muh (2021072117030286500_ref16) 2009; 4 Singh (2021072117030286500_ref40) 2016; 11 Sutton (2021072117030286500_ref3) 1993; 366 Kumar (2021072117030286500_ref42) 2011; 24 Wan (2021072117030286500_ref55) 2016; 15 Kumar (2021072117030286500_ref54) 2018; 9 Bendtsen (2021072117030286500_ref25) 2004; 17 Chauhan (2021072117030286500_ref33) 2010; 11 (2021072117030286500_ref60) 2019; 66 Vita (2021072117030286500_ref29) 2019; 47 Boratyn (2021072117030286500_ref41) 2012; 7 Pedregosa (2021072117030286500_ref49) 2011; 12 Kumar (2021072117030286500_ref44) 2007; 8 FAO/WHO (2021072117030286500_ref10) 2003 Laurie (2021072117030286500_ref51) 2013; 31 Camacho (2021072117030286500_ref14) 2009; 10 Verma (2021072117030286500_ref48) 2008; 9 Masoli (2021072117030286500_ref2) 2004; 59 Kaur (2021072117030286500_ref24) 2020; 11 Usmani (2021072117030286500_ref72) 2018; 112 Zhang (2021072117030286500_ref15) 2007; 23 Patiyal (2021072117030286500_ref38) 2020; 29 Campbell (2021072117030286500_ref70) 2015; 51 Taylor (2021072117030286500_ref7) 2002; 42 Han (2021072117030286500_ref57) 2013; 8 Goodman (2021072117030286500_ref6) 2005; 137 Broadfield (2021072117030286500_ref4) 2002; 109 |
References_xml | – volume: 47 start-page: D339 issue: D1 year: 2019 ident: 2021072117030286500_ref29 article-title: The immune epitope database (IEDB): 2018 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1006 – volume: 7 start-page: 42851 year: 2017 ident: 2021072117030286500_ref50 article-title: Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential publication-title: Sci Rep doi: 10.1038/srep42851 – volume: 15 start-page: 4755 year: 2016 ident: 2021072117030286500_ref55 article-title: Ensemble linear Neighborhood propagation for predicting subchloroplast localization of multi-location proteins publication-title: J Proteome Res doi: 10.1021/acs.jproteome.6b00686 – volume: 29 start-page: 201 year: 2020 ident: 2021072117030286500_ref38 article-title: NAGbinder: an approach for identifying N-acetylglucosamine interacting residues of a protein from its primary sequence publication-title: Protein Sci doi: 10.1002/pro.3761 – year: 2003 ident: 2021072117030286500_ref10 – volume: 7 start-page: S9 issue: Suppl. 5 year: 2013 ident: 2021072117030286500_ref19 article-title: PREAL: prediction of allergenic protein by maximum relevance minimum redundancy (mRMR) feature selection publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-S5-S9 – start-page: 599126 year: 2019 ident: 2021072117030286500_ref43 article-title: Computing wide range of protein/peptide features from their sequence and structure publication-title: bioRxiv – volume: 33 start-page: 854 year: 2017 ident: 2021072117030286500_ref46 article-title: RBPPred: predicting RNA-binding proteins from sequence using SVM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw730 – volume: 366 start-page: 421 year: 1993 ident: 2021072117030286500_ref3 article-title: The human IgE network publication-title: Nature doi: 10.1038/366421a0 – volume: 8 start-page: e57225 year: 2013 ident: 2021072117030286500_ref57 article-title: An ensemble method for predicting subnuclear localizations from primary protein structures publication-title: PLoS One doi: 10.1371/journal.pone.0057225 – volume: 11 start-page: 221 year: 2020 ident: 2021072117030286500_ref39 article-title: Computing skin cutaneous melanoma outcome from the HLA-alleles and clinical characteristics publication-title: Front Genet doi: 10.3389/fgene.2020.00221 – volume: 190 start-page: E532 year: 2018 ident: 2021072117030286500_ref62 article-title: Diagnosing and managing drug allergy publication-title: CMAJ doi: 10.1503/cmaj.171315 – volume: 59 start-page: 469 year: 2004 ident: 2021072117030286500_ref2 article-title: The global burden of asthma: executive summary of the GINA dissemination committee report publication-title: Allergy doi: 10.1111/j.1398-9995.2004.00526.x – volume: 17 start-page: 349 year: 2004 ident: 2021072117030286500_ref25 article-title: Feature-based prediction of non-classical and leaderless protein secretion publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzh037 – volume: 8 start-page: 27 year: 2013 ident: 2021072117030286500_ref31 article-title: Identification of B-cell epitopes in an antigen for inducing specific class of antibodies publication-title: Biol Direct doi: 10.1186/1745-6150-8-27 – volume: 11 start-page: 71 year: 2020 ident: 2021072117030286500_ref24 article-title: A hybrid model for predicting pattern recognition receptors using evolutionary information publication-title: Front Immunol doi: 10.3389/fimmu.2020.00071 – volume: 7 start-page: EBO.S7931 year: 2011 ident: 2021072117030286500_ref58 article-title: Profiles and majority voting-based ensemble method for protein secondary structure prediction publication-title: Evol Bioinform doi: 10.4137/EBO.S7931 – volume: 11 start-page: 4 year: 2016 ident: 2021072117030286500_ref40 article-title: BLAST-based structural annotation of protein residues using protein data Bank publication-title: Biol Direct doi: 10.1186/s13062-016-0106-9 – volume: 39 start-page: 101 year: 2010 ident: 2021072117030286500_ref47 article-title: Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile publication-title: Amino Acids doi: 10.1007/s00726-009-0381-1 – volume: 2 start-page: 28 year: 1994 ident: 2021072117030286500_ref12 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers publication-title: Proc Int Conf Intell Syst Mol Biol – volume: 14 start-page: 48 year: 1998 ident: 2021072117030286500_ref13 article-title: Combining evidence using p-values: application to sequence homology searches publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.1.48 – year: 2001 ident: 2021072117030286500_ref9 – volume: 24 start-page: 303 year: 2011 ident: 2021072117030286500_ref42 article-title: SVM based prediction of RNA-binding proteins using binding residues and evolutionary information publication-title: J Mol Recognit doi: 10.1002/jmr.1061 – volume: 51 start-page: 91 year: 2015 ident: 2021072117030286500_ref70 article-title: Fifty years of allergy: 1965–2015 publication-title: J Paediatr Child Health doi: 10.1111/jpc.12806 – volume: 6 start-page: 22843 year: 2016 ident: 2021072117030286500_ref36 article-title: A web server and mobile app for computing hemolytic potency of peptides publication-title: Sci Rep doi: 10.1038/srep22843 – volume: 43 start-page: 393 year: 2016 ident: 2021072117030286500_ref61 article-title: Drug allergy publication-title: Prim Care doi: 10.1016/j.pop.2016.04.005 – volume: 8 start-page: 463 year: 2007 ident: 2021072117030286500_ref44 article-title: Identification of DNA-binding proteins using support vector machines and evolutionary profiles publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-463 – volume: 372 start-page: 456 year: 2015 ident: 2021072117030286500_ref59 article-title: Clinical practice. Allergic rhinitis publication-title: N Engl J Med doi: 10.1056/NEJMcp1412282 – volume: 16 start-page: 77 year: 2016 ident: 2021072117030286500_ref34 article-title: Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer cell lines publication-title: BMC Cancer doi: 10.1186/s12885-016-2082-y – volume: 31 start-page: 1061 year: 2013 ident: 2021072117030286500_ref51 article-title: Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2012.43.4522 – volume: 69 start-page: 3 year: 2020 ident: 2021072117030286500_ref66 article-title: Prevention of food allergy—skin barrier interventions publication-title: Allergol Int doi: 10.1016/j.alit.2019.10.005 – volume: 3 start-page: 315 year: 2015 ident: 2021072117030286500_ref68 article-title: Stinging insect allergy: state of the art 2015 publication-title: J Allergy Clin Immunol Pract doi: 10.1016/j.jaip.2015.03.012 – volume: 30 start-page: 1120 year: 2014 ident: 2021072117030286500_ref8 article-title: Allerdictor: fast allergen prediction using text classification techniques publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu004 – volume: 20 start-page: 2278 year: 2014 ident: 2021072117030286500_ref18 article-title: AllerTOP v.2—a server for in silico prediction of allergens publication-title: J Mol Model doi: 10.1007/s00894-014-2278-5 – volume: 60 start-page: 1183 year: 2016 ident: 2021072117030286500_ref22 article-title: AllergenOnline: a peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201500769 – volume: 11 start-page: 301 year: 2010 ident: 2021072117030286500_ref33 article-title: Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-301 – volume: 22 start-page: 1658 year: 2006 ident: 2021072117030286500_ref28 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 12 year: 2017 ident: 2021072117030286500_ref71 article-title: THPdb: database of FDA-approved peptide and protein therapeutics publication-title: PLoS One doi: 10.1371/journal.pone.0181748 – volume: 7 start-page: 12 year: 2012 ident: 2021072117030286500_ref41 article-title: Domain enhanced lookup time accelerated BLAST publication-title: Biol Direct doi: 10.1186/1745-6150-7-12 – volume: 9 start-page: 2280 year: 2018 ident: 2021072117030286500_ref73 article-title: A web resource for designing subunit vaccine against major pathogenic species of bacteria publication-title: Front Immunol doi: 10.3389/fimmu.2018.02280 – volume: 19 start-page: 319 year: 2019 ident: 2021072117030286500_ref67 article-title: Common and different roles of IL-4 and IL-13 in skin allergy and clinical implications publication-title: Curr Opin Allergy Clin Immunol doi: 10.1097/ACI.0000000000000553 – volume: 30 start-page: 846 year: 2014 ident: 2021072117030286500_ref20 article-title: AllergenFP: allergenicity prediction by descriptor fingerprints publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt619 – volume: 4 start-page: e5861 year: 2009 ident: 2021072117030286500_ref16 article-title: AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins publication-title: PLoS One doi: 10.1371/journal.pone.0005861 – volume: 137 start-page: 153 year: 2005 ident: 2021072117030286500_ref6 article-title: Assessing genetically modified crops to minimize the risk of increased food allergy: a review publication-title: Int Arch Allergy Immunol doi: 10.1159/000086314 – volume: 20 start-page: 17 year: 2018 ident: 2021072117030286500_ref64 article-title: Food allergy publication-title: Curr Gastroenterol Rep doi: 10.1007/s11894-018-0624-y – volume: 9 start-page: 725 year: 2018 ident: 2021072117030286500_ref54 article-title: Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00725 – volume: 27 start-page: 1231 year: 2011 ident: 2021072117030286500_ref32 article-title: Identifying discriminative classification-based motifs in biological sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr110 – volume: 46 start-page: 2699 year: 2018 ident: 2021072117030286500_ref23 article-title: UniProt: the universal protein knowledgebase publication-title: Nucleic Acids Res doi: 10.1093/nar/gky092 – volume: 83 start-page: 910 year: 2015 ident: 2021072117030286500_ref26 article-title: In silico platform for predicting and initiating β-turns in a protein at desired locations publication-title: Proteins doi: 10.1002/prot.24783 – volume: 14 start-page: 212 year: 2017 ident: 2021072117030286500_ref56 article-title: Transductive learning for multi-label protein subchloroplast localization prediction publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2527657 – volume: 35 start-page: 45 year: 2015 ident: 2021072117030286500_ref63 article-title: Food allergy: epidemiology and natural history publication-title: Immunol Allergy Clin North Am doi: 10.1016/j.iac.2014.09.004 – volume: 10 start-page: 421 year: 2009 ident: 2021072117030286500_ref14 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – start-page: 487 volume-title: Primer to the Immune Response year: 2014 ident: 2021072117030286500_ref5 – volume: 42 start-page: 99 year: 2002 ident: 2021072117030286500_ref7 article-title: Protein allergenicity assessment of foods produced through agricultural biotechnology publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev.pharmtox.42.082401.130208 – volume: 34 start-page: W202 issue: Web Server Issue year: 2006 ident: 2021072117030286500_ref11 article-title: AlgPred: prediction of allergenic proteins and mapping of IgE epitopes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl343 – volume: 112 start-page: 221 year: 2018 ident: 2021072117030286500_ref72 article-title: In silico tools and databases for designing peptide-based vaccine and drugs publication-title: Adv Protein Chem Struct Biol doi: 10.1016/bs.apcsb.2018.01.006 – volume: 2017 start-page: bax066 year: 2017 ident: 2021072117030286500_ref30 article-title: AllerBase: a comprehensive allergen knowledgebase publication-title: Database (Oxford) doi: 10.1093/database/bax066 – volume: 9 start-page: 503 year: 2008 ident: 2021072117030286500_ref27 article-title: ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-503 – volume: 10 start-page: 10 year: 2015 ident: 2021072117030286500_ref35 article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using random forest publication-title: Biol Direct doi: 10.1186/s13062-015-0046-9 – volume: 23 start-page: 504 year: 2007 ident: 2021072117030286500_ref15 article-title: AllerTool: a web server for predicting allergenicity and allergic cross-reactivity in proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl621 – volume: 9 start-page: 954 year: 2018 ident: 2021072117030286500_ref53 article-title: Prediction of antitubercular peptides from sequence information using ensemble classifier and hybrid features publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00954 – volume: 109 start-page: 969 year: 2002 ident: 2021072117030286500_ref4 article-title: Increase in the prevalence of allergen skin sensitization in successive birth cohorts publication-title: J Allergy Clin Immunol doi: 10.1067/mai.2002.124772 – volume: 9 start-page: 5129 year: 2019 ident: 2021072117030286500_ref37 article-title: NeuroPIpred: a tool to predict, design and scan insect neuropeptides publication-title: Sci Rep doi: 10.1038/s41598-019-41538-x – volume: 66 start-page: 981 year: 2019 ident: 2021072117030286500_ref60 article-title: Allergic rhinitis in children and adolescents publication-title: Pediatr Clin North Am doi: 10.1016/j.pcl.2019.06.004 – volume: 142 start-page: 1719 year: 2018 ident: 2021072117030286500_ref65 article-title: Advances in food allergy in 2017 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2018.10.020 – volume: 49 start-page: E381 year: 2013 ident: 2021072117030286500_ref69 article-title: Insect allergy in children publication-title: J Paediatr Child Health doi: 10.1111/jpc.12178 – volume: 12 start-page: 2825 year: 2011 ident: 2021072117030286500_ref49 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 9 start-page: 2324 year: 2009 ident: 2021072117030286500_ref45 article-title: RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information publication-title: Proteomics doi: 10.1002/pmic.200700597 – volume: 14 start-page: S4 issue: Suppl. 6 year: 2013 ident: 2021072117030286500_ref17 article-title: AllerTOP—a server for in silico prediction of allergens publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S6-S4 – volume: 137 start-page: 151 year: 2005 ident: 2021072117030286500_ref1 article-title: Can we predict or avoid the allergenic potential of genetically modified organisms? publication-title: Int Arch Allergy Immunol doi: 10.1159/000086313 – volume: 9 start-page: 201 year: 2008 ident: 2021072117030286500_ref48 article-title: Identification of proteins secreted by malaria parasite into erythrocyte using SVM and PSSM profiles publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-201 – volume: 35 start-page: 3020 year: 2019 ident: 2021072117030286500_ref21 article-title: AllerCatPro—prediction of protein allergenicity potential from the protein sequence publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz029 – year: 2020 ident: 2021072117030286500_ref52 article-title: AntiCP 2.0: an updated model for predicting anticancer peptides [published online ahead of print, 2020 Aug 6] publication-title: Brief Bioinform |
SSID | ssj0020781 |
Score | 2.652941 |
Snippet | Abstract
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred... AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alignment Allergens Antigens Correlation coefficient Correlation coefficients Datasets Epitope mapping Immunoglobulin E Internet Learning algorithms Machine learning Peptide mapping Performance evaluation Prediction models Predictions Proteins Searching Servers Similarity Training |
Title | AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes |
URI | https://www.proquest.com/docview/2590045903 https://www.proquest.com/docview/2461399678 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8MwDDajMNhl7Mm6dpsHPQ28NrGdOLuV0dIN9ji00NOCHdslUNLQtIf9-8lJWugo2yWHRE5AsiLJkj4h1FGMGmkjS6iwhrBEagJmyBLLEw8skDHcuAP9t_dgNGGvUz6tC2SLPSn8iHZVqrpKSelHDvYTzK-DyB9_TLdxlcOrqZqIQuLQ3es2vF9rdwzPTjPb5u9bmpThCTqufUHcr4R3ig5MdoYOq-mQ3-foqz-ffS6Nxv5j7wnLDKflAQDcqMY-Y_A3cb50mRZXu4zdVBTXSpkmuERfSLMCVgG1dBgMM7yw-GU2wCYHJc5NcYEmw8H4eUTqcQgkoT5fERWxJJCCWyatr7ikXPtc9BS4DNpqEURUWi6U50kbKmBTILR09jgCIQWesPQSNbJFZq4QllJ5OkpCeBVjOlAC3CQBYoNgI2S2x5roYcOrOKmxwt3Iinlc5axpDIyNa8Y2UWdLnFcQGfvJ7oDpf1O0NwKJa00qYt-NNWVwoU10v30MOuASGzIzizXQMHBKIHALxfW_H2mhI9-VpZQVt23UWC3X5gb8ipW6LXfVD_8Hy1M |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AlgPred+2.0%3A+an+improved+method+for+predicting+allergenic+proteins+and+mapping+of+IgE+epitopes&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sharma%2C+Neelam&rft.au=Patiyal%2C+Sumeet&rft.au=Dhall%2C+Anjali&rft.au=Pande%2C+Akshara&rft.date=2021-07-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbaa294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |