AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes

Abstract AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 4...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 4
Main Authors Sharma, Neelam, Patiyal, Sumeet, Dhall, Anjali, Pande, Akshara, Arora, Chakit, Raghava, Gajendra P S
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
AbstractList Abstract AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew's correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and 10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40% similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew's correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
Author Arora, Chakit
Sharma, Neelam
Patiyal, Sumeet
Dhall, Anjali
Pande, Akshara
Raghava, Gajendra P S
Author_xml – sequence: 1
  givenname: Neelam
  orcidid: 0000-0002-1765-3644
  surname: Sharma
  fullname: Sharma, Neelam
  email: neelams@iiitd.ac.in
– sequence: 2
  givenname: Sumeet
  orcidid: 0000-0003-1358-292X
  surname: Patiyal
  fullname: Patiyal, Sumeet
  email: sumeetp@iiitd.ac.in
– sequence: 3
  givenname: Anjali
  orcidid: 0000-0002-0400-2084
  surname: Dhall
  fullname: Dhall, Anjali
  email: anjalid@iiitd.ac.in
– sequence: 4
  givenname: Akshara
  orcidid: 0000-0001-6426-7124
  surname: Pande
  fullname: Pande, Akshara
  email: pandeakshara@gmail.com
– sequence: 5
  givenname: Chakit
  orcidid: 0000-0001-8613-0647
  surname: Arora
  fullname: Arora, Chakit
  email: chakita@iiitd.ac.in
– sequence: 6
  givenname: Gajendra P S
  orcidid: 0000-0002-8902-2876
  surname: Raghava
  fullname: Raghava, Gajendra P S
  email: raghava@iiitd.ac.in
BookMark eNp9kE9rGzEQxUVxoXHSU7_AQiAUyjrS6s9KvZmQtgZDekiuXUZayVVYS1tJDuTbR8Y5BZrLzPDm94bhLdEixGAR-kLwimBFr7XX11oDdIp9QGeE9X3LMGeL4yz6ljNBP6Flzo8Yd7iX5Az9WU-738mOTbfC3xsIjd_PKT5VYW_L3zg2LqZmroA3xYddA9Nk084Gb6oai_UhV1elYZ6P--iaze62sbMvcbb5An10MGX7-bWfo4cft_c3v9rt3c_NzXrbGtrx0mrFjADJHQPXaQ6Ujx2XWIs6uFEKRcFxqQkB12vClZAjUEmkMgYEkY6eo6-nu_Wpfweby7D32dhpgmDjIQ8dE4QqJXpZ0cs36GM8pFC_GzquMGa10EqRE2VSzDlZNxhfoPgYSgI_DQQPx8SHmvjwmnj1fHvjmZPfQ3r-D311ouNhfhd8AZm0keI
CitedBy_id crossref_primary_10_1007_s10989_021_10283_z
crossref_primary_10_1016_j_fct_2022_113342
crossref_primary_10_3390_ijms222312814
crossref_primary_10_1016_j_imbio_2022_152221
crossref_primary_10_1016_j_virol_2024_110380
crossref_primary_10_3390_ijerph182212105
crossref_primary_10_3389_fimmu_2024_1427677
crossref_primary_10_1007_s00251_022_01282_5
crossref_primary_10_3389_fchem_2024_1493165
crossref_primary_10_1016_j_immuno_2022_100015
crossref_primary_10_34172_apb_2023_085
crossref_primary_10_3168_jds_2023_23733
crossref_primary_10_1016_j_meegid_2021_105037
crossref_primary_10_2174_0127722708283588240124095057
crossref_primary_10_1016_j_micpath_2024_106572
crossref_primary_10_3389_fimmu_2023_1056101
crossref_primary_10_1007_s12010_022_04116_y
crossref_primary_10_1016_j_ijfoodmicro_2024_110980
crossref_primary_10_1186_s12917_024_04006_x
crossref_primary_10_3389_fviro_2025_1520109
crossref_primary_10_1002_pep2_24329
crossref_primary_10_1002_bab_2604
crossref_primary_10_1016_j_future_2024_07_033
crossref_primary_10_1016_j_bioadv_2024_214153
crossref_primary_10_1021_acsomega_2c03398
crossref_primary_10_3389_fimmu_2022_830497
crossref_primary_10_1016_j_meegid_2021_105149
crossref_primary_10_1038_s41598_024_55788_x
crossref_primary_10_1093_bib_bbac174
crossref_primary_10_1080_07391102_2023_2212305
crossref_primary_10_1016_j_compbiomed_2022_105893
crossref_primary_10_1016_j_ijbiomac_2024_129232
crossref_primary_10_1080_07391102_2022_2037462
crossref_primary_10_36303_SAPJ_0491
crossref_primary_10_1007_s10989_021_10359_w
crossref_primary_10_1016_j_micpath_2021_105372
crossref_primary_10_1007_s12639_024_01696_w
crossref_primary_10_3390_v16071030
crossref_primary_10_1016_j_ab_2024_115701
crossref_primary_10_1016_j_heliyon_2025_e41714
crossref_primary_10_1080_07391102_2024_2318482
crossref_primary_10_3390_bioengineering11040322
crossref_primary_10_1016_j_algal_2024_103440
crossref_primary_10_1016_j_imu_2022_100989
crossref_primary_10_3389_falgy_2024_1297547
crossref_primary_10_1080_07391102_2022_2048079
crossref_primary_10_1155_2021_1315618
crossref_primary_10_1016_j_procbio_2022_08_014
crossref_primary_10_1089_mab_2021_0039
crossref_primary_10_1007_s13205_022_03140_3
crossref_primary_10_1016_j_biologicals_2024_101782
crossref_primary_10_1016_j_indcrop_2024_119855
crossref_primary_10_3390_molecules27092667
crossref_primary_10_1080_07391102_2023_2248301
crossref_primary_10_2903_j_efsa_2022_7044
crossref_primary_10_1111_1541_4337_70100
crossref_primary_10_1080_07391102_2022_2154846
crossref_primary_10_3390_vaccines12101181
crossref_primary_10_1016_j_ebiom_2025_105638
crossref_primary_10_3390_ijms26031190
crossref_primary_10_1016_j_heliyon_2023_e17376
crossref_primary_10_1021_acsomega_2c07213
crossref_primary_10_2903_sp_efsa_2024_EN_8840
crossref_primary_10_1021_acs_jafc_3c07143
crossref_primary_10_7717_peerj_16419
crossref_primary_10_1016_j_compbiomed_2024_108056
crossref_primary_10_1016_j_tvjl_2024_106240
crossref_primary_10_1007_s11356_022_19979_1
crossref_primary_10_1016_j_compbiomed_2024_108738
crossref_primary_10_1186_s13567_022_01045_w
crossref_primary_10_1016_j_biotechadv_2024_108437
crossref_primary_10_61186_ibj_4023
crossref_primary_10_1002_pmic_202300231
crossref_primary_10_1080_07391102_2023_2246587
crossref_primary_10_1038_s41598_024_77957_8
crossref_primary_10_1007_s12672_024_01455_6
crossref_primary_10_1016_j_micpath_2024_106777
crossref_primary_10_1371_journal_pone_0306254
crossref_primary_10_1016_j_ijbiomac_2024_139401
crossref_primary_10_1371_journal_pone_0312262
crossref_primary_10_3390_foods10040809
crossref_primary_10_1016_j_compbiomed_2022_105462
crossref_primary_10_1371_journal_pone_0273770
crossref_primary_10_1016_j_micpath_2024_107188
crossref_primary_10_1038_s41598_024_68443_2
crossref_primary_10_1038_s41598_022_14877_5
crossref_primary_10_2217_fmb_2023_0263
crossref_primary_10_1016_j_ijbiomac_2023_128753
crossref_primary_10_1039_D2FO02825E
crossref_primary_10_1155_2023_3763634
crossref_primary_10_1007_s10989_021_10278_w
crossref_primary_10_1002_pmic_202400261
crossref_primary_10_3389_fmicb_2022_921683
crossref_primary_10_3389_fsysb_2024_1309891
crossref_primary_10_1021_acs_jafc_4c02944
crossref_primary_10_1093_bib_bbac525
crossref_primary_10_1016_j_compbiomed_2022_105297
crossref_primary_10_3389_fbinf_2021_709951
crossref_primary_10_1016_j_compbiomed_2024_108083
crossref_primary_10_1080_07391102_2022_2141882
crossref_primary_10_1371_journal_pone_0319191
crossref_primary_10_1093_nar_gkac446
crossref_primary_10_1002_bab_2679
crossref_primary_10_1016_j_micpath_2022_105425
crossref_primary_10_1016_j_jbi_2022_104217
crossref_primary_10_1038_s41598_023_44775_3
crossref_primary_10_3389_fimmu_2021_780610
crossref_primary_10_1016_j_micpath_2021_105346
crossref_primary_10_1142_S2737416524500558
crossref_primary_10_7717_peerj_12548
crossref_primary_10_1016_j_sbi_2025_102990
crossref_primary_10_1155_2023_5560605
crossref_primary_10_3389_fimmu_2021_666742
crossref_primary_10_1016_j_vaccine_2024_05_025
crossref_primary_10_1038_s42003_025_07615_w
crossref_primary_10_1080_07391102_2022_2055648
crossref_primary_10_61186_vacres_10_1_11
crossref_primary_10_1007_s13258_022_01255_8
crossref_primary_10_3390_allergies4010001
crossref_primary_10_1016_j_csbj_2023_07_020
crossref_primary_10_1016_j_ijbiomac_2024_133085
crossref_primary_10_1371_journal_pone_0317216
crossref_primary_10_1080_07391102_2023_2294838
crossref_primary_10_3390_nu14091962
crossref_primary_10_1590_0074_02760220025
crossref_primary_10_3389_fgene_2023_1294159
crossref_primary_10_1007_s12257_024_00153_y
crossref_primary_10_1371_journal_pone_0289609
crossref_primary_10_1007_s00894_023_05690_6
crossref_primary_10_3390_ijerph192013054
crossref_primary_10_1093_bib_bbad246
crossref_primary_10_3390_ijms25115737
crossref_primary_10_1016_j_heliyon_2023_e22121
crossref_primary_10_1099_jgv_0_001802
crossref_primary_10_3389_fmed_2021_825876
crossref_primary_10_1016_j_ijbiomac_2024_135762
crossref_primary_10_1002_pro_4785
crossref_primary_10_1016_j_imu_2023_101435
crossref_primary_10_1021_acs_jcim_3c00419
crossref_primary_10_1016_j_compbiomed_2023_106864
crossref_primary_10_1007_s40203_023_00153_5
crossref_primary_10_1080_07391102_2023_2247081
crossref_primary_10_1016_j_imu_2023_101398
crossref_primary_10_1002_pmic_202400004
crossref_primary_10_1089_cmb_2022_0241
crossref_primary_10_1016_j_bcab_2023_102706
crossref_primary_10_1128_spectrum_00373_22
crossref_primary_10_21603_2074_9414_2022_1_46_57
crossref_primary_10_1093_bioadv_vbad151
crossref_primary_10_3389_fimmu_2022_900509
Cites_doi 10.1093/nar/gky1006
10.1038/srep42851
10.1021/acs.jproteome.6b00686
10.1002/pro.3761
10.1186/1752-0509-7-S5-S9
10.1093/bioinformatics/btw730
10.1038/366421a0
10.1371/journal.pone.0057225
10.3389/fgene.2020.00221
10.1503/cmaj.171315
10.1111/j.1398-9995.2004.00526.x
10.1093/protein/gzh037
10.1186/1745-6150-8-27
10.3389/fimmu.2020.00071
10.4137/EBO.S7931
10.1186/s13062-016-0106-9
10.1007/s00726-009-0381-1
10.1093/bioinformatics/14.1.48
10.1002/jmr.1061
10.1111/jpc.12806
10.1038/srep22843
10.1016/j.pop.2016.04.005
10.1186/1471-2105-8-463
10.1056/NEJMcp1412282
10.1186/s12885-016-2082-y
10.1200/JCO.2012.43.4522
10.1016/j.alit.2019.10.005
10.1016/j.jaip.2015.03.012
10.1093/bioinformatics/btu004
10.1007/s00894-014-2278-5
10.1002/mnfr.201500769
10.1186/1471-2105-11-301
10.1093/bioinformatics/btl158
10.1371/journal.pone.0181748
10.1186/1745-6150-7-12
10.3389/fimmu.2018.02280
10.1097/ACI.0000000000000553
10.1093/bioinformatics/btt619
10.1371/journal.pone.0005861
10.1159/000086314
10.1007/s11894-018-0624-y
10.3389/fmicb.2018.00725
10.1093/bioinformatics/btr110
10.1093/nar/gky092
10.1002/prot.24783
10.1109/TCBB.2016.2527657
10.1016/j.iac.2014.09.004
10.1186/1471-2105-10-421
10.1146/annurev.pharmtox.42.082401.130208
10.1093/nar/gkl343
10.1016/bs.apcsb.2018.01.006
10.1093/database/bax066
10.1186/1471-2105-9-503
10.1186/s13062-015-0046-9
10.1093/bioinformatics/btl621
10.3389/fphar.2018.00954
10.1067/mai.2002.124772
10.1038/s41598-019-41538-x
10.1016/j.pcl.2019.06.004
10.1016/j.jaci.2018.10.020
10.1111/jpc.12178
10.1002/pmic.200700597
10.1186/1471-2105-14-S6-S4
10.1159/000086313
10.1186/1471-2105-9-201
10.1093/bioinformatics/btz029
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2020
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbaa294
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbaa294
10.1093/bib/bbaa294
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-b94c6a85f4af2b5a35d2580b635dfd8693af58b11af7b15968da38189cca618f3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 18:28:39 EDT 2025
Mon Jun 30 08:45:36 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Wed Aug 28 03:20:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords IgE epitope
prediction
MEME/MAST
machine learning
MERCI
BLAST
allergens
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b94c6a85f4af2b5a35d2580b635dfd8693af58b11af7b15968da38189cca618f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8613-0647
0000-0002-0400-2084
0000-0003-1358-292X
0000-0002-1765-3644
0000-0002-8902-2876
0000-0001-6426-7124
PQID 2590045903
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2461399678
proquest_journals_2590045903
crossref_citationtrail_10_1093_bib_bbaa294
crossref_primary_10_1093_bib_bbaa294
oup_primary_10_1093_bib_bbaa294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Singh (2021072117030286500_ref26) 2015; 83
Verma (2021072117030286500_ref47) 2010; 39
Agrawal (2021072117030286500_ref52) 2020
Zhang (2021072117030286500_ref46) 2017; 33
Dimitrov (2021072117030286500_ref20) 2014; 30
Kelleher (2021072117030286500_ref66) 2020; 69
Wheatley (2021072117030286500_ref59) 2015; 372
Waheed (2021072117030286500_ref61) 2016; 43
Vens (2021072117030286500_ref32) 2011; 27
Pande (2021072117030286500_ref43) 2019
Usmani (2021072117030286500_ref71) 2017; 12
Dimitrov (2021072117030286500_ref18) 2014; 20
Maurer-Stroh (2021072117030286500_ref21) 2019; 35
Wan (2021072117030286500_ref56) 2017; 14
Bouziane (2021072117030286500_ref58) 2011; 7
Keet (2021072117030286500_ref65) 2018; 142
Abrams (2021072117030286500_ref62) 2018; 190
Garg (2021072117030286500_ref27) 2008; 9
Usmani (2021072117030286500_ref53) 2018; 9
Mak (2021072117030286500_ref5) 2014
Dimitrov (2021072117030286500_ref17) 2013; 14
UniProt Consortium T (2021072117030286500_ref23) 2018; 46
Nagpal (2021072117030286500_ref50) 2017; 7
Tan (2021072117030286500_ref69) 2013; 49
Li (2021072117030286500_ref28) 2006; 22
Kadam (2021072117030286500_ref30) 2017; 2017
Bailey (2021072117030286500_ref13) 1998; 14
Singh (2021072117030286500_ref34) 2016; 16
Iweala (2021072117030286500_ref64) 2018; 20
Dhall (2021072117030286500_ref39) 2020; 11
Tankersley (2021072117030286500_ref68) 2015; 3
Singh (2021072117030286500_ref35) 2015; 10
Kaundal (2021072117030286500_ref45) 2009; 9
Roesner (2021072117030286500_ref67) 2019; 19
Saha (2021072117030286500_ref11) 2006; 34
Wang (2021072117030286500_ref19) 2013; 7
Nagpal (2021072117030286500_ref73) 2018; 9
Gupta (2021072117030286500_ref31) 2013; 8
Dang (2021072117030286500_ref8) 2014; 30
Bailey (2021072117030286500_ref12) 1994; 2
Savage (2021072117030286500_ref63) 2015; 35
FAO/WHO (2021072117030286500_ref9) 2001
Obermeyer (2021072117030286500_ref1) 2005; 137
Goodman (2021072117030286500_ref22) 2016; 60
Agrawal (2021072117030286500_ref37) 2019; 9
Chaudhary (2021072117030286500_ref36) 2016; 6
Muh (2021072117030286500_ref16) 2009; 4
Singh (2021072117030286500_ref40) 2016; 11
Sutton (2021072117030286500_ref3) 1993; 366
Kumar (2021072117030286500_ref42) 2011; 24
Wan (2021072117030286500_ref55) 2016; 15
Kumar (2021072117030286500_ref54) 2018; 9
Bendtsen (2021072117030286500_ref25) 2004; 17
Chauhan (2021072117030286500_ref33) 2010; 11
(2021072117030286500_ref60) 2019; 66
Vita (2021072117030286500_ref29) 2019; 47
Boratyn (2021072117030286500_ref41) 2012; 7
Pedregosa (2021072117030286500_ref49) 2011; 12
Kumar (2021072117030286500_ref44) 2007; 8
FAO/WHO (2021072117030286500_ref10) 2003
Laurie (2021072117030286500_ref51) 2013; 31
Camacho (2021072117030286500_ref14) 2009; 10
Verma (2021072117030286500_ref48) 2008; 9
Masoli (2021072117030286500_ref2) 2004; 59
Kaur (2021072117030286500_ref24) 2020; 11
Usmani (2021072117030286500_ref72) 2018; 112
Zhang (2021072117030286500_ref15) 2007; 23
Patiyal (2021072117030286500_ref38) 2020; 29
Campbell (2021072117030286500_ref70) 2015; 51
Taylor (2021072117030286500_ref7) 2002; 42
Han (2021072117030286500_ref57) 2013; 8
Goodman (2021072117030286500_ref6) 2005; 137
Broadfield (2021072117030286500_ref4) 2002; 109
References_xml – volume: 47
  start-page: D339
  issue: D1
  year: 2019
  ident: 2021072117030286500_ref29
  article-title: The immune epitope database (IEDB): 2018 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1006
– volume: 7
  start-page: 42851
  year: 2017
  ident: 2021072117030286500_ref50
  article-title: Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential
  publication-title: Sci Rep
  doi: 10.1038/srep42851
– volume: 15
  start-page: 4755
  year: 2016
  ident: 2021072117030286500_ref55
  article-title: Ensemble linear Neighborhood propagation for predicting subchloroplast localization of multi-location proteins
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.6b00686
– volume: 29
  start-page: 201
  year: 2020
  ident: 2021072117030286500_ref38
  article-title: NAGbinder: an approach for identifying N-acetylglucosamine interacting residues of a protein from its primary sequence
  publication-title: Protein Sci
  doi: 10.1002/pro.3761
– year: 2003
  ident: 2021072117030286500_ref10
– volume: 7
  start-page: S9
  issue: Suppl. 5
  year: 2013
  ident: 2021072117030286500_ref19
  article-title: PREAL: prediction of allergenic protein by maximum relevance minimum redundancy (mRMR) feature selection
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-S5-S9
– start-page: 599126
  year: 2019
  ident: 2021072117030286500_ref43
  article-title: Computing wide range of protein/peptide features from their sequence and structure
  publication-title: bioRxiv
– volume: 33
  start-page: 854
  year: 2017
  ident: 2021072117030286500_ref46
  article-title: RBPPred: predicting RNA-binding proteins from sequence using SVM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw730
– volume: 366
  start-page: 421
  year: 1993
  ident: 2021072117030286500_ref3
  article-title: The human IgE network
  publication-title: Nature
  doi: 10.1038/366421a0
– volume: 8
  start-page: e57225
  year: 2013
  ident: 2021072117030286500_ref57
  article-title: An ensemble method for predicting subnuclear localizations from primary protein structures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057225
– volume: 11
  start-page: 221
  year: 2020
  ident: 2021072117030286500_ref39
  article-title: Computing skin cutaneous melanoma outcome from the HLA-alleles and clinical characteristics
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00221
– volume: 190
  start-page: E532
  year: 2018
  ident: 2021072117030286500_ref62
  article-title: Diagnosing and managing drug allergy
  publication-title: CMAJ
  doi: 10.1503/cmaj.171315
– volume: 59
  start-page: 469
  year: 2004
  ident: 2021072117030286500_ref2
  article-title: The global burden of asthma: executive summary of the GINA dissemination committee report
  publication-title: Allergy
  doi: 10.1111/j.1398-9995.2004.00526.x
– volume: 17
  start-page: 349
  year: 2004
  ident: 2021072117030286500_ref25
  article-title: Feature-based prediction of non-classical and leaderless protein secretion
  publication-title: Protein Eng Des Sel
  doi: 10.1093/protein/gzh037
– volume: 8
  start-page: 27
  year: 2013
  ident: 2021072117030286500_ref31
  article-title: Identification of B-cell epitopes in an antigen for inducing specific class of antibodies
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-8-27
– volume: 11
  start-page: 71
  year: 2020
  ident: 2021072117030286500_ref24
  article-title: A hybrid model for predicting pattern recognition receptors using evolutionary information
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00071
– volume: 7
  start-page: EBO.S7931
  year: 2011
  ident: 2021072117030286500_ref58
  article-title: Profiles and majority voting-based ensemble method for protein secondary structure prediction
  publication-title: Evol Bioinform
  doi: 10.4137/EBO.S7931
– volume: 11
  start-page: 4
  year: 2016
  ident: 2021072117030286500_ref40
  article-title: BLAST-based structural annotation of protein residues using protein data Bank
  publication-title: Biol Direct
  doi: 10.1186/s13062-016-0106-9
– volume: 39
  start-page: 101
  year: 2010
  ident: 2021072117030286500_ref47
  article-title: Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile
  publication-title: Amino Acids
  doi: 10.1007/s00726-009-0381-1
– volume: 2
  start-page: 28
  year: 1994
  ident: 2021072117030286500_ref12
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers
  publication-title: Proc Int Conf Intell Syst Mol Biol
– volume: 14
  start-page: 48
  year: 1998
  ident: 2021072117030286500_ref13
  article-title: Combining evidence using p-values: application to sequence homology searches
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.1.48
– year: 2001
  ident: 2021072117030286500_ref9
– volume: 24
  start-page: 303
  year: 2011
  ident: 2021072117030286500_ref42
  article-title: SVM based prediction of RNA-binding proteins using binding residues and evolutionary information
  publication-title: J Mol Recognit
  doi: 10.1002/jmr.1061
– volume: 51
  start-page: 91
  year: 2015
  ident: 2021072117030286500_ref70
  article-title: Fifty years of allergy: 1965–2015
  publication-title: J Paediatr Child Health
  doi: 10.1111/jpc.12806
– volume: 6
  start-page: 22843
  year: 2016
  ident: 2021072117030286500_ref36
  article-title: A web server and mobile app for computing hemolytic potency of peptides
  publication-title: Sci Rep
  doi: 10.1038/srep22843
– volume: 43
  start-page: 393
  year: 2016
  ident: 2021072117030286500_ref61
  article-title: Drug allergy
  publication-title: Prim Care
  doi: 10.1016/j.pop.2016.04.005
– volume: 8
  start-page: 463
  year: 2007
  ident: 2021072117030286500_ref44
  article-title: Identification of DNA-binding proteins using support vector machines and evolutionary profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-463
– volume: 372
  start-page: 456
  year: 2015
  ident: 2021072117030286500_ref59
  article-title: Clinical practice. Allergic rhinitis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp1412282
– volume: 16
  start-page: 77
  year: 2016
  ident: 2021072117030286500_ref34
  article-title: Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer cell lines
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2082-y
– volume: 31
  start-page: 1061
  year: 2013
  ident: 2021072117030286500_ref51
  article-title: Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.43.4522
– volume: 69
  start-page: 3
  year: 2020
  ident: 2021072117030286500_ref66
  article-title: Prevention of food allergy—skin barrier interventions
  publication-title: Allergol Int
  doi: 10.1016/j.alit.2019.10.005
– volume: 3
  start-page: 315
  year: 2015
  ident: 2021072117030286500_ref68
  article-title: Stinging insect allergy: state of the art 2015
  publication-title: J Allergy Clin Immunol Pract
  doi: 10.1016/j.jaip.2015.03.012
– volume: 30
  start-page: 1120
  year: 2014
  ident: 2021072117030286500_ref8
  article-title: Allerdictor: fast allergen prediction using text classification techniques
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu004
– volume: 20
  start-page: 2278
  year: 2014
  ident: 2021072117030286500_ref18
  article-title: AllerTOP v.2—a server for in silico prediction of allergens
  publication-title: J Mol Model
  doi: 10.1007/s00894-014-2278-5
– volume: 60
  start-page: 1183
  year: 2016
  ident: 2021072117030286500_ref22
  article-title: AllergenOnline: a peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201500769
– volume: 11
  start-page: 301
  year: 2010
  ident: 2021072117030286500_ref33
  article-title: Prediction of GTP interacting residues, dipeptides and tripeptides in a protein from its evolutionary information
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-301
– volume: 22
  start-page: 1658
  year: 2006
  ident: 2021072117030286500_ref28
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 12
  year: 2017
  ident: 2021072117030286500_ref71
  article-title: THPdb: database of FDA-approved peptide and protein therapeutics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181748
– volume: 7
  start-page: 12
  year: 2012
  ident: 2021072117030286500_ref41
  article-title: Domain enhanced lookup time accelerated BLAST
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-7-12
– volume: 9
  start-page: 2280
  year: 2018
  ident: 2021072117030286500_ref73
  article-title: A web resource for designing subunit vaccine against major pathogenic species of bacteria
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02280
– volume: 19
  start-page: 319
  year: 2019
  ident: 2021072117030286500_ref67
  article-title: Common and different roles of IL-4 and IL-13 in skin allergy and clinical implications
  publication-title: Curr Opin Allergy Clin Immunol
  doi: 10.1097/ACI.0000000000000553
– volume: 30
  start-page: 846
  year: 2014
  ident: 2021072117030286500_ref20
  article-title: AllergenFP: allergenicity prediction by descriptor fingerprints
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt619
– volume: 4
  start-page: e5861
  year: 2009
  ident: 2021072117030286500_ref16
  article-title: AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005861
– volume: 137
  start-page: 153
  year: 2005
  ident: 2021072117030286500_ref6
  article-title: Assessing genetically modified crops to minimize the risk of increased food allergy: a review
  publication-title: Int Arch Allergy Immunol
  doi: 10.1159/000086314
– volume: 20
  start-page: 17
  year: 2018
  ident: 2021072117030286500_ref64
  article-title: Food allergy
  publication-title: Curr Gastroenterol Rep
  doi: 10.1007/s11894-018-0624-y
– volume: 9
  start-page: 725
  year: 2018
  ident: 2021072117030286500_ref54
  article-title: Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00725
– volume: 27
  start-page: 1231
  year: 2011
  ident: 2021072117030286500_ref32
  article-title: Identifying discriminative classification-based motifs in biological sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr110
– volume: 46
  start-page: 2699
  year: 2018
  ident: 2021072117030286500_ref23
  article-title: UniProt: the universal protein knowledgebase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky092
– volume: 83
  start-page: 910
  year: 2015
  ident: 2021072117030286500_ref26
  article-title: In silico platform for predicting and initiating β-turns in a protein at desired locations
  publication-title: Proteins
  doi: 10.1002/prot.24783
– volume: 14
  start-page: 212
  year: 2017
  ident: 2021072117030286500_ref56
  article-title: Transductive learning for multi-label protein subchloroplast localization prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2527657
– volume: 35
  start-page: 45
  year: 2015
  ident: 2021072117030286500_ref63
  article-title: Food allergy: epidemiology and natural history
  publication-title: Immunol Allergy Clin North Am
  doi: 10.1016/j.iac.2014.09.004
– volume: 10
  start-page: 421
  year: 2009
  ident: 2021072117030286500_ref14
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– start-page: 487
  volume-title: Primer to the Immune Response
  year: 2014
  ident: 2021072117030286500_ref5
– volume: 42
  start-page: 99
  year: 2002
  ident: 2021072117030286500_ref7
  article-title: Protein allergenicity assessment of foods produced through agricultural biotechnology
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev.pharmtox.42.082401.130208
– volume: 34
  start-page: W202
  issue: Web Server Issue
  year: 2006
  ident: 2021072117030286500_ref11
  article-title: AlgPred: prediction of allergenic proteins and mapping of IgE epitopes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl343
– volume: 112
  start-page: 221
  year: 2018
  ident: 2021072117030286500_ref72
  article-title: In silico tools and databases for designing peptide-based vaccine and drugs
  publication-title: Adv Protein Chem Struct Biol
  doi: 10.1016/bs.apcsb.2018.01.006
– volume: 2017
  start-page: bax066
  year: 2017
  ident: 2021072117030286500_ref30
  article-title: AllerBase: a comprehensive allergen knowledgebase
  publication-title: Database (Oxford)
  doi: 10.1093/database/bax066
– volume: 9
  start-page: 503
  year: 2008
  ident: 2021072117030286500_ref27
  article-title: ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-503
– volume: 10
  start-page: 10
  year: 2015
  ident: 2021072117030286500_ref35
  article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using random forest
  publication-title: Biol Direct
  doi: 10.1186/s13062-015-0046-9
– volume: 23
  start-page: 504
  year: 2007
  ident: 2021072117030286500_ref15
  article-title: AllerTool: a web server for predicting allergenicity and allergic cross-reactivity in proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl621
– volume: 9
  start-page: 954
  year: 2018
  ident: 2021072117030286500_ref53
  article-title: Prediction of antitubercular peptides from sequence information using ensemble classifier and hybrid features
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00954
– volume: 109
  start-page: 969
  year: 2002
  ident: 2021072117030286500_ref4
  article-title: Increase in the prevalence of allergen skin sensitization in successive birth cohorts
  publication-title: J Allergy Clin Immunol
  doi: 10.1067/mai.2002.124772
– volume: 9
  start-page: 5129
  year: 2019
  ident: 2021072117030286500_ref37
  article-title: NeuroPIpred: a tool to predict, design and scan insect neuropeptides
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41538-x
– volume: 66
  start-page: 981
  year: 2019
  ident: 2021072117030286500_ref60
  article-title: Allergic rhinitis in children and adolescents
  publication-title: Pediatr Clin North Am
  doi: 10.1016/j.pcl.2019.06.004
– volume: 142
  start-page: 1719
  year: 2018
  ident: 2021072117030286500_ref65
  article-title: Advances in food allergy in 2017
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2018.10.020
– volume: 49
  start-page: E381
  year: 2013
  ident: 2021072117030286500_ref69
  article-title: Insect allergy in children
  publication-title: J Paediatr Child Health
  doi: 10.1111/jpc.12178
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2021072117030286500_ref49
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 2324
  year: 2009
  ident: 2021072117030286500_ref45
  article-title: RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information
  publication-title: Proteomics
  doi: 10.1002/pmic.200700597
– volume: 14
  start-page: S4
  issue: Suppl. 6
  year: 2013
  ident: 2021072117030286500_ref17
  article-title: AllerTOP—a server for in silico prediction of allergens
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S6-S4
– volume: 137
  start-page: 151
  year: 2005
  ident: 2021072117030286500_ref1
  article-title: Can we predict or avoid the allergenic potential of genetically modified organisms?
  publication-title: Int Arch Allergy Immunol
  doi: 10.1159/000086313
– volume: 9
  start-page: 201
  year: 2008
  ident: 2021072117030286500_ref48
  article-title: Identification of proteins secreted by malaria parasite into erythrocyte using SVM and PSSM profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-201
– volume: 35
  start-page: 3020
  year: 2019
  ident: 2021072117030286500_ref21
  article-title: AllerCatPro—prediction of protein allergenicity potential from the protein sequence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz029
– year: 2020
  ident: 2021072117030286500_ref52
  article-title: AntiCP 2.0: an updated model for predicting anticancer peptides [published online ahead of print, 2020 Aug 6]
  publication-title: Brief Bioinform
SSID ssj0020781
Score 2.652941
Snippet Abstract AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred...
AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated version of AlgPred developed in...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alignment
Allergens
Antigens
Correlation coefficient
Correlation coefficients
Datasets
Epitope mapping
Immunoglobulin E
Internet
Learning algorithms
Machine learning
Peptide mapping
Performance evaluation
Prediction models
Predictions
Proteins
Searching
Servers
Similarity
Training
Title AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes
URI https://www.proquest.com/docview/2590045903
https://www.proquest.com/docview/2461399678
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8MwDDajMNhl7Mm6dpsHPQ28NrGdOLuV0dIN9ji00NOCHdslUNLQtIf9-8lJWugo2yWHRE5AsiLJkj4h1FGMGmkjS6iwhrBEagJmyBLLEw8skDHcuAP9t_dgNGGvUz6tC2SLPSn8iHZVqrpKSelHDvYTzK-DyB9_TLdxlcOrqZqIQuLQ3es2vF9rdwzPTjPb5u9bmpThCTqufUHcr4R3ig5MdoYOq-mQ3-foqz-ffS6Nxv5j7wnLDKflAQDcqMY-Y_A3cb50mRZXu4zdVBTXSpkmuERfSLMCVgG1dBgMM7yw-GU2wCYHJc5NcYEmw8H4eUTqcQgkoT5fERWxJJCCWyatr7ikXPtc9BS4DNpqEURUWi6U50kbKmBTILR09jgCIQWesPQSNbJFZq4QllJ5OkpCeBVjOlAC3CQBYoNgI2S2x5roYcOrOKmxwt3Iinlc5axpDIyNa8Y2UWdLnFcQGfvJ7oDpf1O0NwKJa00qYt-NNWVwoU10v30MOuASGzIzizXQMHBKIHALxfW_H2mhI9-VpZQVt23UWC3X5gb8ipW6LXfVD_8Hy1M
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AlgPred+2.0%3A+an+improved+method+for+predicting+allergenic+proteins+and+mapping+of+IgE+epitopes&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sharma%2C+Neelam&rft.au=Patiyal%2C+Sumeet&rft.au=Dhall%2C+Anjali&rft.au=Pande%2C+Akshara&rft.date=2021-07-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbaa294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbaa294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon