Topology optimization method with finite elements based on the k-ε turbulence model
A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 361; p. 112784 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow.
•Structures considering turbulent flow are optimized.•The k−ε equations are modified for topology optimization.•The k−ε turbulent model is solved by the finite element method.•The turbulent kinetic energy and the energy dissipation are considered. |
---|---|
AbstractList | A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow.
•Structures considering turbulent flow are optimized.•The k−ε equations are modified for topology optimization.•The k−ε turbulent model is solved by the finite element method.•The turbulent kinetic energy and the energy dissipation are considered. A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow. |
ArticleNumber | 112784 |
Author | Yoon, Gil Ho |
Author_xml | – sequence: 1 givenname: Gil Ho surname: Yoon fullname: Yoon, Gil Ho email: gilho.yoon@gmail.com organization: School of Mechanical Engineering, Hanyang University, Seoul, Korea |
BookMark | eNp9kMtOwzAQRS1UJErhA9hZYp3gV2JHrFDFS6rEpqyt1BlTlyQutgsq_8Vv8E2klBWLzmY299zRnFM06n0PCF1QklNCy6tVbro6Z4RWOaVMKnGExlTJKmOUqxEaEyKKTCpWnKDTGFdkGEXZGM3nfu1b_7LFfp1c5z7r5HyPO0hL3-APl5bYut4lwNBCB32KeFFHaPAQSkvAr9n3F06bsNi00BvAnW-gPUPHtm4jnP_tCXq-u51PH7LZ0_3j9GaWGc6KlC2ksWBFsQABwnJLJBHGWMOEqKTiioOoBC24kGCNorWgpOSgSjBlqRgBPkGX-9518G8biEmv_Cb0w0nNuKSyrMpKDCm6T5ngYwxg9Tq4rg5bTYneydMrPcjTO3l6L29g5D_GuPSrJoXatQfJ6z0Jw-PvDoKOxu3UNC6ASbrx7gD9AxezjAA |
CitedBy_id | crossref_primary_10_1016_j_renene_2020_11_003 crossref_primary_10_1007_s00158_021_03064_1 crossref_primary_10_1016_j_cma_2020_113380 crossref_primary_10_2139_ssrn_4049650 crossref_primary_10_1016_j_buildenv_2023_110823 crossref_primary_10_1007_s00158_021_03118_4 crossref_primary_10_1515_eng_2022_0569 crossref_primary_10_1007_s00158_020_02806_x crossref_primary_10_1016_j_compfluid_2022_105561 crossref_primary_10_1016_j_apm_2023_01_019 crossref_primary_10_1111_1750_3841_15814 crossref_primary_10_1016_j_cma_2024_117698 crossref_primary_10_1002_nme_70016 crossref_primary_10_1063_5_0258319 crossref_primary_10_3390_aerospace11070525 crossref_primary_10_1115_1_4067310 crossref_primary_10_3390_fluids8080221 crossref_primary_10_1016_j_ijthermalsci_2022_107783 crossref_primary_10_1016_j_jobe_2024_110609 crossref_primary_10_1016_j_buildenv_2021_108029 crossref_primary_10_1051_e3sconf_202016406007 crossref_primary_10_1088_1742_6596_2866_1_012031 crossref_primary_10_1016_j_apm_2023_01_028 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123614 crossref_primary_10_1016_j_precisioneng_2021_06_008 crossref_primary_10_1007_s00158_021_03106_8 crossref_primary_10_1007_s00158_022_03311_z crossref_primary_10_1002_fld_5338 crossref_primary_10_1016_j_buildenv_2024_112508 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126450 crossref_primary_10_1007_s12665_022_10206_1 crossref_primary_10_1016_j_camwa_2024_10_029 crossref_primary_10_1016_j_cma_2020_113551 crossref_primary_10_1016_j_apm_2022_10_039 crossref_primary_10_1016_j_flowmeasinst_2024_102649 crossref_primary_10_1016_j_ces_2022_117820 crossref_primary_10_3390_e25091299 crossref_primary_10_1016_j_cma_2021_114406 crossref_primary_10_1016_j_egyai_2023_100248 crossref_primary_10_1016_j_csite_2024_105255 crossref_primary_10_1007_s00158_021_02903_5 crossref_primary_10_3390_fluids5010029 crossref_primary_10_1016_j_renene_2021_09_044 crossref_primary_10_1016_j_compstruc_2024_107471 crossref_primary_10_1016_j_apm_2025_115982 crossref_primary_10_1016_j_applthermaleng_2023_122127 crossref_primary_10_1115_1_4055608 crossref_primary_10_3390_en15238924 crossref_primary_10_1007_s00158_023_03575_z crossref_primary_10_2166_aqua_2021_222 crossref_primary_10_1007_s00158_020_02719_9 crossref_primary_10_1016_j_cma_2022_115729 crossref_primary_10_1007_s00158_022_03336_4 crossref_primary_10_1016_j_applthermaleng_2025_126049 crossref_primary_10_1063_5_0215213 crossref_primary_10_2139_ssrn_4001458 crossref_primary_10_1007_s00158_022_03353_3 crossref_primary_10_1109_TCPMT_2024_3363050 |
Cites_doi | 10.1016/j.ijheatfluidflow.2014.03.002 10.1016/j.finel.2017.07.005 10.1016/j.cma.2007.02.013 10.1007/BF00311842 10.2514/1.J051307 10.1016/S1270-9638(02)01148-3 10.1007/s00158-016-1467-5 10.1080/0305215X.2012.717074 10.1142/S0218396X15500022 10.1016/j.ast.2006.12.001 10.1016/j.compfluid.2008.12.006 10.1504/IJVD.2012.047383 10.1002/nme.3151 10.1080/10407798909342397 10.1007/s00158-004-0508-7 10.1016/j.compfluid.2012.06.018 10.1016/S0142-727X(00)00007-2 10.1016/j.cma.2005.02.025 10.1007/s00158-010-0526-6 10.1007/s001620050102 10.1016/j.oceaneng.2014.05.006 10.1002/zamm.200700122 10.1016/j.cma.2017.11.029 10.1016/j.apm.2014.07.001 10.1002/nme.1468 10.1016/j.cma.2014.05.021 10.1115/1.4007159 10.1007/s00158-014-1123-x 10.1016/j.cma.2016.01.014 10.1016/j.jcp.2013.09.033 10.1007/BF01646553 10.1016/j.cam.2005.03.008 10.1002/nme.1620240207 10.1007/s00158-012-0847-8 10.1016/j.cma.2011.11.005 10.1016/j.camwa.2009.08.044 10.1016/j.compstruc.2009.01.017 10.1007/s00158-018-1966-7 10.1007/s12206-010-0328-1 10.1002/fld.426 10.1002/nme.1900 10.1002/nme.2777 10.1186/2190-5983-4-6 10.1016/j.compfluid.2011.05.005 10.1016/j.jcp.2008.08.022 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Apr 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Apr 1, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2019.112784 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
ExternalDocumentID | 10_1016_j_cma_2019_112784 S0045782519306760 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-b7cfef45be4e4f3f0704ccfc244978383e49415347efc81a41063e86ec66820e3 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 08:28:29 EDT 2025 Tue Jul 01 04:06:09 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Fri Feb 23 02:49:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Topology optimization k−ε turbulent model Turbulent flow RANS model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-b7cfef45be4e4f3f0704ccfc244978383e49415347efc81a41063e86ec66820e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2371769694 |
PQPubID | 2045269 |
ParticipantIDs | proquest_journals_2371769694 crossref_primary_10_1016_j_cma_2019_112784 crossref_citationtrail_10_1016_j_cma_2019_112784 elsevier_sciencedirect_doi_10_1016_j_cma_2019_112784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Picelli, Vicente, Pavanello (b42) 2017; 135 Legay, Chessa, Belytschko (b44) 2006; 195 Kreissl, Pingen, Maute (b53) 2011; 87 Pope (b1) 2000 Dilgen, Dilgen, Fuhrman, Sigmund, Lazarov (b18) 2018; 331 Spalart, Allmaras (b20) 1994; 1 C. Rumsey, The Spalart–Allmaras turbulence model, in: Webpage at Langley Research Center, Langley Research Center. E.M. Papoutsis-Kiachagias, E.A. Kontoleontos, A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, Constrained topology optimization for laminar and turbulent flows, including heat transfer, in: Proc. EUROGEN, Evolutionary and Deterministic Methods for Design, Optimization and Control, Capua, Italy, 2011. Pingen, Maute (b50) 2010; 59 Jenkins, Maute (b38) 2016; 54 Zymaris, Papadimitriou, Giannakoglou, Othmer (b17) 2009; 38 Yoon (b45) 2014; 278 Dede, Lee, Liu, Robert, Yonak (b52) 2012; 58 Svanberg (b58) 1987; 24 Deck, Duveau, d’Espiney, Guillen (b43) 2002; 6 Deng, Liu, Liu, Wu (b46) 2014; 257 OPENFOAM (b14) 2014 Adams (b24) 1998; 12 Yonekura, Kanno (b32) 2015; 51 Evgrafov, Pingen, Maute (b30) 2008; 88 Yoon (b3) 2016; 303 ANSYS, Introduction to analysis fluent, Customer Training Material. Othmer (b36) 2014; 4 P. Croaker, A. Skvortsov, N. Kessissoglou, A simple approach to estimate flow-induced noise from steady state CFD data, in: Proceedings of Acoustics, 2011, pp. 1–8. Han, Zhou, Tu, Fang, He (b19) 2014; 87 Dede (b51) 2012; 134 Jemcov, Stephens (b35) 2012 Zhou, Li (b31) 2008; 227 Bathe, Zhang (b7) 2009; 87 Bueno-Orovio, Castro, Palacios, Zuazua (b16) 2012; 50 Spalart (b21) 2000; 21 David, Florist (b23) 1971; 20 Sá, Romero, Horikawa, Silva (b29) 2018; 57 Yoon (b28) 2015; 23 Papoutsis-Kiachagias, Giannakoglou (b33) 2014 Lee, Kim (b6) 2007; 11 Yoon (b40) 2012; 209 Ciofalo, Collins (b54) 1989; 15 Wilcox (b12) 2006 Argyropoulos, Markatos (b11) 2015; 39 Yoon, Jensen, Sigmund (b27) 2007; 70 P. Mirza, J. Hrvoje, R. Henrik, R. Christoph, RANS turbulence treatment for continuous adjoint optimization, in: Proc. 8th International Symposium on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Vol. 8, 2015. Makhija, Pingen, Yang, Maute (b49) 2012; 67 White (b22) 1994 Olesen, Okkels, Bruus (b56) 2006; 65 Kontoleontos, Papoutsis-Kiachagias, Zymaris, Papadimitriou, Giannakoglou (b5) 2013; 45 Oktay, Akay, Merttopcuoglu (b4) 2011; 49 Javaherchi (b8) 2011 Kreissl, Pingen, Evgrafov, Maute (b48) 2010; 42 Lilley (b57) 1994; 6 Yoon (b41) 2010; 82 Bendsœ, Sigmund (b15) 2003 Gersborg-Hansen, Sigmund, Haber (b47) 2005; 30 Söderlind, Wang (b55) 2006; 185 Yoon (b39) 2010; 24 Borrvall, Petersson (b25) 2003; 41 Crivellini, D’Alessandro (b9) 2014; 47 Bruggi, Venini (b26) 2007; 196 Deng, Liu, Wu (b37) 2013; 47 Crivellini (10.1016/j.cma.2019.112784_b9) 2014; 47 Legay (10.1016/j.cma.2019.112784_b44) 2006; 195 Dilgen (10.1016/j.cma.2019.112784_b18) 2018; 331 Olesen (10.1016/j.cma.2019.112784_b56) 2006; 65 10.1016/j.cma.2019.112784_b34 Kreissl (10.1016/j.cma.2019.112784_b53) 2011; 87 Bathe (10.1016/j.cma.2019.112784_b7) 2009; 87 Othmer (10.1016/j.cma.2019.112784_b36) 2014; 4 Dede (10.1016/j.cma.2019.112784_b51) 2012; 134 Picelli (10.1016/j.cma.2019.112784_b42) 2017; 135 Lee (10.1016/j.cma.2019.112784_b6) 2007; 11 Argyropoulos (10.1016/j.cma.2019.112784_b11) 2015; 39 Yoon (10.1016/j.cma.2019.112784_b27) 2007; 70 Spalart (10.1016/j.cma.2019.112784_b21) 2000; 21 Borrvall (10.1016/j.cma.2019.112784_b25) 2003; 41 Gersborg-Hansen (10.1016/j.cma.2019.112784_b47) 2005; 30 Svanberg (10.1016/j.cma.2019.112784_b58) 1987; 24 Dede (10.1016/j.cma.2019.112784_b52) 2012; 58 Yoon (10.1016/j.cma.2019.112784_b3) 2016; 303 Yonekura (10.1016/j.cma.2019.112784_b32) 2015; 51 Jenkins (10.1016/j.cma.2019.112784_b38) 2016; 54 Deng (10.1016/j.cma.2019.112784_b37) 2013; 47 OPENFOAM (10.1016/j.cma.2019.112784_b14) 2014 Pingen (10.1016/j.cma.2019.112784_b50) 2010; 59 Pope (10.1016/j.cma.2019.112784_b1) 2000 Spalart (10.1016/j.cma.2019.112784_b20) 1994; 1 Lilley (10.1016/j.cma.2019.112784_b57) 1994; 6 Ciofalo (10.1016/j.cma.2019.112784_b54) 1989; 15 Yoon (10.1016/j.cma.2019.112784_b40) 2012; 209 Bruggi (10.1016/j.cma.2019.112784_b26) 2007; 196 10.1016/j.cma.2019.112784_b2 10.1016/j.cma.2019.112784_b59 10.1016/j.cma.2019.112784_b13 Bendsœ (10.1016/j.cma.2019.112784_b15) 2003 10.1016/j.cma.2019.112784_b10 Kontoleontos (10.1016/j.cma.2019.112784_b5) 2013; 45 Papoutsis-Kiachagias (10.1016/j.cma.2019.112784_b33) 2014 Deck (10.1016/j.cma.2019.112784_b43) 2002; 6 David (10.1016/j.cma.2019.112784_b23) 1971; 20 Yoon (10.1016/j.cma.2019.112784_b41) 2010; 82 Söderlind (10.1016/j.cma.2019.112784_b55) 2006; 185 White (10.1016/j.cma.2019.112784_b22) 1994 Javaherchi (10.1016/j.cma.2019.112784_b8) 2011 Zymaris (10.1016/j.cma.2019.112784_b17) 2009; 38 Jemcov (10.1016/j.cma.2019.112784_b35) 2012 Deng (10.1016/j.cma.2019.112784_b46) 2014; 257 Bueno-Orovio (10.1016/j.cma.2019.112784_b16) 2012; 50 Yoon (10.1016/j.cma.2019.112784_b28) 2015; 23 Yoon (10.1016/j.cma.2019.112784_b45) 2014; 278 Kreissl (10.1016/j.cma.2019.112784_b48) 2010; 42 Oktay (10.1016/j.cma.2019.112784_b4) 2011; 49 Zhou (10.1016/j.cma.2019.112784_b31) 2008; 227 Adams (10.1016/j.cma.2019.112784_b24) 1998; 12 Han (10.1016/j.cma.2019.112784_b19) 2014; 87 Yoon (10.1016/j.cma.2019.112784_b39) 2010; 24 Makhija (10.1016/j.cma.2019.112784_b49) 2012; 67 Evgrafov (10.1016/j.cma.2019.112784_b30) 2008; 88 Wilcox (10.1016/j.cma.2019.112784_b12) 2006 Sá (10.1016/j.cma.2019.112784_b29) 2018; 57 |
References_xml | – volume: 38 start-page: 1528 year: 2009 end-page: 1538 ident: b17 article-title: Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows publication-title: Comput. & Fluids – volume: 39 start-page: 693 year: 2015 end-page: 732 ident: b11 article-title: Recent advances on the numerical modelling of turbulent flows publication-title: Appl. Math. Model. – reference: P. Mirza, J. Hrvoje, R. Henrik, R. Christoph, RANS turbulence treatment for continuous adjoint optimization, in: Proc. 8th International Symposium on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Vol. 8, 2015. – volume: 23 year: 2015 ident: b28 article-title: Unified analysis with mixed finite element formulation for acoustic-porous-structure multiphysics system publication-title: J. Comput. Acoust. – volume: 185 start-page: 225 year: 2006 end-page: 243 ident: b55 article-title: Adaptive time-stepping and computational stability publication-title: J. Comput. Appl. Math. – reference: C. Rumsey, The Spalart–Allmaras turbulence model, in: Webpage at Langley Research Center, Langley Research Center. – year: 2012 ident: b35 article-title: Topological derivatice formulation for shape sensitivity in incompressible turbulnet flow publication-title: Proc. Ninth International Conference on CFD in the Minerals and Process Industries – year: 2003 ident: b15 article-title: Topology Optimization : Theory, Methods, and Applications – volume: 41 start-page: 77 year: 2003 end-page: 107 ident: b25 article-title: Topology optimization of fluids in Stokes flow publication-title: Internat. J. Numer. Methods Fluids – volume: 67 start-page: 104 year: 2012 end-page: 114 ident: b49 article-title: Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method publication-title: Comput. & Fluids – volume: 65 start-page: 975 year: 2006 end-page: 1001 ident: b56 article-title: A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow publication-title: Internat. J. Numer. Methods Engrg. – year: 2014 ident: b14 article-title: Turbulence models – reference: E.M. Papoutsis-Kiachagias, E.A. Kontoleontos, A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, Constrained topology optimization for laminar and turbulent flows, including heat transfer, in: Proc. EUROGEN, Evolutionary and Deterministic Methods for Design, Optimization and Control, Capua, Italy, 2011. – volume: 87 start-page: 40 year: 2014 end-page: 49 ident: b19 article-title: Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model publication-title: Ocean Eng. – volume: 51 start-page: 159 year: 2015 end-page: 172 ident: b32 article-title: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method publication-title: Struct. Multidiscip. Optim. – year: 2000 ident: b1 article-title: Turbulent Flows – volume: 49 start-page: 141 year: 2011 end-page: 145 ident: b4 article-title: Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures publication-title: Comput. & Fluids – volume: 21 start-page: 252 year: 2000 end-page: 263 ident: b21 article-title: Strategies for turbulence modelling and simulations publication-title: Int. J. Heat Fluid Flow – volume: 135 start-page: 44 year: 2017 end-page: 55 ident: b42 article-title: Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads publication-title: Finite Elem. Anal. Des. – volume: 70 start-page: 1049 year: 2007 end-page: 1075 ident: b27 article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation publication-title: Internat. J. Numer. Methods Engrg. – volume: 15 start-page: 21 year: 1989 end-page: 47 ident: b54 article-title: k- publication-title: Numer. Heat Transfer B – volume: 47 start-page: 555 year: 2013 end-page: 570 ident: b37 article-title: Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces publication-title: Struct. Multidiscip. Optim. – volume: 20 start-page: 167 year: 1971 end-page: 192 ident: b23 article-title: On the nature of turbulence publication-title: Commun. Math. Phys. – volume: 82 start-page: 591 year: 2010 end-page: 616 ident: b41 article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation publication-title: Internat. J. Numer. Methods Engrg. – year: 2014 ident: b33 article-title: Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications publication-title: Arch. Comput. Method Eng. – reference: ANSYS, Introduction to analysis fluent, Customer Training Material. – volume: 257 start-page: 374 year: 2014 end-page: 399 ident: b46 article-title: Combination of topology optimization and optimal control method publication-title: J. Comput. Phys. – volume: 24 start-page: 1225 year: 2010 end-page: 1233 ident: b39 article-title: Topological design of heat dissipating structure with forced convective heat transfer publication-title: J. Mech. Sci. Technol. – volume: 58 start-page: 159 year: 2012 end-page: 180 ident: b52 article-title: Computational methods for the optimisation and design of electromechanical vehicle systems publication-title: Int. J. Veh. Des. – volume: 50 start-page: 631 year: 2012 end-page: 646 ident: b16 article-title: Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization publication-title: AIAA J. – volume: 209 start-page: 28 year: 2012 end-page: 44 ident: b40 article-title: Topological layout design of electro-fluid-thermal-compliant actuator publication-title: Comput. Method Appl. Mech. – volume: 331 start-page: 363 year: 2018 end-page: 393 ident: b18 article-title: Topology optimization of turbulent flows publication-title: Comput. Method Appl. Mech. – volume: 196 start-page: 3151 year: 2007 end-page: 3164 ident: b26 article-title: Topology optimization of incompressible media using mixed finite elements publication-title: Comput. Method Appl. Mech. – year: 2006 ident: b12 article-title: Turbulence Modeling for CFD – volume: 59 start-page: 2340 year: 2010 end-page: 2350 ident: b50 article-title: Optimal design for non-Newtonian flows using a topology optimization approach publication-title: Comput. Math. Appl. – volume: 227 start-page: 10178 year: 2008 end-page: 10195 ident: b31 article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow publication-title: J. Comput. Phys. – volume: 1 start-page: 5 year: 1994 end-page: 21 ident: b20 article-title: A one-equation turbulence model for aerodynamic flows publication-title: Rech. Aerosp. – volume: 6 start-page: 281 year: 1994 end-page: 301 ident: b57 article-title: The radiated noise from isotropic turbulence publication-title: Theor. Comp. Fluid Dyn. – volume: 30 start-page: 181 year: 2005 end-page: 192 ident: b47 article-title: Topology optimization of channel flow problems publication-title: Struct. Multidiscip. Optim. – volume: 11 start-page: 163 year: 2007 end-page: 173 ident: b6 article-title: Automated design methodology of turbulent internal flow using discrete adjoint formulation publication-title: Aerosp. Sci. Technol. – volume: 6 start-page: 171 year: 2002 end-page: 183 ident: b43 article-title: Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations publication-title: Aerosp. Sci. Technol. – volume: 134 year: 2012 ident: b51 article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling publication-title: J. Electron. Packag. – volume: 47 start-page: 70 year: 2014 end-page: 83 ident: b9 article-title: Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils publication-title: Int. J. Heat Fluid Flow – volume: 278 start-page: 499 year: 2014 end-page: 523 ident: b45 article-title: Stress-based topology optimization method for steady-state fluid–structure interaction problems publication-title: Comput. Method Appl. Mech. – volume: 4 start-page: 6 year: 2014 ident: b36 article-title: Adjoint methods for car aerodynamics publication-title: J. Math. Ind. – volume: 195 start-page: 2070 year: 2006 end-page: 2087 ident: b44 article-title: An Eulerian–Lagrangian method for fluid–structure interaction based on level sets publication-title: Comput. Method Appl. Mech. – year: 2011 ident: b8 article-title: Review of Spalart–Allmaras Turbulence Model and its Modifications – volume: 87 start-page: 604 year: 2009 end-page: 617 ident: b7 article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions publication-title: Comput. Struct. – year: 1994 ident: b22 article-title: Fluid Mechanics – volume: 88 start-page: 129 year: 2008 end-page: 141 ident: b30 article-title: Topology optimization of fluid domains: kinetic theory approach publication-title: ZAMM - J. Appl. Math. Mech. – volume: 57 start-page: 2045 year: 2018 end-page: 2059 ident: b29 article-title: Topology optimization applied to the development of small scale pump publication-title: Struct. Multidiscip. Optim. – volume: 87 start-page: 1229 year: 2011 end-page: 1253 ident: b53 article-title: Topology optimization for unsteady flow publication-title: Internat. J. Numer. Methods Engrg. – volume: 303 start-page: 288 year: 2016 end-page: 311 ident: b3 article-title: Topology optimization for turbulent flow with Spalart–Allmaras model publication-title: Comput. Method Appl. Mech. – reference: P. Croaker, A. Skvortsov, N. Kessissoglou, A simple approach to estimate flow-induced noise from steady state CFD data, in: Proceedings of Acoustics, 2011, pp. 1–8. – volume: 45 start-page: 941 year: 2013 end-page: 961 ident: b5 article-title: Adjoint-based constrained topology optimization for viscous flows, including heat transfer publication-title: Eng. Optim. – volume: 12 start-page: 109 year: 1998 end-page: 129 ident: b24 article-title: Direct numerical simulation of turbulent compression ramp flow publication-title: Theor. Comput. Fluid Dyn. – volume: 54 start-page: 1191 year: 2016 end-page: 1208 ident: b38 article-title: An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems publication-title: Struct. Multidiscip. Optim. – volume: 42 start-page: 495 year: 2010 end-page: 516 ident: b48 article-title: Topology optimization of flexible micro-fluidic devices publication-title: Struct. Multidiscip. Optim. – volume: 24 start-page: 359 year: 1987 end-page: 373 ident: b58 article-title: The method of moving asymptotes - a new method for structural optimization publication-title: Internat. J. Numer. Methods Engrg. – volume: 47 start-page: 70 year: 2014 ident: 10.1016/j.cma.2019.112784_b9 article-title: Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2014.03.002 – year: 2003 ident: 10.1016/j.cma.2019.112784_b15 – volume: 135 start-page: 44 year: 2017 ident: 10.1016/j.cma.2019.112784_b42 article-title: Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.07.005 – year: 2006 ident: 10.1016/j.cma.2019.112784_b12 – volume: 196 start-page: 3151 year: 2007 ident: 10.1016/j.cma.2019.112784_b26 article-title: Topology optimization of incompressible media using mixed finite elements publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2007.02.013 – volume: 6 start-page: 281 year: 1994 ident: 10.1016/j.cma.2019.112784_b57 article-title: The radiated noise from isotropic turbulence publication-title: Theor. Comp. Fluid Dyn. doi: 10.1007/BF00311842 – ident: 10.1016/j.cma.2019.112784_b13 – ident: 10.1016/j.cma.2019.112784_b59 – volume: 50 start-page: 631 year: 2012 ident: 10.1016/j.cma.2019.112784_b16 article-title: Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization publication-title: AIAA J. doi: 10.2514/1.J051307 – volume: 6 start-page: 171 year: 2002 ident: 10.1016/j.cma.2019.112784_b43 article-title: Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations publication-title: Aerosp. Sci. Technol. doi: 10.1016/S1270-9638(02)01148-3 – year: 2000 ident: 10.1016/j.cma.2019.112784_b1 – volume: 54 start-page: 1191 year: 2016 ident: 10.1016/j.cma.2019.112784_b38 article-title: An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1467-5 – ident: 10.1016/j.cma.2019.112784_b10 – volume: 45 start-page: 941 year: 2013 ident: 10.1016/j.cma.2019.112784_b5 article-title: Adjoint-based constrained topology optimization for viscous flows, including heat transfer publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.717074 – volume: 23 year: 2015 ident: 10.1016/j.cma.2019.112784_b28 article-title: Unified analysis with mixed finite element formulation for acoustic-porous-structure multiphysics system publication-title: J. Comput. Acoust. doi: 10.1142/S0218396X15500022 – year: 2014 ident: 10.1016/j.cma.2019.112784_b33 article-title: Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications publication-title: Arch. Comput. Method Eng. – volume: 11 start-page: 163 year: 2007 ident: 10.1016/j.cma.2019.112784_b6 article-title: Automated design methodology of turbulent internal flow using discrete adjoint formulation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2006.12.001 – volume: 38 start-page: 1528 year: 2009 ident: 10.1016/j.cma.2019.112784_b17 article-title: Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2008.12.006 – volume: 58 start-page: 159 year: 2012 ident: 10.1016/j.cma.2019.112784_b52 article-title: Computational methods for the optimisation and design of electromechanical vehicle systems publication-title: Int. J. Veh. Des. doi: 10.1504/IJVD.2012.047383 – volume: 87 start-page: 1229 year: 2011 ident: 10.1016/j.cma.2019.112784_b53 article-title: Topology optimization for unsteady flow publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.3151 – volume: 15 start-page: 21 year: 1989 ident: 10.1016/j.cma.2019.112784_b54 article-title: k-ε Predictions of heat transfer in turbulent recirculating flows using an improved wall treatment publication-title: Numer. Heat Transfer B doi: 10.1080/10407798909342397 – volume: 30 start-page: 181 year: 2005 ident: 10.1016/j.cma.2019.112784_b47 article-title: Topology optimization of channel flow problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-004-0508-7 – volume: 67 start-page: 104 year: 2012 ident: 10.1016/j.cma.2019.112784_b49 article-title: Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2012.06.018 – volume: 21 start-page: 252 year: 2000 ident: 10.1016/j.cma.2019.112784_b21 article-title: Strategies for turbulence modelling and simulations publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(00)00007-2 – volume: 195 start-page: 2070 year: 2006 ident: 10.1016/j.cma.2019.112784_b44 article-title: An Eulerian–Lagrangian method for fluid–structure interaction based on level sets publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2005.02.025 – volume: 42 start-page: 495 year: 2010 ident: 10.1016/j.cma.2019.112784_b48 article-title: Topology optimization of flexible micro-fluidic devices publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0526-6 – year: 2011 ident: 10.1016/j.cma.2019.112784_b8 – ident: 10.1016/j.cma.2019.112784_b2 – volume: 12 start-page: 109 year: 1998 ident: 10.1016/j.cma.2019.112784_b24 article-title: Direct numerical simulation of turbulent compression ramp flow publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s001620050102 – volume: 87 start-page: 40 year: 2014 ident: 10.1016/j.cma.2019.112784_b19 article-title: Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.05.006 – volume: 88 start-page: 129 year: 2008 ident: 10.1016/j.cma.2019.112784_b30 article-title: Topology optimization of fluid domains: kinetic theory approach publication-title: ZAMM - J. Appl. Math. Mech. doi: 10.1002/zamm.200700122 – volume: 331 start-page: 363 year: 2018 ident: 10.1016/j.cma.2019.112784_b18 article-title: Topology optimization of turbulent flows publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2017.11.029 – volume: 39 start-page: 693 year: 2015 ident: 10.1016/j.cma.2019.112784_b11 article-title: Recent advances on the numerical modelling of turbulent flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.07.001 – volume: 65 start-page: 975 year: 2006 ident: 10.1016/j.cma.2019.112784_b56 article-title: A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1468 – volume: 278 start-page: 499 year: 2014 ident: 10.1016/j.cma.2019.112784_b45 article-title: Stress-based topology optimization method for steady-state fluid–structure interaction problems publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2014.05.021 – volume: 134 year: 2012 ident: 10.1016/j.cma.2019.112784_b51 article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling publication-title: J. Electron. Packag. doi: 10.1115/1.4007159 – volume: 51 start-page: 159 year: 2015 ident: 10.1016/j.cma.2019.112784_b32 article-title: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1123-x – volume: 303 start-page: 288 year: 2016 ident: 10.1016/j.cma.2019.112784_b3 article-title: Topology optimization for turbulent flow with Spalart–Allmaras model publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2016.01.014 – ident: 10.1016/j.cma.2019.112784_b34 – volume: 257 start-page: 374 year: 2014 ident: 10.1016/j.cma.2019.112784_b46 article-title: Combination of topology optimization and optimal control method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.033 – volume: 20 start-page: 167 year: 1971 ident: 10.1016/j.cma.2019.112784_b23 article-title: On the nature of turbulence publication-title: Commun. Math. Phys. doi: 10.1007/BF01646553 – year: 1994 ident: 10.1016/j.cma.2019.112784_b22 – volume: 1 start-page: 5 year: 1994 ident: 10.1016/j.cma.2019.112784_b20 article-title: A one-equation turbulence model for aerodynamic flows publication-title: Rech. Aerosp. – volume: 185 start-page: 225 year: 2006 ident: 10.1016/j.cma.2019.112784_b55 article-title: Adaptive time-stepping and computational stability publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.03.008 – volume: 24 start-page: 359 year: 1987 ident: 10.1016/j.cma.2019.112784_b58 article-title: The method of moving asymptotes - a new method for structural optimization publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620240207 – volume: 47 start-page: 555 year: 2013 ident: 10.1016/j.cma.2019.112784_b37 article-title: Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0847-8 – volume: 209 start-page: 28 year: 2012 ident: 10.1016/j.cma.2019.112784_b40 article-title: Topological layout design of electro-fluid-thermal-compliant actuator publication-title: Comput. Method Appl. Mech. doi: 10.1016/j.cma.2011.11.005 – volume: 59 start-page: 2340 year: 2010 ident: 10.1016/j.cma.2019.112784_b50 article-title: Optimal design for non-Newtonian flows using a topology optimization approach publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.044 – volume: 87 start-page: 604 year: 2009 ident: 10.1016/j.cma.2019.112784_b7 article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2009.01.017 – volume: 57 start-page: 2045 year: 2018 ident: 10.1016/j.cma.2019.112784_b29 article-title: Topology optimization applied to the development of small scale pump publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1966-7 – volume: 24 start-page: 1225 year: 2010 ident: 10.1016/j.cma.2019.112784_b39 article-title: Topological design of heat dissipating structure with forced convective heat transfer publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-010-0328-1 – volume: 41 start-page: 77 year: 2003 ident: 10.1016/j.cma.2019.112784_b25 article-title: Topology optimization of fluids in Stokes flow publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.426 – volume: 70 start-page: 1049 year: 2007 ident: 10.1016/j.cma.2019.112784_b27 article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1900 – volume: 82 start-page: 591 year: 2010 ident: 10.1016/j.cma.2019.112784_b41 article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2777 – volume: 4 start-page: 6 year: 2014 ident: 10.1016/j.cma.2019.112784_b36 article-title: Adjoint methods for car aerodynamics publication-title: J. Math. Ind. doi: 10.1186/2190-5983-4-6 – year: 2014 ident: 10.1016/j.cma.2019.112784_b14 – volume: 49 start-page: 141 year: 2011 ident: 10.1016/j.cma.2019.112784_b4 article-title: Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2011.05.005 – volume: 227 start-page: 10178 year: 2008 ident: 10.1016/j.cma.2019.112784_b31 article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.08.022 – year: 2012 ident: 10.1016/j.cma.2019.112784_b35 article-title: Topological derivatice formulation for shape sensitivity in incompressible turbulnet flow |
SSID | ssj0000812 |
Score | 2.5402813 |
Snippet | A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112784 |
SubjectTerms | [formula omitted] turbulent model Computational fluid dynamics Finite element method Fluid flow K-epsilon turbulence model Mathematical models Optimization RANS model Topology optimization Turbulence models Turbulent flow |
Title | Topology optimization method with finite elements based on the k-ε turbulence model |
URI | https://dx.doi.org/10.1016/j.cma.2019.112784 https://www.proquest.com/docview/2371769694 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAG1EoyAMTkiGJL3YyVhWogMRUJDYrcWypPEpF24GFf8Xf4DdxdhxeEh1Yo3MUnc_3fefcg5AjXfGotEXKkCpHDOKCswxlmUUwlhakTiqfIHstBjdweZvetki_qYVxaZXB99c-3Xvr8OQ0aPN0Mhq5Gl9wvdgdBUGXK1zcDiCdlZ-8fqV5IOTVHcMhZU66-bPpc7y0bz0U566QRmbwFzb98tIees7XyWrgjLRXf9YGaZnxJlkL_JGG0zndJCvfmgtukeGwnn_wQp_QLTyGektaj4ym7v6V2pFjnNTUKeRT6iCtoiiErJDes_c3ioBUzn1dEvUzc7bJzfnZsD9gYYYC0zxJZ6yU2hoLaWnAgOUWTzhobTWiurv0ybiBHDGcgzRWZ3EBGCJykwmjhUByYPgOaY-fxmaX0FKkuZZpZWNUlc6iXFYFj3SVRFqCEKZDokZ7SocG427OxYNqMsnuFCpcOYWrWuEdcvy5ZFJ311gkDM2WqB8motD7L1rWbbZPhfM5VQnHMFbkIoe9_711nywnLvL2OTxd0p49z80B0pNZeejt75As9S6uBtcfIAjjpA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMPAqIQgEPTEhWk9hxkrGqQIWWTq3EZjWOLZVHW9F24IfxN_hNnBOHl0QH1siOorN933fO3XcAFypjXmrGIUWq7FHujxmNcSw1CMaR4ZEKsjxBdiC6I357H95XoFPWwti0Suf7C5-ee2v3pOWs2ZpPJrbGl1stdktB0OUKjNtrVp0qrEKtfdPrDr4ccuwXouE8pHZC-XMzT_NSufqQn9hamijmf8HTL0edo8_1Lmw72kjaxZftQUVP67DjKCRxB3RRh61v-oL7MBwWLRBeyQw9w7MruSRF12hir2CJmVjSSXSRRb4gFtUygoOQGJJH-v5GEJPSVV6aRPK2OQcwur4adrrUtVGgigXhkqaRMtrwMNVcc8MMHnKulFEI7PbeJ2aaJwjjjEfaqNgfc4wSmY6FVkIgP9DsEKrT2VQfAUlFmKgozIyPplKxl0TZmHkqCzwVcSF0A7zSelI5jXHb6uJJlslkDxINLq3BZWHwBlx-TpkXAhvrBvNySeSPXSIRANZNa5bLJ90RXciAYSQrEpHw4_-99Rw2usO7vuzfDHonsBnYQDxP6WlCdfmy0qfIVpbpmduNH_fJ5lU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+method+with+finite+elements+based+on+the+k-%CE%B5+turbulence+model&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yoon%2C+Gil+Ho&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=361&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2019.112784&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |