Topology optimization method with finite elements based on the k-ε turbulence model

A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 361; p. 112784
Main Author Yoon, Gil Ho
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow. •Structures considering turbulent flow are optimized.•The k−ε equations are modified for topology optimization.•The k−ε turbulent model is solved by the finite element method.•The turbulent kinetic energy and the energy dissipation are considered.
AbstractList A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow. •Structures considering turbulent flow are optimized.•The k−ε equations are modified for topology optimization.•The k−ε turbulent model is solved by the finite element method.•The turbulent kinetic energy and the energy dissipation are considered.
A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the Reynolds–Averaged Navier–Stokes (RANS) equations. Despite many innovative works on the subject of fluidic TO, it remains important to consider the impact of turbulent flow in TO. To consider the effect of complex turbulent fluid motion, this study considered the k−ε turbulent finite element model. To conduct a successful TO, the modification of the k−ε turbulent model to account for the topology evolutions during an optimization process is important. Correspondingly, to account for these effects, we proposed the addition of penalization terms to the original k−ε turbulent model. To validate the present approach and the effect of turbulent flow on optimized layouts, various two-dimensional designs were optimized by minimizing the turbulent kinetic or the turbulent dissipation energies. Numerical optimization results showed that it is possible to conduct the topology optimization for turbulent flow.
ArticleNumber 112784
Author Yoon, Gil Ho
Author_xml – sequence: 1
  givenname: Gil Ho
  surname: Yoon
  fullname: Yoon, Gil Ho
  email: gilho.yoon@gmail.com
  organization: School of Mechanical Engineering, Hanyang University, Seoul, Korea
BookMark eNp9kMtOwzAQRS1UJErhA9hZYp3gV2JHrFDFS6rEpqyt1BlTlyQutgsq_8Vv8E2klBWLzmY299zRnFM06n0PCF1QklNCy6tVbro6Z4RWOaVMKnGExlTJKmOUqxEaEyKKTCpWnKDTGFdkGEXZGM3nfu1b_7LFfp1c5z7r5HyPO0hL3-APl5bYut4lwNBCB32KeFFHaPAQSkvAr9n3F06bsNi00BvAnW-gPUPHtm4jnP_tCXq-u51PH7LZ0_3j9GaWGc6KlC2ksWBFsQABwnJLJBHGWMOEqKTiioOoBC24kGCNorWgpOSgSjBlqRgBPkGX-9518G8biEmv_Cb0w0nNuKSyrMpKDCm6T5ngYwxg9Tq4rg5bTYneydMrPcjTO3l6L29g5D_GuPSrJoXatQfJ6z0Jw-PvDoKOxu3UNC6ASbrx7gD9AxezjAA
CitedBy_id crossref_primary_10_1016_j_renene_2020_11_003
crossref_primary_10_1007_s00158_021_03064_1
crossref_primary_10_1016_j_cma_2020_113380
crossref_primary_10_2139_ssrn_4049650
crossref_primary_10_1016_j_buildenv_2023_110823
crossref_primary_10_1007_s00158_021_03118_4
crossref_primary_10_1515_eng_2022_0569
crossref_primary_10_1007_s00158_020_02806_x
crossref_primary_10_1016_j_compfluid_2022_105561
crossref_primary_10_1016_j_apm_2023_01_019
crossref_primary_10_1111_1750_3841_15814
crossref_primary_10_1016_j_cma_2024_117698
crossref_primary_10_1002_nme_70016
crossref_primary_10_1063_5_0258319
crossref_primary_10_3390_aerospace11070525
crossref_primary_10_1115_1_4067310
crossref_primary_10_3390_fluids8080221
crossref_primary_10_1016_j_ijthermalsci_2022_107783
crossref_primary_10_1016_j_jobe_2024_110609
crossref_primary_10_1016_j_buildenv_2021_108029
crossref_primary_10_1051_e3sconf_202016406007
crossref_primary_10_1088_1742_6596_2866_1_012031
crossref_primary_10_1016_j_apm_2023_01_028
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123614
crossref_primary_10_1016_j_precisioneng_2021_06_008
crossref_primary_10_1007_s00158_021_03106_8
crossref_primary_10_1007_s00158_022_03311_z
crossref_primary_10_1002_fld_5338
crossref_primary_10_1016_j_buildenv_2024_112508
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126450
crossref_primary_10_1007_s12665_022_10206_1
crossref_primary_10_1016_j_camwa_2024_10_029
crossref_primary_10_1016_j_cma_2020_113551
crossref_primary_10_1016_j_apm_2022_10_039
crossref_primary_10_1016_j_flowmeasinst_2024_102649
crossref_primary_10_1016_j_ces_2022_117820
crossref_primary_10_3390_e25091299
crossref_primary_10_1016_j_cma_2021_114406
crossref_primary_10_1016_j_egyai_2023_100248
crossref_primary_10_1016_j_csite_2024_105255
crossref_primary_10_1007_s00158_021_02903_5
crossref_primary_10_3390_fluids5010029
crossref_primary_10_1016_j_renene_2021_09_044
crossref_primary_10_1016_j_compstruc_2024_107471
crossref_primary_10_1016_j_apm_2025_115982
crossref_primary_10_1016_j_applthermaleng_2023_122127
crossref_primary_10_1115_1_4055608
crossref_primary_10_3390_en15238924
crossref_primary_10_1007_s00158_023_03575_z
crossref_primary_10_2166_aqua_2021_222
crossref_primary_10_1007_s00158_020_02719_9
crossref_primary_10_1016_j_cma_2022_115729
crossref_primary_10_1007_s00158_022_03336_4
crossref_primary_10_1016_j_applthermaleng_2025_126049
crossref_primary_10_1063_5_0215213
crossref_primary_10_2139_ssrn_4001458
crossref_primary_10_1007_s00158_022_03353_3
crossref_primary_10_1109_TCPMT_2024_3363050
Cites_doi 10.1016/j.ijheatfluidflow.2014.03.002
10.1016/j.finel.2017.07.005
10.1016/j.cma.2007.02.013
10.1007/BF00311842
10.2514/1.J051307
10.1016/S1270-9638(02)01148-3
10.1007/s00158-016-1467-5
10.1080/0305215X.2012.717074
10.1142/S0218396X15500022
10.1016/j.ast.2006.12.001
10.1016/j.compfluid.2008.12.006
10.1504/IJVD.2012.047383
10.1002/nme.3151
10.1080/10407798909342397
10.1007/s00158-004-0508-7
10.1016/j.compfluid.2012.06.018
10.1016/S0142-727X(00)00007-2
10.1016/j.cma.2005.02.025
10.1007/s00158-010-0526-6
10.1007/s001620050102
10.1016/j.oceaneng.2014.05.006
10.1002/zamm.200700122
10.1016/j.cma.2017.11.029
10.1016/j.apm.2014.07.001
10.1002/nme.1468
10.1016/j.cma.2014.05.021
10.1115/1.4007159
10.1007/s00158-014-1123-x
10.1016/j.cma.2016.01.014
10.1016/j.jcp.2013.09.033
10.1007/BF01646553
10.1016/j.cam.2005.03.008
10.1002/nme.1620240207
10.1007/s00158-012-0847-8
10.1016/j.cma.2011.11.005
10.1016/j.camwa.2009.08.044
10.1016/j.compstruc.2009.01.017
10.1007/s00158-018-1966-7
10.1007/s12206-010-0328-1
10.1002/fld.426
10.1002/nme.1900
10.1002/nme.2777
10.1186/2190-5983-4-6
10.1016/j.compfluid.2011.05.005
10.1016/j.jcp.2008.08.022
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2019.112784
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2019_112784
S0045782519306760
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-b7cfef45be4e4f3f0704ccfc244978383e49415347efc81a41063e86ec66820e3
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 08:28:29 EDT 2025
Tue Jul 01 04:06:09 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Fri Feb 23 02:49:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Topology optimization
k−ε turbulent model
Turbulent flow
RANS model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b7cfef45be4e4f3f0704ccfc244978383e49415347efc81a41063e86ec66820e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2371769694
PQPubID 2045269
ParticipantIDs proquest_journals_2371769694
crossref_primary_10_1016_j_cma_2019_112784
crossref_citationtrail_10_1016_j_cma_2019_112784
elsevier_sciencedirect_doi_10_1016_j_cma_2019_112784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Picelli, Vicente, Pavanello (b42) 2017; 135
Legay, Chessa, Belytschko (b44) 2006; 195
Kreissl, Pingen, Maute (b53) 2011; 87
Pope (b1) 2000
Dilgen, Dilgen, Fuhrman, Sigmund, Lazarov (b18) 2018; 331
Spalart, Allmaras (b20) 1994; 1
C. Rumsey, The Spalart–Allmaras turbulence model, in: Webpage at Langley Research Center, Langley Research Center.
E.M. Papoutsis-Kiachagias, E.A. Kontoleontos, A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, Constrained topology optimization for laminar and turbulent flows, including heat transfer, in: Proc. EUROGEN, Evolutionary and Deterministic Methods for Design, Optimization and Control, Capua, Italy, 2011.
Pingen, Maute (b50) 2010; 59
Jenkins, Maute (b38) 2016; 54
Zymaris, Papadimitriou, Giannakoglou, Othmer (b17) 2009; 38
Yoon (b45) 2014; 278
Dede, Lee, Liu, Robert, Yonak (b52) 2012; 58
Svanberg (b58) 1987; 24
Deck, Duveau, d’Espiney, Guillen (b43) 2002; 6
Deng, Liu, Liu, Wu (b46) 2014; 257
OPENFOAM (b14) 2014
Adams (b24) 1998; 12
Yonekura, Kanno (b32) 2015; 51
Evgrafov, Pingen, Maute (b30) 2008; 88
Yoon (b3) 2016; 303
ANSYS, Introduction to analysis fluent, Customer Training Material.
Othmer (b36) 2014; 4
P. Croaker, A. Skvortsov, N. Kessissoglou, A simple approach to estimate flow-induced noise from steady state CFD data, in: Proceedings of Acoustics, 2011, pp. 1–8.
Han, Zhou, Tu, Fang, He (b19) 2014; 87
Dede (b51) 2012; 134
Jemcov, Stephens (b35) 2012
Zhou, Li (b31) 2008; 227
Bathe, Zhang (b7) 2009; 87
Bueno-Orovio, Castro, Palacios, Zuazua (b16) 2012; 50
Spalart (b21) 2000; 21
David, Florist (b23) 1971; 20
Sá, Romero, Horikawa, Silva (b29) 2018; 57
Yoon (b28) 2015; 23
Papoutsis-Kiachagias, Giannakoglou (b33) 2014
Lee, Kim (b6) 2007; 11
Yoon (b40) 2012; 209
Ciofalo, Collins (b54) 1989; 15
Wilcox (b12) 2006
Argyropoulos, Markatos (b11) 2015; 39
Yoon, Jensen, Sigmund (b27) 2007; 70
P. Mirza, J. Hrvoje, R. Henrik, R. Christoph, RANS turbulence treatment for continuous adjoint optimization, in: Proc. 8th International Symposium on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Vol. 8, 2015.
Makhija, Pingen, Yang, Maute (b49) 2012; 67
White (b22) 1994
Olesen, Okkels, Bruus (b56) 2006; 65
Kontoleontos, Papoutsis-Kiachagias, Zymaris, Papadimitriou, Giannakoglou (b5) 2013; 45
Oktay, Akay, Merttopcuoglu (b4) 2011; 49
Javaherchi (b8) 2011
Kreissl, Pingen, Evgrafov, Maute (b48) 2010; 42
Lilley (b57) 1994; 6
Yoon (b41) 2010; 82
Bendsœ, Sigmund (b15) 2003
Gersborg-Hansen, Sigmund, Haber (b47) 2005; 30
Söderlind, Wang (b55) 2006; 185
Yoon (b39) 2010; 24
Borrvall, Petersson (b25) 2003; 41
Crivellini, D’Alessandro (b9) 2014; 47
Bruggi, Venini (b26) 2007; 196
Deng, Liu, Wu (b37) 2013; 47
Crivellini (10.1016/j.cma.2019.112784_b9) 2014; 47
Legay (10.1016/j.cma.2019.112784_b44) 2006; 195
Dilgen (10.1016/j.cma.2019.112784_b18) 2018; 331
Olesen (10.1016/j.cma.2019.112784_b56) 2006; 65
10.1016/j.cma.2019.112784_b34
Kreissl (10.1016/j.cma.2019.112784_b53) 2011; 87
Bathe (10.1016/j.cma.2019.112784_b7) 2009; 87
Othmer (10.1016/j.cma.2019.112784_b36) 2014; 4
Dede (10.1016/j.cma.2019.112784_b51) 2012; 134
Picelli (10.1016/j.cma.2019.112784_b42) 2017; 135
Lee (10.1016/j.cma.2019.112784_b6) 2007; 11
Argyropoulos (10.1016/j.cma.2019.112784_b11) 2015; 39
Yoon (10.1016/j.cma.2019.112784_b27) 2007; 70
Spalart (10.1016/j.cma.2019.112784_b21) 2000; 21
Borrvall (10.1016/j.cma.2019.112784_b25) 2003; 41
Gersborg-Hansen (10.1016/j.cma.2019.112784_b47) 2005; 30
Svanberg (10.1016/j.cma.2019.112784_b58) 1987; 24
Dede (10.1016/j.cma.2019.112784_b52) 2012; 58
Yoon (10.1016/j.cma.2019.112784_b3) 2016; 303
Yonekura (10.1016/j.cma.2019.112784_b32) 2015; 51
Jenkins (10.1016/j.cma.2019.112784_b38) 2016; 54
Deng (10.1016/j.cma.2019.112784_b37) 2013; 47
OPENFOAM (10.1016/j.cma.2019.112784_b14) 2014
Pingen (10.1016/j.cma.2019.112784_b50) 2010; 59
Pope (10.1016/j.cma.2019.112784_b1) 2000
Spalart (10.1016/j.cma.2019.112784_b20) 1994; 1
Lilley (10.1016/j.cma.2019.112784_b57) 1994; 6
Ciofalo (10.1016/j.cma.2019.112784_b54) 1989; 15
Yoon (10.1016/j.cma.2019.112784_b40) 2012; 209
Bruggi (10.1016/j.cma.2019.112784_b26) 2007; 196
10.1016/j.cma.2019.112784_b2
10.1016/j.cma.2019.112784_b59
10.1016/j.cma.2019.112784_b13
Bendsœ (10.1016/j.cma.2019.112784_b15) 2003
10.1016/j.cma.2019.112784_b10
Kontoleontos (10.1016/j.cma.2019.112784_b5) 2013; 45
Papoutsis-Kiachagias (10.1016/j.cma.2019.112784_b33) 2014
Deck (10.1016/j.cma.2019.112784_b43) 2002; 6
David (10.1016/j.cma.2019.112784_b23) 1971; 20
Yoon (10.1016/j.cma.2019.112784_b41) 2010; 82
Söderlind (10.1016/j.cma.2019.112784_b55) 2006; 185
White (10.1016/j.cma.2019.112784_b22) 1994
Javaherchi (10.1016/j.cma.2019.112784_b8) 2011
Zymaris (10.1016/j.cma.2019.112784_b17) 2009; 38
Jemcov (10.1016/j.cma.2019.112784_b35) 2012
Deng (10.1016/j.cma.2019.112784_b46) 2014; 257
Bueno-Orovio (10.1016/j.cma.2019.112784_b16) 2012; 50
Yoon (10.1016/j.cma.2019.112784_b28) 2015; 23
Yoon (10.1016/j.cma.2019.112784_b45) 2014; 278
Kreissl (10.1016/j.cma.2019.112784_b48) 2010; 42
Oktay (10.1016/j.cma.2019.112784_b4) 2011; 49
Zhou (10.1016/j.cma.2019.112784_b31) 2008; 227
Adams (10.1016/j.cma.2019.112784_b24) 1998; 12
Han (10.1016/j.cma.2019.112784_b19) 2014; 87
Yoon (10.1016/j.cma.2019.112784_b39) 2010; 24
Makhija (10.1016/j.cma.2019.112784_b49) 2012; 67
Evgrafov (10.1016/j.cma.2019.112784_b30) 2008; 88
Wilcox (10.1016/j.cma.2019.112784_b12) 2006
Sá (10.1016/j.cma.2019.112784_b29) 2018; 57
References_xml – volume: 38
  start-page: 1528
  year: 2009
  end-page: 1538
  ident: b17
  article-title: Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows
  publication-title: Comput. & Fluids
– volume: 39
  start-page: 693
  year: 2015
  end-page: 732
  ident: b11
  article-title: Recent advances on the numerical modelling of turbulent flows
  publication-title: Appl. Math. Model.
– reference: P. Mirza, J. Hrvoje, R. Henrik, R. Christoph, RANS turbulence treatment for continuous adjoint optimization, in: Proc. 8th International Symposium on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Vol. 8, 2015.
– volume: 23
  year: 2015
  ident: b28
  article-title: Unified analysis with mixed finite element formulation for acoustic-porous-structure multiphysics system
  publication-title: J. Comput. Acoust.
– volume: 185
  start-page: 225
  year: 2006
  end-page: 243
  ident: b55
  article-title: Adaptive time-stepping and computational stability
  publication-title: J. Comput. Appl. Math.
– reference: C. Rumsey, The Spalart–Allmaras turbulence model, in: Webpage at Langley Research Center, Langley Research Center.
– year: 2012
  ident: b35
  article-title: Topological derivatice formulation for shape sensitivity in incompressible turbulnet flow
  publication-title: Proc. Ninth International Conference on CFD in the Minerals and Process Industries
– year: 2003
  ident: b15
  article-title: Topology Optimization : Theory, Methods, and Applications
– volume: 41
  start-page: 77
  year: 2003
  end-page: 107
  ident: b25
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 67
  start-page: 104
  year: 2012
  end-page: 114
  ident: b49
  article-title: Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method
  publication-title: Comput. & Fluids
– volume: 65
  start-page: 975
  year: 2006
  end-page: 1001
  ident: b56
  article-title: A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2014
  ident: b14
  article-title: Turbulence models
– reference: E.M. Papoutsis-Kiachagias, E.A. Kontoleontos, A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, Constrained topology optimization for laminar and turbulent flows, including heat transfer, in: Proc. EUROGEN, Evolutionary and Deterministic Methods for Design, Optimization and Control, Capua, Italy, 2011.
– volume: 87
  start-page: 40
  year: 2014
  end-page: 49
  ident: b19
  article-title: Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model
  publication-title: Ocean Eng.
– volume: 51
  start-page: 159
  year: 2015
  end-page: 172
  ident: b32
  article-title: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method
  publication-title: Struct. Multidiscip. Optim.
– year: 2000
  ident: b1
  article-title: Turbulent Flows
– volume: 49
  start-page: 141
  year: 2011
  end-page: 145
  ident: b4
  article-title: Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures
  publication-title: Comput. & Fluids
– volume: 21
  start-page: 252
  year: 2000
  end-page: 263
  ident: b21
  article-title: Strategies for turbulence modelling and simulations
  publication-title: Int. J. Heat Fluid Flow
– volume: 135
  start-page: 44
  year: 2017
  end-page: 55
  ident: b42
  article-title: Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads
  publication-title: Finite Elem. Anal. Des.
– volume: 70
  start-page: 1049
  year: 2007
  end-page: 1075
  ident: b27
  article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 15
  start-page: 21
  year: 1989
  end-page: 47
  ident: b54
  article-title: k-
  publication-title: Numer. Heat Transfer B
– volume: 47
  start-page: 555
  year: 2013
  end-page: 570
  ident: b37
  article-title: Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces
  publication-title: Struct. Multidiscip. Optim.
– volume: 20
  start-page: 167
  year: 1971
  end-page: 192
  ident: b23
  article-title: On the nature of turbulence
  publication-title: Commun. Math. Phys.
– volume: 82
  start-page: 591
  year: 2010
  end-page: 616
  ident: b41
  article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2014
  ident: b33
  article-title: Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications
  publication-title: Arch. Comput. Method Eng.
– reference: ANSYS, Introduction to analysis fluent, Customer Training Material.
– volume: 257
  start-page: 374
  year: 2014
  end-page: 399
  ident: b46
  article-title: Combination of topology optimization and optimal control method
  publication-title: J. Comput. Phys.
– volume: 24
  start-page: 1225
  year: 2010
  end-page: 1233
  ident: b39
  article-title: Topological design of heat dissipating structure with forced convective heat transfer
  publication-title: J. Mech. Sci. Technol.
– volume: 58
  start-page: 159
  year: 2012
  end-page: 180
  ident: b52
  article-title: Computational methods for the optimisation and design of electromechanical vehicle systems
  publication-title: Int. J. Veh. Des.
– volume: 50
  start-page: 631
  year: 2012
  end-page: 646
  ident: b16
  article-title: Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization
  publication-title: AIAA J.
– volume: 209
  start-page: 28
  year: 2012
  end-page: 44
  ident: b40
  article-title: Topological layout design of electro-fluid-thermal-compliant actuator
  publication-title: Comput. Method Appl. Mech.
– volume: 331
  start-page: 363
  year: 2018
  end-page: 393
  ident: b18
  article-title: Topology optimization of turbulent flows
  publication-title: Comput. Method Appl. Mech.
– volume: 196
  start-page: 3151
  year: 2007
  end-page: 3164
  ident: b26
  article-title: Topology optimization of incompressible media using mixed finite elements
  publication-title: Comput. Method Appl. Mech.
– year: 2006
  ident: b12
  article-title: Turbulence Modeling for CFD
– volume: 59
  start-page: 2340
  year: 2010
  end-page: 2350
  ident: b50
  article-title: Optimal design for non-Newtonian flows using a topology optimization approach
  publication-title: Comput. Math. Appl.
– volume: 227
  start-page: 10178
  year: 2008
  end-page: 10195
  ident: b31
  article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 5
  year: 1994
  end-page: 21
  ident: b20
  article-title: A one-equation turbulence model for aerodynamic flows
  publication-title: Rech. Aerosp.
– volume: 6
  start-page: 281
  year: 1994
  end-page: 301
  ident: b57
  article-title: The radiated noise from isotropic turbulence
  publication-title: Theor. Comp. Fluid Dyn.
– volume: 30
  start-page: 181
  year: 2005
  end-page: 192
  ident: b47
  article-title: Topology optimization of channel flow problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 11
  start-page: 163
  year: 2007
  end-page: 173
  ident: b6
  article-title: Automated design methodology of turbulent internal flow using discrete adjoint formulation
  publication-title: Aerosp. Sci. Technol.
– volume: 6
  start-page: 171
  year: 2002
  end-page: 183
  ident: b43
  article-title: Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations
  publication-title: Aerosp. Sci. Technol.
– volume: 134
  year: 2012
  ident: b51
  article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling
  publication-title: J. Electron. Packag.
– volume: 47
  start-page: 70
  year: 2014
  end-page: 83
  ident: b9
  article-title: Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils
  publication-title: Int. J. Heat Fluid Flow
– volume: 278
  start-page: 499
  year: 2014
  end-page: 523
  ident: b45
  article-title: Stress-based topology optimization method for steady-state fluid–structure interaction problems
  publication-title: Comput. Method Appl. Mech.
– volume: 4
  start-page: 6
  year: 2014
  ident: b36
  article-title: Adjoint methods for car aerodynamics
  publication-title: J. Math. Ind.
– volume: 195
  start-page: 2070
  year: 2006
  end-page: 2087
  ident: b44
  article-title: An Eulerian–Lagrangian method for fluid–structure interaction based on level sets
  publication-title: Comput. Method Appl. Mech.
– year: 2011
  ident: b8
  article-title: Review of Spalart–Allmaras Turbulence Model and its Modifications
– volume: 87
  start-page: 604
  year: 2009
  end-page: 617
  ident: b7
  article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions
  publication-title: Comput. Struct.
– year: 1994
  ident: b22
  article-title: Fluid Mechanics
– volume: 88
  start-page: 129
  year: 2008
  end-page: 141
  ident: b30
  article-title: Topology optimization of fluid domains: kinetic theory approach
  publication-title: ZAMM - J. Appl. Math. Mech.
– volume: 57
  start-page: 2045
  year: 2018
  end-page: 2059
  ident: b29
  article-title: Topology optimization applied to the development of small scale pump
  publication-title: Struct. Multidiscip. Optim.
– volume: 87
  start-page: 1229
  year: 2011
  end-page: 1253
  ident: b53
  article-title: Topology optimization for unsteady flow
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 303
  start-page: 288
  year: 2016
  end-page: 311
  ident: b3
  article-title: Topology optimization for turbulent flow with Spalart–Allmaras model
  publication-title: Comput. Method Appl. Mech.
– reference: P. Croaker, A. Skvortsov, N. Kessissoglou, A simple approach to estimate flow-induced noise from steady state CFD data, in: Proceedings of Acoustics, 2011, pp. 1–8.
– volume: 45
  start-page: 941
  year: 2013
  end-page: 961
  ident: b5
  article-title: Adjoint-based constrained topology optimization for viscous flows, including heat transfer
  publication-title: Eng. Optim.
– volume: 12
  start-page: 109
  year: 1998
  end-page: 129
  ident: b24
  article-title: Direct numerical simulation of turbulent compression ramp flow
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 54
  start-page: 1191
  year: 2016
  end-page: 1208
  ident: b38
  article-title: An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 42
  start-page: 495
  year: 2010
  end-page: 516
  ident: b48
  article-title: Topology optimization of flexible micro-fluidic devices
  publication-title: Struct. Multidiscip. Optim.
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: b58
  article-title: The method of moving asymptotes - a new method for structural optimization
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 47
  start-page: 70
  year: 2014
  ident: 10.1016/j.cma.2019.112784_b9
  article-title: Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2014.03.002
– year: 2003
  ident: 10.1016/j.cma.2019.112784_b15
– volume: 135
  start-page: 44
  year: 2017
  ident: 10.1016/j.cma.2019.112784_b42
  article-title: Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.07.005
– year: 2006
  ident: 10.1016/j.cma.2019.112784_b12
– volume: 196
  start-page: 3151
  year: 2007
  ident: 10.1016/j.cma.2019.112784_b26
  article-title: Topology optimization of incompressible media using mixed finite elements
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2007.02.013
– volume: 6
  start-page: 281
  year: 1994
  ident: 10.1016/j.cma.2019.112784_b57
  article-title: The radiated noise from isotropic turbulence
  publication-title: Theor. Comp. Fluid Dyn.
  doi: 10.1007/BF00311842
– ident: 10.1016/j.cma.2019.112784_b13
– ident: 10.1016/j.cma.2019.112784_b59
– volume: 50
  start-page: 631
  year: 2012
  ident: 10.1016/j.cma.2019.112784_b16
  article-title: Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization
  publication-title: AIAA J.
  doi: 10.2514/1.J051307
– volume: 6
  start-page: 171
  year: 2002
  ident: 10.1016/j.cma.2019.112784_b43
  article-title: Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/S1270-9638(02)01148-3
– year: 2000
  ident: 10.1016/j.cma.2019.112784_b1
– volume: 54
  start-page: 1191
  year: 2016
  ident: 10.1016/j.cma.2019.112784_b38
  article-title: An immersed boundary approach for shape and topology optimization of stationary fluid–structure interaction problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1467-5
– ident: 10.1016/j.cma.2019.112784_b10
– volume: 45
  start-page: 941
  year: 2013
  ident: 10.1016/j.cma.2019.112784_b5
  article-title: Adjoint-based constrained topology optimization for viscous flows, including heat transfer
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.717074
– volume: 23
  year: 2015
  ident: 10.1016/j.cma.2019.112784_b28
  article-title: Unified analysis with mixed finite element formulation for acoustic-porous-structure multiphysics system
  publication-title: J. Comput. Acoust.
  doi: 10.1142/S0218396X15500022
– year: 2014
  ident: 10.1016/j.cma.2019.112784_b33
  article-title: Continuous adjoint methods for turbulent flows, applied to shape and topology optimization: Industrial applications
  publication-title: Arch. Comput. Method Eng.
– volume: 11
  start-page: 163
  year: 2007
  ident: 10.1016/j.cma.2019.112784_b6
  article-title: Automated design methodology of turbulent internal flow using discrete adjoint formulation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2006.12.001
– volume: 38
  start-page: 1528
  year: 2009
  ident: 10.1016/j.cma.2019.112784_b17
  article-title: Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2008.12.006
– volume: 58
  start-page: 159
  year: 2012
  ident: 10.1016/j.cma.2019.112784_b52
  article-title: Computational methods for the optimisation and design of electromechanical vehicle systems
  publication-title: Int. J. Veh. Des.
  doi: 10.1504/IJVD.2012.047383
– volume: 87
  start-page: 1229
  year: 2011
  ident: 10.1016/j.cma.2019.112784_b53
  article-title: Topology optimization for unsteady flow
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3151
– volume: 15
  start-page: 21
  year: 1989
  ident: 10.1016/j.cma.2019.112784_b54
  article-title: k-ε Predictions of heat transfer in turbulent recirculating flows using an improved wall treatment
  publication-title: Numer. Heat Transfer B
  doi: 10.1080/10407798909342397
– volume: 30
  start-page: 181
  year: 2005
  ident: 10.1016/j.cma.2019.112784_b47
  article-title: Topology optimization of channel flow problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0508-7
– volume: 67
  start-page: 104
  year: 2012
  ident: 10.1016/j.cma.2019.112784_b49
  article-title: Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2012.06.018
– volume: 21
  start-page: 252
  year: 2000
  ident: 10.1016/j.cma.2019.112784_b21
  article-title: Strategies for turbulence modelling and simulations
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00007-2
– volume: 195
  start-page: 2070
  year: 2006
  ident: 10.1016/j.cma.2019.112784_b44
  article-title: An Eulerian–Lagrangian method for fluid–structure interaction based on level sets
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2005.02.025
– volume: 42
  start-page: 495
  year: 2010
  ident: 10.1016/j.cma.2019.112784_b48
  article-title: Topology optimization of flexible micro-fluidic devices
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0526-6
– year: 2011
  ident: 10.1016/j.cma.2019.112784_b8
– ident: 10.1016/j.cma.2019.112784_b2
– volume: 12
  start-page: 109
  year: 1998
  ident: 10.1016/j.cma.2019.112784_b24
  article-title: Direct numerical simulation of turbulent compression ramp flow
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s001620050102
– volume: 87
  start-page: 40
  year: 2014
  ident: 10.1016/j.cma.2019.112784_b19
  article-title: Flow over two side-by-side square cylinders by CBS finite element scheme of Spalart–Allmaras model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.05.006
– volume: 88
  start-page: 129
  year: 2008
  ident: 10.1016/j.cma.2019.112784_b30
  article-title: Topology optimization of fluid domains: kinetic theory approach
  publication-title: ZAMM - J. Appl. Math. Mech.
  doi: 10.1002/zamm.200700122
– volume: 331
  start-page: 363
  year: 2018
  ident: 10.1016/j.cma.2019.112784_b18
  article-title: Topology optimization of turbulent flows
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2017.11.029
– volume: 39
  start-page: 693
  year: 2015
  ident: 10.1016/j.cma.2019.112784_b11
  article-title: Recent advances on the numerical modelling of turbulent flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.07.001
– volume: 65
  start-page: 975
  year: 2006
  ident: 10.1016/j.cma.2019.112784_b56
  article-title: A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1468
– volume: 278
  start-page: 499
  year: 2014
  ident: 10.1016/j.cma.2019.112784_b45
  article-title: Stress-based topology optimization method for steady-state fluid–structure interaction problems
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2014.05.021
– volume: 134
  year: 2012
  ident: 10.1016/j.cma.2019.112784_b51
  article-title: Optimization and design of a multipass branching microchannel heat sink for electronics cooling
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4007159
– volume: 51
  start-page: 159
  year: 2015
  ident: 10.1016/j.cma.2019.112784_b32
  article-title: A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1123-x
– volume: 303
  start-page: 288
  year: 2016
  ident: 10.1016/j.cma.2019.112784_b3
  article-title: Topology optimization for turbulent flow with Spalart–Allmaras model
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2016.01.014
– ident: 10.1016/j.cma.2019.112784_b34
– volume: 257
  start-page: 374
  year: 2014
  ident: 10.1016/j.cma.2019.112784_b46
  article-title: Combination of topology optimization and optimal control method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.033
– volume: 20
  start-page: 167
  year: 1971
  ident: 10.1016/j.cma.2019.112784_b23
  article-title: On the nature of turbulence
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01646553
– year: 1994
  ident: 10.1016/j.cma.2019.112784_b22
– volume: 1
  start-page: 5
  year: 1994
  ident: 10.1016/j.cma.2019.112784_b20
  article-title: A one-equation turbulence model for aerodynamic flows
  publication-title: Rech. Aerosp.
– volume: 185
  start-page: 225
  year: 2006
  ident: 10.1016/j.cma.2019.112784_b55
  article-title: Adaptive time-stepping and computational stability
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.03.008
– volume: 24
  start-page: 359
  year: 1987
  ident: 10.1016/j.cma.2019.112784_b58
  article-title: The method of moving asymptotes - a new method for structural optimization
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620240207
– volume: 47
  start-page: 555
  year: 2013
  ident: 10.1016/j.cma.2019.112784_b37
  article-title: Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0847-8
– volume: 209
  start-page: 28
  year: 2012
  ident: 10.1016/j.cma.2019.112784_b40
  article-title: Topological layout design of electro-fluid-thermal-compliant actuator
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/j.cma.2011.11.005
– volume: 59
  start-page: 2340
  year: 2010
  ident: 10.1016/j.cma.2019.112784_b50
  article-title: Optimal design for non-Newtonian flows using a topology optimization approach
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.044
– volume: 87
  start-page: 604
  year: 2009
  ident: 10.1016/j.cma.2019.112784_b7
  article-title: A mesh adaptivity procedure for CFD and fluid–structure interactions
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2009.01.017
– volume: 57
  start-page: 2045
  year: 2018
  ident: 10.1016/j.cma.2019.112784_b29
  article-title: Topology optimization applied to the development of small scale pump
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1966-7
– volume: 24
  start-page: 1225
  year: 2010
  ident: 10.1016/j.cma.2019.112784_b39
  article-title: Topological design of heat dissipating structure with forced convective heat transfer
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-010-0328-1
– volume: 41
  start-page: 77
  year: 2003
  ident: 10.1016/j.cma.2019.112784_b25
  article-title: Topology optimization of fluids in Stokes flow
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.426
– volume: 70
  start-page: 1049
  year: 2007
  ident: 10.1016/j.cma.2019.112784_b27
  article-title: Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1900
– volume: 82
  start-page: 591
  year: 2010
  ident: 10.1016/j.cma.2019.112784_b41
  article-title: Topology optimization for stationary fluid–structure interaction problems using a new monolithic formulation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2777
– volume: 4
  start-page: 6
  year: 2014
  ident: 10.1016/j.cma.2019.112784_b36
  article-title: Adjoint methods for car aerodynamics
  publication-title: J. Math. Ind.
  doi: 10.1186/2190-5983-4-6
– year: 2014
  ident: 10.1016/j.cma.2019.112784_b14
– volume: 49
  start-page: 141
  year: 2011
  ident: 10.1016/j.cma.2019.112784_b4
  article-title: Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2011.05.005
– volume: 227
  start-page: 10178
  year: 2008
  ident: 10.1016/j.cma.2019.112784_b31
  article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.08.022
– year: 2012
  ident: 10.1016/j.cma.2019.112784_b35
  article-title: Topological derivatice formulation for shape sensitivity in incompressible turbulnet flow
SSID ssj0000812
Score 2.5402813
Snippet A new finite element (FE) based topology optimization (TO) for turbulent flow was developed using the k−ε turbulent model, which is one of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112784
SubjectTerms [formula omitted] turbulent model
Computational fluid dynamics
Finite element method
Fluid flow
K-epsilon turbulence model
Mathematical models
Optimization
RANS model
Topology optimization
Turbulence models
Turbulent flow
Title Topology optimization method with finite elements based on the k-ε turbulence model
URI https://dx.doi.org/10.1016/j.cma.2019.112784
https://www.proquest.com/docview/2371769694
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAG1EoyAMTkiGJL3YyVhWogMRUJDYrcWypPEpF24GFf8Xf4DdxdhxeEh1Yo3MUnc_3fefcg5AjXfGotEXKkCpHDOKCswxlmUUwlhakTiqfIHstBjdweZvetki_qYVxaZXB99c-3Xvr8OQ0aPN0Mhq5Gl9wvdgdBUGXK1zcDiCdlZ-8fqV5IOTVHcMhZU66-bPpc7y0bz0U566QRmbwFzb98tIees7XyWrgjLRXf9YGaZnxJlkL_JGG0zndJCvfmgtukeGwnn_wQp_QLTyGektaj4ym7v6V2pFjnNTUKeRT6iCtoiiErJDes_c3ioBUzn1dEvUzc7bJzfnZsD9gYYYC0zxJZ6yU2hoLaWnAgOUWTzhobTWiurv0ybiBHDGcgzRWZ3EBGCJykwmjhUByYPgOaY-fxmaX0FKkuZZpZWNUlc6iXFYFj3SVRFqCEKZDokZ7SocG427OxYNqMsnuFCpcOYWrWuEdcvy5ZFJ311gkDM2WqB8motD7L1rWbbZPhfM5VQnHMFbkIoe9_711nywnLvL2OTxd0p49z80B0pNZeejt75As9S6uBtcfIAjjpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMPAqIQgEPTEhWk9hxkrGqQIWWTq3EZjWOLZVHW9F24IfxN_hNnBOHl0QH1siOorN933fO3XcAFypjXmrGIUWq7FHujxmNcSw1CMaR4ZEKsjxBdiC6I357H95XoFPWwti0Suf7C5-ee2v3pOWs2ZpPJrbGl1stdktB0OUKjNtrVp0qrEKtfdPrDr4ccuwXouE8pHZC-XMzT_NSufqQn9hamijmf8HTL0edo8_1Lmw72kjaxZftQUVP67DjKCRxB3RRh61v-oL7MBwWLRBeyQw9w7MruSRF12hir2CJmVjSSXSRRb4gFtUygoOQGJJH-v5GEJPSVV6aRPK2OQcwur4adrrUtVGgigXhkqaRMtrwMNVcc8MMHnKulFEI7PbeJ2aaJwjjjEfaqNgfc4wSmY6FVkIgP9DsEKrT2VQfAUlFmKgozIyPplKxl0TZmHkqCzwVcSF0A7zSelI5jXHb6uJJlslkDxINLq3BZWHwBlx-TpkXAhvrBvNySeSPXSIRANZNa5bLJ90RXciAYSQrEpHw4_-99Rw2usO7vuzfDHonsBnYQDxP6WlCdfmy0qfIVpbpmduNH_fJ5lU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+method+with+finite+elements+based+on+the+k-%CE%B5+turbulence+model&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Yoon%2C+Gil+Ho&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=361&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2019.112784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon