Day-Ahead System Marginal Price Forecasting Using Artificial Neural Network and Similar-Days Information
Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is...
Saved in:
Published in | Journal of electrical engineering & technology Vol. 14; no. 2; pp. 561 - 568 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.03.2019
대한전기학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1975-0102 2093-7423 |
DOI | 10.1007/s42835-018-00058-w |
Cover
Abstract | Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the
k
-fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coefficient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to find the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model. |
---|---|
AbstractList | Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the
k
-fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coefficient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to find the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model. Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artifi cial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the k -fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coeffi cient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to fi nd the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model. KCI Citation Count: 1 |
Author | Jufri, Fauzan Hanif Oh, Seongmun Jung, Jaesung |
Author_xml | – sequence: 1 givenname: Fauzan Hanif surname: Jufri fullname: Jufri, Fauzan Hanif organization: Electric Power and Energy Studies (EPES), Department of Electrical Engineering, Universitas Indonesia – sequence: 2 givenname: Seongmun surname: Oh fullname: Oh, Seongmun organization: Department of Energy Systems Research, Ajou University – sequence: 3 givenname: Jaesung surname: Jung fullname: Jung, Jaesung email: jjung@ajou.ac.kr organization: Department of Energy Systems Research, Ajou University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002443811$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtPAjEUhRujiYj-AVezdVG9bWfosCQ-SXxFcd3cKR2sQGtuhxD-vQVcuXDTs7jnO2m-E3YYYnCMnQu4FAD6KpWyVhUHUXMAqGq-PmA9CUPFdSnVIeuJod6eQR6zk5S-AAYCKtVjnze44aNPh9PifZM6tyyekGY-4KJ4JW9dcRfJWUydD7PiI23fEXW-9dbnyrNb0S66daR5gSGv-KVfIPG8m4pxaCMtsfMxnLKjFhfJnf1mn33c3U6uH_jjy_34evTIrZJVxxtd68bpKToUEhot0NVVWw8slI1yTSNq3aLSQyVUg_k2HSAMKidKaSsnG6v67GK_G6g1c-tNRL_LWTRzMqO3ydiUZalVCblb77uWYkrkWmN9t_ttR-gXRoDZ2jV7uybbNTu7Zp1R-Qf9Jr9E2vwPqT2UcjnMHJmvuKLsOv1H_QD9MZDl |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3085667 crossref_primary_10_1007_s42835_021_00973_5 crossref_primary_10_1016_j_jobe_2022_105031 crossref_primary_10_1016_j_solener_2023_01_044 crossref_primary_10_1155_2021_6637183 crossref_primary_10_3390_app142110011 crossref_primary_10_1049_rpg2_12345 crossref_primary_10_1016_j_ifacol_2024_07_501 crossref_primary_10_1016_j_energy_2022_126011 crossref_primary_10_3390_app10144693 crossref_primary_10_1007_s13198_024_02546_x crossref_primary_10_1109_ACCESS_2023_3284678 crossref_primary_10_1007_s13369_020_05140_y crossref_primary_10_1007_s42835_022_01172_6 crossref_primary_10_1007_s42835_019_00242_6 crossref_primary_10_1109_ACCESS_2023_3235724 crossref_primary_10_1016_j_energy_2021_120478 crossref_primary_10_1007_s42835_023_01473_4 crossref_primary_10_1016_j_resourpol_2021_102234 |
Cites_doi | 10.1016/j.apenergy.2016.03.089 10.1016/S0167-9236(00)00108-1 10.1016/j.enconman.2010.02.023 10.1109/TPWRS.2006.873409 10.1016/j.enconman.2013.11.031 10.1016/j.ijforecast.2014.08.008 10.1109/TPWRS.2007.907386 10.1109/NAPS.2015.7335095 |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical Engineers 2019 |
Copyright_xml | – notice: The Korean Institute of Electrical Engineers 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42835-018-00058-w |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-7423 |
EndPage | 568 |
ExternalDocumentID | oai_kci_go_kr_ARTI_4447340 10_1007_s42835_018_00058_w |
GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AAHNG AAJBT AAUYE AAYYP ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FNLPD FRJ GGCAI IKXTQ IWAJR JDI JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AACDK AASML AATNV AAYXX ABAKF ABBRH ABDBE ABFSG ACDTI ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGIU AIXLP ATHPR AYFIA CITATION FIGPU GW5 KVFHK AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC Z7R Z7S Z7X Z88 |
ID | FETCH-LOGICAL-c325t-b787be7daea120b71ae85f86c04b3ebb187fa379313baae8d6a065e142c5e2bc3 |
ISSN | 1975-0102 |
IngestDate | Tue Nov 21 21:41:18 EST 2023 Thu Apr 24 22:56:38 EDT 2025 Tue Jul 01 00:40:48 EDT 2025 Fri Feb 21 02:30:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Artificial neural network (ANN) Day-ahead SMP forecasting System marginal price (SMP) SMP forecasting Similar days |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-b787be7daea120b71ae85f86c04b3ebb187fa379313baae8d6a065e142c5e2bc3 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_4447340 crossref_citationtrail_10_1007_s42835_018_00058_w crossref_primary_10_1007_s42835_018_00058_w springer_journals_10_1007_s42835_018_00058_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190301 2019-3-00 2019-03 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190301 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of electrical engineering & technology |
PublicationTitleAbbrev | J. Electr. Eng. Technol |
PublicationYear | 2019 |
Publisher | Springer Singapore 대한전기학회 |
Publisher_xml | – name: Springer Singapore – name: 대한전기학회 |
References | Mount (CR1) 2001; 30 Weron (CR2) 2014; 30 CR4 Amjady (CR5) 2006; 21 Che, Wang (CR6) 2010; 51 García-Martos, Rodríguez, Sánchez (CR3) 2017 Mandal, Senjyu, Urasaki, Funabashi, Srivastava (CR9) 2007; 22 Montgomery, George (CR10) 2014 Anbazhagan, Kumarappan (CR8) 2014; 78 Eiter, Mannila (CR11) 1994; 94 Panapakidis, Dagoumas (CR7) 2016; 172 S Anbazhagan (58_CR8) 2014; 78 N Amjady (58_CR5) 2006; 21 J Che (58_CR6) 2010; 51 IP Panapakidis (58_CR7) 2016; 172 T Mount (58_CR1) 2001; 30 T Eiter (58_CR11) 1994; 94 R Weron (58_CR2) 2014; 30 P Mandal (58_CR9) 2007; 22 58_CR4 C García-Martos (58_CR3) 2017 DC Montgomery (58_CR10) 2014 |
References_xml | – volume: 172 start-page: 132 year: 2016 end-page: 151 ident: CR7 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089 – volume: 30 start-page: 311 issue: 3 year: 2001 end-page: 325 ident: CR1 article-title: Market power and price volatility in restructured markets for electricity publication-title: Decis Support Syst doi: 10.1016/S0167-9236(00)00108-1 – volume: 51 start-page: 1911 issue: 10 year: 2010 end-page: 1917 ident: CR6 article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.02.023 – volume: 21 start-page: 887 issue: 2 year: 2006 end-page: 896 ident: CR5 article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873409 – year: 2014 ident: CR10 publication-title: Applied statistics and probability for engineers – ident: CR4 – volume: 78 start-page: 711 year: 2014 end-page: 719 ident: CR8 article-title: Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.11.031 – start-page: 153 year: 2017 end-page: 214 ident: CR3 publication-title: “Short-term forecasting of electricity prices using mixed models”, in advances in electric power and energy systems – volume: 94 start-page: 64 year: 1994 ident: CR11 article-title: Computing discrete Fréchet distance publication-title: Notes – volume: 30 start-page: 1030 issue: 4 year: 2014 end-page: 1081 ident: CR2 article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – volume: 22 start-page: 2058 issue: 4 year: 2007 end-page: 2065 ident: CR9 article-title: A novel approach to forecast electricity price for PJM using neural network and similar days method publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.907386 – volume-title: Applied statistics and probability for engineers year: 2014 ident: 58_CR10 – volume: 94 start-page: 64 year: 1994 ident: 58_CR11 publication-title: Notes – volume: 51 start-page: 1911 issue: 10 year: 2010 ident: 58_CR6 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.02.023 – volume: 78 start-page: 711 year: 2014 ident: 58_CR8 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.11.031 – volume: 172 start-page: 132 year: 2016 ident: 58_CR7 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089 – volume: 30 start-page: 311 issue: 3 year: 2001 ident: 58_CR1 publication-title: Decis Support Syst doi: 10.1016/S0167-9236(00)00108-1 – volume: 22 start-page: 2058 issue: 4 year: 2007 ident: 58_CR9 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2007.907386 – volume: 30 start-page: 1030 issue: 4 year: 2014 ident: 58_CR2 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – ident: 58_CR4 doi: 10.1109/NAPS.2015.7335095 – volume: 21 start-page: 887 issue: 2 year: 2006 ident: 58_CR5 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873409 – start-page: 153 volume-title: “Short-term forecasting of electricity prices using mixed models”, in advances in electric power and energy systems year: 2017 ident: 58_CR3 |
SSID | ssj0061053 |
Score | 2.2239637 |
Snippet | Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the... Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 561 |
SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학 |
Title | Day-Ahead System Marginal Price Forecasting Using Artificial Neural Network and Similar-Days Information |
URI | https://link.springer.com/article/10.1007/s42835-018-00058-w https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002443811 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Electrical Engineering & Technology, 2019, 14(2), , pp.561-568 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiKdYCshC5LQEJbGT2Mdkm9XSQ0-t1FtkJw6sWlK0D1XtT-XXMH4km7JQFS5Zy4_Jrufb8dieB0Ifw0TUlWCxL7gQsEFpqM-JIn7DmlpJphiRxtriJJmf0ePz-Hw0-jmwWtqs5efq9o9-Jf_DVagDvmov2X_gbE8UKqAM_IUncBieD-LxkbjxM5CmtQs8rj1vbJork819ovNuVmJlLJutbUC2NLZB-phch-UwH8YO3JpwLr4vYKfrA93VxDkq9Yzb1WBtCh3DZbUNa2jAtN45sZ-JzS3IkrloF83keNMsF12LV0w9zryM6gKjXh56Re5lUy9nwy5Z4PHY9C10Y9d3eGyhPaXI8NhCE2JTbc1RHOnRfOoowdAigxd4ed_ETSGD_gNBzVNtdBhYSa5MXRRw4uub54FAjm2od7e2xzaFz86yYS1FVib4HFBl2tc-Zv71dpHsDAN-WzvvROm-qBbl16vyYlnCXuRLSSlNCQ320EGUptqE4CCb5flJpyeA3mpipPa_xLl0GcfOnW9yR23aa5fNzs29UYhOn6InDgc4s7B8hkaqfY4eD-JbvkDfeoBiC1DcARQbgOIBQLEBKN4CFFuAYgdQDADFQ4DiAUBforNZcTqd-y61h1-RKF77EtYJqdJaKBFGgUxDoVjcsKQKqCRKypCljSCwdoRECmirEwG6sgppVMUqkhV5hfbbq1a9RliKhteJvl4OFU1YxGCPHaQ1l4SDOszoGIXdzJWVi3uv069cln3EbjPbJcx2aWa7vB6jST_mh436cm_vD8AQw_6_w2CMPnX8Kp0IWd1D881DaB6iR9u_1lu0v15u1DvQkdfyvQPbL1V9rt4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-Ahead+System+Marginal+Price+Forecasting+Using+Artificial+Neural+Network+and+Similar-Days+Information&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Fauzan+Hanif+Jufri&rft.au=%EC%98%A4%EC%84%B1%EB%AC%B8&rft.au=%EC%A0%95%EC%9E%AC%EC%84%B1&rft.date=2019-03-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=561&rft.epage=568&rft_id=info:doi/10.1007%2Fs42835-018-00058-w&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_4447340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |