Day-Ahead System Marginal Price Forecasting Using Artificial Neural Network and Similar-Days Information

Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 14; no. 2; pp. 561 - 568
Main Authors Jufri, Fauzan Hanif, Oh, Seongmun, Jung, Jaesung
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.03.2019
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-018-00058-w

Cover

Abstract Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the k -fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coefficient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to find the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model.
AbstractList Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artificial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the k -fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coefficient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to find the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model.
Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the development of a day-ahead SMP forecasting model via implementing an artifi cial neural network (ANN) algorithm. The accuracy of the ANN-based model is improved by including long-term historical data in addition to short-term historical data and by applying the k -fold cross-validation optimization algorithm. The selection of the short-term type input variable applies the Pearson correlation coeffi cient. Whereas the long-term type input variable is selected by applying the discrete Fréchet distance in conjunction with the information related to the season and type of the day to fi nd the Similar-Days Index. In order to verify the model, the forecasted load and actual SMP for 15 years of historical data are used. The results indicate that the proposed model can forecast SMP with higher accuracy than the conventional forecasting model. KCI Citation Count: 1
Author Jufri, Fauzan Hanif
Oh, Seongmun
Jung, Jaesung
Author_xml – sequence: 1
  givenname: Fauzan Hanif
  surname: Jufri
  fullname: Jufri, Fauzan Hanif
  organization: Electric Power and Energy Studies (EPES), Department of Electrical Engineering, Universitas Indonesia
– sequence: 2
  givenname: Seongmun
  surname: Oh
  fullname: Oh, Seongmun
  organization: Department of Energy Systems Research, Ajou University
– sequence: 3
  givenname: Jaesung
  surname: Jung
  fullname: Jung, Jaesung
  email: jjung@ajou.ac.kr
  organization: Department of Energy Systems Research, Ajou University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002443811$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtPAjEUhRujiYj-AVezdVG9bWfosCQ-SXxFcd3cKR2sQGtuhxD-vQVcuXDTs7jnO2m-E3YYYnCMnQu4FAD6KpWyVhUHUXMAqGq-PmA9CUPFdSnVIeuJod6eQR6zk5S-AAYCKtVjnze44aNPh9PifZM6tyyekGY-4KJ4JW9dcRfJWUydD7PiI23fEXW-9dbnyrNb0S66daR5gSGv-KVfIPG8m4pxaCMtsfMxnLKjFhfJnf1mn33c3U6uH_jjy_34evTIrZJVxxtd68bpKToUEhot0NVVWw8slI1yTSNq3aLSQyVUg_k2HSAMKidKaSsnG6v67GK_G6g1c-tNRL_LWTRzMqO3ydiUZalVCblb77uWYkrkWmN9t_ttR-gXRoDZ2jV7uybbNTu7Zp1R-Qf9Jr9E2vwPqT2UcjnMHJmvuKLsOv1H_QD9MZDl
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3085667
crossref_primary_10_1007_s42835_021_00973_5
crossref_primary_10_1016_j_jobe_2022_105031
crossref_primary_10_1016_j_solener_2023_01_044
crossref_primary_10_1155_2021_6637183
crossref_primary_10_3390_app142110011
crossref_primary_10_1049_rpg2_12345
crossref_primary_10_1016_j_ifacol_2024_07_501
crossref_primary_10_1016_j_energy_2022_126011
crossref_primary_10_3390_app10144693
crossref_primary_10_1007_s13198_024_02546_x
crossref_primary_10_1109_ACCESS_2023_3284678
crossref_primary_10_1007_s13369_020_05140_y
crossref_primary_10_1007_s42835_022_01172_6
crossref_primary_10_1007_s42835_019_00242_6
crossref_primary_10_1109_ACCESS_2023_3235724
crossref_primary_10_1016_j_energy_2021_120478
crossref_primary_10_1007_s42835_023_01473_4
crossref_primary_10_1016_j_resourpol_2021_102234
Cites_doi 10.1016/j.apenergy.2016.03.089
10.1016/S0167-9236(00)00108-1
10.1016/j.enconman.2010.02.023
10.1109/TPWRS.2006.873409
10.1016/j.enconman.2013.11.031
10.1016/j.ijforecast.2014.08.008
10.1109/TPWRS.2007.907386
10.1109/NAPS.2015.7335095
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2019
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-018-00058-w
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 568
ExternalDocumentID oai_kci_go_kr_ARTI_4447340
10_1007_s42835_018_00058_w
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AAHNG
AAJBT
AAUYE
AAYYP
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FNLPD
FRJ
GGCAI
IKXTQ
IWAJR
JDI
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AACDK
AASML
AATNV
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ACDTI
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGIU
AIXLP
ATHPR
AYFIA
CITATION
FIGPU
GW5
KVFHK
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c325t-b787be7daea120b71ae85f86c04b3ebb187fa379313baae8d6a065e142c5e2bc3
ISSN 1975-0102
IngestDate Tue Nov 21 21:41:18 EST 2023
Thu Apr 24 22:56:38 EDT 2025
Tue Jul 01 00:40:48 EDT 2025
Fri Feb 21 02:30:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Artificial neural network (ANN)
Day-ahead SMP forecasting
System marginal price (SMP)
SMP forecasting
Similar days
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-b787be7daea120b71ae85f86c04b3ebb187fa379313baae8d6a065e142c5e2bc3
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4447340
crossref_citationtrail_10_1007_s42835_018_00058_w
crossref_primary_10_1007_s42835_018_00058_w
springer_journals_10_1007_s42835_018_00058_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190301
2019-3-00
2019-03
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 3
  year: 2019
  text: 20190301
  day: 1
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2019
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References Mount (CR1) 2001; 30
Weron (CR2) 2014; 30
CR4
Amjady (CR5) 2006; 21
Che, Wang (CR6) 2010; 51
García-Martos, Rodríguez, Sánchez (CR3) 2017
Mandal, Senjyu, Urasaki, Funabashi, Srivastava (CR9) 2007; 22
Montgomery, George (CR10) 2014
Anbazhagan, Kumarappan (CR8) 2014; 78
Eiter, Mannila (CR11) 1994; 94
Panapakidis, Dagoumas (CR7) 2016; 172
S Anbazhagan (58_CR8) 2014; 78
N Amjady (58_CR5) 2006; 21
J Che (58_CR6) 2010; 51
IP Panapakidis (58_CR7) 2016; 172
T Mount (58_CR1) 2001; 30
T Eiter (58_CR11) 1994; 94
R Weron (58_CR2) 2014; 30
P Mandal (58_CR9) 2007; 22
58_CR4
C García-Martos (58_CR3) 2017
DC Montgomery (58_CR10) 2014
References_xml – volume: 172
  start-page: 132
  year: 2016
  end-page: 151
  ident: CR7
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
– volume: 30
  start-page: 311
  issue: 3
  year: 2001
  end-page: 325
  ident: CR1
  article-title: Market power and price volatility in restructured markets for electricity
  publication-title: Decis Support Syst
  doi: 10.1016/S0167-9236(00)00108-1
– volume: 51
  start-page: 1911
  issue: 10
  year: 2010
  end-page: 1917
  ident: CR6
  article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.02.023
– volume: 21
  start-page: 887
  issue: 2
  year: 2006
  end-page: 896
  ident: CR5
  article-title: Day-ahead price forecasting of electricity markets by a new fuzzy neural network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873409
– year: 2014
  ident: CR10
  publication-title: Applied statistics and probability for engineers
– ident: CR4
– volume: 78
  start-page: 711
  year: 2014
  end-page: 719
  ident: CR8
  article-title: Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.11.031
– start-page: 153
  year: 2017
  end-page: 214
  ident: CR3
  publication-title: “Short-term forecasting of electricity prices using mixed models”, in advances in electric power and energy systems
– volume: 94
  start-page: 64
  year: 1994
  ident: CR11
  article-title: Computing discrete Fréchet distance
  publication-title: Notes
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  end-page: 1081
  ident: CR2
  article-title: Electricity price forecasting: a review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: 22
  start-page: 2058
  issue: 4
  year: 2007
  end-page: 2065
  ident: CR9
  article-title: A novel approach to forecast electricity price for PJM using neural network and similar days method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.907386
– volume-title: Applied statistics and probability for engineers
  year: 2014
  ident: 58_CR10
– volume: 94
  start-page: 64
  year: 1994
  ident: 58_CR11
  publication-title: Notes
– volume: 51
  start-page: 1911
  issue: 10
  year: 2010
  ident: 58_CR6
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.02.023
– volume: 78
  start-page: 711
  year: 2014
  ident: 58_CR8
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.11.031
– volume: 172
  start-page: 132
  year: 2016
  ident: 58_CR7
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
– volume: 30
  start-page: 311
  issue: 3
  year: 2001
  ident: 58_CR1
  publication-title: Decis Support Syst
  doi: 10.1016/S0167-9236(00)00108-1
– volume: 22
  start-page: 2058
  issue: 4
  year: 2007
  ident: 58_CR9
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2007.907386
– volume: 30
  start-page: 1030
  issue: 4
  year: 2014
  ident: 58_CR2
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– ident: 58_CR4
  doi: 10.1109/NAPS.2015.7335095
– volume: 21
  start-page: 887
  issue: 2
  year: 2006
  ident: 58_CR5
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873409
– start-page: 153
  volume-title: “Short-term forecasting of electricity prices using mixed models”, in advances in electric power and energy systems
  year: 2017
  ident: 58_CR3
SSID ssj0061053
Score 2.2239637
Snippet Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the...
Day-ahead system marginal price (SMP) forecasting constitutes essential information in the competitive energy market. Hence, this paper presents the...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 561
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Day-Ahead System Marginal Price Forecasting Using Artificial Neural Network and Similar-Days Information
URI https://link.springer.com/article/10.1007/s42835-018-00058-w
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002443811
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2019, 14(2), , pp.561-568
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiKdYCshC5LQEJbGT2Mdkm9XSQ0-t1FtkJw6sWlK0D1XtT-XXMH4km7JQFS5Zy4_Jrufb8dieB0Ifw0TUlWCxL7gQsEFpqM-JIn7DmlpJphiRxtriJJmf0ePz-Hw0-jmwWtqs5efq9o9-Jf_DVagDvmov2X_gbE8UKqAM_IUncBieD-LxkbjxM5CmtQs8rj1vbJork819ovNuVmJlLJutbUC2NLZB-phch-UwH8YO3JpwLr4vYKfrA93VxDkq9Yzb1WBtCh3DZbUNa2jAtN45sZ-JzS3IkrloF83keNMsF12LV0w9zryM6gKjXh56Re5lUy9nwy5Z4PHY9C10Y9d3eGyhPaXI8NhCE2JTbc1RHOnRfOoowdAigxd4ed_ETSGD_gNBzVNtdBhYSa5MXRRw4uub54FAjm2od7e2xzaFz86yYS1FVib4HFBl2tc-Zv71dpHsDAN-WzvvROm-qBbl16vyYlnCXuRLSSlNCQ320EGUptqE4CCb5flJpyeA3mpipPa_xLl0GcfOnW9yR23aa5fNzs29UYhOn6InDgc4s7B8hkaqfY4eD-JbvkDfeoBiC1DcARQbgOIBQLEBKN4CFFuAYgdQDADFQ4DiAUBforNZcTqd-y61h1-RKF77EtYJqdJaKBFGgUxDoVjcsKQKqCRKypCljSCwdoRECmirEwG6sgppVMUqkhV5hfbbq1a9RliKhteJvl4OFU1YxGCPHaQ1l4SDOszoGIXdzJWVi3uv069cln3EbjPbJcx2aWa7vB6jST_mh436cm_vD8AQw_6_w2CMPnX8Kp0IWd1D881DaB6iR9u_1lu0v15u1DvQkdfyvQPbL1V9rt4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-Ahead+System+Marginal+Price+Forecasting+Using+Artificial+Neural+Network+and+Similar-Days+Information&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Fauzan+Hanif+Jufri&rft.au=%EC%98%A4%EC%84%B1%EB%AC%B8&rft.au=%EC%A0%95%EC%9E%AC%EC%84%B1&rft.date=2019-03-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=561&rft.epage=568&rft_id=info:doi/10.1007%2Fs42835-018-00058-w&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_4447340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon