Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
•A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine...
Saved in:
Published in | Applied Mathematical Modelling Vol. 67; pp. 101 - 122 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0307-904X 1088-8691 0307-904X |
DOI | 10.1016/j.apm.2018.10.019 |
Cover
Abstract | •A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine learning method.•Fuzzy set theory selection method is applied to extract the best compromise solution.
A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width. |
---|---|
AbstractList | A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width. •A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine learning method.•Fuzzy set theory selection method is applied to extract the best compromise solution. A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width. |
Author | Li, Ranran Li, Hongmin Jiang, Ping |
Author_xml | – sequence: 1 givenname: Ping surname: Jiang fullname: Jiang, Ping – sequence: 2 givenname: Ranran orcidid: 0000-0003-0284-2730 surname: Li fullname: Li, Ranran email: lirandufe@163.com, leeyienran@outlook.com – sequence: 3 givenname: Hongmin surname: Li fullname: Li, Hongmin |
BookMark | eNp9kE9PwyAYh4nRxG36AbyReO6EtrRrPJnFf8mMF028EQYvG00HFdgWv73UeTAedoIf-T288IzRqXUWELqiZEoJrW7aqeg305zQWcpTQpsTNCIFqbOGlB-nf_bnaBxCSwhhKY2QeNl20WRu2YKMZgdYdCvnTVxvsHYexzVgBcGsLHYa9x6USTVnsbER_E504ae2N1bh3u3BDxGkCNHYFd44Bd0FOtOpB5e_6wS9P9y_zZ-yxevj8_xukckiZzFbVkwrmV6pWSGIZKycAZGSyllZl7rIVTljCjTJK1E2DJiu66Iuc7VUjWrKCooJuj7c23v3uYUQeeu23qaRPKd1VTVNTlhq0UNLeheCB817bzbCf3FK-GCStzyZ5IPJ4SiZTEz9j5EmikFD9MJ0R8nbAwnp4zsDngdpwMqkMVmKXDlzhP4Gi5mRZw |
CitedBy_id | crossref_primary_10_5937_fme2103643S crossref_primary_10_1016_j_dajour_2024_100400 crossref_primary_10_1007_s12652_020_01866_7 crossref_primary_10_1016_j_scs_2020_102036 crossref_primary_10_3390_en15249657 crossref_primary_10_1049_tje2_12186 crossref_primary_10_3233_JIFS_210004 crossref_primary_10_1109_ACCESS_2021_3127940 crossref_primary_10_1155_2020_9601763 crossref_primary_10_3390_sym15040781 crossref_primary_10_1016_j_jclepro_2019_119318 crossref_primary_10_1109_ACCESS_2022_3171610 crossref_primary_10_1016_j_renene_2019_04_154 crossref_primary_10_1016_j_ins_2020_10_034 crossref_primary_10_1016_j_swevo_2022_101070 crossref_primary_10_1016_j_eswa_2020_113498 crossref_primary_10_1016_j_renene_2021_05_082 crossref_primary_10_1061__ASCE_WR_1943_5452_0001329 crossref_primary_10_1007_s00521_019_04629_4 crossref_primary_10_1016_j_energy_2021_122012 crossref_primary_10_1016_j_ress_2022_108820 crossref_primary_10_1016_j_apm_2019_10_069 crossref_primary_10_1016_j_apenergy_2019_113353 crossref_primary_10_1109_ACCESS_2020_2978169 crossref_primary_10_1016_j_epsr_2023_109159 crossref_primary_10_1155_2022_3764215 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_3390_s19092055 crossref_primary_10_1016_j_asoc_2022_108933 crossref_primary_10_1016_j_apenergy_2019_05_016 crossref_primary_10_3390_app11209383 crossref_primary_10_1016_j_seta_2020_100757 crossref_primary_10_1016_j_rser_2021_111758 crossref_primary_10_1109_ACCESS_2019_2957174 crossref_primary_10_1002_we_2763 crossref_primary_10_1016_j_energy_2020_119361 crossref_primary_10_3390_su15010334 crossref_primary_10_1007_s42452_020_2830_0 crossref_primary_10_2166_ws_2021_146 crossref_primary_10_1016_j_asoc_2023_110464 crossref_primary_10_1016_j_egyr_2022_11_167 crossref_primary_10_1109_ACCESS_2019_2957062 crossref_primary_10_1016_j_asoc_2019_03_035 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1109_ACCESS_2020_2980562 crossref_primary_10_1016_j_enconman_2020_112474 crossref_primary_10_1109_ACCESS_2021_3129883 crossref_primary_10_1016_j_eswa_2022_118622 crossref_primary_10_1016_j_jclepro_2019_119195 crossref_primary_10_1016_j_egyr_2023_05_063 crossref_primary_10_1002_2050_7038_13189 crossref_primary_10_1016_j_apenergy_2019_114257 crossref_primary_10_1109_ACCESS_2022_3142083 crossref_primary_10_1016_j_apenergy_2019_114137 crossref_primary_10_1007_s12555_020_0529_z crossref_primary_10_3390_app13031311 crossref_primary_10_1016_j_energy_2024_131057 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_12677_aam_2024_1310429 crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_1016_j_apenergy_2019_114243 crossref_primary_10_1109_ACCESS_2021_3135527 crossref_primary_10_1155_2020_9564287 crossref_primary_10_1080_15325008_2023_2220688 crossref_primary_10_1002_eng2_12178 crossref_primary_10_1007_s00521_020_04996_3 crossref_primary_10_1002_jnm_3094 crossref_primary_10_1093_jcde_qwac021 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1016_j_apenergy_2021_117446 crossref_primary_10_1109_ACCESS_2022_3189477 crossref_primary_10_1049_rpg2_12588 crossref_primary_10_1109_ACCESS_2019_2942040 crossref_primary_10_1016_j_apenergy_2019_03_097 crossref_primary_10_1007_s00500_021_06189_z crossref_primary_10_1016_j_compeleceng_2022_108000 crossref_primary_10_1109_ACCESS_2020_2977921 crossref_primary_10_3390_su152015050 crossref_primary_10_1007_s00521_024_09923_4 crossref_primary_10_1155_2021_6632390 crossref_primary_10_3390_en12214146 crossref_primary_10_3390_en16031530 crossref_primary_10_1049_gtd2_12291 crossref_primary_10_1016_j_asoc_2020_106900 crossref_primary_10_1371_journal_pone_0273257 crossref_primary_10_1016_j_egyr_2022_04_050 crossref_primary_10_1016_j_measurement_2020_108373 crossref_primary_10_1063_5_0117662 crossref_primary_10_1016_j_measurement_2021_109762 crossref_primary_10_1016_j_asoc_2020_106509 crossref_primary_10_1109_ACCESS_2020_3025967 crossref_primary_10_1016_j_isci_2022_105804 crossref_primary_10_1063_5_0098183 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_1016_j_segan_2025_101664 crossref_primary_10_1109_OJSP_2023_3298251 crossref_primary_10_1080_15567036_2022_2126035 crossref_primary_10_1016_j_asoc_2020_106476 |
Cites_doi | 10.1016/j.renene.2015.06.034 10.1016/j.energy.2016.11.034 10.1016/j.ijforecast.2016.02.001 10.1109/TII.2015.2389625 10.1016/j.renene.2015.08.038 10.1016/j.ijepes.2014.06.010 10.1109/TSTE.2011.2180029 10.1016/j.apm.2018.01.014 10.1016/j.ins.2017.08.039 10.1016/j.enconman.2014.02.017 10.1016/j.measurement.2018.04.014 10.1016/j.apenergy.2017.09.029 10.1016/j.rser.2014.12.012 10.1016/j.jhydrol.2014.08.026 10.1016/j.ijforecast.2017.08.004 10.1016/j.enconman.2014.02.024 10.1007/s00521-016-2409-2 10.1016/j.energy.2016.05.008 10.1109/TSG.2013.2277585 10.1016/j.enconman.2017.06.021 10.1007/s00521-015-2141-3 10.1016/j.energy.2017.12.091 10.1016/j.knosys.2018.01.015 10.3390/en11061561 10.1016/j.enconman.2013.02.010 10.1016/j.enconman.2018.03.098 10.1016/j.rser.2015.04.081 10.1016/j.ijforecast.2015.03.001 10.1016/j.energy.2016.12.033 10.1016/j.enconman.2017.07.065 10.1016/j.apenergy.2018.02.070 10.1109/TII.2017.2730846 10.1016/j.ins.2017.12.040 10.1016/j.apenergy.2016.08.108 10.1016/j.apenergy.2018.07.032 10.1109/TSP.2013.2288675 10.1016/j.bspc.2015.09.002 10.1016/0378-7796(93)90011-3 10.1016/j.asoc.2017.01.033 10.1016/j.oceaneng.2017.01.005 10.1016/j.energy.2014.04.027 10.1016/j.apenergy.2014.05.026 10.1016/j.renene.2016.10.033 10.1016/j.energy.2014.06.104 10.1016/j.ijforecast.2015.12.002 10.1016/j.apenergy.2015.10.145 10.1016/j.apenergy.2012.10.064 10.1016/j.energy.2016.07.055 10.1016/j.apm.2015.09.039 10.1016/j.ijepes.2014.10.028 10.1007/s00521-015-2012-y 10.1016/j.renene.2016.10.030 10.1016/j.enconman.2017.04.007 10.1016/j.ijforecast.2015.11.004 10.1016/j.envpol.2017.01.043 10.1016/j.neucom.2014.09.090 10.3390/en10040419 10.1109/TNNLS.2013.2276053 10.1016/j.atmosres.2017.09.011 10.1016/j.enconman.2018.02.015 10.1016/j.ejor.2018.01.045 10.1016/j.neucom.2013.08.020 10.1016/j.apenergy.2016.05.071 10.1007/s10614-012-9350-y 10.1109/TNN.2010.2087769 10.1016/j.ins.2014.03.090 10.1016/j.advengsoft.2017.07.002 10.1016/j.neucom.2016.03.061 10.1016/j.jspi.2014.12.005 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright Elsevier BV Mar 2019 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier BV Mar 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2018.10.019 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 122 |
ExternalDocumentID | 10_1016_j_apm_2018_10_019 S0307904X18305110 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
ID | FETCH-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3 |
IEDL.DBID | AIKHN |
ISSN | 0307-904X 1088-8691 |
IngestDate | Fri Jul 25 04:31:13 EDT 2025 Tue Jul 01 04:23:57 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Fri Feb 23 02:46:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy set theory Least square support vector machine Interval forecasting Multi-objective salp swarm algorithm Best compromise solution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0284-2730 |
PQID | 2176699205 |
PQPubID | 2045280 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2176699205 crossref_primary_10_1016_j_apm_2018_10_019 crossref_citationtrail_10_1016_j_apm_2018_10_019 elsevier_sciencedirect_doi_10_1016_j_apm_2018_10_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Dhana Lakshmi, Murty, Bhaskaran, Sahoo, Srinivasa Kumar, Shenoi, Srikanth (bib0011) 2017; 131 Lahmiri (bib0004) 2018; 320 Dong, Sun, Li (bib0033) 2017; 102 Song, Jiang, Zhang (bib0026) 2014; 130 Zeng, Qiao (bib0034) 2012; 3 Dhillon, Parti, Kothari (bib0073) 1993; 26 Alexandridis, Zapranis (bib0017) 2013; 41 Yin, Wu, Hsu (bib0005) 2016; 40 Jiang, Li (bib0054) 2018; 124 Niu, Hu, Sun, Liu (bib0003) 2018; 57 Xiong, Bao, Hu (bib0046) 2014; 63 Hu, Zhang, Zhou (bib0036) 2018; 85 Wang, Wang, Li, Peng, Liu (bib0037) 2016; 182 Kankal, Uzlu (bib0044) 2017; 28 Velo, López, Maseda (bib0029) 2014; 81 Jiang, Li (bib0057) 2016; 143 Iversen, Morales, Møller, Madsen (bib0024) 2016; 32 Hao, Srinivasan, Khosravi (bib0061) 2014; 73 González-Mingueza, Muñoz-Gutiérrez (bib0012) 2014; 81 Brabanter, Brabanter, Suykens, Moor (bib0069) 2011; 22 Wang, Gao, Chen (bib0068) 2018; 11 Tastu, Pinson, Trombe, Madsen (bib0016) 2014; 5 Olaofe (bib0030) 2014; 6 Chen, Zeng, Zhou, Du, Lu (bib0039) 2018; 165 Tymvios, Charalambous, Michaelides, Lelieveld (bib0010) 2018; 208 Xu, Du, Wang (bib0075) 2017; 223 Li, Jin (bib0062) 2018; 228 Zhang, Wei, Xie, Shen, Zhang (bib0065) 2016; 205 Gallego-Castillo, Bessa, Cavalcante, Lopez-Garcia (bib0021) 2016; 113 Panapakidis, Dagoumas (bib0055) 2017; 118 Du, Wang, Guo, Yang (bib0058) 2017; 150 Fan, Chen, Wu (bib0007) 2018; 144 Allen, Tomlin, Bale, Skea, Vosper, Gallani (bib0006) 2017; 208 Ma, Jin, Dong (bib0032) 2017; 54 Hao, Srinivasan, Khosravi (bib0042) 2014; 25 Xie, Yuan, Yang (bib0019) 2015; 66 Ye, Zhou, Zeng, Guo, Zhang (bib0072) 2014; 519 Ye, Suganthan, Srikanth (bib0043) 2015; 50 Song, Wang, Lu (bib0051) 2018; 215 Luo, Hong, Fang (bib0002) 2018; 34 Giannaros, Melas, Ziomas (bib0009) 2017; 102 Xiao, Wang, Dong, Wu (bib0041) 2015; 44 An, Shi, Hu, Li, Dang (bib0031) 2014; 282 Wu, Wang, Lu, Dong, Lu (bib0018) 2013; 70 Peter, Raglend (bib0045) 2017; 28 Qiu, Suganthan, Amaratunga (bib0052) 2018; 145 Hu, Hu, Yue, Zhang, Hu (bib0063) 2017; 10 Yang, Gao, Li, Kong, Zou (bib0028) 2014; 247 Mirjalili (bib0056) 2017; 114 Hong, Pinson, Fan (bib0060) 2016; 32 Galván, Valls, Cervantes, Aler (bib0064) 2017; 418–419 Li, Jin (bib0047) 2018; 435 Zhou, Yu, Zhang, Weng (bib0020) 2016; 109 Zhao (bib0008) 2016; 162 Hardle, Hall, Marron (bib0070) 1992; 87 Liu, Tian, Liang, Li (bib0050) 2015; 83 Khodayar, Kaynak, Khodayar (bib0038) 2017; 13 Wang, Li, Bai (bib0049) 2018; 162 Shrivastava, Khosravi, Panigrahi (bib0066) 2015; 11 Khosravi, Koury, Machado, Pabon (bib0040) 2018; 25 Hassan, Bhuiyan (bib0048) 2016; 24 Jiang, Liu, Song (bib0074) 2017; 119 Shrivastava, Lohia, Panigrahi (bib0071) 2016; 87 Han, Meng, Hu, Chu (bib0014) 2017; 148 Zárate-Miñano, Anghel, Milano (bib0025) 2013; 104 Zhang, Zhou, Li, Fu, Peng (bib0053) 2017; 143 Kong, Liu, Shi, Lee (bib0035) 2015; 169 Juban, Ohlsson, Maasoumy, Poirier, Kolter (bib0022) 2016; 32 Haben, Giasemidis (bib0023) 2016; 32 Dragomiretskiy, Zosso (bib0067) 2014; 62 K. Jeong, C. Koo, T. Hong, An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network), Energy. 71 (2014) 71–79. Shen, Ritter (bib0015) 2016; 176 Ailliot, Bessac, Monbet, Pène (bib0027) 2015; 160 Petropoulos, Hyndman, Bergmeir (bib0076) 2018; 268 Cadenas, Rivera, Campos-Amezcua, Cadenas (bib0001) 2016; 27 Hao, Srinivasan, Khosravi (bib0059) 2014; 127 Mirjalili (10.1016/j.apm.2018.10.019_bib0056) 2017; 114 Du (10.1016/j.apm.2018.10.019_bib0058) 2017; 150 Peter (10.1016/j.apm.2018.10.019_bib0045) 2017; 28 Zhang (10.1016/j.apm.2018.10.019_bib0065) 2016; 205 Haben (10.1016/j.apm.2018.10.019_bib0023) 2016; 32 Shrivastava (10.1016/j.apm.2018.10.019_bib0071) 2016; 87 Dong (10.1016/j.apm.2018.10.019_bib0033) 2017; 102 Shen (10.1016/j.apm.2018.10.019_bib0015) 2016; 176 Song (10.1016/j.apm.2018.10.019_bib0026) 2014; 130 Iversen (10.1016/j.apm.2018.10.019_bib0024) 2016; 32 Dragomiretskiy (10.1016/j.apm.2018.10.019_bib0067) 2014; 62 An (10.1016/j.apm.2018.10.019_bib0031) 2014; 282 Khodayar (10.1016/j.apm.2018.10.019_bib0038) 2017; 13 Li (10.1016/j.apm.2018.10.019_bib0047) 2018; 435 Tastu (10.1016/j.apm.2018.10.019_bib0016) 2014; 5 Zeng (10.1016/j.apm.2018.10.019_bib0034) 2012; 3 Niu (10.1016/j.apm.2018.10.019_bib0003) 2018; 57 Wang (10.1016/j.apm.2018.10.019_bib0037) 2016; 182 Shrivastava (10.1016/j.apm.2018.10.019_bib0066) 2015; 11 Hu (10.1016/j.apm.2018.10.019_bib0063) 2017; 10 Yin (10.1016/j.apm.2018.10.019_bib0005) 2016; 40 Allen (10.1016/j.apm.2018.10.019_bib0006) 2017; 208 Zárate-Miñano (10.1016/j.apm.2018.10.019_bib0025) 2013; 104 Kong (10.1016/j.apm.2018.10.019_bib0035) 2015; 169 Dhillon (10.1016/j.apm.2018.10.019_bib0073) 1993; 26 Xiong (10.1016/j.apm.2018.10.019_bib0046) 2014; 63 Petropoulos (10.1016/j.apm.2018.10.019_bib0076) 2018; 268 Ma (10.1016/j.apm.2018.10.019_bib0032) 2017; 54 Hao (10.1016/j.apm.2018.10.019_bib0042) 2014; 25 Han (10.1016/j.apm.2018.10.019_bib0014) 2017; 148 Velo (10.1016/j.apm.2018.10.019_bib0029) 2014; 81 Dhana Lakshmi (10.1016/j.apm.2018.10.019_bib0011) 2017; 131 Ailliot (10.1016/j.apm.2018.10.019_bib0027) 2015; 160 Xie (10.1016/j.apm.2018.10.019_bib0019) 2015; 66 Qiu (10.1016/j.apm.2018.10.019_bib0052) 2018; 145 Olaofe (10.1016/j.apm.2018.10.019_bib0030) 2014; 6 Hu (10.1016/j.apm.2018.10.019_bib0036) 2018; 85 Song (10.1016/j.apm.2018.10.019_bib0051) 2018; 215 Giannaros (10.1016/j.apm.2018.10.019_bib0009) 2017; 102 Luo (10.1016/j.apm.2018.10.019_bib0002) 2018; 34 Jiang (10.1016/j.apm.2018.10.019_bib0074) 2017; 119 Zhou (10.1016/j.apm.2018.10.019_bib0020) 2016; 109 Jiang (10.1016/j.apm.2018.10.019_bib0054) 2018; 124 Galván (10.1016/j.apm.2018.10.019_bib0064) 2017; 418–419 10.1016/j.apm.2018.10.019_bib0013 Alexandridis (10.1016/j.apm.2018.10.019_bib0017) 2013; 41 Hao (10.1016/j.apm.2018.10.019_bib0059) 2014; 127 González-Mingueza (10.1016/j.apm.2018.10.019_bib0012) 2014; 81 Gallego-Castillo (10.1016/j.apm.2018.10.019_bib0021) 2016; 113 Wang (10.1016/j.apm.2018.10.019_bib0049) 2018; 162 Lahmiri (10.1016/j.apm.2018.10.019_bib0004) 2018; 320 Tymvios (10.1016/j.apm.2018.10.019_bib0010) 2018; 208 Hassan (10.1016/j.apm.2018.10.019_bib0048) 2016; 24 Chen (10.1016/j.apm.2018.10.019_bib0039) 2018; 165 Liu (10.1016/j.apm.2018.10.019_bib0050) 2015; 83 Fan (10.1016/j.apm.2018.10.019_bib0007) 2018; 144 Juban (10.1016/j.apm.2018.10.019_bib0022) 2016; 32 Panapakidis (10.1016/j.apm.2018.10.019_bib0055) 2017; 118 Hao (10.1016/j.apm.2018.10.019_bib0061) 2014; 73 Wang (10.1016/j.apm.2018.10.019_bib0068) 2018; 11 Hardle (10.1016/j.apm.2018.10.019_bib0070) 1992; 87 Hong (10.1016/j.apm.2018.10.019_bib0060) 2016; 32 Wu (10.1016/j.apm.2018.10.019_bib0018) 2013; 70 Ye (10.1016/j.apm.2018.10.019_bib0043) 2015; 50 Kankal (10.1016/j.apm.2018.10.019_bib0044) 2017; 28 Zhao (10.1016/j.apm.2018.10.019_bib0008) 2016; 162 Khosravi (10.1016/j.apm.2018.10.019_bib0040) 2018; 25 Brabanter (10.1016/j.apm.2018.10.019_bib0069) 2011; 22 Xu (10.1016/j.apm.2018.10.019_bib0075) 2017; 223 Yang (10.1016/j.apm.2018.10.019_bib0028) 2014; 247 Xiao (10.1016/j.apm.2018.10.019_bib0041) 2015; 44 Li (10.1016/j.apm.2018.10.019_bib0062) 2018; 228 Jiang (10.1016/j.apm.2018.10.019_bib0057) 2016; 143 Ye (10.1016/j.apm.2018.10.019_bib0072) 2014; 519 Cadenas (10.1016/j.apm.2018.10.019_bib0001) 2016; 27 Zhang (10.1016/j.apm.2018.10.019_bib0053) 2017; 143 |
References_xml | – volume: 127 start-page: 172 year: 2014 end-page: 180 ident: bib0059 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing – volume: 40 start-page: 2177 year: 2016 end-page: 2189 ident: bib0005 article-title: A power-deficiency and risk-management model for wind farm micro-siting using cyber swarm algorithm publication-title: Appl. Math. Model. – volume: 13 start-page: 2770 year: 2017 end-page: 2779 ident: bib0038 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans. Ind. Inform. – volume: 119 start-page: 694 year: 2017 end-page: 709 ident: bib0074 article-title: A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting publication-title: Energy – volume: 27 start-page: 2417 year: 2016 end-page: 2428 ident: bib0001 article-title: Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, Mexico publication-title: Neural Comput. Appl. – volume: 41 start-page: 299 year: 2013 end-page: 326 ident: bib0017 article-title: Wind derivatives: modeling and pricing publication-title: Comput. Econ. – volume: 81 start-page: 1 year: 2014 end-page: 9 ident: bib0029 article-title: Wind speed estimation using multilayer perceptron publication-title: Energy Convers. Manag. – volume: 143 start-page: 360 year: 2017 end-page: 376 ident: bib0053 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers. Manag. – volume: 73 start-page: 916 year: 2014 end-page: 925 ident: bib0061 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy – volume: 6 start-page: 1 year: 2014 end-page: 24 ident: bib0030 article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN) publication-title: Sustain. Energy Technol. Assess. – volume: 50 start-page: 82 year: 2015 end-page: 91 ident: bib0043 article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review publication-title: Renew. Sust. Energy Rev. – volume: 28 start-page: S737 year: 2017 end-page: S747 ident: bib0044 article-title: Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey publication-title: Neural Comput. Appl. – volume: 87 start-page: 903 year: 2016 end-page: 910 ident: bib0071 article-title: A multiobjective framework for wind speed prediction interval forecasts publication-title: Renew. Energy – reference: K. Jeong, C. Koo, T. Hong, An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network), Energy. 71 (2014) 71–79. – volume: 208 start-page: 45 year: 2018 end-page: 59 ident: bib0010 article-title: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF - ARW model publication-title: Atmos. Res. – volume: 32 start-page: 1017 year: 2016 end-page: 1022 ident: bib0023 article-title: A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting publication-title: Int. J. Forecast. – volume: 519 start-page: 925 year: 2014 end-page: 933 ident: bib0072 article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations publication-title: J. Hydrol. – volume: 228 start-page: 2207 year: 2018 end-page: 2220 ident: bib0062 article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method publication-title: Appl. Energy – volume: 162 start-page: 239 year: 2018 end-page: 250 ident: bib0049 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manag. – volume: 150 start-page: 90 year: 2017 end-page: 107 ident: bib0058 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manag. – volume: 5 start-page: 480 year: 2014 end-page: 489 ident: bib0016 article-title: Probabilistic forecasts of wind power generation accounting for geographically dispersed information publication-title: IEEE Trans. Smart Grid – volume: 124 start-page: 395 year: 2018 end-page: 412 ident: bib0054 article-title: Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting publication-title: Measurement – volume: 435 start-page: 296 year: 2018 end-page: 319 ident: bib0047 article-title: The early-warning system based on hybrid optimization algorithm and fuzzy synthetic evaluation model publication-title: Inf. Sci. – volume: 215 start-page: 643 year: 2018 end-page: 658 ident: bib0051 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy – volume: 118 start-page: 231 year: 2017 end-page: 245 ident: bib0055 article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model publication-title: Energy – volume: 223 start-page: 435 year: 2017 end-page: 448 ident: bib0075 article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: a case study in China publication-title: Environ. Pollut. – volume: 169 start-page: 449 year: 2015 end-page: 456 ident: bib0035 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neruocomputing – volume: 102 start-page: 241 year: 2017 end-page: 257 ident: bib0033 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China publication-title: Renew. Energy – volume: 28 start-page: 2277 year: 2017 end-page: 2292 ident: bib0045 article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for Indian energy exchange publication-title: Neural Comput. Appl. – volume: 176 start-page: 295 year: 2016 end-page: 308 ident: bib0015 article-title: Forecasting volatility of wind power production publication-title: Appl. Energy – volume: 208 start-page: 1246 year: 2017 end-page: 1257 ident: bib0006 article-title: A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data publication-title: Appl. Energy – volume: 25 start-page: 303 year: 2014 end-page: 315 ident: bib0042 article-title: Short-term load and wind power forecasting using neural network-based prediction intervals publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 145 start-page: 182 year: 2018 end-page: 196 ident: bib0052 article-title: Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting publication-title: Knowl,-Based Syst. – volume: 85 start-page: 83 year: 2018 end-page: 95 ident: bib0036 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew. Energy – volume: 70 start-page: 1 year: 2013 end-page: 9 ident: bib0018 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. – volume: 25 start-page: 146 year: 2018 end-page: 160 ident: bib0040 article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system publication-title: Sustain. Energy Technol. Assess. – volume: 143 year: 2016 ident: bib0057 article-title: Research and application of a new hybrid wind speed forecasting model on BSO algorithm publication-title: J. Energy Eng. – volume: 109 start-page: 420 year: 2016 end-page: 429 ident: bib0020 article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation publication-title: Energy – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib0056 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 3 start-page: 255 year: 2012 end-page: 264 ident: bib0034 article-title: Short-term wind power prediction using a wavelet support vector machine publication-title: IEEE Trans. Sustain. Energy – volume: 87 start-page: 227 year: 1992 end-page: 233 ident: bib0070 article-title: Regression smoothing parameters that are not far from their optimum publication-title: J. Am. Stat. Assoc. – volume: 160 start-page: 75 year: 2015 end-page: 88 ident: bib0027 article-title: Non-homogeneous hidden Markov-switching models for wind time series publication-title: J. Stat. Plan. Inference – volume: 34 start-page: 89 year: 2018 end-page: 104 ident: bib0002 article-title: Benchmarking robustness of load forecasting models under data integrity attacks publication-title: Int. J. Forecast. – volume: 320 start-page: 444 year: 2018 end-page: 451 ident: bib0004 article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression publication-title: Appl. Math. Comput. – volume: 165 start-page: 681 year: 2018 end-page: 695 ident: bib0039 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers. Manag. – volume: 10 start-page: 419 year: 2017 ident: bib0063 article-title: A novel multi-objective optimal approach for wind power interval prediction publication-title: Energies – volume: 44 start-page: 271 year: 2015 end-page: 288 ident: bib0041 article-title: Combined forecasting models for wind energy forecasting: a case study in China publication-title: Renew. Sustain. Energy Rev. – volume: 22 start-page: 110 year: 2011 end-page: 120 ident: bib0069 article-title: Approximate confidence and prediction intervals for least squares support vector regression publication-title: IEEE Trans. Neural Netw. – volume: 148 start-page: 554 year: 2017 end-page: 568 ident: bib0014 article-title: Non-parametric hybrid models for wind speed forecasting publication-title: Energy Convers. Manag. – volume: 144 start-page: 903 year: 2018 end-page: 914 ident: bib0007 article-title: Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions publication-title: Energy – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: bib0048 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomedical Signal Processing and Control – volume: 66 start-page: 1 year: 2015 end-page: 8 ident: bib0019 article-title: Forecasting China's energy demand and self-sufficiency rate by grey forecasting model and Markov model publication-title: Int. J. Electr. Power Energy Syst. – volume: 282 start-page: 388 year: 2014 end-page: 400 ident: bib0031 article-title: Fuzzy rough regression with application to wind speed prediction publication-title: Inf. Sci. – volume: 11 start-page: 1561 year: 2018 ident: bib0068 article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting publication-title: Energies – volume: 57 start-page: 163 year: 2018 end-page: 178 ident: bib0003 article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting publication-title: Appl. Math. Model. – volume: 113 start-page: 355 year: 2016 end-page: 365 ident: bib0021 article-title: On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power publication-title: Energy – volume: 54 start-page: 296 year: 2017 end-page: 312 ident: bib0032 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl. Soft Comput. – volume: 130 start-page: 103 year: 2014 end-page: 112 ident: bib0026 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl. Energy – volume: 32 start-page: 981 year: 2016 end-page: 990 ident: bib0024 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. – volume: 32 start-page: 1094 year: 2016 end-page: 1102 ident: bib0022 article-title: A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014 publication-title: Int. J. Forecast. – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: bib0037 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl. Energy – volume: 247 start-page: 1064 year: 2014 end-page: 1095 ident: bib0028 article-title: On the iterative convergence of harmony search algorithm and a proposed modification publication-title: Appl. Math. Comput. – volume: 63 start-page: 353 year: 2014 end-page: 362 ident: bib0046 article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework publication-title: Int. J. Electr. Power Energy Syst. – volume: 32 start-page: 896 year: 2016 end-page: 913 ident: bib0060 article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond publication-title: Int. J. Forecast. – volume: 11 start-page: 322 year: 2015 end-page: 331 ident: bib0066 article-title: Prediction interval estimation of electricity prices using PSO tuned support vector machines publication-title: IEEE Trans. Ind. Inform. – volume: 83 start-page: 1066 year: 2015 end-page: 1075 ident: bib0050 article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm publication-title: Mind Evol. Algorithm Artif. Neural Netw. Renew. Energy – volume: 418–419 start-page: 363 year: 2017 end-page: 382 ident: bib0064 article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks publication-title: Inf. Sci. – volume: 26 start-page: 179 year: 1993 end-page: 186 ident: bib0073 article-title: Stochastic economic emission load dispatch publication-title: Electr. Power Syst. Res. – volume: 268 start-page: 545 year: 2018 end-page: 554 ident: bib0076 article-title: Exploring the sources of uncertainty: why does bagging for time series forecasting work? publication-title: Eur. J. Oper. Res. – volume: 162 start-page: 808 year: 2016 end-page: 826 ident: bib0008 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Applied Energy – volume: 104 start-page: 42 year: 2013 end-page: 49 ident: bib0025 article-title: Continuous wind speed models based on stochastic differential equations publication-title: Appl. Energy – volume: 102 start-page: 190 year: 2017 end-page: 198 ident: bib0009 article-title: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece publication-title: Renew. Energy – volume: 131 start-page: 135 year: 2017 end-page: 148 ident: bib0011 article-title: Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones publication-title: Ocean Eng. – volume: 81 start-page: 363 year: 2014 end-page: 373 ident: bib0012 article-title: RETRACTED: wind prediction using Weather Research Forecasting model (WRF): a case study in Peru publication-title: Energy Convers. Manag. – volume: 205 start-page: 53 year: 2016 end-page: 63 ident: bib0065 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: bib0067 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. – volume: 85 start-page: 83 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0036 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.06.034 – volume: 119 start-page: 694 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0074 article-title: A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting publication-title: Energy doi: 10.1016/j.energy.2016.11.034 – volume: 247 start-page: 1064 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0028 article-title: On the iterative convergence of harmony search algorithm and a proposed modification publication-title: Appl. Math. Comput. – volume: 32 start-page: 896 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0060 article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.02.001 – volume: 11 start-page: 322 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0066 article-title: Prediction interval estimation of electricity prices using PSO tuned support vector machines publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2015.2389625 – volume: 87 start-page: 903 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0071 article-title: A multiobjective framework for wind speed prediction interval forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2015.08.038 – volume: 63 start-page: 353 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0046 article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.06.010 – volume: 87 start-page: 227 year: 1992 ident: 10.1016/j.apm.2018.10.019_bib0070 article-title: Regression smoothing parameters that are not far from their optimum publication-title: J. Am. Stat. Assoc. – volume: 3 start-page: 255 year: 2012 ident: 10.1016/j.apm.2018.10.019_bib0034 article-title: Short-term wind power prediction using a wavelet support vector machine publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2011.2180029 – volume: 57 start-page: 163 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0003 article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.01.014 – volume: 418–419 start-page: 363 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0064 article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.039 – volume: 81 start-page: 1 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0029 article-title: Wind speed estimation using multilayer perceptron publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.02.017 – volume: 124 start-page: 395 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0054 article-title: Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting publication-title: Measurement doi: 10.1016/j.measurement.2018.04.014 – volume: 208 start-page: 1246 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0006 article-title: A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.09.029 – volume: 44 start-page: 271 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0041 article-title: Combined forecasting models for wind energy forecasting: a case study in China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.12.012 – volume: 143 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0057 article-title: Research and application of a new hybrid wind speed forecasting model on BSO algorithm publication-title: J. Energy Eng. – volume: 519 start-page: 925 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0072 article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.08.026 – volume: 34 start-page: 89 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0002 article-title: Benchmarking robustness of load forecasting models under data integrity attacks publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2017.08.004 – volume: 81 start-page: 363 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0012 article-title: RETRACTED: wind prediction using Weather Research Forecasting model (WRF): a case study in Peru publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.02.024 – volume: 28 start-page: S737 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0044 article-title: Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2409-2 – volume: 109 start-page: 420 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0020 article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation publication-title: Energy doi: 10.1016/j.energy.2016.05.008 – volume: 5 start-page: 480 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0016 article-title: Probabilistic forecasts of wind power generation accounting for geographically dispersed information publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2277585 – volume: 148 start-page: 554 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0014 article-title: Non-parametric hybrid models for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.06.021 – volume: 28 start-page: 2277 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0045 article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for Indian energy exchange publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2141-3 – volume: 144 start-page: 903 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0007 article-title: Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions publication-title: Energy doi: 10.1016/j.energy.2017.12.091 – volume: 145 start-page: 182 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0052 article-title: Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting publication-title: Knowl,-Based Syst. doi: 10.1016/j.knosys.2018.01.015 – volume: 11 start-page: 1561 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0068 article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting publication-title: Energies doi: 10.3390/en11061561 – volume: 70 start-page: 1 year: 2013 ident: 10.1016/j.apm.2018.10.019_bib0018 article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.02.010 – volume: 165 start-page: 681 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0039 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.098 – volume: 50 start-page: 82 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0043 article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.04.081 – volume: 32 start-page: 981 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0024 article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.03.001 – volume: 118 start-page: 231 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0055 article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model publication-title: Energy doi: 10.1016/j.energy.2016.12.033 – volume: 150 start-page: 90 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0058 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.07.065 – volume: 215 start-page: 643 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0051 article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.070 – volume: 13 start-page: 2770 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0038 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2730846 – volume: 320 start-page: 444 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0004 article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression publication-title: Appl. Math. Comput. – volume: 435 start-page: 296 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0047 article-title: The early-warning system based on hybrid optimization algorithm and fuzzy synthetic evaluation model publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.040 – volume: 6 start-page: 1 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0030 article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN) publication-title: Sustain. Energy Technol. Assess. – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0037 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.108 – volume: 228 start-page: 2207 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0062 article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.032 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0067 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0048 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2015.09.002 – volume: 26 start-page: 179 year: 1993 ident: 10.1016/j.apm.2018.10.019_bib0073 article-title: Stochastic economic emission load dispatch publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(93)90011-3 – volume: 54 start-page: 296 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0032 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.033 – volume: 83 start-page: 1066 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0050 article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm publication-title: Mind Evol. Algorithm Artif. Neural Netw. Renew. Energy – volume: 131 start-page: 135 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0011 article-title: Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.01.005 – ident: 10.1016/j.apm.2018.10.019_bib0013 doi: 10.1016/j.energy.2014.04.027 – volume: 130 start-page: 103 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0026 article-title: Short-term wind speed forecasting with Markov-switching model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.05.026 – volume: 102 start-page: 190 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0009 article-title: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece publication-title: Renew. Energy doi: 10.1016/j.renene.2016.10.033 – volume: 73 start-page: 916 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0061 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2014.06.104 – volume: 32 start-page: 1094 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0022 article-title: A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014 publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.12.002 – volume: 162 start-page: 808 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0008 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.10.145 – volume: 104 start-page: 42 year: 2013 ident: 10.1016/j.apm.2018.10.019_bib0025 article-title: Continuous wind speed models based on stochastic differential equations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.10.064 – volume: 113 start-page: 355 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0021 article-title: On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power publication-title: Energy doi: 10.1016/j.energy.2016.07.055 – volume: 40 start-page: 2177 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0005 article-title: A power-deficiency and risk-management model for wind farm micro-siting using cyber swarm algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.09.039 – volume: 66 start-page: 1 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0019 article-title: Forecasting China's energy demand and self-sufficiency rate by grey forecasting model and Markov model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.10.028 – volume: 27 start-page: 2417 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0001 article-title: Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, Mexico publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2012-y – volume: 102 start-page: 241 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0033 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China publication-title: Renew. Energy doi: 10.1016/j.renene.2016.10.030 – volume: 143 start-page: 360 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0053 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.04.007 – volume: 32 start-page: 1017 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0023 article-title: A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.11.004 – volume: 223 start-page: 435 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0075 article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: a case study in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.043 – volume: 169 start-page: 449 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0035 article-title: Wind speed prediction using reduced support vector machines with feature selection publication-title: Neruocomputing doi: 10.1016/j.neucom.2014.09.090 – volume: 10 start-page: 419 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0063 article-title: A novel multi-objective optimal approach for wind power interval prediction publication-title: Energies doi: 10.3390/en10040419 – volume: 25 start-page: 303 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0042 article-title: Short-term load and wind power forecasting using neural network-based prediction intervals publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2276053 – volume: 25 start-page: 146 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0040 article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system publication-title: Sustain. Energy Technol. Assess. – volume: 208 start-page: 45 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0010 article-title: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF - ARW model publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.09.011 – volume: 162 start-page: 239 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0049 article-title: Short-term wind speed prediction using an extreme learning machine model with error correction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.015 – volume: 268 start-page: 545 year: 2018 ident: 10.1016/j.apm.2018.10.019_bib0076 article-title: Exploring the sources of uncertainty: why does bagging for time series forecasting work? publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.01.045 – volume: 127 start-page: 172 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0059 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.020 – volume: 176 start-page: 295 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0015 article-title: Forecasting volatility of wind power production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.071 – volume: 41 start-page: 299 year: 2013 ident: 10.1016/j.apm.2018.10.019_bib0017 article-title: Wind derivatives: modeling and pricing publication-title: Comput. Econ. doi: 10.1007/s10614-012-9350-y – volume: 22 start-page: 110 year: 2011 ident: 10.1016/j.apm.2018.10.019_bib0069 article-title: Approximate confidence and prediction intervals for least squares support vector regression publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2087769 – volume: 282 start-page: 388 year: 2014 ident: 10.1016/j.apm.2018.10.019_bib0031 article-title: Fuzzy rough regression with application to wind speed prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.03.090 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.apm.2018.10.019_bib0056 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 205 start-page: 53 year: 2016 ident: 10.1016/j.apm.2018.10.019_bib0065 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.061 – volume: 160 start-page: 75 year: 2015 ident: 10.1016/j.apm.2018.10.019_bib0027 article-title: Non-homogeneous hidden Markov-switching models for wind time series publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2014.12.005 |
SSID | ssj0005904 ssj0012860 |
Score | 2.5473049 |
Snippet | •A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature... A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Algorithms Best compromise solution Datasets Electric power generation Feature extraction Forecasting Fuzzy set theory Fuzzy sets Interval forecasting Intervals Least square support vector machine Machine learning Multi-objective salp swarm algorithm Multiple objective analysis Pareto optimization Variation Wind power Wind power generation Wind speed |
Title | Multi-objective algorithm for the design of prediction intervals for wind power forecasting model |
URI | https://dx.doi.org/10.1016/j.apm.2018.10.019 https://www.proquest.com/docview/2176699205 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoED4imeUw6ckLq1TdI2RzaYNtC4ANJuVfMobBpbxYa48dux-xgCoR04Joqj1nYcW_lsE3IBZ5kFTPkOeJ_K4drTjpIRBK7GpMZoXxuFgeLwPug_8duRGNVIt8qFQVhlafsLm55b63KmXXKznY3H7QdUT-nyESglaBamWTV8JgNRJ42rwV3__hvpIV1e1UNEgupxM4d5JRnmo3tRCzFeWG_n7-vpl6HOb5_eDtku3UZ6VXzZLqnZ2R7ZGq5qri72SZLn0jpzNSlsGE2mz3MI_V9eKTimFFZSk8M16Dyl2Rs-0KBQ6DhHPYIW5ss-IEanGbZOw6HVyQJx0TRvmHNAnno3j92-UzZQcDTzxdJRgUiNht9OBUtcDZ5DZF0N8oAriafMNzwSxqYQhiUQJ1mRhiGDUNkoI43kgWWHpD6bz-wRobCHZlGoE-YpbsMoAbcicpmSXETaY-ExcSu-xbqsLo5NLqZxBSObxMDqGFmNU8DqY3K5IsmK0hrrFvNKGPEP_YjB9K8jO6sEF5eHcxH7WBRTSt8VJ__b9ZRswkgWULQzUl--vdtz8E2Wqkk2Wp9eEzSwc93pNUtNhNnBqPMFrCLmjQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QOAAHxFO8yYETUlnXpI8cYQJtwHZhSL1FzaOwCdaKDfH3sdN2CIQ4cGzqRK3tOLby2SbkDPYyi5gKPPA-lcd1R3tKJBC4GpMbowNtFAaKg2HUe-S3aZgukW6TC4Owytr2VzbdWet6pF1zs12Ox-0HVE_h8xSUEjQL06yWwRuIsIB-P736wnkInzfVEJG8udp0IK-sxGz0TnKBCC-stvP74fTDTLuz52aDrNdOI72svmuTLNnpFlkbLCquzrZJ5jJpvUJNKgtGs5enAgL_51cKbikFSmocWIMWOS3f8HoGRULHDvMIOujIPiBCpyU2TsNHq7MZoqKpa5ezQx5vrkfdnle3T_A0C8K5p6IwNxp-Ow9Z5mvwGxLra5AGHEg8Z4HhSWhsDkFYBlGSDfM4ZhAoG2WEETyybJe0psXU7hEKa2iWxDpjHcVtnGTgVCQ-U4KHie6weJ_4Dd-krmuLY4uLF9mAyCYSWC2R1TgErN4n54spZVVY4y9i3ghDftMOCYb_r2lHjeBkvTVnMsCSmEIEfnjwv1VPyUpvNLiX9_3h3SFZhTeiAqUdkdb87d0eg5cyVydOCz8BH8fk7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+algorithm+for+the+design+of+prediction+intervals+for+wind+power+forecasting+model&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Jiang%2C+Ping&rft.au=Li%2C+Ranran&rft.au=Li%2C+Hongmin&rft.date=2019-03-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=67&rft.spage=101&rft_id=info:doi/10.1016%2Fj.apm.2018.10.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |