Multi-objective algorithm for the design of prediction intervals for wind power forecasting model

•A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 67; pp. 101 - 122
Main Authors Jiang, Ping, Li, Ranran, Li, Hongmin
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0307-904X
1088-8691
0307-904X
DOI10.1016/j.apm.2018.10.019

Cover

Abstract •A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine learning method.•Fuzzy set theory selection method is applied to extract the best compromise solution. A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width.
AbstractList A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width.
•A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature extraction is built to reduce the complexity and determine the input forms.•The wind speed prediction intervals are estimated through machine learning method.•Fuzzy set theory selection method is applied to extract the best compromise solution. A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width.
Author Li, Ranran
Li, Hongmin
Jiang, Ping
Author_xml – sequence: 1
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
– sequence: 2
  givenname: Ranran
  orcidid: 0000-0003-0284-2730
  surname: Li
  fullname: Li, Ranran
  email: lirandufe@163.com, leeyienran@outlook.com
– sequence: 3
  givenname: Hongmin
  surname: Li
  fullname: Li, Hongmin
BookMark eNp9kE9PwyAYh4nRxG36AbyReO6EtrRrPJnFf8mMF028EQYvG00HFdgWv73UeTAedoIf-T288IzRqXUWELqiZEoJrW7aqeg305zQWcpTQpsTNCIFqbOGlB-nf_bnaBxCSwhhKY2QeNl20WRu2YKMZgdYdCvnTVxvsHYexzVgBcGsLHYa9x6USTVnsbER_E504ae2N1bh3u3BDxGkCNHYFd44Bd0FOtOpB5e_6wS9P9y_zZ-yxevj8_xukckiZzFbVkwrmV6pWSGIZKycAZGSyllZl7rIVTljCjTJK1E2DJiu66Iuc7VUjWrKCooJuj7c23v3uYUQeeu23qaRPKd1VTVNTlhq0UNLeheCB817bzbCf3FK-GCStzyZ5IPJ4SiZTEz9j5EmikFD9MJ0R8nbAwnp4zsDngdpwMqkMVmKXDlzhP4Gi5mRZw
CitedBy_id crossref_primary_10_5937_fme2103643S
crossref_primary_10_1016_j_dajour_2024_100400
crossref_primary_10_1007_s12652_020_01866_7
crossref_primary_10_1016_j_scs_2020_102036
crossref_primary_10_3390_en15249657
crossref_primary_10_1049_tje2_12186
crossref_primary_10_3233_JIFS_210004
crossref_primary_10_1109_ACCESS_2021_3127940
crossref_primary_10_1155_2020_9601763
crossref_primary_10_3390_sym15040781
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_1109_ACCESS_2022_3171610
crossref_primary_10_1016_j_renene_2019_04_154
crossref_primary_10_1016_j_ins_2020_10_034
crossref_primary_10_1016_j_swevo_2022_101070
crossref_primary_10_1016_j_eswa_2020_113498
crossref_primary_10_1016_j_renene_2021_05_082
crossref_primary_10_1061__ASCE_WR_1943_5452_0001329
crossref_primary_10_1007_s00521_019_04629_4
crossref_primary_10_1016_j_energy_2021_122012
crossref_primary_10_1016_j_ress_2022_108820
crossref_primary_10_1016_j_apm_2019_10_069
crossref_primary_10_1016_j_apenergy_2019_113353
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_1016_j_epsr_2023_109159
crossref_primary_10_1155_2022_3764215
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_3390_s19092055
crossref_primary_10_1016_j_asoc_2022_108933
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_3390_app11209383
crossref_primary_10_1016_j_seta_2020_100757
crossref_primary_10_1016_j_rser_2021_111758
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1002_we_2763
crossref_primary_10_1016_j_energy_2020_119361
crossref_primary_10_3390_su15010334
crossref_primary_10_1007_s42452_020_2830_0
crossref_primary_10_2166_ws_2021_146
crossref_primary_10_1016_j_asoc_2023_110464
crossref_primary_10_1016_j_egyr_2022_11_167
crossref_primary_10_1109_ACCESS_2019_2957062
crossref_primary_10_1016_j_asoc_2019_03_035
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1109_ACCESS_2020_2980562
crossref_primary_10_1016_j_enconman_2020_112474
crossref_primary_10_1109_ACCESS_2021_3129883
crossref_primary_10_1016_j_eswa_2022_118622
crossref_primary_10_1016_j_jclepro_2019_119195
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_1002_2050_7038_13189
crossref_primary_10_1016_j_apenergy_2019_114257
crossref_primary_10_1109_ACCESS_2022_3142083
crossref_primary_10_1016_j_apenergy_2019_114137
crossref_primary_10_1007_s12555_020_0529_z
crossref_primary_10_3390_app13031311
crossref_primary_10_1016_j_energy_2024_131057
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_12677_aam_2024_1310429
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_1109_ACCESS_2021_3135527
crossref_primary_10_1155_2020_9564287
crossref_primary_10_1080_15325008_2023_2220688
crossref_primary_10_1002_eng2_12178
crossref_primary_10_1007_s00521_020_04996_3
crossref_primary_10_1002_jnm_3094
crossref_primary_10_1093_jcde_qwac021
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1109_ACCESS_2022_3189477
crossref_primary_10_1049_rpg2_12588
crossref_primary_10_1109_ACCESS_2019_2942040
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_1007_s00500_021_06189_z
crossref_primary_10_1016_j_compeleceng_2022_108000
crossref_primary_10_1109_ACCESS_2020_2977921
crossref_primary_10_3390_su152015050
crossref_primary_10_1007_s00521_024_09923_4
crossref_primary_10_1155_2021_6632390
crossref_primary_10_3390_en12214146
crossref_primary_10_3390_en16031530
crossref_primary_10_1049_gtd2_12291
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1371_journal_pone_0273257
crossref_primary_10_1016_j_egyr_2022_04_050
crossref_primary_10_1016_j_measurement_2020_108373
crossref_primary_10_1063_5_0117662
crossref_primary_10_1016_j_measurement_2021_109762
crossref_primary_10_1016_j_asoc_2020_106509
crossref_primary_10_1109_ACCESS_2020_3025967
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_1063_5_0098183
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_1016_j_segan_2025_101664
crossref_primary_10_1109_OJSP_2023_3298251
crossref_primary_10_1080_15567036_2022_2126035
crossref_primary_10_1016_j_asoc_2020_106476
Cites_doi 10.1016/j.renene.2015.06.034
10.1016/j.energy.2016.11.034
10.1016/j.ijforecast.2016.02.001
10.1109/TII.2015.2389625
10.1016/j.renene.2015.08.038
10.1016/j.ijepes.2014.06.010
10.1109/TSTE.2011.2180029
10.1016/j.apm.2018.01.014
10.1016/j.ins.2017.08.039
10.1016/j.enconman.2014.02.017
10.1016/j.measurement.2018.04.014
10.1016/j.apenergy.2017.09.029
10.1016/j.rser.2014.12.012
10.1016/j.jhydrol.2014.08.026
10.1016/j.ijforecast.2017.08.004
10.1016/j.enconman.2014.02.024
10.1007/s00521-016-2409-2
10.1016/j.energy.2016.05.008
10.1109/TSG.2013.2277585
10.1016/j.enconman.2017.06.021
10.1007/s00521-015-2141-3
10.1016/j.energy.2017.12.091
10.1016/j.knosys.2018.01.015
10.3390/en11061561
10.1016/j.enconman.2013.02.010
10.1016/j.enconman.2018.03.098
10.1016/j.rser.2015.04.081
10.1016/j.ijforecast.2015.03.001
10.1016/j.energy.2016.12.033
10.1016/j.enconman.2017.07.065
10.1016/j.apenergy.2018.02.070
10.1109/TII.2017.2730846
10.1016/j.ins.2017.12.040
10.1016/j.apenergy.2016.08.108
10.1016/j.apenergy.2018.07.032
10.1109/TSP.2013.2288675
10.1016/j.bspc.2015.09.002
10.1016/0378-7796(93)90011-3
10.1016/j.asoc.2017.01.033
10.1016/j.oceaneng.2017.01.005
10.1016/j.energy.2014.04.027
10.1016/j.apenergy.2014.05.026
10.1016/j.renene.2016.10.033
10.1016/j.energy.2014.06.104
10.1016/j.ijforecast.2015.12.002
10.1016/j.apenergy.2015.10.145
10.1016/j.apenergy.2012.10.064
10.1016/j.energy.2016.07.055
10.1016/j.apm.2015.09.039
10.1016/j.ijepes.2014.10.028
10.1007/s00521-015-2012-y
10.1016/j.renene.2016.10.030
10.1016/j.enconman.2017.04.007
10.1016/j.ijforecast.2015.11.004
10.1016/j.envpol.2017.01.043
10.1016/j.neucom.2014.09.090
10.3390/en10040419
10.1109/TNNLS.2013.2276053
10.1016/j.atmosres.2017.09.011
10.1016/j.enconman.2018.02.015
10.1016/j.ejor.2018.01.045
10.1016/j.neucom.2013.08.020
10.1016/j.apenergy.2016.05.071
10.1007/s10614-012-9350-y
10.1109/TNN.2010.2087769
10.1016/j.ins.2014.03.090
10.1016/j.advengsoft.2017.07.002
10.1016/j.neucom.2016.03.061
10.1016/j.jspi.2014.12.005
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2018.10.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 122
ExternalDocumentID 10_1016_j_apm_2018_10_019
S0307904X18305110
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3
IEDL.DBID AIKHN
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 04:31:13 EDT 2025
Tue Jul 01 04:23:57 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Fri Feb 23 02:46:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy set theory
Least square support vector machine
Interval forecasting
Multi-objective salp swarm algorithm
Best compromise solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0284-2730
PQID 2176699205
PQPubID 2045280
PageCount 22
ParticipantIDs proquest_journals_2176699205
crossref_primary_10_1016_j_apm_2018_10_019
crossref_citationtrail_10_1016_j_apm_2018_10_019
elsevier_sciencedirect_doi_10_1016_j_apm_2018_10_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Dhana Lakshmi, Murty, Bhaskaran, Sahoo, Srinivasa Kumar, Shenoi, Srikanth (bib0011) 2017; 131
Lahmiri (bib0004) 2018; 320
Dong, Sun, Li (bib0033) 2017; 102
Song, Jiang, Zhang (bib0026) 2014; 130
Zeng, Qiao (bib0034) 2012; 3
Dhillon, Parti, Kothari (bib0073) 1993; 26
Alexandridis, Zapranis (bib0017) 2013; 41
Yin, Wu, Hsu (bib0005) 2016; 40
Jiang, Li (bib0054) 2018; 124
Niu, Hu, Sun, Liu (bib0003) 2018; 57
Xiong, Bao, Hu (bib0046) 2014; 63
Hu, Zhang, Zhou (bib0036) 2018; 85
Wang, Wang, Li, Peng, Liu (bib0037) 2016; 182
Kankal, Uzlu (bib0044) 2017; 28
Velo, López, Maseda (bib0029) 2014; 81
Jiang, Li (bib0057) 2016; 143
Iversen, Morales, Møller, Madsen (bib0024) 2016; 32
Hao, Srinivasan, Khosravi (bib0061) 2014; 73
González-Mingueza, Muñoz-Gutiérrez (bib0012) 2014; 81
Brabanter, Brabanter, Suykens, Moor (bib0069) 2011; 22
Wang, Gao, Chen (bib0068) 2018; 11
Tastu, Pinson, Trombe, Madsen (bib0016) 2014; 5
Olaofe (bib0030) 2014; 6
Chen, Zeng, Zhou, Du, Lu (bib0039) 2018; 165
Tymvios, Charalambous, Michaelides, Lelieveld (bib0010) 2018; 208
Xu, Du, Wang (bib0075) 2017; 223
Li, Jin (bib0062) 2018; 228
Zhang, Wei, Xie, Shen, Zhang (bib0065) 2016; 205
Gallego-Castillo, Bessa, Cavalcante, Lopez-Garcia (bib0021) 2016; 113
Panapakidis, Dagoumas (bib0055) 2017; 118
Du, Wang, Guo, Yang (bib0058) 2017; 150
Fan, Chen, Wu (bib0007) 2018; 144
Allen, Tomlin, Bale, Skea, Vosper, Gallani (bib0006) 2017; 208
Ma, Jin, Dong (bib0032) 2017; 54
Hao, Srinivasan, Khosravi (bib0042) 2014; 25
Xie, Yuan, Yang (bib0019) 2015; 66
Ye, Zhou, Zeng, Guo, Zhang (bib0072) 2014; 519
Ye, Suganthan, Srikanth (bib0043) 2015; 50
Song, Wang, Lu (bib0051) 2018; 215
Luo, Hong, Fang (bib0002) 2018; 34
Giannaros, Melas, Ziomas (bib0009) 2017; 102
Xiao, Wang, Dong, Wu (bib0041) 2015; 44
An, Shi, Hu, Li, Dang (bib0031) 2014; 282
Wu, Wang, Lu, Dong, Lu (bib0018) 2013; 70
Peter, Raglend (bib0045) 2017; 28
Qiu, Suganthan, Amaratunga (bib0052) 2018; 145
Hu, Hu, Yue, Zhang, Hu (bib0063) 2017; 10
Yang, Gao, Li, Kong, Zou (bib0028) 2014; 247
Mirjalili (bib0056) 2017; 114
Hong, Pinson, Fan (bib0060) 2016; 32
Galván, Valls, Cervantes, Aler (bib0064) 2017; 418–419
Li, Jin (bib0047) 2018; 435
Zhou, Yu, Zhang, Weng (bib0020) 2016; 109
Zhao (bib0008) 2016; 162
Hardle, Hall, Marron (bib0070) 1992; 87
Liu, Tian, Liang, Li (bib0050) 2015; 83
Khodayar, Kaynak, Khodayar (bib0038) 2017; 13
Wang, Li, Bai (bib0049) 2018; 162
Shrivastava, Khosravi, Panigrahi (bib0066) 2015; 11
Khosravi, Koury, Machado, Pabon (bib0040) 2018; 25
Hassan, Bhuiyan (bib0048) 2016; 24
Jiang, Liu, Song (bib0074) 2017; 119
Shrivastava, Lohia, Panigrahi (bib0071) 2016; 87
Han, Meng, Hu, Chu (bib0014) 2017; 148
Zárate-Miñano, Anghel, Milano (bib0025) 2013; 104
Zhang, Zhou, Li, Fu, Peng (bib0053) 2017; 143
Kong, Liu, Shi, Lee (bib0035) 2015; 169
Juban, Ohlsson, Maasoumy, Poirier, Kolter (bib0022) 2016; 32
Haben, Giasemidis (bib0023) 2016; 32
Dragomiretskiy, Zosso (bib0067) 2014; 62
K. Jeong, C. Koo, T. Hong, An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network), Energy. 71 (2014) 71–79.
Shen, Ritter (bib0015) 2016; 176
Ailliot, Bessac, Monbet, Pène (bib0027) 2015; 160
Petropoulos, Hyndman, Bergmeir (bib0076) 2018; 268
Cadenas, Rivera, Campos-Amezcua, Cadenas (bib0001) 2016; 27
Hao, Srinivasan, Khosravi (bib0059) 2014; 127
Mirjalili (10.1016/j.apm.2018.10.019_bib0056) 2017; 114
Du (10.1016/j.apm.2018.10.019_bib0058) 2017; 150
Peter (10.1016/j.apm.2018.10.019_bib0045) 2017; 28
Zhang (10.1016/j.apm.2018.10.019_bib0065) 2016; 205
Haben (10.1016/j.apm.2018.10.019_bib0023) 2016; 32
Shrivastava (10.1016/j.apm.2018.10.019_bib0071) 2016; 87
Dong (10.1016/j.apm.2018.10.019_bib0033) 2017; 102
Shen (10.1016/j.apm.2018.10.019_bib0015) 2016; 176
Song (10.1016/j.apm.2018.10.019_bib0026) 2014; 130
Iversen (10.1016/j.apm.2018.10.019_bib0024) 2016; 32
Dragomiretskiy (10.1016/j.apm.2018.10.019_bib0067) 2014; 62
An (10.1016/j.apm.2018.10.019_bib0031) 2014; 282
Khodayar (10.1016/j.apm.2018.10.019_bib0038) 2017; 13
Li (10.1016/j.apm.2018.10.019_bib0047) 2018; 435
Tastu (10.1016/j.apm.2018.10.019_bib0016) 2014; 5
Zeng (10.1016/j.apm.2018.10.019_bib0034) 2012; 3
Niu (10.1016/j.apm.2018.10.019_bib0003) 2018; 57
Wang (10.1016/j.apm.2018.10.019_bib0037) 2016; 182
Shrivastava (10.1016/j.apm.2018.10.019_bib0066) 2015; 11
Hu (10.1016/j.apm.2018.10.019_bib0063) 2017; 10
Yin (10.1016/j.apm.2018.10.019_bib0005) 2016; 40
Allen (10.1016/j.apm.2018.10.019_bib0006) 2017; 208
Zárate-Miñano (10.1016/j.apm.2018.10.019_bib0025) 2013; 104
Kong (10.1016/j.apm.2018.10.019_bib0035) 2015; 169
Dhillon (10.1016/j.apm.2018.10.019_bib0073) 1993; 26
Xiong (10.1016/j.apm.2018.10.019_bib0046) 2014; 63
Petropoulos (10.1016/j.apm.2018.10.019_bib0076) 2018; 268
Ma (10.1016/j.apm.2018.10.019_bib0032) 2017; 54
Hao (10.1016/j.apm.2018.10.019_bib0042) 2014; 25
Han (10.1016/j.apm.2018.10.019_bib0014) 2017; 148
Velo (10.1016/j.apm.2018.10.019_bib0029) 2014; 81
Dhana Lakshmi (10.1016/j.apm.2018.10.019_bib0011) 2017; 131
Ailliot (10.1016/j.apm.2018.10.019_bib0027) 2015; 160
Xie (10.1016/j.apm.2018.10.019_bib0019) 2015; 66
Qiu (10.1016/j.apm.2018.10.019_bib0052) 2018; 145
Olaofe (10.1016/j.apm.2018.10.019_bib0030) 2014; 6
Hu (10.1016/j.apm.2018.10.019_bib0036) 2018; 85
Song (10.1016/j.apm.2018.10.019_bib0051) 2018; 215
Giannaros (10.1016/j.apm.2018.10.019_bib0009) 2017; 102
Luo (10.1016/j.apm.2018.10.019_bib0002) 2018; 34
Jiang (10.1016/j.apm.2018.10.019_bib0074) 2017; 119
Zhou (10.1016/j.apm.2018.10.019_bib0020) 2016; 109
Jiang (10.1016/j.apm.2018.10.019_bib0054) 2018; 124
Galván (10.1016/j.apm.2018.10.019_bib0064) 2017; 418–419
10.1016/j.apm.2018.10.019_bib0013
Alexandridis (10.1016/j.apm.2018.10.019_bib0017) 2013; 41
Hao (10.1016/j.apm.2018.10.019_bib0059) 2014; 127
González-Mingueza (10.1016/j.apm.2018.10.019_bib0012) 2014; 81
Gallego-Castillo (10.1016/j.apm.2018.10.019_bib0021) 2016; 113
Wang (10.1016/j.apm.2018.10.019_bib0049) 2018; 162
Lahmiri (10.1016/j.apm.2018.10.019_bib0004) 2018; 320
Tymvios (10.1016/j.apm.2018.10.019_bib0010) 2018; 208
Hassan (10.1016/j.apm.2018.10.019_bib0048) 2016; 24
Chen (10.1016/j.apm.2018.10.019_bib0039) 2018; 165
Liu (10.1016/j.apm.2018.10.019_bib0050) 2015; 83
Fan (10.1016/j.apm.2018.10.019_bib0007) 2018; 144
Juban (10.1016/j.apm.2018.10.019_bib0022) 2016; 32
Panapakidis (10.1016/j.apm.2018.10.019_bib0055) 2017; 118
Hao (10.1016/j.apm.2018.10.019_bib0061) 2014; 73
Wang (10.1016/j.apm.2018.10.019_bib0068) 2018; 11
Hardle (10.1016/j.apm.2018.10.019_bib0070) 1992; 87
Hong (10.1016/j.apm.2018.10.019_bib0060) 2016; 32
Wu (10.1016/j.apm.2018.10.019_bib0018) 2013; 70
Ye (10.1016/j.apm.2018.10.019_bib0043) 2015; 50
Kankal (10.1016/j.apm.2018.10.019_bib0044) 2017; 28
Zhao (10.1016/j.apm.2018.10.019_bib0008) 2016; 162
Khosravi (10.1016/j.apm.2018.10.019_bib0040) 2018; 25
Brabanter (10.1016/j.apm.2018.10.019_bib0069) 2011; 22
Xu (10.1016/j.apm.2018.10.019_bib0075) 2017; 223
Yang (10.1016/j.apm.2018.10.019_bib0028) 2014; 247
Xiao (10.1016/j.apm.2018.10.019_bib0041) 2015; 44
Li (10.1016/j.apm.2018.10.019_bib0062) 2018; 228
Jiang (10.1016/j.apm.2018.10.019_bib0057) 2016; 143
Ye (10.1016/j.apm.2018.10.019_bib0072) 2014; 519
Cadenas (10.1016/j.apm.2018.10.019_bib0001) 2016; 27
Zhang (10.1016/j.apm.2018.10.019_bib0053) 2017; 143
References_xml – volume: 127
  start-page: 172
  year: 2014
  end-page: 180
  ident: bib0059
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
– volume: 40
  start-page: 2177
  year: 2016
  end-page: 2189
  ident: bib0005
  article-title: A power-deficiency and risk-management model for wind farm micro-siting using cyber swarm algorithm
  publication-title: Appl. Math. Model.
– volume: 13
  start-page: 2770
  year: 2017
  end-page: 2779
  ident: bib0038
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans. Ind. Inform.
– volume: 119
  start-page: 694
  year: 2017
  end-page: 709
  ident: bib0074
  article-title: A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting
  publication-title: Energy
– volume: 27
  start-page: 2417
  year: 2016
  end-page: 2428
  ident: bib0001
  article-title: Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, Mexico
  publication-title: Neural Comput. Appl.
– volume: 41
  start-page: 299
  year: 2013
  end-page: 326
  ident: bib0017
  article-title: Wind derivatives: modeling and pricing
  publication-title: Comput. Econ.
– volume: 81
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib0029
  article-title: Wind speed estimation using multilayer perceptron
  publication-title: Energy Convers. Manag.
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: bib0053
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manag.
– volume: 73
  start-page: 916
  year: 2014
  end-page: 925
  ident: bib0061
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
– volume: 6
  start-page: 1
  year: 2014
  end-page: 24
  ident: bib0030
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
  publication-title: Sustain. Energy Technol. Assess.
– volume: 50
  start-page: 82
  year: 2015
  end-page: 91
  ident: bib0043
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sust. Energy Rev.
– volume: 28
  start-page: S737
  year: 2017
  end-page: S747
  ident: bib0044
  article-title: Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey
  publication-title: Neural Comput. Appl.
– volume: 87
  start-page: 903
  year: 2016
  end-page: 910
  ident: bib0071
  article-title: A multiobjective framework for wind speed prediction interval forecasts
  publication-title: Renew. Energy
– reference: K. Jeong, C. Koo, T. Hong, An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network), Energy. 71 (2014) 71–79.
– volume: 208
  start-page: 45
  year: 2018
  end-page: 59
  ident: bib0010
  article-title: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF - ARW model
  publication-title: Atmos. Res.
– volume: 32
  start-page: 1017
  year: 2016
  end-page: 1022
  ident: bib0023
  article-title: A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting
  publication-title: Int. J. Forecast.
– volume: 519
  start-page: 925
  year: 2014
  end-page: 933
  ident: bib0072
  article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations
  publication-title: J. Hydrol.
– volume: 228
  start-page: 2207
  year: 2018
  end-page: 2220
  ident: bib0062
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl. Energy
– volume: 162
  start-page: 239
  year: 2018
  end-page: 250
  ident: bib0049
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manag.
– volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: bib0058
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manag.
– volume: 5
  start-page: 480
  year: 2014
  end-page: 489
  ident: bib0016
  article-title: Probabilistic forecasts of wind power generation accounting for geographically dispersed information
  publication-title: IEEE Trans. Smart Grid
– volume: 124
  start-page: 395
  year: 2018
  end-page: 412
  ident: bib0054
  article-title: Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting
  publication-title: Measurement
– volume: 435
  start-page: 296
  year: 2018
  end-page: 319
  ident: bib0047
  article-title: The early-warning system based on hybrid optimization algorithm and fuzzy synthetic evaluation model
  publication-title: Inf. Sci.
– volume: 215
  start-page: 643
  year: 2018
  end-page: 658
  ident: bib0051
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
– volume: 118
  start-page: 231
  year: 2017
  end-page: 245
  ident: bib0055
  article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
  publication-title: Energy
– volume: 223
  start-page: 435
  year: 2017
  end-page: 448
  ident: bib0075
  article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: a case study in China
  publication-title: Environ. Pollut.
– volume: 169
  start-page: 449
  year: 2015
  end-page: 456
  ident: bib0035
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neruocomputing
– volume: 102
  start-page: 241
  year: 2017
  end-page: 257
  ident: bib0033
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China
  publication-title: Renew. Energy
– volume: 28
  start-page: 2277
  year: 2017
  end-page: 2292
  ident: bib0045
  article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for Indian energy exchange
  publication-title: Neural Comput. Appl.
– volume: 176
  start-page: 295
  year: 2016
  end-page: 308
  ident: bib0015
  article-title: Forecasting volatility of wind power production
  publication-title: Appl. Energy
– volume: 208
  start-page: 1246
  year: 2017
  end-page: 1257
  ident: bib0006
  article-title: A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data
  publication-title: Appl. Energy
– volume: 25
  start-page: 303
  year: 2014
  end-page: 315
  ident: bib0042
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 145
  start-page: 182
  year: 2018
  end-page: 196
  ident: bib0052
  article-title: Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting
  publication-title: Knowl,-Based Syst.
– volume: 85
  start-page: 83
  year: 2018
  end-page: 95
  ident: bib0036
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew. Energy
– volume: 70
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib0018
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
– volume: 25
  start-page: 146
  year: 2018
  end-page: 160
  ident: bib0040
  article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
  publication-title: Sustain. Energy Technol. Assess.
– volume: 143
  year: 2016
  ident: bib0057
  article-title: Research and application of a new hybrid wind speed forecasting model on BSO algorithm
  publication-title: J. Energy Eng.
– volume: 109
  start-page: 420
  year: 2016
  end-page: 429
  ident: bib0020
  article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation
  publication-title: Energy
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib0056
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 3
  start-page: 255
  year: 2012
  end-page: 264
  ident: bib0034
  article-title: Short-term wind power prediction using a wavelet support vector machine
  publication-title: IEEE Trans. Sustain. Energy
– volume: 87
  start-page: 227
  year: 1992
  end-page: 233
  ident: bib0070
  article-title: Regression smoothing parameters that are not far from their optimum
  publication-title: J. Am. Stat. Assoc.
– volume: 160
  start-page: 75
  year: 2015
  end-page: 88
  ident: bib0027
  article-title: Non-homogeneous hidden Markov-switching models for wind time series
  publication-title: J. Stat. Plan. Inference
– volume: 34
  start-page: 89
  year: 2018
  end-page: 104
  ident: bib0002
  article-title: Benchmarking robustness of load forecasting models under data integrity attacks
  publication-title: Int. J. Forecast.
– volume: 320
  start-page: 444
  year: 2018
  end-page: 451
  ident: bib0004
  article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression
  publication-title: Appl. Math. Comput.
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: bib0039
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers. Manag.
– volume: 10
  start-page: 419
  year: 2017
  ident: bib0063
  article-title: A novel multi-objective optimal approach for wind power interval prediction
  publication-title: Energies
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: bib0041
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew. Sustain. Energy Rev.
– volume: 22
  start-page: 110
  year: 2011
  end-page: 120
  ident: bib0069
  article-title: Approximate confidence and prediction intervals for least squares support vector regression
  publication-title: IEEE Trans. Neural Netw.
– volume: 148
  start-page: 554
  year: 2017
  end-page: 568
  ident: bib0014
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers. Manag.
– volume: 144
  start-page: 903
  year: 2018
  end-page: 914
  ident: bib0007
  article-title: Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions
  publication-title: Energy
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0048
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomedical Signal Processing and Control
– volume: 66
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0019
  article-title: Forecasting China's energy demand and self-sufficiency rate by grey forecasting model and Markov model
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 282
  start-page: 388
  year: 2014
  end-page: 400
  ident: bib0031
  article-title: Fuzzy rough regression with application to wind speed prediction
  publication-title: Inf. Sci.
– volume: 11
  start-page: 1561
  year: 2018
  ident: bib0068
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
– volume: 57
  start-page: 163
  year: 2018
  end-page: 178
  ident: bib0003
  article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting
  publication-title: Appl. Math. Model.
– volume: 113
  start-page: 355
  year: 2016
  end-page: 365
  ident: bib0021
  article-title: On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
  publication-title: Energy
– volume: 54
  start-page: 296
  year: 2017
  end-page: 312
  ident: bib0032
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl. Soft Comput.
– volume: 130
  start-page: 103
  year: 2014
  end-page: 112
  ident: bib0026
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl. Energy
– volume: 32
  start-page: 981
  year: 2016
  end-page: 990
  ident: bib0024
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
– volume: 32
  start-page: 1094
  year: 2016
  end-page: 1102
  ident: bib0022
  article-title: A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
  publication-title: Int. J. Forecast.
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: bib0037
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl. Energy
– volume: 247
  start-page: 1064
  year: 2014
  end-page: 1095
  ident: bib0028
  article-title: On the iterative convergence of harmony search algorithm and a proposed modification
  publication-title: Appl. Math. Comput.
– volume: 63
  start-page: 353
  year: 2014
  end-page: 362
  ident: bib0046
  article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 32
  start-page: 896
  year: 2016
  end-page: 913
  ident: bib0060
  article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond
  publication-title: Int. J. Forecast.
– volume: 11
  start-page: 322
  year: 2015
  end-page: 331
  ident: bib0066
  article-title: Prediction interval estimation of electricity prices using PSO tuned support vector machines
  publication-title: IEEE Trans. Ind. Inform.
– volume: 83
  start-page: 1066
  year: 2015
  end-page: 1075
  ident: bib0050
  article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm
  publication-title: Mind Evol. Algorithm Artif. Neural Netw. Renew. Energy
– volume: 418–419
  start-page: 363
  year: 2017
  end-page: 382
  ident: bib0064
  article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks
  publication-title: Inf. Sci.
– volume: 26
  start-page: 179
  year: 1993
  end-page: 186
  ident: bib0073
  article-title: Stochastic economic emission load dispatch
  publication-title: Electr. Power Syst. Res.
– volume: 268
  start-page: 545
  year: 2018
  end-page: 554
  ident: bib0076
  article-title: Exploring the sources of uncertainty: why does bagging for time series forecasting work?
  publication-title: Eur. J. Oper. Res.
– volume: 162
  start-page: 808
  year: 2016
  end-page: 826
  ident: bib0008
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Applied Energy
– volume: 104
  start-page: 42
  year: 2013
  end-page: 49
  ident: bib0025
  article-title: Continuous wind speed models based on stochastic differential equations
  publication-title: Appl. Energy
– volume: 102
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib0009
  article-title: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece
  publication-title: Renew. Energy
– volume: 131
  start-page: 135
  year: 2017
  end-page: 148
  ident: bib0011
  article-title: Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones
  publication-title: Ocean Eng.
– volume: 81
  start-page: 363
  year: 2014
  end-page: 373
  ident: bib0012
  article-title: RETRACTED: wind prediction using Weather Research Forecasting model (WRF): a case study in Peru
  publication-title: Energy Convers. Manag.
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: bib0065
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bib0067
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 85
  start-page: 83
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0036
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.06.034
– volume: 119
  start-page: 694
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0074
  article-title: A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.034
– volume: 247
  start-page: 1064
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0028
  article-title: On the iterative convergence of harmony search algorithm and a proposed modification
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 896
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0060
  article-title: Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.001
– volume: 11
  start-page: 322
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0066
  article-title: Prediction interval estimation of electricity prices using PSO tuned support vector machines
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2015.2389625
– volume: 87
  start-page: 903
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0071
  article-title: A multiobjective framework for wind speed prediction interval forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.08.038
– volume: 63
  start-page: 353
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0046
  article-title: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.06.010
– volume: 87
  start-page: 227
  year: 1992
  ident: 10.1016/j.apm.2018.10.019_bib0070
  article-title: Regression smoothing parameters that are not far from their optimum
  publication-title: J. Am. Stat. Assoc.
– volume: 3
  start-page: 255
  year: 2012
  ident: 10.1016/j.apm.2018.10.019_bib0034
  article-title: Short-term wind power prediction using a wavelet support vector machine
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2011.2180029
– volume: 57
  start-page: 163
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0003
  article-title: A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.01.014
– volume: 418–419
  start-page: 363
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0064
  article-title: Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.039
– volume: 81
  start-page: 1
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0029
  article-title: Wind speed estimation using multilayer perceptron
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.02.017
– volume: 124
  start-page: 395
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0054
  article-title: Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.014
– volume: 208
  start-page: 1246
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0006
  article-title: A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.029
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0041
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.12.012
– volume: 143
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0057
  article-title: Research and application of a new hybrid wind speed forecasting model on BSO algorithm
  publication-title: J. Energy Eng.
– volume: 519
  start-page: 925
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0072
  article-title: Multi-objective optimization for construction of prediction interval of hydrological models based on ensemble simulations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.08.026
– volume: 34
  start-page: 89
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0002
  article-title: Benchmarking robustness of load forecasting models under data integrity attacks
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2017.08.004
– volume: 81
  start-page: 363
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0012
  article-title: RETRACTED: wind prediction using Weather Research Forecasting model (WRF): a case study in Peru
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.02.024
– volume: 28
  start-page: S737
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0044
  article-title: Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2409-2
– volume: 109
  start-page: 420
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0020
  article-title: A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.008
– volume: 5
  start-page: 480
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0016
  article-title: Probabilistic forecasts of wind power generation accounting for geographically dispersed information
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2277585
– volume: 148
  start-page: 554
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0014
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.06.021
– volume: 28
  start-page: 2277
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0045
  article-title: Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for Indian energy exchange
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2141-3
– volume: 144
  start-page: 903
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0007
  article-title: Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.091
– volume: 145
  start-page: 182
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0052
  article-title: Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting
  publication-title: Knowl,-Based Syst.
  doi: 10.1016/j.knosys.2018.01.015
– volume: 11
  start-page: 1561
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0068
  article-title: A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11061561
– volume: 70
  start-page: 1
  year: 2013
  ident: 10.1016/j.apm.2018.10.019_bib0018
  article-title: Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.02.010
– volume: 165
  start-page: 681
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0039
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.098
– volume: 50
  start-page: 82
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0043
  article-title: Ensemble methods for wind and solar power forecasting—A state-of-the-art review
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.04.081
– volume: 32
  start-page: 981
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0024
  article-title: Short-term probabilistic forecasting of wind speed using stochastic differential equations
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.03.001
– volume: 118
  start-page: 231
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0055
  article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.033
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0058
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.07.065
– volume: 215
  start-page: 643
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0051
  article-title: A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.070
– volume: 13
  start-page: 2770
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0038
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2730846
– volume: 320
  start-page: 444
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0004
  article-title: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression
  publication-title: Appl. Math. Comput.
– volume: 435
  start-page: 296
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0047
  article-title: The early-warning system based on hybrid optimization algorithm and fuzzy synthetic evaluation model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.12.040
– volume: 6
  start-page: 1
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0030
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
  publication-title: Sustain. Energy Technol. Assess.
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0037
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 228
  start-page: 2207
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0062
  article-title: A wind speed interval prediction system based on multi-objective optimization for machine learning method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.032
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0067
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0048
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 26
  start-page: 179
  year: 1993
  ident: 10.1016/j.apm.2018.10.019_bib0073
  article-title: Stochastic economic emission load dispatch
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(93)90011-3
– volume: 54
  start-page: 296
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0032
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.033
– volume: 83
  start-page: 1066
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0050
  article-title: New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm
  publication-title: Mind Evol. Algorithm Artif. Neural Netw. Renew. Energy
– volume: 131
  start-page: 135
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0011
  article-title: Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.01.005
– ident: 10.1016/j.apm.2018.10.019_bib0013
  doi: 10.1016/j.energy.2014.04.027
– volume: 130
  start-page: 103
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0026
  article-title: Short-term wind speed forecasting with Markov-switching model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.05.026
– volume: 102
  start-page: 190
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0009
  article-title: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.10.033
– volume: 73
  start-page: 916
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0061
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.104
– volume: 32
  start-page: 1094
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0022
  article-title: A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.12.002
– volume: 162
  start-page: 808
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0008
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.10.145
– volume: 104
  start-page: 42
  year: 2013
  ident: 10.1016/j.apm.2018.10.019_bib0025
  article-title: Continuous wind speed models based on stochastic differential equations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.10.064
– volume: 113
  start-page: 355
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0021
  article-title: On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.055
– volume: 40
  start-page: 2177
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0005
  article-title: A power-deficiency and risk-management model for wind farm micro-siting using cyber swarm algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.09.039
– volume: 66
  start-page: 1
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0019
  article-title: Forecasting China's energy demand and self-sufficiency rate by grey forecasting model and Markov model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.10.028
– volume: 27
  start-page: 2417
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0001
  article-title: Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, Mexico
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2012-y
– volume: 102
  start-page: 241
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0033
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.10.030
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0053
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.007
– volume: 32
  start-page: 1017
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0023
  article-title: A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.11.004
– volume: 223
  start-page: 435
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0075
  article-title: Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: a case study in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.043
– volume: 169
  start-page: 449
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0035
  article-title: Wind speed prediction using reduced support vector machines with feature selection
  publication-title: Neruocomputing
  doi: 10.1016/j.neucom.2014.09.090
– volume: 10
  start-page: 419
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0063
  article-title: A novel multi-objective optimal approach for wind power interval prediction
  publication-title: Energies
  doi: 10.3390/en10040419
– volume: 25
  start-page: 303
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0042
  article-title: Short-term load and wind power forecasting using neural network-based prediction intervals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2276053
– volume: 25
  start-page: 146
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0040
  article-title: Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
  publication-title: Sustain. Energy Technol. Assess.
– volume: 208
  start-page: 45
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0010
  article-title: Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF - ARW model
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.09.011
– volume: 162
  start-page: 239
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0049
  article-title: Short-term wind speed prediction using an extreme learning machine model with error correction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.015
– volume: 268
  start-page: 545
  year: 2018
  ident: 10.1016/j.apm.2018.10.019_bib0076
  article-title: Exploring the sources of uncertainty: why does bagging for time series forecasting work?
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.01.045
– volume: 127
  start-page: 172
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0059
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.020
– volume: 176
  start-page: 295
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0015
  article-title: Forecasting volatility of wind power production
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.071
– volume: 41
  start-page: 299
  year: 2013
  ident: 10.1016/j.apm.2018.10.019_bib0017
  article-title: Wind derivatives: modeling and pricing
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-012-9350-y
– volume: 22
  start-page: 110
  year: 2011
  ident: 10.1016/j.apm.2018.10.019_bib0069
  article-title: Approximate confidence and prediction intervals for least squares support vector regression
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2087769
– volume: 282
  start-page: 388
  year: 2014
  ident: 10.1016/j.apm.2018.10.019_bib0031
  article-title: Fuzzy rough regression with application to wind speed prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.03.090
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.apm.2018.10.019_bib0056
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.apm.2018.10.019_bib0065
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
– volume: 160
  start-page: 75
  year: 2015
  ident: 10.1016/j.apm.2018.10.019_bib0027
  article-title: Non-homogeneous hidden Markov-switching models for wind time series
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2014.12.005
SSID ssj0005904
ssj0012860
Score 2.5473049
Snippet •A new algorithm based on multi-objective formulation is applied to design the prediction intervals for wind power.•Data pre-process strategy based on feature...
A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Algorithms
Best compromise solution
Datasets
Electric power generation
Feature extraction
Forecasting
Fuzzy set theory
Fuzzy sets
Interval forecasting
Intervals
Least square support vector machine
Machine learning
Multi-objective salp swarm algorithm
Multiple objective analysis
Pareto optimization
Variation
Wind power
Wind power generation
Wind speed
Title Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
URI https://dx.doi.org/10.1016/j.apm.2018.10.019
https://www.proquest.com/docview/2176699205
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoED4imeUw6ckLq1TdI2RzaYNtC4ANJuVfMobBpbxYa48dux-xgCoR04Joqj1nYcW_lsE3IBZ5kFTPkOeJ_K4drTjpIRBK7GpMZoXxuFgeLwPug_8duRGNVIt8qFQVhlafsLm55b63KmXXKznY3H7QdUT-nyESglaBamWTV8JgNRJ42rwV3__hvpIV1e1UNEgupxM4d5JRnmo3tRCzFeWG_n7-vpl6HOb5_eDtku3UZ6VXzZLqnZ2R7ZGq5qri72SZLn0jpzNSlsGE2mz3MI_V9eKTimFFZSk8M16Dyl2Rs-0KBQ6DhHPYIW5ss-IEanGbZOw6HVyQJx0TRvmHNAnno3j92-UzZQcDTzxdJRgUiNht9OBUtcDZ5DZF0N8oAriafMNzwSxqYQhiUQJ1mRhiGDUNkoI43kgWWHpD6bz-wRobCHZlGoE-YpbsMoAbcicpmSXETaY-ExcSu-xbqsLo5NLqZxBSObxMDqGFmNU8DqY3K5IsmK0hrrFvNKGPEP_YjB9K8jO6sEF5eHcxH7WBRTSt8VJ__b9ZRswkgWULQzUl--vdtz8E2Wqkk2Wp9eEzSwc93pNUtNhNnBqPMFrCLmjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QOAAHxFO8yYETUlnXpI8cYQJtwHZhSL1FzaOwCdaKDfH3sdN2CIQ4cGzqRK3tOLby2SbkDPYyi5gKPPA-lcd1R3tKJBC4GpMbowNtFAaKg2HUe-S3aZgukW6TC4Owytr2VzbdWet6pF1zs12Ox-0HVE_h8xSUEjQL06yWwRuIsIB-P736wnkInzfVEJG8udp0IK-sxGz0TnKBCC-stvP74fTDTLuz52aDrNdOI72svmuTLNnpFlkbLCquzrZJ5jJpvUJNKgtGs5enAgL_51cKbikFSmocWIMWOS3f8HoGRULHDvMIOujIPiBCpyU2TsNHq7MZoqKpa5ezQx5vrkfdnle3T_A0C8K5p6IwNxp-Ow9Z5mvwGxLra5AGHEg8Z4HhSWhsDkFYBlGSDfM4ZhAoG2WEETyybJe0psXU7hEKa2iWxDpjHcVtnGTgVCQ-U4KHie6weJ_4Dd-krmuLY4uLF9mAyCYSWC2R1TgErN4n54spZVVY4y9i3ghDftMOCYb_r2lHjeBkvTVnMsCSmEIEfnjwv1VPyUpvNLiX9_3h3SFZhTeiAqUdkdb87d0eg5cyVydOCz8BH8fk7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+algorithm+for+the+design+of+prediction+intervals+for+wind+power+forecasting+model&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Jiang%2C+Ping&rft.au=Li%2C+Ranran&rft.au=Li%2C+Hongmin&rft.date=2019-03-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=67&rft.spage=101&rft_id=info:doi/10.1016%2Fj.apm.2018.10.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon