Mining shape of expertise: A novel approach based on convolutional neural network

•Detecting shape of expertise is a practical and industry-motivated problem.•A CNN-based model was proposed in this study to detect users’ shape of expertise.•The proposed method is based on matching both latent vectors of users and queries. Expert finding addresses the task of retrieving and rankin...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 57; no. 4; p. 102239
Main Authors Dehghan, Mahdi, Rahmani, Hossein Ali, Abin, Ahmad Ali, Vu, Viet-Vu
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Detecting shape of expertise is a practical and industry-motivated problem.•A CNN-based model was proposed in this study to detect users’ shape of expertise.•The proposed method is based on matching both latent vectors of users and queries. Expert finding addresses the task of retrieving and ranking talented people on the subject of user query. It is a practical issue in the Community Question Answering networks. Recruiters looking for knowledgeable people for their job positions are the most important clients of expert finding systems. In addition to employee expertise, the cost of hiring new staff is another significant concern for organizations. An efficient solution to cope with this concern is to hire T-shaped experts that are cost-effective. In this study, we have proposed a new deep model for T-shaped experts finding based on Convolutional Neural Networks. The proposed model tries to match queries and users by extracting local and position-invariant features from their corresponding documents. In other words, it detects users’ shape of expertise by learning patterns from documents of users and queries simultaneously. The proposed model contains two parallel CNN’s that extract latent vectors of users and queries based on their corresponding documents and join them together in the last layer to match queries with users. Experiments on a large subset of Stack Overflow documents indicate the effectiveness of the proposed method against baselines in terms of NDCG, MRR, and ERR evaluation metrics.
AbstractList Expert finding addresses the task of retrieving and ranking talented people on the subject of user query. It is a practical issue in the Community Question Answering networks. Recruiters looking for knowledgeable people for their job positions are the most important clients of expert finding systems. In addition to employee expertise, the cost of hiring new staff is another significant concern for organizations. An efficient solution to cope with this concern is to hire T-shaped experts that are cost-effective. In this study, we have proposed a new deep model for T-shaped experts finding based on Convolutional Neural Networks. The proposed model tries to match queries and users by extracting local and position-invariant features from their corresponding documents. In other words, it detects users' shape of expertise by learning patterns from documents of users and queries simultaneously. The proposed model contains two parallel CNN's that extract latent vectors of users and queries based on their corresponding documents and join them together in the last layer to match queries with users. Experiments on a large subset of Stack Overflow documents indicate the effectiveness of the proposed method against baselines in terms of NDCG, MRR, and ERR evaluation metrics.
•Detecting shape of expertise is a practical and industry-motivated problem.•A CNN-based model was proposed in this study to detect users’ shape of expertise.•The proposed method is based on matching both latent vectors of users and queries. Expert finding addresses the task of retrieving and ranking talented people on the subject of user query. It is a practical issue in the Community Question Answering networks. Recruiters looking for knowledgeable people for their job positions are the most important clients of expert finding systems. In addition to employee expertise, the cost of hiring new staff is another significant concern for organizations. An efficient solution to cope with this concern is to hire T-shaped experts that are cost-effective. In this study, we have proposed a new deep model for T-shaped experts finding based on Convolutional Neural Networks. The proposed model tries to match queries and users by extracting local and position-invariant features from their corresponding documents. In other words, it detects users’ shape of expertise by learning patterns from documents of users and queries simultaneously. The proposed model contains two parallel CNN’s that extract latent vectors of users and queries based on their corresponding documents and join them together in the last layer to match queries with users. Experiments on a large subset of Stack Overflow documents indicate the effectiveness of the proposed method against baselines in terms of NDCG, MRR, and ERR evaluation metrics.
ArticleNumber 102239
Author Abin, Ahmad Ali
Vu, Viet-Vu
Dehghan, Mahdi
Rahmani, Hossein Ali
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Dehghan
  fullname: Dehghan, Mahdi
  email: mah.dehghan@mail.sbu.ac.ir
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University, G.C., Tehran, Iran
– sequence: 2
  givenname: Hossein Ali
  surname: Rahmani
  fullname: Rahmani, Hossein Ali
  email: srahmani@znu.ac.ir
  organization: Faculty of Computer Science and Engineering, University of Zanjan, Zanjan, Iran
– sequence: 3
  givenname: Ahmad Ali
  surname: Abin
  fullname: Abin, Ahmad Ali
  email: a_abin@sbu.ac.ir
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University, G.C., Tehran, Iran
– sequence: 4
  givenname: Viet-Vu
  surname: Vu
  fullname: Vu, Viet-Vu
  email: vuvietvu@vnu.edu.vn
  organization: VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
BookMark eNp9kEtPwzAQhC1UJNrCD-BmiXOKX0laOFUVL6kIIcHZcuw1dUntYKcF_j0p4cShp9Fq51vNzggNfPCA0DklE0pocbmeuGYzYYTtZ8b47AgN6bTkWc5LOkBDwkmRibzkJ2iU0poQInLKhuj50Xnn33BaqQZwsBi-GoitS3CF59iHHdRYNU0MSq9wpRIYHDzWwe9CvW1d8KrGHrbxV9rPEN9P0bFVdYKzPx2j19ubl8V9tny6e1jMl5nmLG-zSuiZJgWjijE1pcYUwtCZEkVRmcoyUYISpgSwpeFWiNyKXHf7mZoaayw1fIwu-rtduI8tpFauwzZ2eZJkgk9LJkSRd66yd-kYUopgpXat2gdvo3K1pETu-5Nr2fUn9_3Jvr-OpP_IJrqNit8Hmeuege7xnYMok3bgNRgXQbfSBHeA_gHa5Ysx
CitedBy_id crossref_primary_10_1016_j_ipm_2022_103144
crossref_primary_10_1016_j_jocs_2022_101928
crossref_primary_10_3390_a17020051
crossref_primary_10_1016_j_ipm_2023_103366
crossref_primary_10_1016_j_dss_2020_113425
crossref_primary_10_1002_smr_2713
crossref_primary_10_1007_s10844_024_00847_y
crossref_primary_10_1016_j_ins_2022_02_039
crossref_primary_10_1016_j_eswa_2020_114484
crossref_primary_10_1016_j_eswa_2021_116433
crossref_primary_10_1145_3441302
crossref_primary_10_1007_s10791_023_09421_6
crossref_primary_10_1016_j_ins_2022_06_072
Cites_doi 10.1561/1500000024
10.1016/j.ipm.2019.02.017
10.1016/j.eswa.2013.04.001
10.1561/1500000035
10.1016/j.ipm.2018.01.001
10.1111/exsy.12062
10.1016/j.knosys.2015.11.002
10.1016/j.ipm.2008.06.003
10.1016/j.ipm.2018.05.001
10.1145/3320489
10.1016/j.ipm.2017.04.002
10.1007/s11390-018-1845-0
10.1007/s13278-015-0313-x
10.1016/j.is.2019.07.003
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Pergamon Press Inc. Jul 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jul 2020
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2020.102239
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2020_102239
S0306457320301151
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
E3H
EFKBS
F2A
ID FETCH-LOGICAL-c325t-b4c9c0621a22a81dd64d19a466bdbf247ea4d7eef7d3f445f45c19a9a8dfdf1d3
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Fri Jul 25 03:40:34 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:47:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep neural network
Community question answering
Expert finding
T-Shaped mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b4c9c0621a22a81dd64d19a466bdbf247ea4d7eef7d3f445f45c19a9a8dfdf1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2438724465
PQPubID 46166
ParticipantIDs proquest_journals_2438724465
crossref_citationtrail_10_1016_j_ipm_2020_102239
crossref_primary_10_1016_j_ipm_2020_102239
elsevier_sciencedirect_doi_10_1016_j_ipm_2020_102239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Mohasseb, Bader-El-Den, Cocea (bib0020) 2018; 54
Le, Mikolov (bib0015) 2014
Van Gysel, de Rijke, Worring (bib0031) 2016
Zhao, Yang, Cai, He, Zhuang (bib0035) 2016
Gharebagh, Rostami, Neshati (bib0012) 2018
Zhang, Ackerman, Adamic (bib0034) 2007
Moreira, Calado, Martins (bib0023) 2015; 32
Zhou, Zhou, He, Wu (bib0037) 2016; 93
Zhou, Cong, Cui, Jensen, Yao (bib0038) 2009
Balog, Fang, de Rijke, Serdyukov, Si (bib0003) 2012; 6
Hashemi, Neshati, Beigy (bib0013) 2013
Maslova, Potapov (bib0019) 2017
White, Smyth (bib0033) 2003
Erten, Harding, Kobourov, Wampler, Yee (bib0011) 2004; 5295
Momtazi (bib0021) 2018; 54
Dargahi Nobari, Sotudeh Gharebagh, Neshati (bib0006) 2017
Mutschke (bib0026) 2003
Wang, Huang, Yao, Benatallah, Dong (bib0032) 2018; 33
Moreira, Wichert (bib0024) 2013; 40
Li, Jin, Shudong (bib0016) 2015
Momtazi, Naumann (bib0022) 2013; 3
Karimzadehgan, White, Richardson (bib0014) 2009
Alarfaj, Kruschwitz, Hunter, Fox (bib0001) 2012
Chapelle, Metlzer, Zhang, Grinspan (bib0005) 2009
Dehghan, Biabani, Abin (bib0009) 2019; 56
Neshati, Asgari, Hiemstra, Beigy (bib0027) 2013
Patil, Lee (bib0030) 2016; 6
Li, Xu (bib0017) 2014; 7
Dehghan, Abin (bib0007) 2019; 49
Markov, Gómez-Adorno, Posadas-Durán, Sidorov, Gelbukh (bib0018) 2016
Nobari, Neshati, Gharebagh (bib0029) 2020; 87
Zhou, Lai, Liu, Zhao (bib0036) 2012
Neshati, Fallahnejad, Beigy (bib0028) 2017; 53
Blei, Ng, Jordan (bib0004) 2003; 3
Dehghan, Abin (bib0008) 2019; 13
Mumtaz, Rodriguez, Benatallah (bib0025) 2019
Deng, King, Lyu (bib0010) 2008
Balog, Azzopardi, de Rijke (bib0002) 2009; 45
Nobari (10.1016/j.ipm.2020.102239_bib0029) 2020; 87
Zhou (10.1016/j.ipm.2020.102239_bib0038) 2009
Maslova (10.1016/j.ipm.2020.102239_bib0019) 2017
Markov (10.1016/j.ipm.2020.102239_bib0018) 2016
Dehghan (10.1016/j.ipm.2020.102239_bib0008) 2019; 13
Moreira (10.1016/j.ipm.2020.102239_bib0023) 2015; 32
Zhao (10.1016/j.ipm.2020.102239_bib0035) 2016
Mumtaz (10.1016/j.ipm.2020.102239_bib0025) 2019
Dehghan (10.1016/j.ipm.2020.102239_bib0007) 2019; 49
Karimzadehgan (10.1016/j.ipm.2020.102239_bib0014) 2009
Neshati (10.1016/j.ipm.2020.102239_bib0027) 2013
Mutschke (10.1016/j.ipm.2020.102239_bib0026) 2003
Mohasseb (10.1016/j.ipm.2020.102239_bib0020) 2018; 54
Blei (10.1016/j.ipm.2020.102239_bib0004) 2003; 3
Zhou (10.1016/j.ipm.2020.102239_bib0036) 2012
Zhou (10.1016/j.ipm.2020.102239_bib0037) 2016; 93
Zhang (10.1016/j.ipm.2020.102239_bib0034) 2007
Deng (10.1016/j.ipm.2020.102239_bib0010) 2008
Le (10.1016/j.ipm.2020.102239_bib0015) 2014
Wang (10.1016/j.ipm.2020.102239_bib0032) 2018; 33
Li (10.1016/j.ipm.2020.102239_bib0016) 2015
Patil (10.1016/j.ipm.2020.102239_bib0030) 2016; 6
Moreira (10.1016/j.ipm.2020.102239_bib0024) 2013; 40
Balog (10.1016/j.ipm.2020.102239_bib0003) 2012; 6
Erten (10.1016/j.ipm.2020.102239_bib0011) 2004; 5295
Li (10.1016/j.ipm.2020.102239_bib0017) 2014; 7
Dehghan (10.1016/j.ipm.2020.102239_bib0009) 2019; 56
Dargahi Nobari (10.1016/j.ipm.2020.102239_bib0006) 2017
Gharebagh (10.1016/j.ipm.2020.102239_bib0012) 2018
Neshati (10.1016/j.ipm.2020.102239_bib0028) 2017; 53
White (10.1016/j.ipm.2020.102239_bib0033) 2003
Momtazi (10.1016/j.ipm.2020.102239_bib0022) 2013; 3
Alarfaj (10.1016/j.ipm.2020.102239_bib0001) 2012
Hashemi (10.1016/j.ipm.2020.102239_bib0013) 2013
Balog (10.1016/j.ipm.2020.102239_bib0002) 2009; 45
Chapelle (10.1016/j.ipm.2020.102239_bib0005) 2009
Momtazi (10.1016/j.ipm.2020.102239_bib0021) 2018; 54
Van Gysel (10.1016/j.ipm.2020.102239_bib0031) 2016
References_xml – volume: 56
  start-page: 1067
  year: 2019
  end-page: 1079
  ident: bib0009
  article-title: Temporal expert profiling: With an application to t-shaped expert finding
  publication-title: Information Processing & Management
– start-page: 3000
  year: 2016
  end-page: 3006
  ident: bib0035
  article-title: Expert finding for community-based question answering via ranking metric network learning.
  publication-title: IJCAI
– volume: 45
  start-page: 1
  year: 2009
  end-page: 19
  ident: bib0002
  article-title: A language modeling framework for expert finding
  publication-title: Information Processing & Management
– start-page: 1117
  year: 2013
  end-page: 1126
  ident: bib0013
  article-title: Expertise retrieval in bibliographic network: A topic dominance learning approach
  publication-title: Proceedings of the 22nd ACM international conference on conference on information & knowledge management
– volume: 33
  start-page: 625
  year: 2018
  end-page: 653
  ident: bib0032
  article-title: A survey on expert recommendation in community question answering
  publication-title: Journal of Computer Science and Technology
– start-page: 1662
  year: 2012
  end-page: 1666
  ident: bib0036
  article-title: Topic-sensitive probabilistic model for expert finding in question answer communities
  publication-title: Proceedings of the 21st ACM international conference on information and knowledge management
– start-page: 155
  year: 2003
  end-page: 166
  ident: bib0026
  article-title: Mining networks and central entities in digital libraries. A graph theoretic approach applied to co-author networks
  publication-title: International symposium on intelligent data analysis
– start-page: 411
  year: 2018
  end-page: 423
  ident: bib0012
  article-title: T-shaped mining: A novel approach to talent finding for agile software teams
  publication-title: European conference on information retrieval
– volume: 7
  start-page: 343
  year: 2014
  end-page: 469
  ident: bib0017
  article-title: Semantic matching in search
  publication-title: Foundations and Trends® in Information Retrieval
– volume: 49
  start-page: 1095
  year: 2019
  end-page: 1106
  ident: bib0007
  article-title: Retrieve and rank the experts using a cluster-based translation model
  publication-title: Tabriz Journal of Electrical Engineering
– volume: 5295
  start-page: 45
  year: 2004
  end-page: 57
  ident: bib0011
  article-title: Exploring the computing literature using temporal graph visualization
  publication-title: Visualization and data analysis 2004
– volume: 6
  start-page: 127
  year: 2012
  end-page: 256
  ident: bib0003
  article-title: Expertise retrieval
  publication-title: Foundations and Trends® in Information Retrieval
– volume: 54
  start-page: 380
  year: 2018
  end-page: 393
  ident: bib0021
  article-title: Unsupervised latent Dirichlet allocation for supervised question classification
  publication-title: Information Processing & Management
– volume: 93
  start-page: 75
  year: 2016
  end-page: 83
  ident: bib0037
  article-title: Learning semantic representation with neural networks for community question answering retrieval
  publication-title: Knowledge-Based Systems
– start-page: 1057
  year: 2017
  end-page: 1060
  ident: bib0006
  article-title: Skill translation models in expert finding
  publication-title: Proceedings of the 40th international ACMSIGIR conference on research and development in information retrieval
– volume: 32
  start-page: 477
  year: 2015
  end-page: 493
  ident: bib0023
  article-title: Learning to rank academic experts in the DBLPdataset
  publication-title: Expert Systems
– volume: 6
  start-page: 5
  year: 2016
  ident: bib0030
  article-title: Detecting experts on quora: By their activity, quality of answers, linguistic characteristics and temporal behaviors
  publication-title: Social Network Analysis and Mining
– start-page: 117
  year: 2016
  end-page: 131
  ident: bib0018
  article-title: Author profiling with doc2vec neural network-based document embeddings
  publication-title: Mexican international conference on artificial intelligence
– start-page: 1069
  year: 2016
  end-page: 1079
  ident: bib0031
  article-title: Unsupervised, efficient and semantic expertise retrieval
  publication-title: Proceedings of the 25th international conference on world wide web
– volume: 54
  start-page: 1228
  year: 2018
  end-page: 1243
  ident: bib0020
  article-title: Question categorization and classification using grammar based approach
  publication-title: Information Processing & Management
– start-page: 213
  year: 2019
  end-page: 229
  ident: bib0025
  article-title: Expert2vec: Experts representation in community question answering for question routing
  publication-title: International conference on advanced information systems engineering
– start-page: 122
  year: 2013
  end-page: 133
  ident: bib0027
  article-title: A joint classification method to integrate scientific and social networks
  publication-title: European conference on information retrieval
– volume: 87
  start-page: 101413
  year: 2020
  ident: bib0029
  article-title: Quality-aware skill translation models for expert finding on stackoverflow
  publication-title: Information Systems
– start-page: 1188
  year: 2014
  end-page: 1196
  ident: bib0015
  article-title: Distributed representations of sentences and documents
  publication-title: International conference on machine learning
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib0001
  article-title: Finding the right supervisor: Expert-finding in a university domain
  publication-title: Proceedings of the 2012 conference of the North American chapter of the association for computational linguistics: human language technologies: Student research workshop
– volume: 3
  start-page: 346
  year: 2013
  end-page: 353
  ident: bib0022
  article-title: Topic modeling for expert finding using latent Dirichlet allocation
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 40
  start-page: 5740
  year: 2013
  end-page: 5754
  ident: bib0024
  article-title: Finding academic experts on a multisensor approach using Shannonâs entropy
  publication-title: Expert Systems with Applications
– start-page: 266
  year: 2003
  end-page: 275
  ident: bib0033
  article-title: Algorithms for estimating relative importance in networks
  publication-title: Proceedings of the ninth ACM SIGKDDinternational conference on knowledge discovery and data mining
– start-page: 163
  year: 2008
  end-page: 172
  ident: bib0010
  article-title: Formal models for expert finding on DBLP bibliography data
  publication-title: 2008 eighth IEEE international conference on data mining
– start-page: 546
  year: 2017
  end-page: 554
  ident: bib0019
  article-title: Neural network doc2vec in automated sentiment analysis for short informal texts
  publication-title: International conference on speech and computer
– start-page: 221
  year: 2007
  end-page: 230
  ident: bib0034
  article-title: Expertise networks in online communities: structure and algorithms
  publication-title: Proceedings of the 16th international conference on world wide web
– volume: 13
  start-page: 32
  year: 2019
  ident: bib0008
  article-title: Translations diversification for expert finding: A novel clustering-based approach
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– start-page: 177
  year: 2009
  end-page: 188
  ident: bib0014
  article-title: Enhancing expert finding using organizational hierarchies
  publication-title: European conference on information retrieval
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: bib0004
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– start-page: 176
  year: 2015
  end-page: 185
  ident: bib0016
  article-title: A hybrid model for experts finding in community question answering
  publication-title: Cyber-enabled distributed computing and knowledge discovery (CyberC), 2015 international conference on
– start-page: 621
  year: 2009
  end-page: 630
  ident: bib0005
  article-title: Expected reciprocal rank for graded relevance
  publication-title: Proceedings of the 18th ACM conference on information and knowledge management
– volume: 53
  start-page: 1026
  year: 2017
  end-page: 1042
  ident: bib0028
  article-title: On dynamicity of expert finding in community question answering
  publication-title: Information Processing & Management
– start-page: 700
  year: 2009
  end-page: 711
  ident: bib0038
  article-title: Routing questions to the right users in online communities
  publication-title: Ieee international conference on data engineering
– start-page: 176
  year: 2015
  ident: 10.1016/j.ipm.2020.102239_bib0016
  article-title: A hybrid model for experts finding in community question answering
– start-page: 3000
  year: 2016
  ident: 10.1016/j.ipm.2020.102239_bib0035
  article-title: Expert finding for community-based question answering via ranking metric network learning.
– start-page: 1
  year: 2012
  ident: 10.1016/j.ipm.2020.102239_bib0001
  article-title: Finding the right supervisor: Expert-finding in a university domain
– volume: 6
  start-page: 127
  issue: 2–3
  year: 2012
  ident: 10.1016/j.ipm.2020.102239_bib0003
  article-title: Expertise retrieval
  publication-title: Foundations and Trends® in Information Retrieval
  doi: 10.1561/1500000024
– volume: 56
  start-page: 1067
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2020.102239_bib0009
  article-title: Temporal expert profiling: With an application to t-shaped expert finding
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.02.017
– volume: 40
  start-page: 5740
  issue: 14
  year: 2013
  ident: 10.1016/j.ipm.2020.102239_bib0024
  article-title: Finding academic experts on a multisensor approach using Shannonâs entropy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.001
– volume: 7
  start-page: 343
  issue: 5
  year: 2014
  ident: 10.1016/j.ipm.2020.102239_bib0017
  article-title: Semantic matching in search
  publication-title: Foundations and Trends® in Information Retrieval
  doi: 10.1561/1500000035
– start-page: 117
  year: 2016
  ident: 10.1016/j.ipm.2020.102239_bib0018
  article-title: Author profiling with doc2vec neural network-based document embeddings
– start-page: 155
  year: 2003
  ident: 10.1016/j.ipm.2020.102239_bib0026
  article-title: Mining networks and central entities in digital libraries. A graph theoretic approach applied to co-author networks
– volume: 54
  start-page: 380
  issue: 3
  year: 2018
  ident: 10.1016/j.ipm.2020.102239_bib0021
  article-title: Unsupervised latent Dirichlet allocation for supervised question classification
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.01.001
– volume: 32
  start-page: 477
  issue: 4
  year: 2015
  ident: 10.1016/j.ipm.2020.102239_bib0023
  article-title: Learning to rank academic experts in the DBLPdataset
  publication-title: Expert Systems
  doi: 10.1111/exsy.12062
– start-page: 213
  year: 2019
  ident: 10.1016/j.ipm.2020.102239_bib0025
  article-title: Expert2vec: Experts representation in community question answering for question routing
– start-page: 1117
  year: 2013
  ident: 10.1016/j.ipm.2020.102239_bib0013
  article-title: Expertise retrieval in bibliographic network: A topic dominance learning approach
– start-page: 1057
  year: 2017
  ident: 10.1016/j.ipm.2020.102239_bib0006
  article-title: Skill translation models in expert finding
– volume: 93
  start-page: 75
  year: 2016
  ident: 10.1016/j.ipm.2020.102239_bib0037
  article-title: Learning semantic representation with neural networks for community question answering retrieval
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.11.002
– start-page: 621
  year: 2009
  ident: 10.1016/j.ipm.2020.102239_bib0005
  article-title: Expected reciprocal rank for graded relevance
– volume: 45
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.ipm.2020.102239_bib0002
  article-title: A language modeling framework for expert finding
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2008.06.003
– start-page: 221
  year: 2007
  ident: 10.1016/j.ipm.2020.102239_bib0034
  article-title: Expertise networks in online communities: structure and algorithms
– start-page: 546
  year: 2017
  ident: 10.1016/j.ipm.2020.102239_bib0019
  article-title: Neural network doc2vec in automated sentiment analysis for short informal texts
– start-page: 177
  year: 2009
  ident: 10.1016/j.ipm.2020.102239_bib0014
  article-title: Enhancing expert finding using organizational hierarchies
– start-page: 1188
  year: 2014
  ident: 10.1016/j.ipm.2020.102239_bib0015
  article-title: Distributed representations of sentences and documents
– start-page: 122
  year: 2013
  ident: 10.1016/j.ipm.2020.102239_bib0027
  article-title: A joint classification method to integrate scientific and social networks
– start-page: 266
  year: 2003
  ident: 10.1016/j.ipm.2020.102239_bib0033
  article-title: Algorithms for estimating relative importance in networks
– volume: 49
  start-page: 1095
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2020.102239_bib0007
  article-title: Retrieve and rank the experts using a cluster-based translation model
  publication-title: Tabriz Journal of Electrical Engineering
– start-page: 1069
  year: 2016
  ident: 10.1016/j.ipm.2020.102239_bib0031
  article-title: Unsupervised, efficient and semantic expertise retrieval
– start-page: 1662
  year: 2012
  ident: 10.1016/j.ipm.2020.102239_bib0036
  article-title: Topic-sensitive probabilistic model for expert finding in question answer communities
– volume: 54
  start-page: 1228
  issue: 6
  year: 2018
  ident: 10.1016/j.ipm.2020.102239_bib0020
  article-title: Question categorization and classification using grammar based approach
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.05.001
– start-page: 700
  year: 2009
  ident: 10.1016/j.ipm.2020.102239_bib0038
  article-title: Routing questions to the right users in online communities
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 10.1016/j.ipm.2020.102239_bib0004
  article-title: Latent Dirichlet allocation
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 32
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2020.102239_bib0008
  article-title: Translations diversification for expert finding: A novel clustering-based approach
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/3320489
– start-page: 163
  year: 2008
  ident: 10.1016/j.ipm.2020.102239_bib0010
  article-title: Formal models for expert finding on DBLP bibliography data
– volume: 53
  start-page: 1026
  issue: 5
  year: 2017
  ident: 10.1016/j.ipm.2020.102239_bib0028
  article-title: On dynamicity of expert finding in community question answering
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2017.04.002
– volume: 33
  start-page: 625
  issue: 4
  year: 2018
  ident: 10.1016/j.ipm.2020.102239_bib0032
  article-title: A survey on expert recommendation in community question answering
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-018-1845-0
– start-page: 411
  year: 2018
  ident: 10.1016/j.ipm.2020.102239_bib0012
  article-title: T-shaped mining: A novel approach to talent finding for agile software teams
– volume: 6
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.ipm.2020.102239_bib0030
  article-title: Detecting experts on quora: By their activity, quality of answers, linguistic characteristics and temporal behaviors
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-015-0313-x
– volume: 5295
  start-page: 45
  year: 2004
  ident: 10.1016/j.ipm.2020.102239_bib0011
  article-title: Exploring the computing literature using temporal graph visualization
– volume: 87
  start-page: 101413
  year: 2020
  ident: 10.1016/j.ipm.2020.102239_bib0029
  article-title: Quality-aware skill translation models for expert finding on stackoverflow
  publication-title: Information Systems
  doi: 10.1016/j.is.2019.07.003
– volume: 3
  start-page: 346
  issue: 5
  year: 2013
  ident: 10.1016/j.ipm.2020.102239_bib0022
  article-title: Topic modeling for expert finding using latent Dirichlet allocation
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
SSID ssj0004512
Score 2.3493044
Snippet •Detecting shape of expertise is a practical and industry-motivated problem.•A CNN-based model was proposed in this study to detect users’ shape of...
Expert finding addresses the task of retrieving and ranking talented people on the subject of user query. It is a practical issue in the Community Question...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102239
SubjectTerms Artificial neural networks
Community question answering
Data mining
Datasets
Deep neural network
Expert finding
Feature extraction
Information retrieval
Neural networks
Queries
T shape
T-Shaped mining
Title Mining shape of expertise: A novel approach based on convolutional neural network
URI https://dx.doi.org/10.1016/j.ipm.2020.102239
https://www.proquest.com/docview/2438724465
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXryIP3G6jRzEg1C3Ji_t6m0Mx1QciAreQtMkOBnbcNOjf7t5aSoqsoOn0jZpypeXl_fIe98j5MTminNhk6jQjEcgujpSXOsIaxXynoIi1p7tc5yMHuH6STzVyKDKhcGwyqD7S53utXV40glodhaTSecerV0QKWfeqvdp1AApSvn5R_yNMTwOJwlJhK2rk00f4zVZYDI68wQGDOuF_703_dLSfusZbpOtYDPSfvlbO6RmZrukFTIO6CkNKUUIMQ1rdY_c3frSD3T5nC8MnVvqufyx9PIF7dPZ_N1MaUUoTnEv09R1xyD0IIxuRCS79BcfKr5PHoeXD4NRFOonRAVnYhU5pLOim7A4Zyx3dqlOQMdZDkmitLIMUpODTo2xqeYWQFgQhXuf5T1ttY01PyD12XxmDgm1CpTKutq5UwJM7lxqlXGB5hgrUufzNEi3Qk4WgVwca1xMZRVF9iId2BLBliXYDXL21WVRMmusawzVdMgf4iGd5l_XrVlNnQxrcykZ8F7KkCju6H9fPSabeFcG7TZJffX6ZlrONFmptpe9NtnoX92Mxp8f9eJ6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHvQi_sTppjmIB6FuzY929TbEMXUbiBvsFpomwcnohpse_dvNS1NRkR08FZqkDV-Slxfy3vchdG5SSSk3UZApQgPGWyqQVKkAtAppW7IsVI7tcxj1xux-wicVdFPmwkBYpbf9hU131tq_aXo0m4vptPkE3i7jMSXOq4c06g1mly_IGFx9hN8ow0N_lRAFUL282nRBXtMFZKMTx2BAQDD8783pl5l2e093B217pxF3in7toorO91DDpxzgC-xzigBj7BfrPnocOO0HvHxOFxrPDXZk_qC9fI07OJ-_6xkuGcUxbGYK2-YQhe5no_0jsF26h4sVP0Dj7u3ophd4AYUgo4SvAgt1krUiEqaEpNYxVRFTYZKyKJJKGsJinTIVa21iRQ1j3DCe2fIkbSujTKjoIarm81wfIWwkkzJpKXue4kyn9kwtE8rBHyNZbA89NdQqkROZZxcHkYuZKMPIXoQFWwDYogC7hi6_miwKao11lVk5HOLH_BDW9K9rVi-HTvjFuRSE0XZMgCnu-H9fPUObvdGgL_p3w4cTtAUlRQRvHVVXr2-6Yf2UlTx18_ATY7TkCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+shape+of+expertise%3A+A+novel+approach+based+on+convolutional+neural+network&rft.jtitle=Information+processing+%26+management&rft.au=Dehghan%2C+Mahdi&rft.au=Rahmani%2C+Hossein+Ali&rft.au=Abin%2C+Ahmad+Ali&rft.au=Vu%2C+Viet-Vu&rft.date=2020-07-01&rft.issn=0306-4573&rft.volume=57&rft.issue=4&rft.spage=102239&rft_id=info:doi/10.1016%2Fj.ipm.2020.102239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2020_102239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon