Identifying the Mating Posture of Cattle Using Deep Learning-Based Object Detection with Networks of Various Settings

Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artificially fertilized and isolated for safety, which directly affects the productivity of livestock farms. Estrus can be successfully detected by identifying the mating posture of cattl...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 16; no. 3; pp. 1685 - 1692
Main Authors Chae, Jung-woo, Cho, Hyun-chong
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.05.2021
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-021-00701-z

Cover

Loading…
Abstract Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artificially fertilized and isolated for safety, which directly affects the productivity of livestock farms. Estrus can be successfully detected by identifying the mating posture of cattle. Therefore, in this paper, we propose the identification of cattle mating posture based on video inputs for prompt estrus detection. A deep learning-based object detection network that focuses on real-time processing with high processing speeds is applied. The use of deep learning-based object detection shows high accuracy, even with noise robustness. The performance of the network is improved through the inclusion of an additional layer and a new activation function. The composition of the additional layer enables training by extracting more features required for object detection. The application of the new activation function, Mish, which has a smoother curve, allows for better generalization and improves the accuracy of the results. The data needed for training were gathered by installing cameras at a livestock farm, and various datasets were used depending on camera placement. The results of this study were verified by the evaluation of four networks using test datasets containing image and video data from different environments. The identification of the mating posture of cattle attained 98.5% precision, 97.2% recall, and 97.8% accuracy.
AbstractList Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artifi cially fertilized and isolated for safety, which directly aff ects the productivity of livestock farms. Estrus can be successfully detected by identifying the mating posture of cattle. Therefore, in this paper, we propose the identifi cation of cattle mating posture based on video inputs for prompt estrus detection. A deep learning-based object detection network that focuses on real-time processing with high processing speeds is applied. The use of deep learning-based object detection shows high accuracy, even with noise robustness. The performance of the network is improved through the inclusion of an additional layer and a new activation function. The composition of the additional layer enables training by extracting more features required for object detection. The application of the new activation function, Mish, which has a smoother curve, allows for better generalization and improves the accuracy of the results. The data needed for training were gathered by installing cameras at a livestock farm, and various datasets were used depending on camera placement. The results of this study were verifi ed by the evaluation of four networks using test datasets containing image and video data from diff erent environments. The identifi cation of the mating posture of cattle attained 98.5% precision, 97.2% recall, and 97.8% accuracy. KCI Citation Count: 0
Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artificially fertilized and isolated for safety, which directly affects the productivity of livestock farms. Estrus can be successfully detected by identifying the mating posture of cattle. Therefore, in this paper, we propose the identification of cattle mating posture based on video inputs for prompt estrus detection. A deep learning-based object detection network that focuses on real-time processing with high processing speeds is applied. The use of deep learning-based object detection shows high accuracy, even with noise robustness. The performance of the network is improved through the inclusion of an additional layer and a new activation function. The composition of the additional layer enables training by extracting more features required for object detection. The application of the new activation function, Mish, which has a smoother curve, allows for better generalization and improves the accuracy of the results. The data needed for training were gathered by installing cameras at a livestock farm, and various datasets were used depending on camera placement. The results of this study were verified by the evaluation of four networks using test datasets containing image and video data from different environments. The identification of the mating posture of cattle attained 98.5% precision, 97.2% recall, and 97.8% accuracy.
Author Cho, Hyun-chong
Chae, Jung-woo
Author_xml – sequence: 1
  givenname: Jung-woo
  surname: Chae
  fullname: Chae, Jung-woo
  organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University
– sequence: 2
  givenname: Hyun-chong
  orcidid: 0000-0003-2122-468X
  surname: Cho
  fullname: Cho, Hyun-chong
  email: hyuncho@kangwon.ac.kr
  organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University, Department of Electronics Engineering, Kangwon National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002708361$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kDtPwzAUhS0EEqXwB5i8MgT8SOJkhPKqVB4Cymo5yXXrttjIdlWVX49DmRiYjq_v-Y7sc4T2rbOA0Ckl55QQcRFyVvEiI4xmaSQ0-9pDA0Zqnomc8X00oLVIa0rYIToKYUFISUnBB2g97sBGo7fGznCcA35QsT8-uxDXHrDTeKRiXAGehv7-GuATT0B5m6bsSgXo8FOzgDamVUxinMUbE-f4EeLG-WXoI96VN24d8CvEPj0cowOtVgFOfnWIprc3b6P7bPJ0Nx5dTrKWsyJmDS-EYFVeMcIbLaBo6jo9u6sV6WpNCRVUVboUChqlO96URZssuqtUW4qal3yIzna51mu5bI10yvzozMmll5cvb2NZC1GWeZ681c7beheCBy1bE1X_n-iVWUlKZF-13FUtU9Xyp2r5lVD2B_305kP57f8Q30Ehme0MvFy4tbepjv-ob_DAlOk
CitedBy_id crossref_primary_10_1016_j_biosystemseng_2024_07_017
crossref_primary_10_5187_jast_2021_e127
crossref_primary_10_1109_ACCESS_2024_3379277
crossref_primary_10_1007_s10489_021_02910_5
crossref_primary_10_1007_s42835_022_01346_2
crossref_primary_10_3390_ani13223459
crossref_primary_10_1080_23307706_2022_2141358
Cites_doi 10.1016/j.compag.2014.03.003
10.1016/j.patcog.2019.01.006
10.1016/j.theriogenology.2010.02.016
10.1109/TNNLS.2018.2876865
10.1016/j.compag.2018.02.016
10.14801/jkiit.2015.13.3.85
10.3837/tiis.2015.08.024
10.1007/978-3-319-46681-1_49
10.1111/j.1439-0531.2011.01971.x
10.3168/jds.S0022-0302(81)82705-1
10.3390/computers2020088
10.1016/j.theriogenology.2018.09.038
10.1016/j.compag.2016.06.007
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2021
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-021-00701-z
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 1692
ExternalDocumentID oai_kci_go_kr_ARTI_9776644
10_1007_s42835_021_00701_z
GrantInformation_xml – fundername: Institute for Information and Communications Technology Promotion
  grantid: IITP-2020-2018-0-01433
  funderid: http://dx.doi.org/10.13039/501100010418
– fundername: Ministry of Education
  grantid: No. 2017R1E1A1A03070297
  funderid: http://dx.doi.org/10.13039/501100002701
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c325t-b35772848203bf7e5b99105d9a0d9f10171a8f67aebafd3b65c5b9fd8ac679363
ISSN 1975-0102
IngestDate Tue Nov 21 21:33:03 EST 2023
Thu Apr 24 22:53:21 EDT 2025
Tue Jul 01 00:40:51 EDT 2025
Fri Feb 21 02:48:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Mating posture
Estrus
Cattle
Mish activation function
Object detection
Deep learning network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-b35772848203bf7e5b99105d9a0d9f10171a8f67aebafd3b65c5b9fd8ac679363
ORCID 0000-0003-2122-468X
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9776644
crossref_citationtrail_10_1007_s42835_021_00701_z
crossref_primary_10_1007_s42835_021_00701_z
springer_journals_10_1007_s42835_021_00701_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
2021-05
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2021
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References Saint-DizierMChastant-MaillardSTowards an automated detection of oestrus in dairy cattleReprod Domest Anim2012471056106110.1111/j.1439-0531.2011.01971.x
Kim B, Lee Y, Kim Y, Kim T, Park J, Lee S (2017) Top 10 Agriculture Issues in 2017. In: Korea Rural Economic Institute, Focus on Agricultural Affairs, vol 142, pp p1–27
HigakiSMiuraRSudaTAnderssonLMOkadaHZhangYEstrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattleTheriogenology2019123909910.1016/j.theriogenology.2018.09.038
ChungYChoiDChoiHParkDChangH-HKimSAutomated detection of cattle mounting using side-view cameraKSII Trans Internet Inf Syst201593151316810.3837/tiis.2015.08.024
Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
RoelofsJLópez-GatiusFHunterRVanEerdenburgFHanzenCWhen is a cow in estrus? Clinical and practical aspectsTheriogenology20107432734410.1016/j.theriogenology.2010.02.016
Korean Statistical Information Service. The global cattle population
AnderssonLMOkadaHMiuraRZhangYYoshiokaKAsoHWearable wireless estrus detection sensor for cowsComput Electron Agric201612710110810.1016/j.compag.2016.06.007
TsaiD-MHuangC-YA motion and image analysis method for automatic detection of estrus and mating behavior in cattleComput Electron Agric2014104253110.1016/j.compag.2014.03.003
KeS-RThucHLeeY-JHwangJ-NYooJ-HChoiK-HA review on video-based human activity recognitionComputers201328813110.3390/computers2020088
RyuI-SAccurate Understanding of Cattle InseminationImprovement for Breeding Stock2006113842
AraveCAlbrightJCattle behaviorJ Dairy Sci1981641318132910.3168/jds.S0022-0302(81)82705-1
JunHKimJRemote multiple sensor network system for monitoring conditions of dairy cowJ KIIT201513859310.14801/jkiit.2015.13.3.85
WuZShenCVan Den HengelAWider or deeper: revisiting the resnet model for visual recognitionPattern Recogn20199011913310.1016/j.patcog.2019.01.006
Liu Q, Furber S (2016) Noisy Softplus: a biology inspired activation function. In: International conference on neural information processing, Springer, Cham, pp 405–412
KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016
Laurent T, James B (2018) The multilinear structure of ReLU networks. In: International conference on machine learning, pp 2908–2916
Redmon J, Farhadi A (2018) Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767
RoelofsJVan Erp-van der KooijEEstrus detection tools and their applicability in cattle: recent and perspectival situationAnimal Reprod (AR)201812498504
ZhaoZ-QZhengPXuS-TWuXObject detection with deep learning: a reviewIEEE Trans Neural Netw Learn Syst2019303212323210.1109/TNNLS.2018.2876865
Misra D (2019) Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681
701_CR5
H Jun (701_CR8) 2015; 13
Z-Q Zhao (701_CR12) 2019; 30
701_CR1
A Kamilaris (701_CR7) 2018; 147
C Arave (701_CR11) 1981; 64
I-S Ryu (701_CR3) 2006; 11
S-R Ke (701_CR15) 2013; 2
S Higaki (701_CR6) 2019; 123
D-M Tsai (701_CR13) 2014; 104
LM Andersson (701_CR10) 2016; 127
701_CR21
701_CR20
701_CR16
Z Wu (701_CR18) 2019; 90
Y Chung (701_CR14) 2015; 9
J Roelofs (701_CR2) 2010; 74
M Saint-Dizier (701_CR4) 2012; 47
J Roelofs (701_CR9) 2018; 12
701_CR19
701_CR17
References_xml – reference: KamilarisAPrenafeta-BoldúFXDeep learning in agriculture: a surveyComput Electron Agric2018147709010.1016/j.compag.2018.02.016
– reference: HigakiSMiuraRSudaTAnderssonLMOkadaHZhangYEstrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattleTheriogenology2019123909910.1016/j.theriogenology.2018.09.038
– reference: KeS-RThucHLeeY-JHwangJ-NYooJ-HChoiK-HA review on video-based human activity recognitionComputers201328813110.3390/computers2020088
– reference: JunHKimJRemote multiple sensor network system for monitoring conditions of dairy cowJ KIIT201513859310.14801/jkiit.2015.13.3.85
– reference: ChungYChoiDChoiHParkDChangH-HKimSAutomated detection of cattle mounting using side-view cameraKSII Trans Internet Inf Syst201593151316810.3837/tiis.2015.08.024
– reference: Korean Statistical Information Service. The global cattle population
– reference: Kim B, Lee Y, Kim Y, Kim T, Park J, Lee S (2017) Top 10 Agriculture Issues in 2017. In: Korea Rural Economic Institute, Focus on Agricultural Affairs, vol 142, pp p1–27
– reference: TsaiD-MHuangC-YA motion and image analysis method for automatic detection of estrus and mating behavior in cattleComput Electron Agric2014104253110.1016/j.compag.2014.03.003
– reference: ZhaoZ-QZhengPXuS-TWuXObject detection with deep learning: a reviewIEEE Trans Neural Netw Learn Syst2019303212323210.1109/TNNLS.2018.2876865
– reference: Liu Q, Furber S (2016) Noisy Softplus: a biology inspired activation function. In: International conference on neural information processing, Springer, Cham, pp 405–412
– reference: Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988
– reference: RoelofsJLópez-GatiusFHunterRVanEerdenburgFHanzenCWhen is a cow in estrus? Clinical and practical aspectsTheriogenology20107432734410.1016/j.theriogenology.2010.02.016
– reference: Misra D (2019) Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681
– reference: Saint-DizierMChastant-MaillardSTowards an automated detection of oestrus in dairy cattleReprod Domest Anim2012471056106110.1111/j.1439-0531.2011.01971.x
– reference: Laurent T, James B (2018) The multilinear structure of ReLU networks. In: International conference on machine learning, pp 2908–2916
– reference: AraveCAlbrightJCattle behaviorJ Dairy Sci1981641318132910.3168/jds.S0022-0302(81)82705-1
– reference: AnderssonLMOkadaHMiuraRZhangYYoshiokaKAsoHWearable wireless estrus detection sensor for cowsComput Electron Agric201612710110810.1016/j.compag.2016.06.007
– reference: RyuI-SAccurate Understanding of Cattle InseminationImprovement for Breeding Stock2006113842
– reference: Redmon J, Farhadi A (2018) Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767
– reference: RoelofsJVan Erp-van der KooijEEstrus detection tools and their applicability in cattle: recent and perspectival situationAnimal Reprod (AR)201812498504
– reference: WuZShenCVan Den HengelAWider or deeper: revisiting the resnet model for visual recognitionPattern Recogn20199011913310.1016/j.patcog.2019.01.006
– ident: 701_CR1
– volume: 104
  start-page: 25
  year: 2014
  ident: 701_CR13
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2014.03.003
– volume: 90
  start-page: 119
  year: 2019
  ident: 701_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.01.006
– ident: 701_CR17
– volume: 74
  start-page: 327
  year: 2010
  ident: 701_CR2
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2010.02.016
– volume: 30
  start-page: 3212
  year: 2019
  ident: 701_CR12
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2876865
– volume: 12
  start-page: 498
  year: 2018
  ident: 701_CR9
  publication-title: Animal Reprod (AR)
– ident: 701_CR16
– volume: 147
  start-page: 70
  year: 2018
  ident: 701_CR7
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.02.016
– volume: 13
  start-page: 85
  year: 2015
  ident: 701_CR8
  publication-title: J KIIT
  doi: 10.14801/jkiit.2015.13.3.85
– volume: 9
  start-page: 3151
  year: 2015
  ident: 701_CR14
  publication-title: KSII Trans Internet Inf Syst
  doi: 10.3837/tiis.2015.08.024
– ident: 701_CR21
  doi: 10.1007/978-3-319-46681-1_49
– volume: 47
  start-page: 1056
  year: 2012
  ident: 701_CR4
  publication-title: Reprod Domest Anim
  doi: 10.1111/j.1439-0531.2011.01971.x
– ident: 701_CR5
– volume: 64
  start-page: 1318
  year: 1981
  ident: 701_CR11
  publication-title: J Dairy Sci
  doi: 10.3168/jds.S0022-0302(81)82705-1
– volume: 11
  start-page: 38
  year: 2006
  ident: 701_CR3
  publication-title: Improvement for Breeding Stock
– volume: 2
  start-page: 88
  year: 2013
  ident: 701_CR15
  publication-title: Computers
  doi: 10.3390/computers2020088
– volume: 123
  start-page: 90
  year: 2019
  ident: 701_CR6
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2018.09.038
– ident: 701_CR19
– ident: 701_CR20
– volume: 127
  start-page: 101
  year: 2016
  ident: 701_CR10
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.06.007
SSID ssj0061053
Score 2.263666
Snippet Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artificially fertilized and isolated for...
Estrus detection in cattle is an important factor in livestock farming. With timely estrus detection, cattle are artifi cially fertilized and isolated for...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1685
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Identifying the Mating Posture of Cattle Using Deep Learning-Based Object Detection with Networks of Various Settings
URI https://link.springer.com/article/10.1007/s42835-021-00701-z
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002708361
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2021, 16(3), , pp.1685-1692
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeEFdRbrIQb8UoiWO3eVwHU0FaeWBDe7Nix97QUDK1qRD9H_xfji-5lLKJ8ZJWbnKU5nw5N58LQm8iGXMQfJKozETgoEw4vHOJInmRJRFVtkW5DegfL_j8NP10xs4Gg1-9rKV1Ld-pzV_rSv6Hq7AGfLVVsrfgbEsUFuA78BeOwGE4_hOPfZWtr1SyBuRx7pKY7QBeuy_gSq9sj-KxTwx4r_VV01D1nMxAfxXjz9IGYuCnWvuh4S4wu_DJ4S7N4yt40zZP9ot2KdKra8xZP0_HsVx3PQ4dsuqd8P3hRe5j9yBqyI-q6tZd5Hb-c10SkMtBq4agRBJ3KYBBjmYTuxB5QavdWhJllNiN4S3hy3sgoz1JChBiPa0ccz8yb0fi-ySPlesbR9ydgBCLyabTb82e_h9qr01GbBs3OxoCaAhHQ2z20H4C3kcyRPsHR7PZolHxYHK69qbtvwzVWK4mc-dOtiyevXJpdjbdnS1zch_dC1zDBx5RD9BAlw_R3V5rykdo3cMWBmxhjy0csIUrgz22sMMWttjC29jCHlu4xRa22MINtiyJgC3cYOsxOj36cHI4J2FEB1E0YTWRlMEDmqZgR1JpJppJ8DciVmR5VGTGivs4nxo-ybXMTUElZwpOMcU0Vxw0A6dP0LCsSv0U4SRVRklF88KYdFKwqaQmSRlcCT4ES8wIxc1jFCr0r7djVL6L6xk4QuP2mivfveXGs18Dd8Sl-iZs03X7eV6Jy6UA1_KjAEeJg_MwQm8b5okgClY30Hx2qzt4ju50b9MLNKyXa_0SjN5avgoQ_A19_6j1
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Mating+Posture+of+Cattle+Using+Deep+Learning-Based+Object+Detection+with+Networks+of+Various+Settings&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Chae%2C+Jung-woo&rft.au=Cho%2C+Hyun-chong&rft.date=2021-05-01&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=16&rft.issue=3&rft.spage=1685&rft.epage=1692&rft_id=info:doi/10.1007%2Fs42835-021-00701-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42835_021_00701_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon