Variants of (s,t)-Wythoff’s game
In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer)...
Saved in:
Published in | Discrete Applied Mathematics Vol. 227; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
20.08.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s,t)-Wythoff’s game, including Odd-Arbitrary-Nim (s,t)-Wythoff’s Game, Odd–Odd-Nim (s,t)-Wythoff’s Game and Odd–Even-Nim (s,t)-Wythoff’s Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K,s,t≥1, the sets of P-positions of our games are given in both normal and misère play. |
---|---|
AbstractList | In this paper, we study four games, they are all restrictions of (s, t)-Wythoff's game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s, t)-Wythoff's game, where a player is restricted to remove a multiple of image tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s, t)-Wythoff's game, including Odd-Arbitrary-Nim (s, t)-Wythoff's Game, Odd-Odd-Nim (s, t)-Wythoff's Game and Odd-Even-Nim (s, t)-Wythoff's Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K, s, t ≥, the sets of P-positions of our games are given in both normal and misère play. In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s,t)-Wythoff’s game, including Odd-Arbitrary-Nim (s,t)-Wythoff’s Game, Odd–Odd-Nim (s,t)-Wythoff’s Game and Odd–Even-Nim (s,t)-Wythoff’s Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K,s,t≥1, the sets of P-positions of our games are given in both normal and misère play. |
Author | Liu, Sanyang Li, Haiyan Fraenkel, Aviezri S. Liu, Wen An |
Author_xml | – sequence: 1 givenname: Haiyan surname: Li fullname: Li, Haiyan email: lihaiyan1107@126.com organization: School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China – sequence: 2 givenname: Sanyang surname: Liu fullname: Liu, Sanyang organization: School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China – sequence: 3 givenname: Aviezri S. surname: Fraenkel fullname: Fraenkel, Aviezri S. organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 4 givenname: Wen An surname: Liu fullname: Liu, Wen An organization: College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
BookMark | eNp9kM9KAzEQh4NUsK0-gLeiFwV3nUliNounUvwHBS9FvYVsNtFd7KYmW6E3X8PX80lMqWdPw8Dv-83wjcig850l5BghR0Bx2ea1XuYUsMiB50BhjwxRFjQTRYEDMkwZkVGULwdkFGMLAJi2ITl50qHRXR8n3k3O4kV_nj1v-jfv3M_Xd5y86qU9JPtOv0d79DfHZHF7s5jdZ_PHu4fZdJ4ZRq_6TDuwnBqDFHglK86BahCVpKWsAWqjJYUKOWhbSsFcZUwltEDGmWS15mxMTne1q-A_1jb2qvXr0KWLCktGQYJgIqVwlzLBxxisU6vQLHXYKAS1NaFalUyorQkFXCUTibneMTZ9_9nYoKJpbGds3QRrelX75h_6F9gEZfI |
CitedBy_id | crossref_primary_10_1016_j_dam_2020_09_010 crossref_primary_10_1016_j_dam_2022_06_020 |
Cites_doi | 10.1007/s00026-004-0217-3 10.1016/j.dam.2014.08.009 10.1016/j.disc.2011.03.032 10.1016/0304-3975(84)90012-4 10.1080/00029890.1982.11995454 10.1007/BF01608532 10.1016/0097-3165(91)90070-W 10.37236/2963 10.1016/j.jcta.2009.07.010 10.1016/j.disc.2005.06.022 10.1016/j.disc.2007.12.089 10.1109/CSO.2012.98 10.1016/j.jcta.2012.03.010 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Aug 20, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Aug 20, 2017 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.dam.2017.04.020 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6771 |
EndPage | 12 |
ExternalDocumentID | 10_1016_j_dam_2017_04_020 S0166218X17301865 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61373174 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-af0e42cc1204b8b4402a06b8298d00dca820b140ae9863fbccb6a6134383da43 |
IEDL.DBID | IXB |
ISSN | 0166-218X |
IngestDate | Thu Oct 10 15:25:55 EDT 2024 Fri Aug 23 02:14:09 EDT 2024 Sat Apr 29 22:38:48 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Restriction Normal play convention P-position (s,t)-Wythoff’s game |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-af0e42cc1204b8b4402a06b8298d00dca820b140ae9863fbccb6a6134383da43 |
PQID | 1932080636 |
PQPubID | 2045487 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1932080636 crossref_primary_10_1016_j_dam_2017_04_020 elsevier_sciencedirect_doi_10_1016_j_dam_2017_04_020 |
PublicationCentury | 2000 |
PublicationDate | 2017-08-20 |
PublicationDateYYYYMMDD | 2017-08-20 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Fraenkel (br000025) 1984; 29 Berlekamp, Conway, Guy (br000005) 2001–2004 Fraenkel (br000030) 1998; 2 Liu, Li (br000060) 2014; 21 Fraenkel (br000020) 1982; 89 Fraenkel (br000045) 2012; 312 Ho (br000055) 2012; 119 Sun, Zeilberger (br000075) 2004; 8 Fraenkel (br000035) 2004; 4 Duchêne, Gravier (br000015) 2009; 309 Liu, Zhao (br000070) 2014; 179 Fraenkel (br000040) 2005; 304 Fraenkel, Lorberbom (br000050) 1991; 58 Duchêne, Fraenkel, Nowakowski, Rigo (br000010) 2010; 117 Wythoff’s game under misère play convention, in: Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 2012, pp. 419–422. W.A. Liu, Y. Wang, N. Li, The Fraenkel (10.1016/j.dam.2017.04.020_br000030) 1998; 2 Liu (10.1016/j.dam.2017.04.020_br000070) 2014; 179 Duchêne (10.1016/j.dam.2017.04.020_br000015) 2009; 309 Sun (10.1016/j.dam.2017.04.020_br000075) 2004; 8 Berlekamp (10.1016/j.dam.2017.04.020_br000005) 2001 Fraenkel (10.1016/j.dam.2017.04.020_br000035) 2004; 4 Fraenkel (10.1016/j.dam.2017.04.020_br000040) 2005; 304 10.1016/j.dam.2017.04.020_br000065 Duchêne (10.1016/j.dam.2017.04.020_br000010) 2010; 117 Fraenkel (10.1016/j.dam.2017.04.020_br000045) 2012; 312 Fraenkel (10.1016/j.dam.2017.04.020_br000050) 1991; 58 Ho (10.1016/j.dam.2017.04.020_br000055) 2012; 119 Liu (10.1016/j.dam.2017.04.020_br000060) 2014; 21 Fraenkel (10.1016/j.dam.2017.04.020_br000020) 1982; 89 Fraenkel (10.1016/j.dam.2017.04.020_br000025) 1984; 29 |
References_xml | – volume: 179 start-page: 28 year: 2014 end-page: 43 ident: br000070 article-title: Adjoining to publication-title: Discrete Appl. Math. contributor: fullname: Zhao – volume: 8 start-page: 225 year: 2004 end-page: 238 ident: br000075 article-title: On Fraenkel’s N-heap Wythoff’s conjectures publication-title: Ann. Comb. contributor: fullname: Zeilberger – volume: 117 start-page: 545 year: 2010 end-page: 567 ident: br000010 article-title: Extensions and restrictions of Wythoff’s game preserving its P-positions publication-title: J. Combin. Theory Ser. A contributor: fullname: Rigo – volume: 21 start-page: #P2.44 year: 2014 ident: br000060 article-title: General restriction of publication-title: Electron. J. Combin. contributor: fullname: Li – volume: 4 start-page: #G6 year: 2004 ident: br000035 article-title: New games related to old and new sequences publication-title: Integers: Electron. J. Combin. Number Theory contributor: fullname: Fraenkel – volume: 58 start-page: 1 year: 1991 end-page: 25 ident: br000050 article-title: Nimhoff games publication-title: J. Combin. Theory Ser. A contributor: fullname: Lorberbom – year: 2001–2004 ident: br000005 article-title: Winning Ways for Your Mathematical Plays, Vol. 1–4 contributor: fullname: Guy – volume: 119 start-page: 1302 year: 2012 end-page: 1314 ident: br000055 article-title: Two variants of Wythoff’s game preserving its publication-title: J. Combin. Theory Ser. A contributor: fullname: Ho – volume: 89 start-page: 353 year: 1982 end-page: 361 ident: br000020 article-title: How to beat your Wythoff games’ opponent on three fronts publication-title: Amer. Math. Monthly contributor: fullname: Fraenkel – volume: 312 start-page: 42 year: 2012 end-page: 46 ident: br000045 article-title: The vile, dopey, evil and odious game players publication-title: Discrete Math. contributor: fullname: Fraenkel – volume: 309 start-page: 3595 year: 2009 end-page: 3608 ident: br000015 article-title: Geometrical extensions of Wythoff’s game publication-title: Discrete Math. contributor: fullname: Gravier – volume: 29 start-page: 49 year: 1984 end-page: 73 ident: br000025 article-title: Wythoff games, continued fractions, cedar trees and Fibonacci searches publication-title: Theoret. Comput. Sci. contributor: fullname: Fraenkel – volume: 2 start-page: 197 year: 1998 end-page: 210 ident: br000030 article-title: Heap games, numeration systems and sequences publication-title: Ann. Comb. contributor: fullname: Fraenkel – volume: 304 start-page: 65 year: 2005 end-page: 68 ident: br000040 article-title: Euclid and Wythoff games publication-title: Discrete Math. contributor: fullname: Fraenkel – volume: 8 start-page: 225 year: 2004 ident: 10.1016/j.dam.2017.04.020_br000075 article-title: On Fraenkel’s N-heap Wythoff’s conjectures publication-title: Ann. Comb. doi: 10.1007/s00026-004-0217-3 contributor: fullname: Sun – volume: 179 start-page: 28 year: 2014 ident: 10.1016/j.dam.2017.04.020_br000070 article-title: Adjoining to (s,t)-Wythoff’s game its P-positions as moves publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2014.08.009 contributor: fullname: Liu – volume: 312 start-page: 42 year: 2012 ident: 10.1016/j.dam.2017.04.020_br000045 article-title: The vile, dopey, evil and odious game players publication-title: Discrete Math. doi: 10.1016/j.disc.2011.03.032 contributor: fullname: Fraenkel – volume: 29 start-page: 49 year: 1984 ident: 10.1016/j.dam.2017.04.020_br000025 article-title: Wythoff games, continued fractions, cedar trees and Fibonacci searches publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(84)90012-4 contributor: fullname: Fraenkel – volume: 89 start-page: 353 year: 1982 ident: 10.1016/j.dam.2017.04.020_br000020 article-title: How to beat your Wythoff games’ opponent on three fronts publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1982.11995454 contributor: fullname: Fraenkel – volume: 2 start-page: 197 issue: 3 year: 1998 ident: 10.1016/j.dam.2017.04.020_br000030 article-title: Heap games, numeration systems and sequences publication-title: Ann. Comb. doi: 10.1007/BF01608532 contributor: fullname: Fraenkel – volume: 58 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.dam.2017.04.020_br000050 article-title: Nimhoff games publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(91)90070-W contributor: fullname: Fraenkel – volume: 21 start-page: #P2.44 issue: 2 year: 2014 ident: 10.1016/j.dam.2017.04.020_br000060 article-title: General restriction of (s,t)-Wythoff’s game publication-title: Electron. J. Combin. doi: 10.37236/2963 contributor: fullname: Liu – volume: 117 start-page: 545 issue: 5 year: 2010 ident: 10.1016/j.dam.2017.04.020_br000010 article-title: Extensions and restrictions of Wythoff’s game preserving its P-positions publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2009.07.010 contributor: fullname: Duchêne – year: 2001 ident: 10.1016/j.dam.2017.04.020_br000005 contributor: fullname: Berlekamp – volume: 304 start-page: 65 year: 2005 ident: 10.1016/j.dam.2017.04.020_br000040 article-title: Euclid and Wythoff games publication-title: Discrete Math. doi: 10.1016/j.disc.2005.06.022 contributor: fullname: Fraenkel – volume: 309 start-page: 3595 issue: 11 year: 2009 ident: 10.1016/j.dam.2017.04.020_br000015 article-title: Geometrical extensions of Wythoff’s game publication-title: Discrete Math. doi: 10.1016/j.disc.2007.12.089 contributor: fullname: Duchêne – ident: 10.1016/j.dam.2017.04.020_br000065 doi: 10.1109/CSO.2012.98 – volume: 119 start-page: 1302 year: 2012 ident: 10.1016/j.dam.2017.04.020_br000055 article-title: Two variants of Wythoff’s game preserving its P-positions publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2012.03.010 contributor: fullname: Ho – volume: 4 start-page: #G6 year: 2004 ident: 10.1016/j.dam.2017.04.020_br000035 article-title: New games related to old and new sequences publication-title: Integers: Electron. J. Combin. Number Theory contributor: fullname: Fraenkel |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.215365 |
Snippet | In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type... In this paper, we study four games, they are all restrictions of (s, t)-Wythoff's game which was introduced by A.S. Fraenkel. The first one is a modular type... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | [formula omitted]-position [formula omitted]-Wythoff’s game Applied mathematics Combinatorics Constrictions Games Normal play convention Restriction |
Title | Variants of (s,t)-Wythoff’s game |
URI | https://dx.doi.org/10.1016/j.dam.2017.04.020 https://www.proquest.com/docview/1932080636 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArKIsVYQ4AMI0iR03PUIFKtAixNqbZTs2FIm2ouHABfEb_B5fwkyasAlx4GQlUqzk2Zk3Y888E7JuLHNC2IhqoS3lVjmquHM0NLqmq5GFkAIX9FsnonHJj9pRe4TUi1oYTKvMbf_QpmfWOr9TydGs9Dudyjk4KwIIqh3gJI0FFpozYGcs4mvvfZGQQn20iWLR5XOPAbiW58rfgmI_xZ5nlv2VKCxTD6qZDioeBv47a_2w3xkpHUyTqdyb9HaHLzxDRmx3lky2PqRYB3Nk7QqiYUx28XrO2xhsp5v0-im97Tn39vI68G7UvZ0nFwf7F_UGzQ9GoIaFUUqV8y0PjQlCn-tYc4gBlS90HNbixPcTo4DWNUROytZiwZw2RgsFvI2ypInibIGMdXtdu0g8UQ25YJonYLI5M6oWmSgG2haOMRUoXSJbxXfL_lD-QhZ5YXcSQJIIkvS5BJBKhBfIyG9jKME8__XYSoGizH-ggUS_EpxZwcTS_3pdJhN4hcu_ob9CxtKHR7sK_kOqy2R05zkok_HdvavjJrb1s-YptofHjZNyNn3eAfyUw84 |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKO1AGxFMUCkSIARBW09hxk7FUVIU-FkrpZtmODUWirWgY2PgNfo8v4TpNeAkxsCaKlRw759xrXx8jdKg0MYxpH0smNaZaGCyoMdhTMpQ1X0NKYSf0uz3WuqaXQ3-YQ41sL4wtq0y5f87pCVunVyopmpXpaFS5gmCFgUANq3aQBsxfQAWIBmqQgRXqZ4N254uLlLVIK2bzLp_LDCC3NDX_Ztg2lS17JgVgkbA71au1xArVngf-u3D9oPBEl5oraDkNKJ36_J1XUU6P19BS98ONdbaODgaQENt6F2dinKPZaXyMb57ju4kxby-vM-dWPOgN1G-e9xstnJ6NgBXx_BgL42rqKVX1XCoDSSENFC6TgRcGketGSoCyS0iehA4DRoxUSjIB0m2dSSNBySbKjydjvYUcVvMoI5JGwNqUKBH6yg9AuZkhRFSFLKGT7Lv5dO6AwbPSsHsOIHELEncpB5BKiGbI8G_dyIGh_3qsnKHI039oxm1oCfEsI2z7f63uo8VWv9vhnYteewcV7R07G-y5ZZSPH5_0LoQTsdxLh8s7Jb7CYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variants+of+%28s%2Ct%29-Wythoff%E2%80%99s+game&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Li%2C+Haiyan&rft.au=Liu%2C+Sanyang&rft.au=Fraenkel%2C+Aviezri+S.&rft.au=Liu%2C+Wen+An&rft.date=2017-08-20&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=227&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.dam.2017.04.020&rft.externalDocID=S0166218X17301865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |