Variants of (s,t)-Wythoff’s game

In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer)...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 227; pp. 1 - 12
Main Authors Li, Haiyan, Liu, Sanyang, Fraenkel, Aviezri S., Liu, Wen An
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 20.08.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s,t)-Wythoff’s game, including Odd-Arbitrary-Nim (s,t)-Wythoff’s Game, Odd–Odd-Nim (s,t)-Wythoff’s Game and Odd–Even-Nim (s,t)-Wythoff’s Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K,s,t≥1, the sets of P-positions of our games are given in both normal and misère play.
AbstractList In this paper, we study four games, they are all restrictions of (s, t)-Wythoff's game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s, t)-Wythoff's game, where a player is restricted to remove a multiple of image tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s, t)-Wythoff's game, including Odd-Arbitrary-Nim (s, t)-Wythoff's Game, Odd-Odd-Nim (s, t)-Wythoff's Game and Odd-Even-Nim (s, t)-Wythoff's Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K, s, t ≥, the sets of P-positions of our games are given in both normal and misère play.
In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type restriction of (s,t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in each move (K is a fixed positive integer). The others we called rook type restrictions of (s,t)-Wythoff’s game, including Odd-Arbitrary-Nim (s,t)-Wythoff’s Game, Odd–Odd-Nim (s,t)-Wythoff’s Game and Odd–Even-Nim (s,t)-Wythoff’s Game. In these three games, the restrictions are only made on horizontal and vertical moves, but not on the extended diagonal moves. For any K,s,t≥1, the sets of P-positions of our games are given in both normal and misère play.
Author Liu, Sanyang
Li, Haiyan
Fraenkel, Aviezri S.
Liu, Wen An
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Li
  fullname: Li, Haiyan
  email: lihaiyan1107@126.com
  organization: School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China
– sequence: 2
  givenname: Sanyang
  surname: Liu
  fullname: Liu, Sanyang
  organization: School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China
– sequence: 3
  givenname: Aviezri S.
  surname: Fraenkel
  fullname: Fraenkel, Aviezri S.
  organization: Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Wen An
  surname: Liu
  fullname: Liu, Wen An
  organization: College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China
BookMark eNp9kM9KAzEQh4NUsK0-gLeiFwV3nUliNounUvwHBS9FvYVsNtFd7KYmW6E3X8PX80lMqWdPw8Dv-83wjcig850l5BghR0Bx2ea1XuYUsMiB50BhjwxRFjQTRYEDMkwZkVGULwdkFGMLAJi2ITl50qHRXR8n3k3O4kV_nj1v-jfv3M_Xd5y86qU9JPtOv0d79DfHZHF7s5jdZ_PHu4fZdJ4ZRq_6TDuwnBqDFHglK86BahCVpKWsAWqjJYUKOWhbSsFcZUwltEDGmWS15mxMTne1q-A_1jb2qvXr0KWLCktGQYJgIqVwlzLBxxisU6vQLHXYKAS1NaFalUyorQkFXCUTibneMTZ9_9nYoKJpbGds3QRrelX75h_6F9gEZfI
CitedBy_id crossref_primary_10_1016_j_dam_2020_09_010
crossref_primary_10_1016_j_dam_2022_06_020
Cites_doi 10.1007/s00026-004-0217-3
10.1016/j.dam.2014.08.009
10.1016/j.disc.2011.03.032
10.1016/0304-3975(84)90012-4
10.1080/00029890.1982.11995454
10.1007/BF01608532
10.1016/0097-3165(91)90070-W
10.37236/2963
10.1016/j.jcta.2009.07.010
10.1016/j.disc.2005.06.022
10.1016/j.disc.2007.12.089
10.1109/CSO.2012.98
10.1016/j.jcta.2012.03.010
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Aug 20, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 20, 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2017.04.020
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 12
ExternalDocumentID 10_1016_j_dam_2017_04_020
S0166218X17301865
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61373174
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-af0e42cc1204b8b4402a06b8298d00dca820b140ae9863fbccb6a6134383da43
IEDL.DBID IXB
ISSN 0166-218X
IngestDate Thu Oct 10 15:25:55 EDT 2024
Fri Aug 23 02:14:09 EDT 2024
Sat Apr 29 22:38:48 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Restriction
Normal play convention
P-position
(s,t)-Wythoff’s game
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-af0e42cc1204b8b4402a06b8298d00dca820b140ae9863fbccb6a6134383da43
PQID 1932080636
PQPubID 2045487
PageCount 12
ParticipantIDs proquest_journals_1932080636
crossref_primary_10_1016_j_dam_2017_04_020
elsevier_sciencedirect_doi_10_1016_j_dam_2017_04_020
PublicationCentury 2000
PublicationDate 2017-08-20
PublicationDateYYYYMMDD 2017-08-20
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-20
  day: 20
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete Applied Mathematics
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Fraenkel (br000025) 1984; 29
Berlekamp, Conway, Guy (br000005) 2001–2004
Fraenkel (br000030) 1998; 2
Liu, Li (br000060) 2014; 21
Fraenkel (br000020) 1982; 89
Fraenkel (br000045) 2012; 312
Ho (br000055) 2012; 119
Sun, Zeilberger (br000075) 2004; 8
Fraenkel (br000035) 2004; 4
Duchêne, Gravier (br000015) 2009; 309
Liu, Zhao (br000070) 2014; 179
Fraenkel (br000040) 2005; 304
Fraenkel, Lorberbom (br000050) 1991; 58
Duchêne, Fraenkel, Nowakowski, Rigo (br000010) 2010; 117
Wythoff’s game under misère play convention, in: Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 2012, pp. 419–422.
W.A. Liu, Y. Wang, N. Li, The
Fraenkel (10.1016/j.dam.2017.04.020_br000030) 1998; 2
Liu (10.1016/j.dam.2017.04.020_br000070) 2014; 179
Duchêne (10.1016/j.dam.2017.04.020_br000015) 2009; 309
Sun (10.1016/j.dam.2017.04.020_br000075) 2004; 8
Berlekamp (10.1016/j.dam.2017.04.020_br000005) 2001
Fraenkel (10.1016/j.dam.2017.04.020_br000035) 2004; 4
Fraenkel (10.1016/j.dam.2017.04.020_br000040) 2005; 304
10.1016/j.dam.2017.04.020_br000065
Duchêne (10.1016/j.dam.2017.04.020_br000010) 2010; 117
Fraenkel (10.1016/j.dam.2017.04.020_br000045) 2012; 312
Fraenkel (10.1016/j.dam.2017.04.020_br000050) 1991; 58
Ho (10.1016/j.dam.2017.04.020_br000055) 2012; 119
Liu (10.1016/j.dam.2017.04.020_br000060) 2014; 21
Fraenkel (10.1016/j.dam.2017.04.020_br000020) 1982; 89
Fraenkel (10.1016/j.dam.2017.04.020_br000025) 1984; 29
References_xml – volume: 179
  start-page: 28
  year: 2014
  end-page: 43
  ident: br000070
  article-title: Adjoining to
  publication-title: Discrete Appl. Math.
  contributor:
    fullname: Zhao
– volume: 8
  start-page: 225
  year: 2004
  end-page: 238
  ident: br000075
  article-title: On Fraenkel’s N-heap Wythoff’s conjectures
  publication-title: Ann. Comb.
  contributor:
    fullname: Zeilberger
– volume: 117
  start-page: 545
  year: 2010
  end-page: 567
  ident: br000010
  article-title: Extensions and restrictions of Wythoff’s game preserving its P-positions
  publication-title: J. Combin. Theory Ser. A
  contributor:
    fullname: Rigo
– volume: 21
  start-page: #P2.44
  year: 2014
  ident: br000060
  article-title: General restriction of
  publication-title: Electron. J. Combin.
  contributor:
    fullname: Li
– volume: 4
  start-page: #G6
  year: 2004
  ident: br000035
  article-title: New games related to old and new sequences
  publication-title: Integers: Electron. J. Combin. Number Theory
  contributor:
    fullname: Fraenkel
– volume: 58
  start-page: 1
  year: 1991
  end-page: 25
  ident: br000050
  article-title: Nimhoff games
  publication-title: J. Combin. Theory Ser. A
  contributor:
    fullname: Lorberbom
– year: 2001–2004
  ident: br000005
  article-title: Winning Ways for Your Mathematical Plays, Vol. 1–4
  contributor:
    fullname: Guy
– volume: 119
  start-page: 1302
  year: 2012
  end-page: 1314
  ident: br000055
  article-title: Two variants of Wythoff’s game preserving its
  publication-title: J. Combin. Theory Ser. A
  contributor:
    fullname: Ho
– volume: 89
  start-page: 353
  year: 1982
  end-page: 361
  ident: br000020
  article-title: How to beat your Wythoff games’ opponent on three fronts
  publication-title: Amer. Math. Monthly
  contributor:
    fullname: Fraenkel
– volume: 312
  start-page: 42
  year: 2012
  end-page: 46
  ident: br000045
  article-title: The vile, dopey, evil and odious game players
  publication-title: Discrete Math.
  contributor:
    fullname: Fraenkel
– volume: 309
  start-page: 3595
  year: 2009
  end-page: 3608
  ident: br000015
  article-title: Geometrical extensions of Wythoff’s game
  publication-title: Discrete Math.
  contributor:
    fullname: Gravier
– volume: 29
  start-page: 49
  year: 1984
  end-page: 73
  ident: br000025
  article-title: Wythoff games, continued fractions, cedar trees and Fibonacci searches
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Fraenkel
– volume: 2
  start-page: 197
  year: 1998
  end-page: 210
  ident: br000030
  article-title: Heap games, numeration systems and sequences
  publication-title: Ann. Comb.
  contributor:
    fullname: Fraenkel
– volume: 304
  start-page: 65
  year: 2005
  end-page: 68
  ident: br000040
  article-title: Euclid and Wythoff games
  publication-title: Discrete Math.
  contributor:
    fullname: Fraenkel
– volume: 8
  start-page: 225
  year: 2004
  ident: 10.1016/j.dam.2017.04.020_br000075
  article-title: On Fraenkel’s N-heap Wythoff’s conjectures
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-004-0217-3
  contributor:
    fullname: Sun
– volume: 179
  start-page: 28
  year: 2014
  ident: 10.1016/j.dam.2017.04.020_br000070
  article-title: Adjoining to (s,t)-Wythoff’s game its P-positions as moves
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2014.08.009
  contributor:
    fullname: Liu
– volume: 312
  start-page: 42
  year: 2012
  ident: 10.1016/j.dam.2017.04.020_br000045
  article-title: The vile, dopey, evil and odious game players
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.03.032
  contributor:
    fullname: Fraenkel
– volume: 29
  start-page: 49
  year: 1984
  ident: 10.1016/j.dam.2017.04.020_br000025
  article-title: Wythoff games, continued fractions, cedar trees and Fibonacci searches
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(84)90012-4
  contributor:
    fullname: Fraenkel
– volume: 89
  start-page: 353
  year: 1982
  ident: 10.1016/j.dam.2017.04.020_br000020
  article-title: How to beat your Wythoff games’ opponent on three fronts
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1982.11995454
  contributor:
    fullname: Fraenkel
– volume: 2
  start-page: 197
  issue: 3
  year: 1998
  ident: 10.1016/j.dam.2017.04.020_br000030
  article-title: Heap games, numeration systems and sequences
  publication-title: Ann. Comb.
  doi: 10.1007/BF01608532
  contributor:
    fullname: Fraenkel
– volume: 58
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.dam.2017.04.020_br000050
  article-title: Nimhoff games
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(91)90070-W
  contributor:
    fullname: Fraenkel
– volume: 21
  start-page: #P2.44
  issue: 2
  year: 2014
  ident: 10.1016/j.dam.2017.04.020_br000060
  article-title: General restriction of (s,t)-Wythoff’s game
  publication-title: Electron. J. Combin.
  doi: 10.37236/2963
  contributor:
    fullname: Liu
– volume: 117
  start-page: 545
  issue: 5
  year: 2010
  ident: 10.1016/j.dam.2017.04.020_br000010
  article-title: Extensions and restrictions of Wythoff’s game preserving its P-positions
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2009.07.010
  contributor:
    fullname: Duchêne
– year: 2001
  ident: 10.1016/j.dam.2017.04.020_br000005
  contributor:
    fullname: Berlekamp
– volume: 304
  start-page: 65
  year: 2005
  ident: 10.1016/j.dam.2017.04.020_br000040
  article-title: Euclid and Wythoff games
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2005.06.022
  contributor:
    fullname: Fraenkel
– volume: 309
  start-page: 3595
  issue: 11
  year: 2009
  ident: 10.1016/j.dam.2017.04.020_br000015
  article-title: Geometrical extensions of Wythoff’s game
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.12.089
  contributor:
    fullname: Duchêne
– ident: 10.1016/j.dam.2017.04.020_br000065
  doi: 10.1109/CSO.2012.98
– volume: 119
  start-page: 1302
  year: 2012
  ident: 10.1016/j.dam.2017.04.020_br000055
  article-title: Two variants of Wythoff’s game preserving its P-positions
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2012.03.010
  contributor:
    fullname: Ho
– volume: 4
  start-page: #G6
  year: 2004
  ident: 10.1016/j.dam.2017.04.020_br000035
  article-title: New games related to old and new sequences
  publication-title: Integers: Electron. J. Combin. Number Theory
  contributor:
    fullname: Fraenkel
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.215365
Snippet In this paper, we study four games, they are all restrictions of (s,t)-Wythoff’s game which was introduced by A.S. Fraenkel. The first one is a modular type...
In this paper, we study four games, they are all restrictions of (s, t)-Wythoff's game which was introduced by A.S. Fraenkel. The first one is a modular type...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms [formula omitted]-position
[formula omitted]-Wythoff’s game
Applied mathematics
Combinatorics
Constrictions
Games
Normal play convention
Restriction
Title Variants of (s,t)-Wythoff’s game
URI https://dx.doi.org/10.1016/j.dam.2017.04.020
https://www.proquest.com/docview/1932080636
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArKIsVYQ4AMI0iR03PUIFKtAixNqbZTs2FIm2ouHABfEb_B5fwkyasAlx4GQlUqzk2Zk3Y888E7JuLHNC2IhqoS3lVjmquHM0NLqmq5GFkAIX9FsnonHJj9pRe4TUi1oYTKvMbf_QpmfWOr9TydGs9Dudyjk4KwIIqh3gJI0FFpozYGcs4mvvfZGQQn20iWLR5XOPAbiW58rfgmI_xZ5nlv2VKCxTD6qZDioeBv47a_2w3xkpHUyTqdyb9HaHLzxDRmx3lky2PqRYB3Nk7QqiYUx28XrO2xhsp5v0-im97Tn39vI68G7UvZ0nFwf7F_UGzQ9GoIaFUUqV8y0PjQlCn-tYc4gBlS90HNbixPcTo4DWNUROytZiwZw2RgsFvI2ypInibIGMdXtdu0g8UQ25YJonYLI5M6oWmSgG2haOMRUoXSJbxXfL_lD-QhZ5YXcSQJIIkvS5BJBKhBfIyG9jKME8__XYSoGizH-ggUS_EpxZwcTS_3pdJhN4hcu_ob9CxtKHR7sK_kOqy2R05zkok_HdvavjJrb1s-YptofHjZNyNn3eAfyUw84
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKO1AGxFMUCkSIARBW09hxk7FUVIU-FkrpZtmODUWirWgY2PgNfo8v4TpNeAkxsCaKlRw759xrXx8jdKg0MYxpH0smNaZaGCyoMdhTMpQ1X0NKYSf0uz3WuqaXQ3-YQ41sL4wtq0y5f87pCVunVyopmpXpaFS5gmCFgUANq3aQBsxfQAWIBmqQgRXqZ4N254uLlLVIK2bzLp_LDCC3NDX_Ztg2lS17JgVgkbA71au1xArVngf-u3D9oPBEl5oraDkNKJ36_J1XUU6P19BS98ONdbaODgaQENt6F2dinKPZaXyMb57ju4kxby-vM-dWPOgN1G-e9xstnJ6NgBXx_BgL42rqKVX1XCoDSSENFC6TgRcGketGSoCyS0iehA4DRoxUSjIB0m2dSSNBySbKjydjvYUcVvMoI5JGwNqUKBH6yg9AuZkhRFSFLKGT7Lv5dO6AwbPSsHsOIHELEncpB5BKiGbI8G_dyIGh_3qsnKHI039oxm1oCfEsI2z7f63uo8VWv9vhnYteewcV7R07G-y5ZZSPH5_0LoQTsdxLh8s7Jb7CYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variants+of+%28s%2Ct%29-Wythoff%E2%80%99s+game&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Li%2C+Haiyan&rft.au=Liu%2C+Sanyang&rft.au=Fraenkel%2C+Aviezri+S.&rft.au=Liu%2C+Wen+An&rft.date=2017-08-20&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=227&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.dam.2017.04.020&rft.externalDocID=S0166218X17301865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon