Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition
This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 344; pp. 910 - 937 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis and estimation of the probabilistic characteristics of eigensolutions. |
---|---|
AbstractList | This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis and estimation of the probabilistic characteristics of eigensolutions. |
Author | Rahman, Sharif |
Author_xml | – sequence: 1 givenname: Sharif surname: Rahman fullname: Rahman, Sharif email: sharif-rahman@uiowa.edu organization: College of Engineering, The University of Iowa, Iowa City, IA 52242, USA |
BookMark | eNp9kUGP2yAQhVGVSk3S_QG9IfVsF7AdQD2tou62UqRemjPCMF4R2eAAiZT--sXNnnrYucwc3vc082aDVj54QOgLJTUldPftVJtJ14xQURNZE7b7gNZUcFkx2ogVWhPSdhUXrPuENimdSClB2Rqdj95AzNr5fMPni_bZDc7o7ILHF28hYgszlMFnHLW3YcJXHZ3uR0i4v2GNX8BD1KP7CxbPYbz5MDk9Yusm8KnYLDOYMM0hucX2M_o46DHBw1vfouPTjz_7n9Xh9_Ov_eOhMg3rcqUt57plQ18270lLJG0sdMbIzu6g6QXVsmnkINpWNkQK3g29MZwT2nEJRd5s0de77xzD-QIpq1O4xLJOUowKyjvWskXF7yoTQ0oRBmVc_nd-jtqNihK15KtOquSrlnwVkarkW0j6HzlHN-l4e5f5fmegHH51EFUyDsoHrItgsrLBvUO_Aupvl2k |
CitedBy_id | crossref_primary_10_1016_j_camwa_2023_01_020 crossref_primary_10_1016_j_strusafe_2024_102545 crossref_primary_10_1016_j_apm_2020_03_041 crossref_primary_10_1007_s00158_022_03475_8 crossref_primary_10_1007_s00158_022_03477_6 crossref_primary_10_1016_j_probengmech_2023_103440 crossref_primary_10_1016_j_ress_2023_109909 crossref_primary_10_1007_s10483_024_3108_8 crossref_primary_10_1016_j_strusafe_2024_102450 crossref_primary_10_1016_j_cma_2024_117098 crossref_primary_10_1016_j_ymssp_2021_108613 crossref_primary_10_1080_23248378_2022_2164371 crossref_primary_10_1109_ACCESS_2023_3277521 crossref_primary_10_1177_1748006X20929973 crossref_primary_10_1007_s00158_021_03123_7 crossref_primary_10_1007_s00158_021_03120_w crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023043457 crossref_primary_10_1109_TAP_2023_3302431 crossref_primary_10_1016_j_probengmech_2021_103159 crossref_primary_10_1016_j_amc_2019_06_052 |
Cites_doi | 10.1214/aoms/1177730196 10.21314/JCF.1997.005 10.1137/050645142 10.1023/A:1019129717644 10.1615/Int.J.UncertaintyQuantification.v1.i2.40 10.1090/S0025-5718-2014-02883-4 10.1016/j.jmaa.2017.04.062 10.1016/j.cma.2014.01.027 10.1007/s00158-008-0277-9 10.2307/2371268 10.1007/s00158-015-1337-6 10.1016/0024-3795(95)00595-1 10.1061/(ASCE)EM.1943-7889.0000047 10.1002/nme.1135 10.1016/j.jcp.2006.12.014 10.1007/BF02412238 10.1137/120904378 10.1016/j.jcp.2016.03.026 10.1023/A:1019188517934 10.1016/j.jco.2010.06.001 10.1198/106186007X237892 10.2307/1969178 10.1016/j.engfracmech.2007.10.013 10.1137/16M1109382 10.1002/nme.2394 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Feb 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Feb 1, 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cma.2018.09.026 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
EndPage | 937 |
ExternalDocumentID | 10_1016_j_cma_2018_09_026 S004578251830478X |
GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CMMI-1462385 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-ad77a42fb004b040913de5cc95d6e3b81a9339f8449309875fbcc7701579e4093 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri Jul 25 06:58:35 EDT 2025 Tue Jul 01 04:06:06 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 23 02:20:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multivariate orthogonal polynomials ANOVA Non-product-type probability measures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-ad77a42fb004b040913de5cc95d6e3b81a9339f8449309875fbcc7701579e4093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2181752429 |
PQPubID | 2045269 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2181752429 crossref_citationtrail_10_1016_j_cma_2018_09_026 crossref_primary_10_1016_j_cma_2018_09_026 elsevier_sciencedirect_doi_10_1016_j_cma_2018_09_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Golub, van Loan (b24) 1996 Ren, Yadav, Rahman (b31) 2016; 53 Niederreiter (b34) 1992 Ganapathysubramanian, Zabaras (b2) 2007; 225 Rahman (b11) 2018; 6 Rahman (b15) 2014; 83 Sobol (b13) 1993; 1 Dunkl, Xu (b19) 2001 Sobol (b35) 1967; 7 S. Rahman, Dimension-wise multivariate orthogonal polynomials in general probability spaces. Wiener (b3) 1938; 60 Rahman (b25) 2017; 454 Rahman (b26) 2014; 2 Cullum, Willoughby (b33) 2002 Krall, Sheffer (b23) 1967; 76 Rahman (b32) 2018; 4 Tang, Congedo, Abgrall (b30) 2016; 314 Cameron, Martin (b4) 1947; 48 Yadav, Rahman (b10) 2014; 274 Erdélyi (b20) 1953; vol. II Gerstner, Griebel (b6) 1998; 18 Caflisch, Morokoff, Owen (b7) 1997; 1 Noh, Choi, Du (b17) 2009; 38 Chakraborty, Rahman (b28) 2008; 75 Babuska, Nobile, Tempone (b1) 2007; 45 P. Appell, J.K. de Fériet, Fonctions hypergéométriques et hypersphériques, polynomes d’Hermite, 1926, pp. 1–14. Hooker (b27) 2007; 16 Rahman (b9) 2009; 135 . Smolyak (b5) 1963; 4 Rahman, Yadav (b29) 2011; 1 Rabitz, Alis (b14) 1999; 25 Holmquist (b21) 1996; 237/238 Xu, Rahman (b36) 2004; 61 Rahman (b8) 2008; 76 Hoeffding (b12) 1948; 19 Griebel, Holtz (b16) 2010; 26 Wiener (10.1016/j.cma.2018.09.026_b3) 1938; 60 Gerstner (10.1016/j.cma.2018.09.026_b6) 1998; 18 Golub (10.1016/j.cma.2018.09.026_b24) 1996 Chakraborty (10.1016/j.cma.2018.09.026_b28) 2008; 75 Erdélyi (10.1016/j.cma.2018.09.026_b20) 1953; vol. II Yadav (10.1016/j.cma.2018.09.026_b10) 2014; 274 Caflisch (10.1016/j.cma.2018.09.026_b7) 1997; 1 Cullum (10.1016/j.cma.2018.09.026_b33) 2002 Rahman (10.1016/j.cma.2018.09.026_b15) 2014; 83 10.1016/j.cma.2018.09.026_b22 Tang (10.1016/j.cma.2018.09.026_b30) 2016; 314 Sobol (10.1016/j.cma.2018.09.026_b13) 1993; 1 Hooker (10.1016/j.cma.2018.09.026_b27) 2007; 16 Sobol (10.1016/j.cma.2018.09.026_b35) 1967; 7 Dunkl (10.1016/j.cma.2018.09.026_b19) 2001 Niederreiter (10.1016/j.cma.2018.09.026_b34) 1992 Rahman (10.1016/j.cma.2018.09.026_b29) 2011; 1 Hoeffding (10.1016/j.cma.2018.09.026_b12) 1948; 19 Rahman (10.1016/j.cma.2018.09.026_b9) 2009; 135 Rabitz (10.1016/j.cma.2018.09.026_b14) 1999; 25 Ganapathysubramanian (10.1016/j.cma.2018.09.026_b2) 2007; 225 Rahman (10.1016/j.cma.2018.09.026_b11) 2018; 6 Rahman (10.1016/j.cma.2018.09.026_b8) 2008; 76 Rahman (10.1016/j.cma.2018.09.026_b32) 2018; 4 Griebel (10.1016/j.cma.2018.09.026_b16) 2010; 26 Rahman (10.1016/j.cma.2018.09.026_b25) 2017; 454 Babuska (10.1016/j.cma.2018.09.026_b1) 2007; 45 Krall (10.1016/j.cma.2018.09.026_b23) 1967; 76 Ren (10.1016/j.cma.2018.09.026_b31) 2016; 53 Cameron (10.1016/j.cma.2018.09.026_b4) 1947; 48 Xu (10.1016/j.cma.2018.09.026_b36) 2004; 61 Noh (10.1016/j.cma.2018.09.026_b17) 2009; 38 Holmquist (10.1016/j.cma.2018.09.026_b21) 1996; 237/238 Rahman (10.1016/j.cma.2018.09.026_b26) 2014; 2 Smolyak (10.1016/j.cma.2018.09.026_b5) 1963; 4 10.1016/j.cma.2018.09.026_b18 |
References_xml | – volume: 7 start-page: 784 year: 1967 end-page: 802 ident: b35 article-title: Distribution of points in a cube and approximate evaluation of integrals publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 135 start-page: 1439 year: 2009 end-page: 1451 ident: b9 article-title: Extended polynomial dimensional decomposition for arbitrary probability distributions publication-title: J. Eng. Mech. – reference: S. Rahman, Dimension-wise multivariate orthogonal polynomials in general probability spaces. – volume: vol. II year: 1953 ident: b20 article-title: Higher Transcendental Functions publication-title: Encyclopedia of Mathematics and its Applications 155 – volume: 76 start-page: 2091 year: 2008 end-page: 2116 ident: b8 article-title: A polynomial dimensional decomposition for stochastic computing publication-title: Internat. J. Numer. Methods Engrg. – volume: 2 start-page: 670 year: 2014 end-page: 697 ident: b26 article-title: A generalized ANOVA Dimensional Decomposition for Dependent Probability Measures publication-title: SIAM/ASA J. Uncertain. Quantification – volume: 314 start-page: 557 year: 2016 end-page: 589 ident: b30 article-title: Adaptive surrogate modeling by anova and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation publication-title: J. Comput. Phys. – volume: 1 start-page: 407 year: 1993 end-page: 414 ident: b13 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Math. Model. Comput. Exp. – year: 2002 ident: b33 article-title: Lanczos algorithms for large symmetric eigenvalue computations: theory publication-title: Classics in Applied Mathematics – volume: 48 start-page: 385 year: 1947 end-page: 392 ident: b4 article-title: The orthogonal development of non-linear functionals in series of fourier-Hermite functionals publication-title: Ann. of Math. – volume: 4 start-page: 1 year: 2018 end-page: 26 ident: b32 article-title: A polynomial chaos expansion in dependent random variables publication-title: J. Appl. Math. Appl. – volume: 53 start-page: 425 year: 2016 end-page: 452 ident: b31 article-title: Reliability-based design optimization by adaptive-sparse polynomial dimensional decomposition publication-title: Struct. Multidiscip. Optim. – volume: 1 start-page: 27 year: 1997 end-page: 46 ident: b7 article-title: Valuation of mortgage backed securities using brownian bridges to reduce effective dimension publication-title: J. Comput. Finance – year: 1992 ident: b34 article-title: Random Number Generation and Quasi-Monte Carlo Methods publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics – year: 1996 ident: b24 article-title: Matrix Computations – volume: 225 start-page: 652 year: 2007 end-page: 685 ident: b2 article-title: Sparse grid collocation schemes for stochastic natural convection problems publication-title: J. Comput. Phys. – volume: 1 start-page: 163 year: 2011 end-page: 187 ident: b29 article-title: Orthogonal polynomial expansions for solving random eigenvalue problems publication-title: Int. J. Uncertain. Quantif. – reference: .. – volume: 38 start-page: 1 year: 2009 end-page: 16 ident: b17 article-title: Reliability-based design optimization of problems with correlated input variables using a gaussian Copula publication-title: Struct. Multidiscip. Optim. – volume: 45 start-page: 1005 year: 2007 end-page: 1034 ident: b1 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. – volume: 18 start-page: 209 year: 1998 end-page: 232 ident: b6 article-title: Numerical integration using sparse grids publication-title: Numer. Algorithms – reference: P. Appell, J.K. de Fériet, Fonctions hypergéométriques et hypersphériques, polynomes d’Hermite, 1926, pp. 1–14. – volume: 454 start-page: 303 year: 2017 end-page: 334 ident: b25 article-title: Wiener-Hermite polynomial expansion for multivariate Gaussian Probability Measures publication-title: J. Appl. Math. Appl. – year: 2001 ident: b19 publication-title: Orthogonal Polynomials of Several Variables – volume: 25 start-page: 197 year: 1999 end-page: 233 ident: b14 article-title: General foundations of high dimensional model representations publication-title: J. Math. Chem. – volume: 76 start-page: 325 year: 1967 end-page: 376 ident: b23 article-title: Orthogonal polynomials in two variables publication-title: Ann. Mat. Pura Appl. – volume: 6 start-page: 816 year: 2018 end-page: 844 ident: b11 article-title: Mathematical properties of polynomial dimensional decomposition publication-title: SIAM/ASA J. Uncertain. Quantification – volume: 75 start-page: 2062 year: 2008 end-page: 2086 ident: b28 article-title: Stochastic multiscale models for fracture analysis of functionally graded materials publication-title: Eng. Fract. Mech. – volume: 19 start-page: pp. 293 year: 1948 end-page: 325 ident: b12 article-title: A class of statistics with asymptotically normal distribution publication-title: Ann. Math. Stat. – volume: 4 start-page: 240 year: 1963 end-page: 243 ident: b5 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Dokl. Akad. Nauk SSSR – volume: 83 start-page: 2799 year: 2014 end-page: 2819 ident: b15 article-title: Approximation errors in truncated dimensional decompositions publication-title: Math. Comp. – volume: 26 start-page: 455 year: 2010 end-page: 489 ident: b16 article-title: Dimension-wise integration of high-dimensional functions with applications to finance publication-title: J. Complexity – volume: 16 start-page: 709 year: 2007 end-page: 732 ident: b27 article-title: Generalized functional ANOVA Diagnostics for High-Dimensiobal Functions of Dependent Variables publication-title: J. Comput. Graph. Statist. – volume: 274 start-page: 56 year: 2014 end-page: 83 ident: b10 article-title: Adaptive-sparse polynomial dimensional decomposition for high-dimensional stochastic computing publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 61 start-page: 1992 year: 2004 end-page: 2019 ident: b36 article-title: A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics publication-title: Internat. J. Numer. Methods Engrg. – volume: 237/238 start-page: 155 year: 1996 end-page: 190 ident: b21 article-title: The publication-title: Linear Algebra Appl. – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: b3 article-title: The homogeneous chaos publication-title: Amer. J. Math. – volume: 19 start-page: pp. 293 issn: 00034851 issue: 3 year: 1948 ident: 10.1016/j.cma.2018.09.026_b12 article-title: A class of statistics with asymptotically normal distribution publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730196 – volume: 1 start-page: 27 year: 1997 ident: 10.1016/j.cma.2018.09.026_b7 article-title: Valuation of mortgage backed securities using brownian bridges to reduce effective dimension publication-title: J. Comput. Finance doi: 10.21314/JCF.1997.005 – volume: 45 start-page: 1005 issue: 3 year: 2007 ident: 10.1016/j.cma.2018.09.026_b1 article-title: A stochastic collocation method for elliptic partial differential equations with random input data publication-title: SIAM J. Numer. Anal. doi: 10.1137/050645142 – volume: 18 start-page: 209 year: 1998 ident: 10.1016/j.cma.2018.09.026_b6 article-title: Numerical integration using sparse grids publication-title: Numer. Algorithms doi: 10.1023/A:1019129717644 – volume: 1 start-page: 407 year: 1993 ident: 10.1016/j.cma.2018.09.026_b13 article-title: Sensitivity estimates for nonlinear mathematical models publication-title: Math. Model. Comput. Exp. – volume: 1 start-page: 163 issue: 2 year: 2011 ident: 10.1016/j.cma.2018.09.026_b29 article-title: Orthogonal polynomial expansions for solving random eigenvalue problems publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.v1.i2.40 – volume: 4 start-page: 1 year: 2018 ident: 10.1016/j.cma.2018.09.026_b32 article-title: A polynomial chaos expansion in dependent random variables publication-title: J. Appl. Math. Appl. – volume: 83 start-page: 2799 issue: 290 year: 2014 ident: 10.1016/j.cma.2018.09.026_b15 article-title: Approximation errors in truncated dimensional decompositions publication-title: Math. Comp. doi: 10.1090/S0025-5718-2014-02883-4 – year: 2001 ident: 10.1016/j.cma.2018.09.026_b19 – volume: 454 start-page: 303 year: 2017 ident: 10.1016/j.cma.2018.09.026_b25 article-title: Wiener-Hermite polynomial expansion for multivariate Gaussian Probability Measures publication-title: J. Appl. Math. Appl. doi: 10.1016/j.jmaa.2017.04.062 – volume: 274 start-page: 56 year: 2014 ident: 10.1016/j.cma.2018.09.026_b10 article-title: Adaptive-sparse polynomial dimensional decomposition for high-dimensional stochastic computing publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.01.027 – volume: 38 start-page: 1 year: 2009 ident: 10.1016/j.cma.2018.09.026_b17 article-title: Reliability-based design optimization of problems with correlated input variables using a gaussian Copula publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-008-0277-9 – ident: 10.1016/j.cma.2018.09.026_b18 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 10.1016/j.cma.2018.09.026_b3 article-title: The homogeneous chaos publication-title: Amer. J. Math. doi: 10.2307/2371268 – volume: 53 start-page: 425 issue: 3 year: 2016 ident: 10.1016/j.cma.2018.09.026_b31 article-title: Reliability-based design optimization by adaptive-sparse polynomial dimensional decomposition publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1337-6 – volume: 237/238 start-page: 155 year: 1996 ident: 10.1016/j.cma.2018.09.026_b21 article-title: The d-variate vector hermite Polynomial of Order k publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(95)00595-1 – volume: 135 start-page: 1439 issue: 12 year: 2009 ident: 10.1016/j.cma.2018.09.026_b9 article-title: Extended polynomial dimensional decomposition for arbitrary probability distributions publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000047 – year: 1996 ident: 10.1016/j.cma.2018.09.026_b24 – volume: 7 start-page: 784 year: 1967 ident: 10.1016/j.cma.2018.09.026_b35 article-title: Distribution of points in a cube and approximate evaluation of integrals publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 61 start-page: 1992 year: 2004 ident: 10.1016/j.cma.2018.09.026_b36 article-title: A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1135 – volume: 225 start-page: 652 issn: 0021-9991 issue: 1 year: 2007 ident: 10.1016/j.cma.2018.09.026_b2 article-title: Sparse grid collocation schemes for stochastic natural convection problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.12.014 – volume: 76 start-page: 325 issue: 4 year: 1967 ident: 10.1016/j.cma.2018.09.026_b23 article-title: Orthogonal polynomials in two variables publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02412238 – volume: 2 start-page: 670 year: 2014 ident: 10.1016/j.cma.2018.09.026_b26 article-title: A generalized ANOVA Dimensional Decomposition for Dependent Probability Measures publication-title: SIAM/ASA J. Uncertain. Quantification doi: 10.1137/120904378 – volume: 314 start-page: 557 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.09.026_b30 article-title: Adaptive surrogate modeling by anova and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.03.026 – volume: 4 start-page: 240 year: 1963 ident: 10.1016/j.cma.2018.09.026_b5 article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions publication-title: Dokl. Akad. Nauk SSSR – volume: 25 start-page: 197 issn: 0259-9791 year: 1999 ident: 10.1016/j.cma.2018.09.026_b14 article-title: General foundations of high dimensional model representations publication-title: J. Math. Chem. doi: 10.1023/A:1019188517934 – year: 1992 ident: 10.1016/j.cma.2018.09.026_b34 article-title: Random Number Generation and Quasi-Monte Carlo Methods – volume: 26 start-page: 455 issue: 5 year: 2010 ident: 10.1016/j.cma.2018.09.026_b16 article-title: Dimension-wise integration of high-dimensional functions with applications to finance publication-title: J. Complexity doi: 10.1016/j.jco.2010.06.001 – volume: 16 start-page: 709 issue: 3 year: 2007 ident: 10.1016/j.cma.2018.09.026_b27 article-title: Generalized functional ANOVA Diagnostics for High-Dimensiobal Functions of Dependent Variables publication-title: J. Comput. Graph. Statist. doi: 10.1198/106186007X237892 – volume: 48 start-page: 385 year: 1947 ident: 10.1016/j.cma.2018.09.026_b4 article-title: The orthogonal development of non-linear functionals in series of fourier-Hermite functionals publication-title: Ann. of Math. doi: 10.2307/1969178 – year: 2002 ident: 10.1016/j.cma.2018.09.026_b33 article-title: Lanczos algorithms for large symmetric eigenvalue computations: theory – ident: 10.1016/j.cma.2018.09.026_b22 – volume: 75 start-page: 2062 year: 2008 ident: 10.1016/j.cma.2018.09.026_b28 article-title: Stochastic multiscale models for fracture analysis of functionally graded materials publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2007.10.013 – volume: 6 start-page: 816 year: 2018 ident: 10.1016/j.cma.2018.09.026_b11 article-title: Mathematical properties of polynomial dimensional decomposition publication-title: SIAM/ASA J. Uncertain. Quantification doi: 10.1137/16M1109382 – volume: 76 start-page: 2091 year: 2008 ident: 10.1016/j.cma.2018.09.026_b8 article-title: A polynomial dimensional decomposition for stochastic computing publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2394 – volume: vol. II year: 1953 ident: 10.1016/j.cma.2018.09.026_b20 article-title: Higher Transcendental Functions |
SSID | ssj0000812 |
Score | 2.3891666 |
Snippet | This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 910 |
SubjectTerms | ANOVA Boundary value problems Complex systems Decomposition Dependence Dependent variables Eigenvalues Error analysis Formulas (mathematics) Independent variables Linear equations Multivariate orthogonal polynomials Non-product-type probability measures Polynomials Random variables Statistical analysis Thermal expansion Uncertainty analysis Variance |
Title | Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition |
URI | https://dx.doi.org/10.1016/j.cma.2018.09.026 https://www.proquest.com/docview/2181752429 |
Volume | 344 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz34qIqPKjl4Ela7TdJsjqUoVbEnC72FZLMrFe1zFerB3-5MNusL8eBxQ5INmcnMFzLzDSEn4KKsdEJGjlkTcfBwUWKaYAwt3IhiYa3z5d5ue61un18PxGCJdKpcGAyrDLa_tOneWoeW87Cb55PhEHN8OXKxC1BKpJgZYAY7l6jlZ2-fYR7g8krGcC4i7F29bPoYr9RTD8WJpzpFfoXffdMPK-1dz-UmWQ-YkbbLZW2RpWxUIxsBP9JwOuc1svaFXHCbTPvQ6t_7iwWdPpsyKsgLgmLm2IxWBXALCg7LjZ_oC1ycMZVqTu2CGnpfUlIPX-Evk_HjAjOYYR0OCwKUZB4wBcakh8CvHdK_vLjrdKNQYCFKWVMUkXFSGt7M8ehaOM0qZi4TaaqEa2XMJrFRjKk84VyxhoKbTW7TVEpAEFJl0J3tkuXReJTtEZrwnDWsSYwChCVTzHe1gA0NQoKWcsk-aVRbq9PAPo5FMB51FWb2oEEaGqWhG0qDNPbJ6ceQSUm98VdnXslLf9MfDa7hr2H1SrY6HN65RtQjBWAXdfC_WQ_JKnypMri7TpaL2XN2BNilsMdeOY_JSvvqptt7Bwyb7js |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0hOBQOtOVDQFO6B7ggGRJ7N-s99FAVovB5IlJuy67XQUEhCcSAwoE_xR_szHpd2qrigMTV9trWznjejPzmDcAWQpSVTsjIJdZEHBEuSk2MwdBiRdQQ1jo_7u30rNnu8KOu6M7Ac9ULQ7TKEPvLmO6jdTiyF3Zzb9zvU48vJy12gU5JEjPdwKw8zqcPWLdNvh_uo5G347h1cP6zHYXRAlGWxKKIjJPS8LhHTmvRj1UjcbnIMiVcM09s2jBY6KteyrlK6liWi57NMikRO6XKuVdgwrg_xzFc0NiE3acXXglibClRzkVEr1f9SvWkssxrHTVSr61Kgg7_B8N_YMFjXesTLIYklf0o9-EzzOTDJfgYElYWwsFkCRb-UDNchpsOHvUEg2LKbu5MSUPylmfUqnbLqom7BUOEdKNrdo-VOvVuTZidMsMuSw3s_iM-ZTwaTKllGt_D0QSCUj0Eb0Ek-MA0W4HOu2z7KswOR8N8DVjKe0ndmtQoTOlkRg22FpNRQzlIU7l0HerV1uosyJ3T1I2BrnhtVxqtockauq40WmMddn4vGZdaH69dzCt76b8cViMWvbasVtlWh2gx0ZRmSYHJktp4212_wYf2-emJPjk8O_4C83hGlczyGswWt3f5V0ycCrvpHZXBxXt_Gb8AR24oSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+under+dependent+random+variables+by+a+generalized+polynomial+dimensional+decomposition&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rahman%2C+Sharif&rft.date=2019-02-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=344&rft.spage=910&rft_id=info:doi/10.1016%2Fj.cma.2018.09.026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |