Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition

This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 344; pp. 910 - 937
Main Author Rahman, Sharif
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis and estimation of the probabilistic characteristics of eigensolutions.
AbstractList This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis and estimation of the probabilistic characteristics of eigensolutions.
Author Rahman, Sharif
Author_xml – sequence: 1
  givenname: Sharif
  surname: Rahman
  fullname: Rahman, Sharif
  email: sharif-rahman@uiowa.edu
  organization: College of Engineering, The University of Iowa, Iowa City, IA 52242, USA
BookMark eNp9kUGP2yAQhVGVSk3S_QG9IfVsF7AdQD2tou62UqRemjPCMF4R2eAAiZT--sXNnnrYucwc3vc082aDVj54QOgLJTUldPftVJtJ14xQURNZE7b7gNZUcFkx2ogVWhPSdhUXrPuENimdSClB2Rqdj95AzNr5fMPni_bZDc7o7ILHF28hYgszlMFnHLW3YcJXHZ3uR0i4v2GNX8BD1KP7CxbPYbz5MDk9Yusm8KnYLDOYMM0hucX2M_o46DHBw1vfouPTjz_7n9Xh9_Ov_eOhMg3rcqUt57plQ18270lLJG0sdMbIzu6g6QXVsmnkINpWNkQK3g29MZwT2nEJRd5s0de77xzD-QIpq1O4xLJOUowKyjvWskXF7yoTQ0oRBmVc_nd-jtqNihK15KtOquSrlnwVkarkW0j6HzlHN-l4e5f5fmegHH51EFUyDsoHrItgsrLBvUO_Aupvl2k
CitedBy_id crossref_primary_10_1016_j_camwa_2023_01_020
crossref_primary_10_1016_j_strusafe_2024_102545
crossref_primary_10_1016_j_apm_2020_03_041
crossref_primary_10_1007_s00158_022_03475_8
crossref_primary_10_1007_s00158_022_03477_6
crossref_primary_10_1016_j_probengmech_2023_103440
crossref_primary_10_1016_j_ress_2023_109909
crossref_primary_10_1007_s10483_024_3108_8
crossref_primary_10_1016_j_strusafe_2024_102450
crossref_primary_10_1016_j_cma_2024_117098
crossref_primary_10_1016_j_ymssp_2021_108613
crossref_primary_10_1080_23248378_2022_2164371
crossref_primary_10_1109_ACCESS_2023_3277521
crossref_primary_10_1177_1748006X20929973
crossref_primary_10_1007_s00158_021_03123_7
crossref_primary_10_1007_s00158_021_03120_w
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023043457
crossref_primary_10_1109_TAP_2023_3302431
crossref_primary_10_1016_j_probengmech_2021_103159
crossref_primary_10_1016_j_amc_2019_06_052
Cites_doi 10.1214/aoms/1177730196
10.21314/JCF.1997.005
10.1137/050645142
10.1023/A:1019129717644
10.1615/Int.J.UncertaintyQuantification.v1.i2.40
10.1090/S0025-5718-2014-02883-4
10.1016/j.jmaa.2017.04.062
10.1016/j.cma.2014.01.027
10.1007/s00158-008-0277-9
10.2307/2371268
10.1007/s00158-015-1337-6
10.1016/0024-3795(95)00595-1
10.1061/(ASCE)EM.1943-7889.0000047
10.1002/nme.1135
10.1016/j.jcp.2006.12.014
10.1007/BF02412238
10.1137/120904378
10.1016/j.jcp.2016.03.026
10.1023/A:1019188517934
10.1016/j.jco.2010.06.001
10.1198/106186007X237892
10.2307/1969178
10.1016/j.engfracmech.2007.10.013
10.1137/16M1109382
10.1002/nme.2394
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2018.09.026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 937
ExternalDocumentID 10_1016_j_cma_2018_09_026
S004578251830478X
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CMMI-1462385
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-ad77a42fb004b040913de5cc95d6e3b81a9339f8449309875fbcc7701579e4093
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri Jul 25 06:58:35 EDT 2025
Tue Jul 01 04:06:06 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 23 02:20:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multivariate orthogonal polynomials
ANOVA
Non-product-type probability measures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-ad77a42fb004b040913de5cc95d6e3b81a9339f8449309875fbcc7701579e4093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2181752429
PQPubID 2045269
PageCount 28
ParticipantIDs proquest_journals_2181752429
crossref_citationtrail_10_1016_j_cma_2018_09_026
crossref_primary_10_1016_j_cma_2018_09_026
elsevier_sciencedirect_doi_10_1016_j_cma_2018_09_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Golub, van Loan (b24) 1996
Ren, Yadav, Rahman (b31) 2016; 53
Niederreiter (b34) 1992
Ganapathysubramanian, Zabaras (b2) 2007; 225
Rahman (b11) 2018; 6
Rahman (b15) 2014; 83
Sobol (b13) 1993; 1
Dunkl, Xu (b19) 2001
Sobol (b35) 1967; 7
S. Rahman, Dimension-wise multivariate orthogonal polynomials in general probability spaces.
Wiener (b3) 1938; 60
Rahman (b25) 2017; 454
Rahman (b26) 2014; 2
Cullum, Willoughby (b33) 2002
Krall, Sheffer (b23) 1967; 76
Rahman (b32) 2018; 4
Tang, Congedo, Abgrall (b30) 2016; 314
Cameron, Martin (b4) 1947; 48
Yadav, Rahman (b10) 2014; 274
Erdélyi (b20) 1953; vol. II
Gerstner, Griebel (b6) 1998; 18
Caflisch, Morokoff, Owen (b7) 1997; 1
Noh, Choi, Du (b17) 2009; 38
Chakraborty, Rahman (b28) 2008; 75
Babuska, Nobile, Tempone (b1) 2007; 45
P. Appell, J.K. de Fériet, Fonctions hypergéométriques et hypersphériques, polynomes d’Hermite, 1926, pp. 1–14.
Hooker (b27) 2007; 16
Rahman (b9) 2009; 135
.
Smolyak (b5) 1963; 4
Rahman, Yadav (b29) 2011; 1
Rabitz, Alis (b14) 1999; 25
Holmquist (b21) 1996; 237/238
Xu, Rahman (b36) 2004; 61
Rahman (b8) 2008; 76
Hoeffding (b12) 1948; 19
Griebel, Holtz (b16) 2010; 26
Wiener (10.1016/j.cma.2018.09.026_b3) 1938; 60
Gerstner (10.1016/j.cma.2018.09.026_b6) 1998; 18
Golub (10.1016/j.cma.2018.09.026_b24) 1996
Chakraborty (10.1016/j.cma.2018.09.026_b28) 2008; 75
Erdélyi (10.1016/j.cma.2018.09.026_b20) 1953; vol. II
Yadav (10.1016/j.cma.2018.09.026_b10) 2014; 274
Caflisch (10.1016/j.cma.2018.09.026_b7) 1997; 1
Cullum (10.1016/j.cma.2018.09.026_b33) 2002
Rahman (10.1016/j.cma.2018.09.026_b15) 2014; 83
10.1016/j.cma.2018.09.026_b22
Tang (10.1016/j.cma.2018.09.026_b30) 2016; 314
Sobol (10.1016/j.cma.2018.09.026_b13) 1993; 1
Hooker (10.1016/j.cma.2018.09.026_b27) 2007; 16
Sobol (10.1016/j.cma.2018.09.026_b35) 1967; 7
Dunkl (10.1016/j.cma.2018.09.026_b19) 2001
Niederreiter (10.1016/j.cma.2018.09.026_b34) 1992
Rahman (10.1016/j.cma.2018.09.026_b29) 2011; 1
Hoeffding (10.1016/j.cma.2018.09.026_b12) 1948; 19
Rahman (10.1016/j.cma.2018.09.026_b9) 2009; 135
Rabitz (10.1016/j.cma.2018.09.026_b14) 1999; 25
Ganapathysubramanian (10.1016/j.cma.2018.09.026_b2) 2007; 225
Rahman (10.1016/j.cma.2018.09.026_b11) 2018; 6
Rahman (10.1016/j.cma.2018.09.026_b8) 2008; 76
Rahman (10.1016/j.cma.2018.09.026_b32) 2018; 4
Griebel (10.1016/j.cma.2018.09.026_b16) 2010; 26
Rahman (10.1016/j.cma.2018.09.026_b25) 2017; 454
Babuska (10.1016/j.cma.2018.09.026_b1) 2007; 45
Krall (10.1016/j.cma.2018.09.026_b23) 1967; 76
Ren (10.1016/j.cma.2018.09.026_b31) 2016; 53
Cameron (10.1016/j.cma.2018.09.026_b4) 1947; 48
Xu (10.1016/j.cma.2018.09.026_b36) 2004; 61
Noh (10.1016/j.cma.2018.09.026_b17) 2009; 38
Holmquist (10.1016/j.cma.2018.09.026_b21) 1996; 237/238
Rahman (10.1016/j.cma.2018.09.026_b26) 2014; 2
Smolyak (10.1016/j.cma.2018.09.026_b5) 1963; 4
10.1016/j.cma.2018.09.026_b18
References_xml – volume: 7
  start-page: 784
  year: 1967
  end-page: 802
  ident: b35
  article-title: Distribution of points in a cube and approximate evaluation of integrals
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 135
  start-page: 1439
  year: 2009
  end-page: 1451
  ident: b9
  article-title: Extended polynomial dimensional decomposition for arbitrary probability distributions
  publication-title: J. Eng. Mech.
– reference: S. Rahman, Dimension-wise multivariate orthogonal polynomials in general probability spaces.
– volume: vol. II
  year: 1953
  ident: b20
  article-title: Higher Transcendental Functions
  publication-title: Encyclopedia of Mathematics and its Applications 155
– volume: 76
  start-page: 2091
  year: 2008
  end-page: 2116
  ident: b8
  article-title: A polynomial dimensional decomposition for stochastic computing
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 2
  start-page: 670
  year: 2014
  end-page: 697
  ident: b26
  article-title: A generalized ANOVA Dimensional Decomposition for Dependent Probability Measures
  publication-title: SIAM/ASA J. Uncertain. Quantification
– volume: 314
  start-page: 557
  year: 2016
  end-page: 589
  ident: b30
  article-title: Adaptive surrogate modeling by anova and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 407
  year: 1993
  end-page: 414
  ident: b13
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Math. Model. Comput. Exp.
– year: 2002
  ident: b33
  article-title: Lanczos algorithms for large symmetric eigenvalue computations: theory
  publication-title: Classics in Applied Mathematics
– volume: 48
  start-page: 385
  year: 1947
  end-page: 392
  ident: b4
  article-title: The orthogonal development of non-linear functionals in series of fourier-Hermite functionals
  publication-title: Ann. of Math.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 26
  ident: b32
  article-title: A polynomial chaos expansion in dependent random variables
  publication-title: J. Appl. Math. Appl.
– volume: 53
  start-page: 425
  year: 2016
  end-page: 452
  ident: b31
  article-title: Reliability-based design optimization by adaptive-sparse polynomial dimensional decomposition
  publication-title: Struct. Multidiscip. Optim.
– volume: 1
  start-page: 27
  year: 1997
  end-page: 46
  ident: b7
  article-title: Valuation of mortgage backed securities using brownian bridges to reduce effective dimension
  publication-title: J. Comput. Finance
– year: 1992
  ident: b34
  article-title: Random Number Generation and Quasi-Monte Carlo Methods
  publication-title: CBMS-NSF Regional Conference Series in Applied Mathematics
– year: 1996
  ident: b24
  article-title: Matrix Computations
– volume: 225
  start-page: 652
  year: 2007
  end-page: 685
  ident: b2
  article-title: Sparse grid collocation schemes for stochastic natural convection problems
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 163
  year: 2011
  end-page: 187
  ident: b29
  article-title: Orthogonal polynomial expansions for solving random eigenvalue problems
  publication-title: Int. J. Uncertain. Quantif.
– reference: ..
– volume: 38
  start-page: 1
  year: 2009
  end-page: 16
  ident: b17
  article-title: Reliability-based design optimization of problems with correlated input variables using a gaussian Copula
  publication-title: Struct. Multidiscip. Optim.
– volume: 45
  start-page: 1005
  year: 2007
  end-page: 1034
  ident: b1
  article-title: A stochastic collocation method for elliptic partial differential equations with random input data
  publication-title: SIAM J. Numer. Anal.
– volume: 18
  start-page: 209
  year: 1998
  end-page: 232
  ident: b6
  article-title: Numerical integration using sparse grids
  publication-title: Numer. Algorithms
– reference: P. Appell, J.K. de Fériet, Fonctions hypergéométriques et hypersphériques, polynomes d’Hermite, 1926, pp. 1–14.
– volume: 454
  start-page: 303
  year: 2017
  end-page: 334
  ident: b25
  article-title: Wiener-Hermite polynomial expansion for multivariate Gaussian Probability Measures
  publication-title: J. Appl. Math. Appl.
– year: 2001
  ident: b19
  publication-title: Orthogonal Polynomials of Several Variables
– volume: 25
  start-page: 197
  year: 1999
  end-page: 233
  ident: b14
  article-title: General foundations of high dimensional model representations
  publication-title: J. Math. Chem.
– volume: 76
  start-page: 325
  year: 1967
  end-page: 376
  ident: b23
  article-title: Orthogonal polynomials in two variables
  publication-title: Ann. Mat. Pura Appl.
– volume: 6
  start-page: 816
  year: 2018
  end-page: 844
  ident: b11
  article-title: Mathematical properties of polynomial dimensional decomposition
  publication-title: SIAM/ASA J. Uncertain. Quantification
– volume: 75
  start-page: 2062
  year: 2008
  end-page: 2086
  ident: b28
  article-title: Stochastic multiscale models for fracture analysis of functionally graded materials
  publication-title: Eng. Fract. Mech.
– volume: 19
  start-page: pp. 293
  year: 1948
  end-page: 325
  ident: b12
  article-title: A class of statistics with asymptotically normal distribution
  publication-title: Ann. Math. Stat.
– volume: 4
  start-page: 240
  year: 1963
  end-page: 243
  ident: b5
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 83
  start-page: 2799
  year: 2014
  end-page: 2819
  ident: b15
  article-title: Approximation errors in truncated dimensional decompositions
  publication-title: Math. Comp.
– volume: 26
  start-page: 455
  year: 2010
  end-page: 489
  ident: b16
  article-title: Dimension-wise integration of high-dimensional functions with applications to finance
  publication-title: J. Complexity
– volume: 16
  start-page: 709
  year: 2007
  end-page: 732
  ident: b27
  article-title: Generalized functional ANOVA Diagnostics for High-Dimensiobal Functions of Dependent Variables
  publication-title: J. Comput. Graph. Statist.
– volume: 274
  start-page: 56
  year: 2014
  end-page: 83
  ident: b10
  article-title: Adaptive-sparse polynomial dimensional decomposition for high-dimensional stochastic computing
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 61
  start-page: 1992
  year: 2004
  end-page: 2019
  ident: b36
  article-title: A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 237/238
  start-page: 155
  year: 1996
  end-page: 190
  ident: b21
  article-title: The
  publication-title: Linear Algebra Appl.
– volume: 60
  start-page: 897
  year: 1938
  end-page: 936
  ident: b3
  article-title: The homogeneous chaos
  publication-title: Amer. J. Math.
– volume: 19
  start-page: pp. 293
  issn: 00034851
  issue: 3
  year: 1948
  ident: 10.1016/j.cma.2018.09.026_b12
  article-title: A class of statistics with asymptotically normal distribution
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730196
– volume: 1
  start-page: 27
  year: 1997
  ident: 10.1016/j.cma.2018.09.026_b7
  article-title: Valuation of mortgage backed securities using brownian bridges to reduce effective dimension
  publication-title: J. Comput. Finance
  doi: 10.21314/JCF.1997.005
– volume: 45
  start-page: 1005
  issue: 3
  year: 2007
  ident: 10.1016/j.cma.2018.09.026_b1
  article-title: A stochastic collocation method for elliptic partial differential equations with random input data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050645142
– volume: 18
  start-page: 209
  year: 1998
  ident: 10.1016/j.cma.2018.09.026_b6
  article-title: Numerical integration using sparse grids
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019129717644
– volume: 1
  start-page: 407
  year: 1993
  ident: 10.1016/j.cma.2018.09.026_b13
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Math. Model. Comput. Exp.
– volume: 1
  start-page: 163
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2018.09.026_b29
  article-title: Orthogonal polynomial expansions for solving random eigenvalue problems
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.v1.i2.40
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2018.09.026_b32
  article-title: A polynomial chaos expansion in dependent random variables
  publication-title: J. Appl. Math. Appl.
– volume: 83
  start-page: 2799
  issue: 290
  year: 2014
  ident: 10.1016/j.cma.2018.09.026_b15
  article-title: Approximation errors in truncated dimensional decompositions
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2014-02883-4
– year: 2001
  ident: 10.1016/j.cma.2018.09.026_b19
– volume: 454
  start-page: 303
  year: 2017
  ident: 10.1016/j.cma.2018.09.026_b25
  article-title: Wiener-Hermite polynomial expansion for multivariate Gaussian Probability Measures
  publication-title: J. Appl. Math. Appl.
  doi: 10.1016/j.jmaa.2017.04.062
– volume: 274
  start-page: 56
  year: 2014
  ident: 10.1016/j.cma.2018.09.026_b10
  article-title: Adaptive-sparse polynomial dimensional decomposition for high-dimensional stochastic computing
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.01.027
– volume: 38
  start-page: 1
  year: 2009
  ident: 10.1016/j.cma.2018.09.026_b17
  article-title: Reliability-based design optimization of problems with correlated input variables using a gaussian Copula
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-008-0277-9
– ident: 10.1016/j.cma.2018.09.026_b18
– volume: 60
  start-page: 897
  issue: 4
  year: 1938
  ident: 10.1016/j.cma.2018.09.026_b3
  article-title: The homogeneous chaos
  publication-title: Amer. J. Math.
  doi: 10.2307/2371268
– volume: 53
  start-page: 425
  issue: 3
  year: 2016
  ident: 10.1016/j.cma.2018.09.026_b31
  article-title: Reliability-based design optimization by adaptive-sparse polynomial dimensional decomposition
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1337-6
– volume: 237/238
  start-page: 155
  year: 1996
  ident: 10.1016/j.cma.2018.09.026_b21
  article-title: The d-variate vector hermite Polynomial of Order k
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)00595-1
– volume: 135
  start-page: 1439
  issue: 12
  year: 2009
  ident: 10.1016/j.cma.2018.09.026_b9
  article-title: Extended polynomial dimensional decomposition for arbitrary probability distributions
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000047
– year: 1996
  ident: 10.1016/j.cma.2018.09.026_b24
– volume: 7
  start-page: 784
  year: 1967
  ident: 10.1016/j.cma.2018.09.026_b35
  article-title: Distribution of points in a cube and approximate evaluation of integrals
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 61
  start-page: 1992
  year: 2004
  ident: 10.1016/j.cma.2018.09.026_b36
  article-title: A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1135
– volume: 225
  start-page: 652
  issn: 0021-9991
  issue: 1
  year: 2007
  ident: 10.1016/j.cma.2018.09.026_b2
  article-title: Sparse grid collocation schemes for stochastic natural convection problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.014
– volume: 76
  start-page: 325
  issue: 4
  year: 1967
  ident: 10.1016/j.cma.2018.09.026_b23
  article-title: Orthogonal polynomials in two variables
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02412238
– volume: 2
  start-page: 670
  year: 2014
  ident: 10.1016/j.cma.2018.09.026_b26
  article-title: A generalized ANOVA Dimensional Decomposition for Dependent Probability Measures
  publication-title: SIAM/ASA J. Uncertain. Quantification
  doi: 10.1137/120904378
– volume: 314
  start-page: 557
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.09.026_b30
  article-title: Adaptive surrogate modeling by anova and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.03.026
– volume: 4
  start-page: 240
  year: 1963
  ident: 10.1016/j.cma.2018.09.026_b5
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 25
  start-page: 197
  issn: 0259-9791
  year: 1999
  ident: 10.1016/j.cma.2018.09.026_b14
  article-title: General foundations of high dimensional model representations
  publication-title: J. Math. Chem.
  doi: 10.1023/A:1019188517934
– year: 1992
  ident: 10.1016/j.cma.2018.09.026_b34
  article-title: Random Number Generation and Quasi-Monte Carlo Methods
– volume: 26
  start-page: 455
  issue: 5
  year: 2010
  ident: 10.1016/j.cma.2018.09.026_b16
  article-title: Dimension-wise integration of high-dimensional functions with applications to finance
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2010.06.001
– volume: 16
  start-page: 709
  issue: 3
  year: 2007
  ident: 10.1016/j.cma.2018.09.026_b27
  article-title: Generalized functional ANOVA Diagnostics for High-Dimensiobal Functions of Dependent Variables
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/106186007X237892
– volume: 48
  start-page: 385
  year: 1947
  ident: 10.1016/j.cma.2018.09.026_b4
  article-title: The orthogonal development of non-linear functionals in series of fourier-Hermite functionals
  publication-title: Ann. of Math.
  doi: 10.2307/1969178
– year: 2002
  ident: 10.1016/j.cma.2018.09.026_b33
  article-title: Lanczos algorithms for large symmetric eigenvalue computations: theory
– ident: 10.1016/j.cma.2018.09.026_b22
– volume: 75
  start-page: 2062
  year: 2008
  ident: 10.1016/j.cma.2018.09.026_b28
  article-title: Stochastic multiscale models for fracture analysis of functionally graded materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2007.10.013
– volume: 6
  start-page: 816
  year: 2018
  ident: 10.1016/j.cma.2018.09.026_b11
  article-title: Mathematical properties of polynomial dimensional decomposition
  publication-title: SIAM/ASA J. Uncertain. Quantification
  doi: 10.1137/16M1109382
– volume: 76
  start-page: 2091
  year: 2008
  ident: 10.1016/j.cma.2018.09.026_b8
  article-title: A polynomial dimensional decomposition for stochastic computing
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2394
– volume: vol. II
  year: 1953
  ident: 10.1016/j.cma.2018.09.026_b20
  article-title: Higher Transcendental Functions
SSID ssj0000812
Score 2.3891666
Snippet This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 910
SubjectTerms ANOVA
Boundary value problems
Complex systems
Decomposition
Dependence
Dependent variables
Eigenvalues
Error analysis
Formulas (mathematics)
Independent variables
Linear equations
Multivariate orthogonal polynomials
Non-product-type probability measures
Polynomials
Random variables
Statistical analysis
Thermal expansion
Uncertainty analysis
Variance
Title Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition
URI https://dx.doi.org/10.1016/j.cma.2018.09.026
https://www.proquest.com/docview/2181752429
Volume 344
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz34qIqPKjl4Ela7TdJsjqUoVbEnC72FZLMrFe1zFerB3-5MNusL8eBxQ5INmcnMFzLzDSEn4KKsdEJGjlkTcfBwUWKaYAwt3IhiYa3z5d5ue61un18PxGCJdKpcGAyrDLa_tOneWoeW87Cb55PhEHN8OXKxC1BKpJgZYAY7l6jlZ2-fYR7g8krGcC4i7F29bPoYr9RTD8WJpzpFfoXffdMPK-1dz-UmWQ-YkbbLZW2RpWxUIxsBP9JwOuc1svaFXHCbTPvQ6t_7iwWdPpsyKsgLgmLm2IxWBXALCg7LjZ_oC1ycMZVqTu2CGnpfUlIPX-Evk_HjAjOYYR0OCwKUZB4wBcakh8CvHdK_vLjrdKNQYCFKWVMUkXFSGt7M8ehaOM0qZi4TaaqEa2XMJrFRjKk84VyxhoKbTW7TVEpAEFJl0J3tkuXReJTtEZrwnDWsSYwChCVTzHe1gA0NQoKWcsk-aVRbq9PAPo5FMB51FWb2oEEaGqWhG0qDNPbJ6ceQSUm98VdnXslLf9MfDa7hr2H1SrY6HN65RtQjBWAXdfC_WQ_JKnypMri7TpaL2XN2BNilsMdeOY_JSvvqptt7Bwyb7js
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0hOBQOtOVDQFO6B7ggGRJ7N-s99FAVovB5IlJuy67XQUEhCcSAwoE_xR_szHpd2qrigMTV9trWznjejPzmDcAWQpSVTsjIJdZEHBEuSk2MwdBiRdQQ1jo_7u30rNnu8KOu6M7Ac9ULQ7TKEPvLmO6jdTiyF3Zzb9zvU48vJy12gU5JEjPdwKw8zqcPWLdNvh_uo5G347h1cP6zHYXRAlGWxKKIjJPS8LhHTmvRj1UjcbnIMiVcM09s2jBY6KteyrlK6liWi57NMikRO6XKuVdgwrg_xzFc0NiE3acXXglibClRzkVEr1f9SvWkssxrHTVSr61Kgg7_B8N_YMFjXesTLIYklf0o9-EzzOTDJfgYElYWwsFkCRb-UDNchpsOHvUEg2LKbu5MSUPylmfUqnbLqom7BUOEdKNrdo-VOvVuTZidMsMuSw3s_iM-ZTwaTKllGt_D0QSCUj0Eb0Ek-MA0W4HOu2z7KswOR8N8DVjKe0ndmtQoTOlkRg22FpNRQzlIU7l0HerV1uosyJ3T1I2BrnhtVxqtockauq40WmMddn4vGZdaH69dzCt76b8cViMWvbasVtlWh2gx0ZRmSYHJktp4212_wYf2-emJPjk8O_4C83hGlczyGswWt3f5V0ycCrvpHZXBxXt_Gb8AR24oSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+under+dependent+random+variables+by+a+generalized+polynomial+dimensional+decomposition&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Rahman%2C+Sharif&rft.date=2019-02-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=344&rft.spage=910&rft_id=info:doi/10.1016%2Fj.cma.2018.09.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon