Evolution of 3D printed soft actuators
•A comprehensive review of the emerging field of 3D printed soft actuators is presented.•Different methods for fabrication of the soft actuators using 3D printers are discussed.•The actuation mechanism, power density, reversibility, strain, stress, operation voltage, weight, size, response time, con...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 250; pp. 258 - 272 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.10.2016
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2016.09.028 |
Cover
Loading…
Abstract | •A comprehensive review of the emerging field of 3D printed soft actuators is presented.•Different methods for fabrication of the soft actuators using 3D printers are discussed.•The actuation mechanism, power density, reversibility, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility of the actuators are given.
Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed. |
---|---|
AbstractList | •A comprehensive review of the emerging field of 3D printed soft actuators is presented.•Different methods for fabrication of the soft actuators using 3D printers are discussed.•The actuation mechanism, power density, reversibility, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility of the actuators are given.
Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed. Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed. |
Author | Zolfagharian, Ali Gibson, Ian Moghadam, Amir Ali Amiri Kaynak, Akif Khoo, Sui Yang Kouzani, Abbas Z. |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-5302-360X surname: Zolfagharian fullname: Zolfagharian, Ali organization: School of Engineering, Deakin University, Geelong, Victoria 3216, Australia – sequence: 2 givenname: Abbas Z. surname: Kouzani fullname: Kouzani, Abbas Z. organization: School of Engineering, Deakin University, Geelong, Victoria 3216, Australia – sequence: 3 givenname: Sui Yang surname: Khoo fullname: Khoo, Sui Yang organization: School of Engineering, Deakin University, Geelong, Victoria 3216, Australia – sequence: 4 givenname: Amir Ali Amiri surname: Moghadam fullname: Moghadam, Amir Ali Amiri organization: Department of Radiology, Weill Cornell Medicine, New York, NY, USA – sequence: 5 givenname: Ian surname: Gibson fullname: Gibson, Ian organization: School of Engineering, Deakin University, Geelong, Victoria 3216, Australia – sequence: 6 givenname: Akif surname: Kaynak fullname: Kaynak, Akif email: akaynak@deakin.edu.au organization: School of Engineering, Deakin University, Geelong, Victoria 3216, Australia |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LgrddJ5tsNsGT1PoBBS96DtlsAlnqpibZgv_elHrqoacZmHlmeJ8Fmo1-NAjdYqgwYPYwVHFUVZ3bCkQFNb9Ac8xbUhJgYobmIGpa0pq2V2gR4wAAhLTtHN2v9347JefHwtuCPBe74MZk-iJ6mwql06SSD_EaXVq1jebmvy7R18v6c_VWbj5e31dPm1KTukmlYoYS23FWC26FBduwVvFGUNYxYGA7bBRTdQMgLOt0o1oFkOdNzzVntCFLdHe8uwv-ZzIxycFPYcwvJRZUcABGWd5qj1s6-BiDsVK7pA4hUlBuKzHIgxQ5yCxFHqRIEDJLySQ-IXPebxV-zzKPR8bk4HtngozamVGb3gWjk-y9O0P_AXhCeeU |
CitedBy_id | crossref_primary_10_1007_s00170_021_07233_w crossref_primary_10_1016_j_apmt_2024_102122 crossref_primary_10_1007_s42464_024_00241_x crossref_primary_10_1177_1045389X221147675 crossref_primary_10_1016_j_eurpolymj_2022_111778 crossref_primary_10_3390_ma12162613 crossref_primary_10_1002_adfm_202210351 crossref_primary_10_1016_j_ifset_2024_103896 crossref_primary_10_1007_s00170_024_14506_7 crossref_primary_10_1088_1748_3190_ac8c10 crossref_primary_10_1039_D1PY01297E crossref_primary_10_1021_acsami_9b04873 crossref_primary_10_1016_j_sna_2017_08_038 crossref_primary_10_1002_cben_202300054 crossref_primary_10_3389_frans_2024_1505510 crossref_primary_10_1016_j_jelechem_2020_114701 crossref_primary_10_1109_JSEN_2019_2950089 crossref_primary_10_2217_nnm_2021_0285 crossref_primary_10_1088_1361_665X_aae41a crossref_primary_10_3390_app10093020 crossref_primary_10_3390_mi13030392 crossref_primary_10_1089_3dp_2019_0116 crossref_primary_10_1007_s11071_021_06272_y crossref_primary_10_1021_acsbiomaterials_9b00047 crossref_primary_10_1016_j_sna_2021_112674 crossref_primary_10_1016_j_apmt_2021_101306 crossref_primary_10_14232_analecta_2022_1_8_13 crossref_primary_10_1016_j_cej_2024_151402 crossref_primary_10_1109_TEM_2019_2930335 crossref_primary_10_1109_ACCESS_2020_3019083 crossref_primary_10_1021_acs_chemrev_7b00168 crossref_primary_10_1016_j_mee_2022_111874 crossref_primary_10_1016_j_jsv_2023_117996 crossref_primary_10_1142_S1793604718500315 crossref_primary_10_1002_pen_26318 crossref_primary_10_1002_adma_202003387 crossref_primary_10_1002_mame_202100978 crossref_primary_10_1002_adma_202000556 crossref_primary_10_1088_1361_665X_aafa5a crossref_primary_10_1109_TPEL_2021_3063513 crossref_primary_10_1007_s00158_018_1994_3 crossref_primary_10_1038_s41467_018_03216_w crossref_primary_10_1088_1361_665X_aa9695 crossref_primary_10_1002_adem_201900664 crossref_primary_10_1007_s12541_021_00479_0 crossref_primary_10_1016_j_sna_2024_115220 crossref_primary_10_3390_polym12102430 crossref_primary_10_1016_j_xcrp_2024_101789 crossref_primary_10_1080_15397734_2025_2452322 crossref_primary_10_3390_polym16162359 crossref_primary_10_1016_j_sna_2017_09_040 crossref_primary_10_1016_j_sna_2021_113056 crossref_primary_10_1088_1361_665X_ab84b9 crossref_primary_10_1088_1361_665X_abeaeb crossref_primary_10_1108_AEAT_07_2019_0140 crossref_primary_10_1590_1980_5373_mr_2021_0518 crossref_primary_10_1016_j_sna_2018_01_007 crossref_primary_10_1088_1748_3190_ab6033 crossref_primary_10_1002_app_48400 crossref_primary_10_3390_app14093681 crossref_primary_10_3390_mi13050775 crossref_primary_10_34133_cbsystems_0137 crossref_primary_10_3390_polym12030710 crossref_primary_10_1109_LRA_2020_2986760 crossref_primary_10_1080_00405167_2021_1978223 crossref_primary_10_1088_1361_665X_ac95e3 crossref_primary_10_1021_acs_iecr_2c02299 crossref_primary_10_1002_aisy_202200071 crossref_primary_10_1088_1361_665X_ab1cce crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1007_s00170_024_14820_0 crossref_primary_10_1088_2053_1591_abbd05 crossref_primary_10_1002_admi_202201270 crossref_primary_10_1016_j_cois_2018_09_011 crossref_primary_10_1021_acsaenm_2c00226 crossref_primary_10_1039_C7TC05710E crossref_primary_10_1088_1361_665X_ac976c crossref_primary_10_3390_ma11091615 crossref_primary_10_32548_2023_me_04311 crossref_primary_10_1016_j_matpr_2021_07_148 crossref_primary_10_3390_polym12020489 crossref_primary_10_3390_polym10080846 crossref_primary_10_1016_j_sna_2024_115417 crossref_primary_10_3390_su16104067 crossref_primary_10_1016_j_sna_2022_113670 crossref_primary_10_1038_s41598_024_74105_0 crossref_primary_10_1155_2019_6721897 crossref_primary_10_3390_polym14142786 crossref_primary_10_1002_aisy_202000223 crossref_primary_10_3390_molecules26030522 crossref_primary_10_1016_j_sna_2018_01_035 crossref_primary_10_1080_19475411_2019_1618409 crossref_primary_10_1007_s43939_025_00225_7 crossref_primary_10_1142_S1758825123500576 crossref_primary_10_1002_app_55015 crossref_primary_10_1016_j_matdes_2019_108411 crossref_primary_10_1088_1361_665X_ad2bd8 crossref_primary_10_1016_j_eml_2020_100692 crossref_primary_10_1016_j_polymertesting_2023_108131 crossref_primary_10_1016_j_sna_2021_112978 crossref_primary_10_1016_j_mechmachtheory_2022_105048 crossref_primary_10_1016_j_eng_2021_02_014 crossref_primary_10_1007_s10965_020_02289_w crossref_primary_10_1631_jzus_A2300457 crossref_primary_10_3390_polym12020302 crossref_primary_10_1016_j_ceramint_2023_12_416 crossref_primary_10_2494_photopolymer_31_139 crossref_primary_10_1088_1361_665X_ab9549 crossref_primary_10_3390_biomimetics9030160 crossref_primary_10_3389_frobt_2019_00034 crossref_primary_10_3390_robotics13030050 crossref_primary_10_1088_1361_665X_aaab29 crossref_primary_10_1371_journal_pone_0250325 crossref_primary_10_3390_app8101773 crossref_primary_10_1016_j_ijleo_2019_02_095 crossref_primary_10_1007_s11771_017_3638_y crossref_primary_10_1002_admt_202100605 crossref_primary_10_1002_nano_202000269 crossref_primary_10_3389_frobt_2021_663158 crossref_primary_10_1088_1748_3190_acd159 crossref_primary_10_1016_j_compstruct_2023_117837 crossref_primary_10_1021_acsanm_3c00055 crossref_primary_10_1088_1361_665X_ad5c22 crossref_primary_10_1089_3dp_2017_0054 crossref_primary_10_1002_aisy_202000013 crossref_primary_10_1007_s11012_022_01514_8 crossref_primary_10_1002_aisy_202000136 crossref_primary_10_1002_admt_201800271 crossref_primary_10_1088_1361_665X_ab9f48 crossref_primary_10_1108_RPJ_03_2021_0052 crossref_primary_10_1088_1361_6528_ab0e33 crossref_primary_10_1109_LRA_2018_2853640 crossref_primary_10_1016_j_sna_2019_02_017 crossref_primary_10_3390_polym14112265 crossref_primary_10_3390_act10100269 crossref_primary_10_1016_j_addma_2018_02_004 crossref_primary_10_1002_app_46884 crossref_primary_10_1007_s00542_020_04988_2 crossref_primary_10_1515_epoly_2022_0032 crossref_primary_10_1002_adma_202312135 crossref_primary_10_1002_adsu_202400450 crossref_primary_10_1007_s12540_019_00441_w crossref_primary_10_1021_acsmaterialslett_9b00262 crossref_primary_10_1007_s10338_019_00137_z crossref_primary_10_1007_s40435_025_01615_8 crossref_primary_10_1109_TIM_2023_3276501 crossref_primary_10_1021_acs_chemrev_3c00853 crossref_primary_10_1016_j_addma_2023_103601 crossref_primary_10_3390_act9010010 crossref_primary_10_1038_s41598_021_99500_9 crossref_primary_10_3390_machines9120303 crossref_primary_10_1089_soro_2017_0017 crossref_primary_10_1088_1361_665X_aae00a crossref_primary_10_1088_2399_7532_ac2faf crossref_primary_10_2174_1389557522666220128152847 crossref_primary_10_3390_su162411174 crossref_primary_10_3390_jcs4010001 crossref_primary_10_34133_2019_3018568 crossref_primary_10_3389_frobt_2019_00114 crossref_primary_10_1121_10_0006379 crossref_primary_10_1016_j_sna_2020_111957 crossref_primary_10_3390_robotics9030052 crossref_primary_10_1016_j_compstruct_2018_11_019 crossref_primary_10_1007_s10570_017_1544_y crossref_primary_10_1016_j_snb_2020_128781 crossref_primary_10_1186_s10033_019_0426_7 crossref_primary_10_1039_D0CS01062F crossref_primary_10_3390_act13120524 crossref_primary_10_3390_jcs5050119 crossref_primary_10_1080_17452759_2020_1795209 crossref_primary_10_1016_j_compositesb_2023_110938 crossref_primary_10_3390_act9020033 crossref_primary_10_1039_C8PY01286E crossref_primary_10_1007_s40684_017_0040_z crossref_primary_10_1021_acsapm_9b01078 crossref_primary_10_3389_fphy_2020_00240 crossref_primary_10_1016_j_molliq_2017_10_062 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_20965_jrm_2021_p0045 crossref_primary_10_1016_j_sna_2019_01_027 crossref_primary_10_1109_JPROC_2024_3471849 crossref_primary_10_3389_frobt_2019_00129 crossref_primary_10_1088_1361_665X_abcaae crossref_primary_10_1109_TASE_2023_3241866 crossref_primary_10_1007_s42242_022_00199_y crossref_primary_10_1016_j_mtcomm_2024_108303 crossref_primary_10_1021_acsami_1c03226 crossref_primary_10_1002_app_52123 crossref_primary_10_1002_aisy_201900109 crossref_primary_10_1016_j_carbpol_2022_119475 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1007_s40430_019_1995_1 crossref_primary_10_3390_ma12010071 crossref_primary_10_1016_j_cclet_2021_03_073 crossref_primary_10_3390_polym12061276 crossref_primary_10_1007_s40684_023_00533_4 crossref_primary_10_3390_app9224727 crossref_primary_10_3390_mi14081622 crossref_primary_10_1002_aisy_202000186 crossref_primary_10_1016_j_bprint_2021_e00169 crossref_primary_10_1089_soro_2018_0024 crossref_primary_10_1088_1361_665X_abccdb crossref_primary_10_3390_act12070266 crossref_primary_10_3390_ma10060664 crossref_primary_10_1021_acsami_3c12173 crossref_primary_10_1016_j_sna_2019_111556 crossref_primary_10_1016_j_bios_2025_117161 crossref_primary_10_1021_acsami_7b13909 crossref_primary_10_1039_C9NR06579B crossref_primary_10_1007_s00158_019_02442_0 crossref_primary_10_3390_polym14194235 crossref_primary_10_1088_1361_665X_aabe63 crossref_primary_10_1149_1945_7111_ab6e60 crossref_primary_10_3389_frobt_2018_00002 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_2139_ssrn_4595801 crossref_primary_10_3390_mi12040465 crossref_primary_10_1089_soro_2019_0129 crossref_primary_10_1007_s00542_020_05101_3 crossref_primary_10_1016_j_sna_2021_112578 |
Cites_doi | 10.1108/13552540610707004 10.1016/S0924-0136(00)00613-0 10.1108/13552540310477454 10.3390/polym6082287 10.1002/adma.201202549 10.1016/j.jconrel.2014.04.056 10.1002/marc.200500405 10.1038/srep24761 10.1016/j.jmps.2011.09.011 10.1109/ICRA.2015.7139820 10.1021/am507339r 10.1080/17452759.2015.1097054 10.1109/ICRA.2014.6907272 10.18063/IJB.2015.01.005 10.1002/admt.201600013 10.1115/1.4030994 10.1039/b902208b 10.1089/ten.tea.2009.0798 10.1080/23311916.2015.1075686 10.1016/S0924-0136(01)00522-2 10.1016/j.protcy.2015.07.026 10.1038/srep29996 10.1002/app.41687 10.1108/01445150310698634 10.1016/j.addma.2014.07.001 10.1016/j.orgel.2014.09.007 10.1080/19475411.2011.650231 10.1016/j.compositesa.2011.07.003 10.1039/C1SM06564E 10.1088/1748-3190/10/5/055003 10.1002/adfm.201401339 10.2352/ISSN.2169-4451.2011.27.1.art00047_1 10.1117/12.2009605 10.1007/s00170-012-4034-2 10.1039/C5CS00714C 10.1115/1.2900701 10.1016/j.sna.2015.08.008 10.1039/b923717h 10.1016/j.piutam.2014.12.021 10.1039/C5SM01892G 10.1038/srep13616 10.1007/s00542-013-1816-x 10.1109/ICRA.2016.7487707 10.1021/nn503268f 10.1002/bit.24957 10.1016/S0890-6955(97)00137-5 10.1088/0964-1726/23/9/094007 10.1023/A:1020200822435 10.3390/ijms151119924 10.1088/0964-1726/24/12/125021 10.1016/j.biomaterials.2015.05.031 10.1117/12.2009919 10.1073/pnas.1401577111 10.1557/mrs.2011.272 10.1038/srep07422 10.1109/TRO.2011.2172702 10.1557/adv.2015.9 10.1007/s12206-015-0925-0 10.1186/1754-1611-7-31 10.1088/0964-1726/23/3/033001 10.1021/acs.nanolett.5b01688 10.1002/smll.201300975 10.1108/13552540710750898 10.1016/j.matdes.2016.02.018 10.1002/adma.201501234 10.1002/adma.201400334 10.18063/IJB.2016.01.003 10.1039/C4SM02592J 10.1016/j.biomaterials.2015.10.076 10.1038/ncomms3257 10.1109/IROS.2008.4651100 10.1002/adma.201304018 10.1016/S0924-0136(01)00584-2 10.1038/srep31110 10.1108/01445151211244348 10.1016/j.progpolymsci.2015.09.001 10.1177/1045389X14544144 10.1039/b819889f 10.1039/C3SM51921J 10.1016/j.biomaterials.2013.09.078 10.1002/anie.201301918 10.1016/j.aca.2016.01.012 10.1088/0964-1726/16/2/S15 10.1002/app.41667 10.1115/1.4029497 10.1016/j.biotechadv.2015.07.006 10.1039/c1sm05109a 10.3390/polym4021157 10.1063/1.4819837 10.1007/s12541-012-0081-8 10.1016/j.matdes.2013.11.084 10.1063/1.3308490 10.1002/marc.201500079 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright Elsevier BV Oct 15, 2016 |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier BV Oct 15, 2016 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2016.09.028 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 272 |
ExternalDocumentID | 10_1016_j_sna_2016_09_028 S0924424716305064 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-a6e43fb86298f9f0f567a85946b6060fb1ea6a25009f6bc5a7a008595d8c86453 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Mon Jul 14 08:12:31 EDT 2025 Thu Jul 03 08:38:41 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Fri Feb 23 02:21:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soft robot Rapid prototyping 3D printing Soft actuator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-a6e43fb86298f9f0f567a85946b6060fb1ea6a25009f6bc5a7a008595d8c86453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5302-360X |
PQID | 1949800646 |
PQPubID | 2045401 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1949800646 crossref_citationtrail_10_1016_j_sna_2016_09_028 crossref_primary_10_1016_j_sna_2016_09_028 elsevier_sciencedirect_doi_10_1016_j_sna_2016_09_028 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-15 |
PublicationDateYYYYMMDD | 2016-10-15 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Khaing, Fuh, Lu (bib0135) 2001; 113 Ward Small, Singhal, Wilson, Maitland (bib0555) 2010; 20 O’Brien, Calius, Xie, Anderson (bib0305) 2008 Song, Lee, Rodrigue, Choi, Kang, Ahn (bib0200) 2016 Y. Bar-Cohen, T. McKay, P. Walters, J. Rossiter, B.O’Brien, I. Anderson, 3-dimensional fabrication of soft energy harvesters, 2013, 8687: 86870J. Myers, Bernardi, Grossman (bib0380) 2010; 96 Sachs, Cima, Williams, Brancazio, Cornie (bib0125) 1992; 114 Kim, Zhu, Qu, Aaronson, McCall, Chen (bib0335) 2014; 8 Gladman, Matsumoto, Nuzzo, Mahadevan, Lewis (bib0535) 2016 Cauda, Canavese, Stassi (bib0320) 2015; 132 Lipton, Lipson (bib0395) 2016; 6 Ota, Emaminejad, Gao, Zhao, Wu, Challa (bib0080) 2016 Tibbits, Cheung (bib0390) 2012; 32 Guo, Gosselin, Guerin, Lanouette, Heuzey, Therriault (bib0410) 2013; 9 Pham, Gault (bib0115) 1998; 38 Zhang, Yan, Zhang, Hu (bib0235) 2015; 5 Stoychev, Puretskiy, Ionov (bib0530) 2011; 7 Feng, Yen (bib0050) 2015 Cvetkovic, Raman, Chan, Williams, Tolish, Bajaj (bib0525) 2014; 111 Ge, Dunn, Qi, Dunn (bib0375) 2014; 23 Bakarich, Gorkin, Naficy, Gately, Spinks (bib0520) 2016; 1 Pabst, Beckert, Perelaer, Schubert, Eberhardt, Tünnermann (bib0325) 2013 Skardal, Zhang, McCoard, Xu, Oottamasathien, Prestwich (bib0505) 2010; 16 Liu, Genzer, Dickey (bib0540) 2016; 52 Gao, He, z. Fu, Liu, Ma (bib0465) 2015; 61 Soman, Chung, Zhang, Chen (bib0450) 2013; 110 Garlotta (bib0550) 2001; 9 Zheng, An, Yang, Zhou, Chen (bib0010) 2015; 7 Bakarich, Gorkin, in het Panhuis, Spinks (bib0515) 2015; 36 Wang, Pham, Ji (bib0415) 2015; 2 N. Kamamichi, T. Maeba, M. Yamakita, T. Mukai, Fabrication of bucky gel actuator/sensor devices based on printing method, In: Intelligent Robots and Systems, IROS 2008. IEEE/RSJ International Conference on, 2008, IEEE 2008. P. Walters, D. McGoran, Digital fabrication of smart structures and mechanisms-creative applications in art and design, In: NIP & Digital Fabrication Conference, Society for Imaging Science and Technology. (2011). Hiller, Lipson (bib0400) 2012; 28 Palleau, Morales, Dickey, Velev (bib0015) 2013; 4 Mao, Yu, Isakov, Wu, Dunn, Jerry Qi (bib0225) 2015; 5 Gupta, Talebi, Deverell, Sandron, Nesterenko, Heery (bib0150) 2016 Hwang, Paydar, Candler (bib0210) 2015; 234 Zhang, Zhang, Hu (bib0355) 2016; 6 Liu, Boyles, Genzer, Dickey (bib0025) 2012; 8 Morin, Kwok, Lessing, Ting, Shepherd, Stokes (bib0255) 2014; 24 Ge, Qi, Dunn (bib0160) 2013; 103 Wallace, Cornock, O’Connell, Bernie, Dodds, Gilbert (bib0090) 2014 Roche, Wohlfarth, Overvelde, Vasilyev, Pigula, Mooney (bib0055) 2014; 26 Ahn, Lee, Kim, Wu, Kim, Song (bib0250) 2012; 13 Pabst, Hölzer, Beckert, Perelaer, Schubert, Eberhardt (bib0330) 2014; 15 Khoo, Teoh, Liu, Chua, Yang, An (bib0440) 2015; 10 Ge, Sakhaei, Lee, Dunn, Fang, Dunn (bib0365) 2016; 6 McDaid, Xie, Aw (bib0295) 2012; 3 Cai, Vanhorn, Mullikin, Stabach, Alderman, Zhou (bib0285) 2016 Le Duigou, Castro, Bevan, Martin (bib0370) 2016; 96 Guillemot, Guillotin, Fontaine, Ali, Catros, Keriquel (bib0455) 2011; 36 Wang, Lee, Yeong (bib0435) 2015 Raviv, Zhao, McKnelly, Papadopoulou, Kadambi, Shi (bib0035) 2014; 4 Morales, Palleau, Dickey, Velev (bib0040) 2014; 10 Adams, Kouzani, Mohammed, Usma, Tye (bib0140) 2015; 20 Mitsumata, Nagata, Sakai, i. Takimoto (bib0030) 2005; 26 Morrow, Shin, Torrey, Larkins, Dang, Phillips-Grafflin (bib0205) 2016 Ivanova, Elliott, Campbell, Williams (bib0245) 2014; 1–4 T. Umedachi, B.A. Trimmer, Design of a 3D-printed soft robot with posture and steering control, in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014, IEEE. Muth, Vogt, Truby, Mengüç, Kolesky, Wood (bib0085) 2014; 26 Singh, Lee (bib0495) 2014; 193 Ross, Nguyen, Pandav, Li, Crowston, Coote (bib0420) 2013; 54 Maute, Tkachuk, Wu, Jerry Qi, Ding, Dunn (bib0345) 2015; 137 Mohd Jani, Leary, Subic, Gibson (bib0175) 2014; 56 Jackson, Stam (bib0485) 2015; 132 R. MacCurdy, R. Katzschmann, Y. Kim, D. Rus, Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids, arXiv preprint arXiv:1512.03744, (2015). Gu, Catchmark (bib0470) 2013; 7 Ramadan, Sameoto, Evoy (bib0315) 2014; 23 Ozbolat, Hospodiuk (bib0460) 2016; 76 Ge, Luo, Rodriguez, Zhang, Mather, Dunn (bib0350) 2012; 60 An, Chua, Mironov (bib0425) 2016; 2 Yu, Yuan, Erickson, Daly, Rogers, Nuzzo (bib0020) 2015; 11 Rosochowski, Matuszak (bib0095) 2000; 106 Asaka, Okuzaki (bib0005) 2014 Zarek, Layani, Cooperstein, Sachyani, Cohn, Magdassi (bib0270) 2015 Chalapat, Chekurov, Jiang, Li, Parviz, Paraoanu (bib0385) 2013; 25 Gupta, Meng, Johnson, Kong, Tian, Yeh (bib0510) 2015; 15 R.S. Evans, Magnetic shear force transfer device. Google Patents. 2015. Yu, Ritchie, Mao, Dunn, Qi (bib0220) 2015; 12 Liu, Wang, Zhao, Zhang, Chen, Li (bib0215) 2014 Peele, Wallin, Zhao, Shepherd (bib0265) 2015; 10 Meisel, Elliott, Williams (bib0190) 2015; 26 Wu, Yuan, Ding, Isakov, Mao, Wang (bib0360) 2016; 6 Mu, Sowan, Tumbic, Bowman, Mather, Qi (bib0240) 2015; 11 Slightam, Gervasi (bib0260) 2012 Carpi, Salaris, De Rossi (bib0310) 2007; 16 Kowalczyk, Piorkowska, Kulpinski, Pracella (bib0475) 2011; 42 Biggs, Danielmeier, Hitzbleck, Krause, Kridl, Nowak (bib0045) 2013; 52 Yang, Lu, Huang, Qi, Wu, Sun (bib0480) 2014; 6 Malone, Lipson (bib0060) 2006; 12 Stiltner, Elliott, Williams (bib0165) 2011 Ambrosi, Pumera (bib0145) 2016 Carrico, Traeden, Aureli, Leang (bib0275) 2015; 24 Upcraft, Fletcher (bib0110) 2003; 23 Dippenaar, Schreve (bib0100) 2013; 64 Joo, Park, Choi, Jeong (bib0500) 2009; 19 Giani, Fedi, Barbucci (bib0490) 2012; 4 C.T. Nguyen, H. Phung, H. Jung, U. Kim, T.D. Nguyen, J. Park, et al., Printable monolithic hexapod robot driven by soft actuator, in Robotics and Automation (ICRA), IEEE International Conference on, 2015, IEEE 2015. Highley, Rodell, Burdick (bib0405) 2015; 27 Mao, Ding, Yuan, Ai, Isakov, Wu (bib0070) 2016; 6 Bartolo, Mitchell (bib0120) 2003; 9 Abe, Osakada, Shiomi, Uematsu, Matsumoto (bib0105) 2001; 111 Alam, Alam, Raja, Abduljaleel, Dass (bib0545) 2014; 15 She, Li, Cleary, Su (bib0195) 2015; 7 Abeyewickreme, Kwok, McEwan, Jayasinghe (bib0445) 2009; 1 Zhou, Huang, Kang, Wu, Lu, Fu (bib0075) 2015; 29 Billiet, Gevaert, De Schryver, Cornelissen, Dubruel (bib0430) 2014; 35 Yang, Chen, Wei, Li (bib0230) 2015 Bassoli, Gatto, Iuliano, Violante (bib0130) 2007; 13 Kerdlapee, Wisitsoraat, Phokaratkul, Leksakul, Phatthanakun, Tuantranont (bib0065) 2014; 20 Jana, Lerman (bib0155) 2015; 33 Mao (10.1016/j.sna.2016.09.028_bib0225) 2015; 5 10.1016/j.sna.2016.09.028_bib0300 Meisel (10.1016/j.sna.2016.09.028_bib0190) 2015; 26 O’Brien (10.1016/j.sna.2016.09.028_bib0305) 2008 Kerdlapee (10.1016/j.sna.2016.09.028_bib0065) 2014; 20 Ahn (10.1016/j.sna.2016.09.028_bib0250) 2012; 13 McDaid (10.1016/j.sna.2016.09.028_bib0295) 2012; 3 Carpi (10.1016/j.sna.2016.09.028_bib0310) 2007; 16 Ge (10.1016/j.sna.2016.09.028_bib0365) 2016; 6 Wang (10.1016/j.sna.2016.09.028_bib0415) 2015; 2 Guo (10.1016/j.sna.2016.09.028_bib0410) 2013; 9 Hiller (10.1016/j.sna.2016.09.028_bib0400) 2012; 28 Kim (10.1016/j.sna.2016.09.028_bib0335) 2014; 8 An (10.1016/j.sna.2016.09.028_bib0425) 2016; 2 Morin (10.1016/j.sna.2016.09.028_bib0255) 2014; 24 Dippenaar (10.1016/j.sna.2016.09.028_bib0100) 2013; 64 Joo (10.1016/j.sna.2016.09.028_bib0500) 2009; 19 Bartolo (10.1016/j.sna.2016.09.028_bib0120) 2003; 9 Tibbits (10.1016/j.sna.2016.09.028_bib0390) 2012; 32 Cvetkovic (10.1016/j.sna.2016.09.028_bib0525) 2014; 111 Guillemot (10.1016/j.sna.2016.09.028_bib0455) 2011; 36 Muth (10.1016/j.sna.2016.09.028_bib0085) 2014; 26 Rosochowski (10.1016/j.sna.2016.09.028_bib0095) 2000; 106 Hwang (10.1016/j.sna.2016.09.028_bib0210) 2015; 234 Roche (10.1016/j.sna.2016.09.028_bib0055) 2014; 26 Sachs (10.1016/j.sna.2016.09.028_bib0125) 1992; 114 Singh (10.1016/j.sna.2016.09.028_bib0495) 2014; 193 Gao (10.1016/j.sna.2016.09.028_bib0465) 2015; 61 Wu (10.1016/j.sna.2016.09.028_bib0360) 2016; 6 Zarek (10.1016/j.sna.2016.09.028_bib0270) 2015 Liu (10.1016/j.sna.2016.09.028_bib0025) 2012; 8 Palleau (10.1016/j.sna.2016.09.028_bib0015) 2013; 4 Khaing (10.1016/j.sna.2016.09.028_bib0135) 2001; 113 Highley (10.1016/j.sna.2016.09.028_bib0405) 2015; 27 Soman (10.1016/j.sna.2016.09.028_bib0450) 2013; 110 Biggs (10.1016/j.sna.2016.09.028_bib0045) 2013; 52 Jackson (10.1016/j.sna.2016.09.028_bib0485) 2015; 132 Asaka (10.1016/j.sna.2016.09.028_bib0005) 2014 Yang (10.1016/j.sna.2016.09.028_bib0230) 2015 Giani (10.1016/j.sna.2016.09.028_bib0490) 2012; 4 Wang (10.1016/j.sna.2016.09.028_bib0435) 2015 Ramadan (10.1016/j.sna.2016.09.028_bib0315) 2014; 23 Song (10.1016/j.sna.2016.09.028_bib0200) 2016 Raviv (10.1016/j.sna.2016.09.028_bib0035) 2014; 4 Bassoli (10.1016/j.sna.2016.09.028_bib0130) 2007; 13 Ambrosi (10.1016/j.sna.2016.09.028_bib0145) 2016 Mao (10.1016/j.sna.2016.09.028_bib0070) 2016; 6 Morrow (10.1016/j.sna.2016.09.028_bib0205) 2016 Billiet (10.1016/j.sna.2016.09.028_bib0430) 2014; 35 Alam (10.1016/j.sna.2016.09.028_bib0545) 2014; 15 Pham (10.1016/j.sna.2016.09.028_bib0115) 1998; 38 Zheng (10.1016/j.sna.2016.09.028_bib0010) 2015; 7 Ota (10.1016/j.sna.2016.09.028_bib0080) 2016 Slightam (10.1016/j.sna.2016.09.028_bib0260) 2012 Ge (10.1016/j.sna.2016.09.028_bib0375) 2014; 23 Maute (10.1016/j.sna.2016.09.028_bib0345) 2015; 137 Stiltner (10.1016/j.sna.2016.09.028_bib0165) 2011 Gupta (10.1016/j.sna.2016.09.028_bib0150) 2016 Malone (10.1016/j.sna.2016.09.028_bib0060) 2006; 12 Ge (10.1016/j.sna.2016.09.028_bib0160) 2013; 103 Pabst (10.1016/j.sna.2016.09.028_bib0330) 2014; 15 Liu (10.1016/j.sna.2016.09.028_bib0215) 2014 10.1016/j.sna.2016.09.028_bib0340 Bakarich (10.1016/j.sna.2016.09.028_bib0520) 2016; 1 10.1016/j.sna.2016.09.028_bib0185 10.1016/j.sna.2016.09.028_bib0180 Carrico (10.1016/j.sna.2016.09.028_bib0275) 2015; 24 Ivanova (10.1016/j.sna.2016.09.028_bib0245) 2014; 1–4 Yu (10.1016/j.sna.2016.09.028_bib0020) 2015; 11 Jana (10.1016/j.sna.2016.09.028_bib0155) 2015; 33 Abe (10.1016/j.sna.2016.09.028_bib0105) 2001; 111 She (10.1016/j.sna.2016.09.028_bib0195) 2015; 7 Ge (10.1016/j.sna.2016.09.028_bib0350) 2012; 60 Pabst (10.1016/j.sna.2016.09.028_bib0325) 2013 Yang (10.1016/j.sna.2016.09.028_bib0480) 2014; 6 Adams (10.1016/j.sna.2016.09.028_bib0140) 2015; 20 Zhang (10.1016/j.sna.2016.09.028_bib0355) 2016; 6 Cai (10.1016/j.sna.2016.09.028_bib0285) 2016 Wallace (10.1016/j.sna.2016.09.028_bib0090) 2014 Kowalczyk (10.1016/j.sna.2016.09.028_bib0475) 2011; 42 Ward Small (10.1016/j.sna.2016.09.028_bib0555) 2010; 20 Lipton (10.1016/j.sna.2016.09.028_bib0395) 2016; 6 Mohd Jani (10.1016/j.sna.2016.09.028_bib0175) 2014; 56 Yu (10.1016/j.sna.2016.09.028_bib0220) 2015; 12 Myers (10.1016/j.sna.2016.09.028_bib0380) 2010; 96 Zhou (10.1016/j.sna.2016.09.028_bib0075) 2015; 29 Gu (10.1016/j.sna.2016.09.028_bib0470) 2013; 7 Chalapat (10.1016/j.sna.2016.09.028_bib0385) 2013; 25 Gupta (10.1016/j.sna.2016.09.028_bib0510) 2015; 15 Le Duigou (10.1016/j.sna.2016.09.028_bib0370) 2016; 96 Abeyewickreme (10.1016/j.sna.2016.09.028_bib0445) 2009; 1 Upcraft (10.1016/j.sna.2016.09.028_bib0110) 2003; 23 10.1016/j.sna.2016.09.028_bib0280 Mu (10.1016/j.sna.2016.09.028_bib0240) 2015; 11 Morales (10.1016/j.sna.2016.09.028_bib0040) 2014; 10 Cauda (10.1016/j.sna.2016.09.028_bib0320) 2015; 132 Garlotta (10.1016/j.sna.2016.09.028_bib0550) 2001; 9 Ross (10.1016/j.sna.2016.09.028_bib0420) 2013; 54 Stoychev (10.1016/j.sna.2016.09.028_bib0530) 2011; 7 Gladman (10.1016/j.sna.2016.09.028_bib0535) 2016 Skardal (10.1016/j.sna.2016.09.028_bib0505) 2010; 16 Peele (10.1016/j.sna.2016.09.028_bib0265) 2015; 10 Mitsumata (10.1016/j.sna.2016.09.028_bib0030) 2005; 26 Liu (10.1016/j.sna.2016.09.028_bib0540) 2016; 52 Ozbolat (10.1016/j.sna.2016.09.028_bib0460) 2016; 76 Feng (10.1016/j.sna.2016.09.028_bib0050) 2015 Zhang (10.1016/j.sna.2016.09.028_bib0235) 2015; 5 Khoo (10.1016/j.sna.2016.09.028_bib0440) 2015; 10 10.1016/j.sna.2016.09.028_bib0290 Bakarich (10.1016/j.sna.2016.09.028_bib0515) 2015; 36 10.1016/j.sna.2016.09.028_bib0170 |
References_xml | – volume: 27 start-page: 5075 year: 2015 end-page: 5079 ident: bib0405 article-title: Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels publication-title: Adv. Mater. – year: 2011 ident: bib0165 article-title: A method for creating actuated joints via fiber embedding in a Polyjet 3D printing process publication-title: Solid Freeform Fabrication Symp. Proc. – volume: 9 start-page: 150 year: 2003 end-page: 156 ident: bib0120 article-title: Stereo-thermal-lithography: a new principle for rapid prototyping publication-title: Rapid Prototyping J. – volume: 9 start-page: 63 year: 2001 end-page: 84 ident: bib0550 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. – volume: 33 start-page: 1503 year: 2015 end-page: 1521 ident: bib0155 article-title: Bioprinting a cardiac valve publication-title: Biotechnol. Adv. – volume: 16 start-page: 2675 year: 2010 end-page: 2685 ident: bib0505 article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting publication-title: Tissue Eng. Part A – volume: 20 start-page: 3356 year: 2010 end-page: 3366 ident: bib0555 article-title: Biomedical applications of thermally activated shape memory polymers publication-title: J. Mater. Chem. – year: 2015 ident: bib0435 article-title: Smart hydrogels for 3D bioprinting publication-title: Int. J. Bioprint. – volume: 10 start-page: 103 year: 2015 end-page: 122 ident: bib0440 article-title: 3D printing of smart materials: a review on recent progresses in 4D printing publication-title: Virtual Phys. Prototyping – reference: T. Umedachi, B.A. Trimmer, Design of a 3D-printed soft robot with posture and steering control, in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014, IEEE. – volume: 12 start-page: 193 year: 2015 end-page: 203 ident: bib0220 article-title: Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials publication-title: Procedia IUTAM – volume: 6 start-page: 29996 year: 2016 ident: bib0395 article-title: 3D printing variable stiffness foams using viscous thread instability publication-title: Sci. Rep. – volume: 23 start-page: 033001 year: 2014 ident: bib0315 article-title: A review of piezoelectric polymers as functional materials for electromechanical transducers publication-title: Smart Mater. Struct. – volume: 35 start-page: 49 year: 2014 end-page: 62 ident: bib0430 article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability publication-title: Biomaterials – volume: 13 start-page: 631 year: 2012 end-page: 634 ident: bib0250 article-title: Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials publication-title: Int. J. Precis. Eng. Manuf. – reference: R. MacCurdy, R. Katzschmann, Y. Kim, D. Rus, Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids, arXiv preprint arXiv:1512.03744, (2015). – volume: 24 start-page: 5541 year: 2014 end-page: 5549 ident: bib0255 article-title: Elastomeric tiles for the fabrication of inflatable structures publication-title: Adv. Funct. Mater. – year: 2016 ident: bib0285 article-title: 4D printing of soft robotic facial muscles publication-title: 2016 Ann. Int. Solid Free Form Fabrication Symp. – volume: 32 start-page: 216 year: 2012 end-page: 225 ident: bib0390 article-title: Programmable materials for architectural assembly and automation publication-title: Assembly Automation – volume: 38 start-page: 1257 year: 1998 end-page: 1287 ident: bib0115 article-title: A comparison of rapid prototyping technologies publication-title: Int. J. Mach. Tools Manuf. – year: 2015 ident: bib0230 article-title: 3D printing of shape memory polymer for functional part fabrication publication-title: Int. J. Adv. Manuf. Technol. – volume: 26 start-page: 1200 year: 2014 end-page: 1206 ident: bib0055 article-title: A bioinspired soft actuated material publication-title: Adv. Mater. – volume: 1 start-page: 260 year: 2009 end-page: 266 ident: bib0445 article-title: Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency publication-title: Integr. Biol. – volume: 6 start-page: 31110 year: 2016 ident: bib0365 article-title: Multimaterial 4D printing with tailorable shape memory polymers publication-title: Sci. Rep. – volume: 9 start-page: 4118 year: 2013 end-page: 4122 ident: bib0410 article-title: Solvent-cast three-dimensional printing of multifunctional microsystems publication-title: Small – volume: 7 start-page: 021007 year: 2015 ident: bib0195 article-title: Design and fabrication of a soft robotic hand with embedded actuators and sensors publication-title: J. Mech. Rob. – volume: 5 start-page: 13616 year: 2015 ident: bib0225 article-title: Sequential self-folding structures by 3D printed digital shape memory polymers publication-title: Sci. Rep. – start-page: 1877 year: 2015 end-page: 1880 ident: bib0050 article-title: Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms publication-title: 18th International Conference in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) – volume: 111 start-page: 10125 year: 2014 end-page: 10130 ident: bib0525 article-title: Three-dimensionally printed biological machines powered by skeletal muscle publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2016 ident: bib0535 article-title: Biomimetic 4D printing publication-title: Nat. Mater. – volume: 2 start-page: 1075686 year: 2015 ident: bib0415 article-title: Self-healing composites: a review publication-title: Cogent Eng. – volume: 3 start-page: 188 year: 2012 end-page: 203 ident: bib0295 article-title: A compliant surgical robotic instrument with integrated IPMC sensing and actuation publication-title: Int. J. Smart Nano Mater. – volume: 61 start-page: 203 year: 2015 end-page: 215 ident: bib0465 article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery publication-title: Biomaterials – volume: 20 start-page: 127 year: 2014 end-page: 135 ident: bib0065 article-title: Fabrication of electrostatic MEMS microactuator based on X-ray lithography with Pb-based X-ray mask and dry-film-transfer-to-PCB process publication-title: Microsyst. Technol. – year: 2015 ident: bib0270 article-title: 3D printing of shape memory polymers for flexible electronic devices publication-title: Adv. Mater. – volume: 132 year: 2015 ident: bib0320 article-title: Nanostructured piezoelectric polymers publication-title: J. Appl. Polym. Sci. – volume: 52 start-page: 79 year: 2016 end-page: 106 ident: bib0540 article-title: 2D or not 2D: shape-programming polymer sheets publication-title: Prog. Polym. Sci. – volume: 56 start-page: 1078 year: 2014 end-page: 1113 ident: bib0175 article-title: A review of shape memory alloy research, applications and opportunities publication-title: Mater. Des. – volume: 6 year: 2016 ident: bib0355 article-title: Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique publication-title: Sci. Rep. – volume: 11 start-page: 2673 year: 2015 end-page: 2682 ident: bib0240 article-title: Photo-induced bending in a light-activated polymer laminated composite publication-title: Soft Matter – reference: P. Walters, D. McGoran, Digital fabrication of smart structures and mechanisms-creative applications in art and design, In: NIP & Digital Fabrication Conference, Society for Imaging Science and Technology. (2011). – year: 2016 ident: bib0150 article-title: 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography publication-title: Anal. Chim. Acta – year: 2012 ident: bib0260 article-title: Novel integrated fluid-power actuators for functional end-use components and systems via selective laser sintering Nylon 12 publication-title: 23rd Ann. Int. Solid Freeform Fabrication Symp. – volume: 7 year: 2013 ident: bib0470 article-title: Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers publication-title: J. Biol. Eng. – volume: 106 start-page: 191 year: 2000 end-page: 198 ident: bib0095 article-title: Rapid tooling: the state of the art publication-title: J. Mater. Process. Technol. – volume: 15 start-page: 19924 year: 2014 end-page: 19937 ident: bib0545 article-title: MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour publication-title: Int. J. Mol. Sci. – volume: 4 year: 2013 ident: bib0015 article-title: Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting publication-title: Nat. Commun. – year: 2016 ident: bib0080 article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems publication-title: Adv. Mater. Technol. – volume: 8 start-page: 9799 year: 2014 end-page: 9806 ident: bib0335 article-title: 3D optical printing of piezoelectric nanoparticle–polymer composite materials publication-title: ACS Nano – reference: C.T. Nguyen, H. Phung, H. Jung, U. Kim, T.D. Nguyen, J. Park, et al., Printable monolithic hexapod robot driven by soft actuator, in Robotics and Automation (ICRA), IEEE International Conference on, 2015, IEEE 2015. – reference: R.S. Evans, Magnetic shear force transfer device. Google Patents. 2015. – volume: 20 start-page: 155 year: 2015 end-page: 161 ident: bib0140 article-title: 3D printed biocompatible enclosures for an implantable DBS microdevice publication-title: Procedia Technol. – volume: 23 start-page: 318 year: 2003 end-page: 330 ident: bib0110 article-title: The rapid prototyping technologies publication-title: Assembly Autom. – volume: 19 start-page: 5891 year: 2009 end-page: 5905 ident: bib0500 article-title: Reverse thermogelling biodegradable polymer aqueous solutions publication-title: J. Mater. Chem. – volume: 6 year: 2016 ident: bib0070 article-title: 3D printed reversible shape changing components with stimuli responsive materials publication-title: Sci. Rep. – volume: 23 start-page: 094007 year: 2014 ident: bib0375 article-title: Active origami by 4D printing publication-title: Smart Mater. Struct. – volume: 26 start-page: 6307 year: 2014 end-page: 6312 ident: bib0085 article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers publication-title: Adv. Mater – volume: 52 start-page: 9409 year: 2013 end-page: 9421 ident: bib0045 article-title: Electroactive polymers: developments of and perspectives for dielectric elastomers publication-title: Angew. Chem. Int. Ed. – year: 2008 ident: bib0305 article-title: An experimentally validated model of a dielectric elastomer bending actuator publication-title: The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics – volume: 13 start-page: 148 year: 2007 end-page: 155 ident: bib0130 article-title: 3D printing technique applied to rapid casting publication-title: Rapid Prototyping J. – volume: 10 start-page: 055003 year: 2015 ident: bib0265 article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography publication-title: Bioinspiration Biomimetics – volume: 15 start-page: 5321 year: 2015 end-page: 5329 ident: bib0510 article-title: 3D printed programmable release capsules publication-title: Nano Lett. – volume: 12 start-page: 244 year: 2006 end-page: 253 ident: bib0060 article-title: Freeform fabrication of ionomeric polymer-metal composite actuators publication-title: Rapid Prototyping J. – volume: 2 year: 2016 ident: bib0425 article-title: A perspective on 4D bioprinting publication-title: Int. J. Bioprint. – volume: 26 start-page: 1538 year: 2005 end-page: 1541 ident: bib0030 article-title: Giant complex modulus reduction of κ‐carrageenan magnetic gels publication-title: Macromol. Rapid Commun. – volume: 15 start-page: 3306 year: 2014 end-page: 3315 ident: bib0330 article-title: Inkjet printed micropump actuator based on piezoelectric polymers: device performance and morphology studies publication-title: Org. Electron. – year: 2014 ident: bib0005 article-title: Soft Actuators: Materials, Modeling, Applications, and Future Perspectives – volume: 4 start-page: 7422 year: 2014 ident: bib0035 article-title: Active printed materials for complex self-evolving deformations publication-title: Sci. Rep. – year: 2014 ident: bib0215 article-title: Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications publication-title: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring – volume: 5 year: 2015 ident: bib0235 article-title: Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique publication-title: Sci. Rep. – volume: 36 start-page: 1015 year: 2011 end-page: 1019 ident: bib0455 article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine publication-title: MRS Bull. – volume: 96 start-page: 106 year: 2016 end-page: 114 ident: bib0370 article-title: 3D printing of wood fibre biocomposites: from mechanical to actuation functionality publication-title: Mater. Des. – volume: 42 start-page: 1509 year: 2011 end-page: 1514 ident: bib0475 article-title: Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers publication-title: Composites Part A – volume: 7 start-page: 1758 year: 2015 end-page: 1764 ident: bib0010 article-title: Tough Al-alginate/poly ( publication-title: ACS Appl. Mater. Interfaces – volume: 54 year: 2013 ident: bib0420 article-title: A model to measure surgical outflow using a two-tubed experimental glaucoma drainage device publication-title: Invest. Ophthalmol. – volume: 1–4 start-page: 24 year: 2014 end-page: 31 ident: bib0245 article-title: Unclonable security features for additive manufacturing publication-title: Addit. Manuf. – volume: 10 start-page: 1337 year: 2014 end-page: 1348 ident: bib0040 article-title: Electro-actuated hydrogel walkers with dual responsive legs publication-title: Soft Matter – volume: 6 year: 2016 ident: bib0360 article-title: Multi-shape active composites by 3D printing of digital shape memory polymers publication-title: Sci. Rep. – volume: 111 start-page: 210 year: 2001 end-page: 213 ident: bib0105 article-title: The manufacturing of hard tools from metallic powders by selective laser melting publication-title: J. Mater. Process. Technol. – volume: 1 start-page: 521 year: 2016 end-page: 526 ident: bib0520 article-title: 3D/4D printing hydrogel composites: a pathway to functional devices publication-title: MRS Adv. – volume: 6 start-page: 2287 year: 2014 end-page: 2308 ident: bib0480 article-title: Advanced shape memory technology to reshape product design, manufacturing and recycling publication-title: Polymers – volume: 64 start-page: 755 year: 2013 end-page: 767 ident: bib0100 article-title: 3D printed tooling for vacuum-assisted resin transfer moulding publication-title: Int. J. Adv. Manuf. Technol. – volume: 193 start-page: 214 year: 2014 end-page: 227 ident: bib0495 article-title: In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery publication-title: J. Controlled Release – year: 2016 ident: bib0145 article-title: 3D-printing technologies for electrochemical applications publication-title: Chem. Soc. Rev. – volume: 234 start-page: 65 year: 2015 end-page: 71 ident: bib0210 article-title: Pneumatic microfinger with balloon fins for linear motion using 3D printed molds publication-title: Sens. Actuators A – volume: 137 start-page: 111402 year: 2015 ident: bib0345 article-title: Level set topology optimization of printed active composites publication-title: J. Mech. Des. – year: 2016 ident: bib0205 article-title: Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails publication-title: IEEE International Conference on Robotics and Automation (ICRA) – volume: 28 start-page: 457 year: 2012 end-page: 466 ident: bib0400 article-title: Automatic design and manufacture of soft robots publication-title: Rob. IEEE Trans. – volume: 96 year: 2010 ident: bib0380 article-title: Three-dimensional photovoltaics publication-title: Appl. Phys. Lett. – start-page: 6 year: 2016 ident: bib0200 article-title: 35 Hz shape memory alloy actuator with bending-twisting mode publication-title: Sci. Rep. – volume: 103 start-page: 131901 year: 2013 ident: bib0160 article-title: Active materials by four-dimension printing publication-title: Appl. Phys. Lett. – year: 2013 ident: bib0325 article-title: All inkjet-printed electroactive polymer actuators for microfluidic lab-on-chip systems publication-title: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics – volume: 11 start-page: 7953 year: 2015 end-page: 7959 ident: bib0020 article-title: Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators publication-title: Soft Matter – volume: 113 start-page: 269 year: 2001 end-page: 272 ident: bib0135 article-title: Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts publication-title: J. Mater. Process. Technol. – volume: 29 start-page: 4281 year: 2015 end-page: 4288 ident: bib0075 article-title: From 3D to 4D printing: approaches and typical applications publication-title: J. Mech. Sci. Technol. – volume: 25 start-page: 91 year: 2013 end-page: 95 ident: bib0385 article-title: Self-organized origami structures via ion-induced plastic strain publication-title: Adv. Mater. – volume: 8 start-page: 1764 year: 2012 end-page: 1769 ident: bib0025 article-title: Self-folding of polymer sheets using local light absorption publication-title: Soft Matter – volume: 7 start-page: 3277 year: 2011 end-page: 3279 ident: bib0530 article-title: Self-folding all-polymer thermoresponsive microcapsules publication-title: Soft Matter – volume: 114 start-page: 481 year: 1992 end-page: 488 ident: bib0125 article-title: 3-dimensional printing—rapid tooling and prototypes directly from a cad model publication-title: J. Eng. Ind.—Trans. Asme – volume: 16 start-page: S300 year: 2007 ident: bib0310 article-title: Folded dielectric elastomer actuators publication-title: Smart Mater. Struct. – volume: 76 start-page: 321 year: 2016 end-page: 343 ident: bib0460 article-title: Current advances and future perspectives in extrusion-based bioprinting publication-title: Biomaterials – volume: 24 start-page: 125021 year: 2015 ident: bib0275 article-title: Fused filament 3D printing of ionic polymer-metal composites (IPMCs) publication-title: Smart Mater. Struct. – volume: 110 start-page: 3038 year: 2013 end-page: 3047 ident: bib0450 article-title: Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels publication-title: Biotechnol. Bioeng. – reference: Y. Bar-Cohen, T. McKay, P. Walters, J. Rossiter, B.O’Brien, I. Anderson, 3-dimensional fabrication of soft energy harvesters, 2013, 8687: 86870J. – volume: 26 start-page: 1498 year: 2015 end-page: 1512 ident: bib0190 article-title: A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing publication-title: J. Intell. Mater. Syst. Struct. – reference: N. Kamamichi, T. Maeba, M. Yamakita, T. Mukai, Fabrication of bucky gel actuator/sensor devices based on printing method, In: Intelligent Robots and Systems, IROS 2008. IEEE/RSJ International Conference on, 2008, IEEE 2008. – year: 2014 ident: bib0090 article-title: 3D BioPrinting: Printing Parts for Bodies – volume: 4 start-page: 1157 year: 2012 end-page: 1169 ident: bib0490 article-title: Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields publication-title: Polymers – volume: 132 year: 2015 ident: bib0485 article-title: Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications publication-title: J. Appl. Polym. Sci. – volume: 60 start-page: 67 year: 2012 end-page: 83 ident: bib0350 article-title: Thermomechanical behavior of shape memory elastomeric composites publication-title: J. Mech. Phys. Solids – volume: 36 start-page: 1211 year: 2015 end-page: 1217 ident: bib0515 article-title: 4D printing with mechanically robust, thermally actuating hydrogels publication-title: Macromol Rapid Commun – volume: 12 start-page: 244 issue: 5 year: 2006 ident: 10.1016/j.sna.2016.09.028_bib0060 article-title: Freeform fabrication of ionomeric polymer-metal composite actuators publication-title: Rapid Prototyping J. doi: 10.1108/13552540610707004 – volume: 106 start-page: 191 issue: 1–3 year: 2000 ident: 10.1016/j.sna.2016.09.028_bib0095 article-title: Rapid tooling: the state of the art publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(00)00613-0 – volume: 9 start-page: 150 issue: 3 year: 2003 ident: 10.1016/j.sna.2016.09.028_bib0120 article-title: Stereo-thermal-lithography: a new principle for rapid prototyping publication-title: Rapid Prototyping J. doi: 10.1108/13552540310477454 – volume: 6 start-page: 2287 issue: 8 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0480 article-title: Advanced shape memory technology to reshape product design, manufacturing and recycling publication-title: Polymers doi: 10.3390/polym6082287 – volume: 25 start-page: 91 issue: 1 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0385 article-title: Self-organized origami structures via ion-induced plastic strain publication-title: Adv. Mater. doi: 10.1002/adma.201202549 – volume: 193 start-page: 214 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0495 article-title: In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2014.04.056 – volume: 26 start-page: 1538 issue: 19 year: 2005 ident: 10.1016/j.sna.2016.09.028_bib0030 article-title: Giant complex modulus reduction of κ‐carrageenan magnetic gels publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200500405 – volume: 6 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0070 article-title: 3D printed reversible shape changing components with stimuli responsive materials publication-title: Sci. Rep. doi: 10.1038/srep24761 – volume: 60 start-page: 67 issue: 1 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0350 article-title: Thermomechanical behavior of shape memory elastomeric composites publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.09.011 – ident: 10.1016/j.sna.2016.09.028_bib0300 doi: 10.1109/ICRA.2015.7139820 – volume: 7 start-page: 1758 issue: 3 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0010 article-title: Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507339r – volume: 6 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0360 article-title: Multi-shape active composites by 3D printing of digital shape memory polymers publication-title: Sci. Rep. – volume: 10 start-page: 103 issue: 3 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0440 article-title: 3D printing of smart materials: a review on recent progresses in 4D printing publication-title: Virtual Phys. Prototyping doi: 10.1080/17452759.2015.1097054 – ident: 10.1016/j.sna.2016.09.028_bib0185 doi: 10.1109/ICRA.2014.6907272 – year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0435 article-title: Smart hydrogels for 3D bioprinting publication-title: Int. J. Bioprint. doi: 10.18063/IJB.2015.01.005 – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0080 article-title: Application of 3D printing for smart objects with embedded electronic sensors and systems publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600013 – year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0260 article-title: Novel integrated fluid-power actuators for functional end-use components and systems via selective laser sintering Nylon 12 publication-title: 23rd Ann. Int. Solid Freeform Fabrication Symp. – volume: 137 start-page: 111402 issue: 11 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0345 article-title: Level set topology optimization of printed active composites publication-title: J. Mech. Des. doi: 10.1115/1.4030994 – volume: 19 start-page: 5891 issue: 33 year: 2009 ident: 10.1016/j.sna.2016.09.028_bib0500 article-title: Reverse thermogelling biodegradable polymer aqueous solutions publication-title: J. Mater. Chem. doi: 10.1039/b902208b – volume: 16 start-page: 2675 issue: 8 year: 2010 ident: 10.1016/j.sna.2016.09.028_bib0505 article-title: Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2009.0798 – volume: 2 start-page: 1075686 issue: 1 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0415 article-title: Self-healing composites: a review publication-title: Cogent Eng. doi: 10.1080/23311916.2015.1075686 – volume: 111 start-page: 210 issue: 1–3 year: 2001 ident: 10.1016/j.sna.2016.09.028_bib0105 article-title: The manufacturing of hard tools from metallic powders by selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)00522-2 – volume: 20 start-page: 155 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0140 article-title: 3D printed biocompatible enclosures for an implantable DBS microdevice publication-title: Procedia Technol. doi: 10.1016/j.protcy.2015.07.026 – volume: 6 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0355 article-title: Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique publication-title: Sci. Rep. – volume: 6 start-page: 29996 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0395 article-title: 3D printing variable stiffness foams using viscous thread instability publication-title: Sci. Rep. doi: 10.1038/srep29996 – volume: 132 issue: 12 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0485 article-title: Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41687 – volume: 23 start-page: 318 issue: 4 year: 2003 ident: 10.1016/j.sna.2016.09.028_bib0110 article-title: The rapid prototyping technologies publication-title: Assembly Autom. doi: 10.1108/01445150310698634 – volume: 54 issue: 15 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0420 article-title: A model to measure surgical outflow using a two-tubed experimental glaucoma drainage device publication-title: Invest. Ophthalmol. – volume: 1–4 start-page: 24 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0245 article-title: Unclonable security features for additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2014.07.001 – volume: 15 start-page: 3306 issue: 11 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0330 article-title: Inkjet printed micropump actuator based on piezoelectric polymers: device performance and morphology studies publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.09.007 – volume: 3 start-page: 188 issue: 3 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0295 article-title: A compliant surgical robotic instrument with integrated IPMC sensing and actuation publication-title: Int. J. Smart Nano Mater. doi: 10.1080/19475411.2011.650231 – volume: 42 start-page: 1509 issue: 10 year: 2011 ident: 10.1016/j.sna.2016.09.028_bib0475 article-title: Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers publication-title: Composites Part A doi: 10.1016/j.compositesa.2011.07.003 – volume: 8 start-page: 1764 issue: 6 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0025 article-title: Self-folding of polymer sheets using local light absorption publication-title: Soft Matter doi: 10.1039/C1SM06564E – volume: 10 start-page: 055003 issue: 5 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0265 article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography publication-title: Bioinspiration Biomimetics doi: 10.1088/1748-3190/10/5/055003 – volume: 24 start-page: 5541 issue: 35 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0255 article-title: Elastomeric tiles for the fabrication of inflatable structures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401339 – ident: 10.1016/j.sna.2016.09.028_bib0180 doi: 10.2352/ISSN.2169-4451.2011.27.1.art00047_1 – year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0215 article-title: Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications – year: 2008 ident: 10.1016/j.sna.2016.09.028_bib0305 article-title: An experimentally validated model of a dielectric elastomer bending actuator publication-title: The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics – year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0325 article-title: All inkjet-printed electroactive polymer actuators for microfluidic lab-on-chip systems publication-title: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics doi: 10.1117/12.2009605 – volume: 64 start-page: 755 issue: 5–8 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0100 article-title: 3D printed tooling for vacuum-assisted resin transfer moulding publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4034-2 – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0145 article-title: 3D-printing technologies for electrochemical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00714C – year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0005 – volume: 114 start-page: 481 issue: 4 year: 1992 ident: 10.1016/j.sna.2016.09.028_bib0125 article-title: 3-dimensional printing—rapid tooling and prototypes directly from a cad model publication-title: J. Eng. Ind.—Trans. Asme doi: 10.1115/1.2900701 – volume: 234 start-page: 65 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0210 article-title: Pneumatic microfinger with balloon fins for linear motion using 3D printed molds publication-title: Sens. Actuators A doi: 10.1016/j.sna.2015.08.008 – volume: 20 start-page: 3356 issue: 17 year: 2010 ident: 10.1016/j.sna.2016.09.028_bib0555 article-title: Biomedical applications of thermally activated shape memory polymers publication-title: J. Mater. Chem. doi: 10.1039/b923717h – volume: 12 start-page: 193 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0220 article-title: Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials publication-title: Procedia IUTAM doi: 10.1016/j.piutam.2014.12.021 – volume: 11 start-page: 7953 issue: 40 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0020 article-title: Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators publication-title: Soft Matter doi: 10.1039/C5SM01892G – volume: 5 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0235 article-title: Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique publication-title: Sci. Rep. – year: 2011 ident: 10.1016/j.sna.2016.09.028_bib0165 article-title: A method for creating actuated joints via fiber embedding in a Polyjet 3D printing process publication-title: Solid Freeform Fabrication Symp. Proc. – volume: 5 start-page: 13616 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0225 article-title: Sequential self-folding structures by 3D printed digital shape memory polymers publication-title: Sci. Rep. doi: 10.1038/srep13616 – volume: 20 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0065 article-title: Fabrication of electrostatic MEMS microactuator based on X-ray lithography with Pb-based X-ray mask and dry-film-transfer-to-PCB process publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-1816-x – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0205 article-title: Improving soft pneumatic actuator fingers through integration of soft sensors, position and force control, and rigid fingernails publication-title: IEEE International Conference on Robotics and Automation (ICRA) doi: 10.1109/ICRA.2016.7487707 – volume: 8 start-page: 9799 issue: 10 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0335 article-title: 3D optical printing of piezoelectric nanoparticle–polymer composite materials publication-title: ACS Nano doi: 10.1021/nn503268f – ident: 10.1016/j.sna.2016.09.028_bib0340 – volume: 110 start-page: 3038 issue: 11 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0450 article-title: Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24957 – volume: 38 start-page: 1257 issue: 10–11 year: 1998 ident: 10.1016/j.sna.2016.09.028_bib0115 article-title: A comparison of rapid prototyping technologies publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(97)00137-5 – volume: 23 start-page: 094007 issue: 9 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0375 article-title: Active origami by 4D printing publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/9/094007 – ident: 10.1016/j.sna.2016.09.028_bib0170 – volume: 9 start-page: 63 issue: 2 year: 2001 ident: 10.1016/j.sna.2016.09.028_bib0550 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. doi: 10.1023/A:1020200822435 – volume: 15 start-page: 19924 issue: 11 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0545 article-title: MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151119924 – volume: 24 start-page: 125021 issue: 12 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0275 article-title: Fused filament 3D printing of ionic polymer-metal composites (IPMCs) publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/12/125021 – volume: 61 start-page: 203 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0465 article-title: Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.05.031 – ident: 10.1016/j.sna.2016.09.028_bib0290 doi: 10.1117/12.2009919 – volume: 111 start-page: 10125 issue: 28 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0525 article-title: Three-dimensionally printed biological machines powered by skeletal muscle publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1401577111 – year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0090 – volume: 36 start-page: 1015 issue: 12 year: 2011 ident: 10.1016/j.sna.2016.09.028_bib0455 article-title: Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine publication-title: MRS Bull. doi: 10.1557/mrs.2011.272 – start-page: 1877 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0050 article-title: Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms publication-title: 18th International Conference in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) – volume: 4 start-page: 7422 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0035 article-title: Active printed materials for complex self-evolving deformations publication-title: Sci. Rep. doi: 10.1038/srep07422 – volume: 28 start-page: 457 issue: 2 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0400 article-title: Automatic design and manufacture of soft robots publication-title: Rob. IEEE Trans. doi: 10.1109/TRO.2011.2172702 – year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0270 article-title: 3D printing of shape memory polymers for flexible electronic devices publication-title: Adv. Mater. – volume: 1 start-page: 521 issue: 08 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0520 article-title: 3D/4D printing hydrogel composites: a pathway to functional devices publication-title: MRS Adv. doi: 10.1557/adv.2015.9 – volume: 29 start-page: 4281 issue: 10 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0075 article-title: From 3D to 4D printing: approaches and typical applications publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-015-0925-0 – volume: 7 issue: 1 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0470 article-title: Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-7-31 – volume: 23 start-page: 033001 issue: 3 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0315 article-title: A review of piezoelectric polymers as functional materials for electromechanical transducers publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/3/033001 – volume: 15 start-page: 5321 issue: 8 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0510 article-title: 3D printed programmable release capsules publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01688 – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0535 article-title: Biomimetic 4D printing publication-title: Nat. Mater. – volume: 9 start-page: 4118 issue: 24 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0410 article-title: Solvent-cast three-dimensional printing of multifunctional microsystems publication-title: Small doi: 10.1002/smll.201300975 – volume: 13 start-page: 148 issue: 3 year: 2007 ident: 10.1016/j.sna.2016.09.028_bib0130 article-title: 3D printing technique applied to rapid casting publication-title: Rapid Prototyping J. doi: 10.1108/13552540710750898 – volume: 96 start-page: 106 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0370 article-title: 3D printing of wood fibre biocomposites: from mechanical to actuation functionality publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.02.018 – volume: 27 start-page: 5075 issue: 34 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0405 article-title: Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201501234 – volume: 26 start-page: 6307 issue: 36 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0085 article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers publication-title: Adv. Mater doi: 10.1002/adma.201400334 – volume: 2 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0425 article-title: A perspective on 4D bioprinting publication-title: Int. J. Bioprint. doi: 10.18063/IJB.2016.01.003 – volume: 11 start-page: 2673 issue: 13 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0240 article-title: Photo-induced bending in a light-activated polymer laminated composite publication-title: Soft Matter doi: 10.1039/C4SM02592J – volume: 76 start-page: 321 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0460 article-title: Current advances and future perspectives in extrusion-based bioprinting publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.076 – volume: 4 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0015 article-title: Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting publication-title: Nat. Commun. doi: 10.1038/ncomms3257 – ident: 10.1016/j.sna.2016.09.028_bib0280 doi: 10.1109/IROS.2008.4651100 – volume: 26 start-page: 1200 issue: 8 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0055 article-title: A bioinspired soft actuated material publication-title: Adv. Mater. doi: 10.1002/adma.201304018 – volume: 113 start-page: 269 issue: 1–3 year: 2001 ident: 10.1016/j.sna.2016.09.028_bib0135 article-title: Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)00584-2 – volume: 6 start-page: 31110 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0365 article-title: Multimaterial 4D printing with tailorable shape memory polymers publication-title: Sci. Rep. doi: 10.1038/srep31110 – volume: 32 start-page: 216 issue: 3 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0390 article-title: Programmable materials for architectural assembly and automation publication-title: Assembly Automation doi: 10.1108/01445151211244348 – volume: 52 start-page: 79 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0540 article-title: 2D or not 2D: shape-programming polymer sheets publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.09.001 – volume: 26 start-page: 1498 issue: 12 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0190 article-title: A procedure for creating actuated joints via embedding shape memory alloys in PolyJet 3D printing publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14544144 – volume: 1 start-page: 260 issue: 3 year: 2009 ident: 10.1016/j.sna.2016.09.028_bib0445 article-title: Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency publication-title: Integr. Biol. doi: 10.1039/b819889f – volume: 10 start-page: 1337 issue: 9 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0040 article-title: Electro-actuated hydrogel walkers with dual responsive legs publication-title: Soft Matter doi: 10.1039/C3SM51921J – volume: 35 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0430 article-title: The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.078 – start-page: 6 year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0200 article-title: 35 Hz shape memory alloy actuator with bending-twisting mode publication-title: Sci. Rep. – volume: 52 start-page: 9409 issue: 36 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0045 article-title: Electroactive polymers: developments of and perspectives for dielectric elastomers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301918 – year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0230 article-title: 3D printing of shape memory polymer for functional part fabrication publication-title: Int. J. Adv. Manuf. Technol. – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0150 article-title: 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.01.012 – volume: 16 start-page: S300 issue: 2 year: 2007 ident: 10.1016/j.sna.2016.09.028_bib0310 article-title: Folded dielectric elastomer actuators publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/S15 – volume: 132 issue: 13 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0320 article-title: Nanostructured piezoelectric polymers publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41667 – volume: 7 start-page: 021007 issue: 2 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0195 article-title: Design and fabrication of a soft robotic hand with embedded actuators and sensors publication-title: J. Mech. Rob. doi: 10.1115/1.4029497 – volume: 33 start-page: 1503 issue: 8 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0155 article-title: Bioprinting a cardiac valve publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.07.006 – year: 2016 ident: 10.1016/j.sna.2016.09.028_bib0285 article-title: 4D printing of soft robotic facial muscles publication-title: 2016 Ann. Int. Solid Free Form Fabrication Symp. – volume: 7 start-page: 3277 issue: 7 year: 2011 ident: 10.1016/j.sna.2016.09.028_bib0530 article-title: Self-folding all-polymer thermoresponsive microcapsules publication-title: Soft Matter doi: 10.1039/c1sm05109a – volume: 4 start-page: 1157 issue: 2 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0490 article-title: Hybrid magnetic hydrogel: a potential system for controlled drug delivery by means of alternating magnetic fields publication-title: Polymers doi: 10.3390/polym4021157 – volume: 103 start-page: 131901 issue: 13 year: 2013 ident: 10.1016/j.sna.2016.09.028_bib0160 article-title: Active materials by four-dimension printing publication-title: Appl. Phys. Lett. doi: 10.1063/1.4819837 – volume: 13 start-page: 631 issue: 4 year: 2012 ident: 10.1016/j.sna.2016.09.028_bib0250 article-title: Smart soft composite: an integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-012-0081-8 – volume: 56 start-page: 1078 year: 2014 ident: 10.1016/j.sna.2016.09.028_bib0175 article-title: A review of shape memory alloy research, applications and opportunities publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.11.084 – volume: 96 issue: 7 year: 2010 ident: 10.1016/j.sna.2016.09.028_bib0380 article-title: Three-dimensional photovoltaics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3308490 – volume: 36 start-page: 1211 issue: 12 year: 2015 ident: 10.1016/j.sna.2016.09.028_bib0515 article-title: 4D printing with mechanically robust, thermally actuating hydrogels publication-title: Macromol Rapid Commun doi: 10.1002/marc.201500079 |
SSID | ssj0003377 |
Score | 2.5982482 |
SecondaryResourceType | review_article |
Snippet | •A comprehensive review of the emerging field of 3D printed soft actuators is presented.•Different methods for fabrication of the soft actuators using 3D... Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 258 |
SubjectTerms | 3-D printers 3D printing Actuators Biocompatibility Controllability Custom design Elasticity Organs Rapid prototyping Response time Sensors Smart materials Soft actuator Soft robot Strain Surgical instruments Switches Textiles Three dimensional printing |
Title | Evolution of 3D printed soft actuators |
URI | https://dx.doi.org/10.1016/j.sna.2016.09.028 https://www.proquest.com/docview/1949800646 |
Volume | 250 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYEB8RSFUmVADEihCX4kHitoVUDqApW6WY4bS0UorWhh5Ldzlzi8hDowxrIt58vl7jv7fAdwJg0VAozj0BqWhXS0FirhpiHaIiGsYiatoi1GcjjmdxMxacB1fReGwiq97q90eqmtfUvXo9ldzGbdhwhdB5wcCT_KLFpWusHOE5Lyy_evMA_GyuqL1JmWktQnm2WM17Kg1EOxLFOdUkH2v23TLy1dmp7BDmx7zhj0qmXtQiMv9mDrWybBfTjvv3kZCuYuYDcB7dchmQyWqGYDQ7dEqKzOAYwH_cfrYehLIISWXYlVaGTOmcvQ7VCpUy5yQiYmFYrLDD2PyGVxbqRBGhMpJzMrTGKiMmXZNLWp5IIdQrOYF_kRBIZjs3JosS36HDZP0dNiU2lEbK3lNmtBVL-8tj4_OJWpeNZ1INiTRrw04aUjpRGvFlx8DllUyTHWdeY1ovrHF9aovNcNa9foa_97LXWsuEqJTcnj_816Apv0REYoFm1orl5e81NkF6usU4pPBzZ6t_fD0Qf2q8rN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9BOKgH42dEUXcwHkwWNvvBeiQIGYJchIRb05U1wZhBBP37fd06osZw8Nq1Tff29nvvta-_B3DLlS0EGIa-ViTx7dGaL5iZ-WiLGNOCqKjIthjxeEKfpmxagU55F8amVTrsLzA9R2vX0nTSbC7n8-ZLgKEDTo4OP-osWtYdqFl2KlaFWrs_iEcbQCYkL8Bo-9vVtMrDzTzNa5VZ9qGQ52yntib73-bpF1Dn1qd3CAfObfTaxcqOoJJmx7D_jUzwBO66n06NvIXxyKNnt-zQn_RWiLSeshdFbGWdU5j0uuNO7LsqCL4mD2ztK55SYhKMPERkhAkM4y0VMUF5gsFHYJIwVVyhJxMIwxPNVEsFOWvZLNIRp4ycQTVbZOk5eIpiszBotDWGHTqNMNgiM65YqLWmOqlDUL681I4i3FaqeJNlLtirRHlJKy8ZCInyqsP9Zsiy4MfY1pmWEpU_PrJE_N42rFFKX7o_bCVDQUVkHSp-8b9Zb2A3Hj8P5bA_GlzCnn1ibVLIGlBdv3-kV-hsrJNrp0xfBB7Nfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+3D+printed+soft+actuators&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Zolfagharian%2C+Ali&rft.au=Kouzani%2C+Abbas+Z&rft.au=Khoo%2C+Sui+Yang&rft.au=Amiri+Moghadam%2C+Amir+Ali&rft.date=2016-10-15&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=A250&rft.spage=258&rft_id=info:doi/10.1016%2Fj.sna.2016.09.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |