Bilinear factorizations subject to monomial equality constraints via tensor decompositions
The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraint...
Saved in:
Published in | Linear algebra and its applications Vol. 621; pp. 296 - 333 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.07.2021
American Elsevier Company, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0024-3795 1873-1856 |
DOI | 10.1016/j.laa.2021.03.022 |
Cover
Loading…
Abstract | The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraints. This includes extensions of multilinear algebraic uniqueness conditions originally developed for the CPD. We obtain a deterministic uniqueness condition that admits a constructive interpretation. Computationally, we reduce the bilinear factorization problem into a CPD problem, which can be solved via a matrix EigenValue Decomposition (EVD). Under the given conditions, the discussed EVD-based algorithms are guaranteed to return the exact bilinear factorization. Finally, we make a connection between bilinear factorizations subject to monomial equality constraints and the coupled block term decomposition, which allows us to translate monomial structures into low-rank structures. |
---|---|
AbstractList | The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraints. This includes extensions of multilinear algebraic uniqueness conditions originally developed for the CPD. We obtain a deterministic uniqueness condition that admits a constructive interpretation. Computationally, we reduce the bilinear factorization problem into a CPD problem, which can be solved via a matrix EigenValue Decomposition (EVD). Under the given conditions, the discussed EVD-based algorithms are guaranteed to return the exact bilinear factorization. Finally, we make a connection between bilinear factorizations subject to monomial equality constraints and the coupled block term decomposition, which allows us to translate monomial structures into low-rank structures. |
Author | Sidiropoulos, Nicholaos D. Sørensen, Mikael De Lathauwer, Lieven |
Author_xml | – sequence: 1 givenname: Mikael orcidid: 0000-0003-4337-7417 surname: Sørensen fullname: Sørensen, Mikael email: ms8tz@virginia.edu organization: University of Virginia, Dept. of Electrical and Computer Engineering, Thornton Hall 351 McCormick Road, Charlottesville, VA 22904, USA – sequence: 2 givenname: Lieven surname: De Lathauwer fullname: De Lathauwer, Lieven email: Lieven.DeLathauwer@kuleuven.be organization: Group Science, Engineering and Technology, KU Leuven - Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium – sequence: 3 givenname: Nicholaos D. orcidid: 0000-0002-3385-7911 surname: Sidiropoulos fullname: Sidiropoulos, Nicholaos D. email: nikos@virginia.edu organization: University of Virginia, Dept. of Electrical and Computer Engineering, Thornton Hall 351 McCormick Road, Charlottesville, VA 22904, USA |
BookMark | eNp9kLtOAzEQRS0EEgnwAXSWqHfxY21vRAURLykSDTQ0luOdlbza2IntRIKvx0moKKimuWdm7pmiUx88IHRNSU0JlbdDPRpTM8JoTXhNGDtBE9oqXtFWyFM0IYQ1FVczcY6mKQ2EkEYRNkGfD250HkzEvbE5RPdtsgs-4bRdDmAzzgGvgg8rZ0YMm60ZXf7CtiRyNM7nhHfO4Aw-hYg7sGG1DskdVlyis96MCa5-5wX6eHp8n79Ui7fn1_n9orKciVwZ1s_ACtk3vTJtK7hUTbcs39iOdJIoAZyCMlz1hgFb0plgasYMpY0SSyUlv0A3x73rGDZbSFkPYRt9OamZEEK2vJG0pNQxZWNIKUKvrcuHrvsio6ZE70XqQReRei9SE66LyELSP-Q6upWJX_8yd0cGSvGdg6iTdeAtdC4Wq7oL7h_6B-Fxjx8 |
CitedBy_id | crossref_primary_10_1109_TSP_2022_3200215 |
Cites_doi | 10.1109/TSP.2004.832022 10.1109/78.852018 10.1109/TSP.2017.2690524 10.1137/040608830 10.1109/29.32276 10.1016/0024-3795(89)90009-8 10.1214/09-AOS689 10.1109/78.502327 10.1002/cem.1244 10.1137/0614071 10.1137/130916084 10.1109/JSTSP.2016.2526971 10.1109/TSP.2018.2862383 10.1007/s10231-013-0352-8 10.1016/j.laa.2016.10.019 10.1007/BF02310791 10.1109/TSP.2017.2706183 10.1137/060661569 10.1137/120877234 10.1109/TSP.2012.2225052 10.1109/TSP.2018.2835423 10.1109/TSP.2016.2614796 10.1137/140956865 10.1137/070690729 10.1137/16M1108388 10.1109/78.564198 10.1137/120877258 10.1137/140956853 10.1109/MSP.2013.2297439 10.1016/j.laa.2006.08.010 10.1109/TSP.2016.2614797 10.1016/0024-3795(77)90069-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright American Elsevier Company, Inc. Jul 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright American Elsevier Company, Inc. Jul 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.laa.2021.03.022 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 333 |
ExternalDocumentID | 10_1016_j_laa_2021_03_022 S0024379521001191 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSW T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AEXQZ AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FA8 FGOYB G-2 HZ~ MVM OHT R2- RIG SEW SSH SSZ T9H WUQ 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-a2f9ec56f4f7a8853674dbfaccd0d6075e31e7a37fa2e2b1952792a11475b7663 |
IEDL.DBID | IXB |
ISSN | 0024-3795 |
IngestDate | Fri Jul 25 07:47:28 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Wed Jul 16 16:49:14 EDT 2025 Fri Feb 23 02:45:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Canonical polyadic decomposition Tensor Coupled decomposition 15A23 Uniqueness Monomial Eigenvalue decomposition 15A15 Block term decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-a2f9ec56f4f7a8853674dbfaccd0d6075e31e7a37fa2e2b1952792a11475b7663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3385-7911 0000-0003-4337-7417 |
PQID | 2555683461 |
PQPubID | 2047554 |
PageCount | 38 |
ParticipantIDs | proquest_journals_2555683461 crossref_citationtrail_10_1016_j_laa_2021_03_022 crossref_primary_10_1016_j_laa_2021_03_022 elsevier_sciencedirect_doi_10_1016_j_laa_2021_03_022 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Elsevier Company, Inc |
Publisher_xml | – name: Elsevier Inc – name: American Elsevier Company, Inc |
References | Cichocki, Mandic, Caifa, Phan, Zhou, De Lathauwer (br0010) 2015; 32 Bapat, Raghavan (br0410) 1997 Lim, Comon (br0100) 2009; 23 Minc (br0370) 1984 Domanov, De Lathauwer (br0390) 2017; 513 Sørensen, Van Eeghem, De Lathauwer (br0150) 2017; 65 Shashua, Hazan (br0080) 2005 Bader, Harshman, Kolda (br0230) 2007 Domanov, De Lathauwer (br0340) 2014; 35 Domanov, De Lathauwer (br0260) 2016; 10 Jiang, Sidiropoulos (br0300) 2004; 52 Comon, Qi, Usevich (br0270) 2017; 1 Bapat (br0400) 1989; 126 Sørensen, Sidiropoulos, De Lathauwer (br0280) 2019 Marcus, Minc (br0360) 1961; 5 Leurgans, Ross, Abel (br0380) 1993; 14 Comon, Golub, Lim, Mourrain (br0430) 2008; 30 Sidiropoulos, Bro, Giannakis (br0060) 2000; 48 Allman, Matias, Rhodes (br0090) 2009; 37 De Lathauwer (br0290) 2008; 30 Domanov, De Lathauwer (br0320) 2013; 34 Sørensen, Domanov, De Lathauwer (br0140) 2018; 66 Kruskal (br0350) 1977; 18 Ghahramani, Griffiths (br0200) 2005 Bocci, Chiantini, Ottaviani (br0250) 2014; 193 Slawski, Hein, Lutsik (br0210) 2013 Kargas, Sidiropoulos, Fu (br0110) 2018; 66 Carroll, Chang (br0040) 1970; 35 Domanov, De Lathauwer (br0330) 2013; 34 Harshman (br0030) 1970; 16 Sørensen, De Lathauwer (br0170) 2017; 65 van der Veen, Paulraj (br0070) 1996; 44 Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos (br0020) 2017; 65 De Lathauwer (br0310) 2006; 28 Papalexakis, Sidiropolous, Bro (br0240) 2013; 61 van der Veen (br0180) 1997; 45 Sørensen, Domanov, De Lathauwer (br0130) 2015; 36 Stegeman, Sidiropoulos (br0420) 2007; 420 Roy, Kailath (br0050) 1989; 32 Sørensen, De Lathauwer (br0120) 2015; 36 Sørensen, De Lathauwer (br0160) 2017; 65 Grellier, Comon (br0190) 2000 Jaffe, Weiss, Nadler, Carmi, Kluger (br0220) 2018 Sørensen (10.1016/j.laa.2021.03.022_br0140) 2018; 66 Jaffe (10.1016/j.laa.2021.03.022_br0220) 2018 Roy (10.1016/j.laa.2021.03.022_br0050) 1989; 32 Domanov (10.1016/j.laa.2021.03.022_br0330) 2013; 34 Harshman (10.1016/j.laa.2021.03.022_br0030) 1970; 16 Kargas (10.1016/j.laa.2021.03.022_br0110) 2018; 66 Sørensen (10.1016/j.laa.2021.03.022_br0150) 2017; 65 Sørensen (10.1016/j.laa.2021.03.022_br0120) 2015; 36 Bader (10.1016/j.laa.2021.03.022_br0230) 2007 Kruskal (10.1016/j.laa.2021.03.022_br0350) 1977; 18 Domanov (10.1016/j.laa.2021.03.022_br0390) 2017; 513 Stegeman (10.1016/j.laa.2021.03.022_br0420) 2007; 420 Shashua (10.1016/j.laa.2021.03.022_br0080) 2005 Domanov (10.1016/j.laa.2021.03.022_br0320) 2013; 34 Grellier (10.1016/j.laa.2021.03.022_br0190) 2000 van der Veen (10.1016/j.laa.2021.03.022_br0070) 1996; 44 Sørensen (10.1016/j.laa.2021.03.022_br0280) 2019 Sørensen (10.1016/j.laa.2021.03.022_br0160) 2017; 65 Minc (10.1016/j.laa.2021.03.022_br0370) 1984 Carroll (10.1016/j.laa.2021.03.022_br0040) 1970; 35 Comon (10.1016/j.laa.2021.03.022_br0270) 2017; 1 Bapat (10.1016/j.laa.2021.03.022_br0410) 1997 Sørensen (10.1016/j.laa.2021.03.022_br0130) 2015; 36 Ghahramani (10.1016/j.laa.2021.03.022_br0200) 2005 Domanov (10.1016/j.laa.2021.03.022_br0260) 2016; 10 De Lathauwer (10.1016/j.laa.2021.03.022_br0290) 2008; 30 Domanov (10.1016/j.laa.2021.03.022_br0340) 2014; 35 Allman (10.1016/j.laa.2021.03.022_br0090) 2009; 37 Sørensen (10.1016/j.laa.2021.03.022_br0170) 2017; 65 Lim (10.1016/j.laa.2021.03.022_br0100) 2009; 23 Sidiropoulos (10.1016/j.laa.2021.03.022_br0060) 2000; 48 De Lathauwer (10.1016/j.laa.2021.03.022_br0310) 2006; 28 Jiang (10.1016/j.laa.2021.03.022_br0300) 2004; 52 Marcus (10.1016/j.laa.2021.03.022_br0360) 1961; 5 Comon (10.1016/j.laa.2021.03.022_br0430) 2008; 30 Papalexakis (10.1016/j.laa.2021.03.022_br0240) 2013; 61 Bocci (10.1016/j.laa.2021.03.022_br0250) 2014; 193 Leurgans (10.1016/j.laa.2021.03.022_br0380) 1993; 14 Slawski (10.1016/j.laa.2021.03.022_br0210) 2013 Sidiropoulos (10.1016/j.laa.2021.03.022_br0020) 2017; 65 van der Veen (10.1016/j.laa.2021.03.022_br0180) 1997; 45 Cichocki (10.1016/j.laa.2021.03.022_br0010) 2015; 32 Bapat (10.1016/j.laa.2021.03.022_br0400) 1989; 126 |
References_xml | – volume: 32 start-page: 984 year: 1989 end-page: 995 ident: br0050 article-title: Estimation of signal parameters via rotational invariance techniques publication-title: IEEE Trans. Acoust. Speech Signal Process. – start-page: 792 year: 2005 end-page: 799 ident: br0080 article-title: Non-negative tensor factorization with applications to statistics and computer vision publication-title: Proceedings of the 22nd International Conference on Machine Learning (ICML'05) – year: 2000 ident: br0190 article-title: Analytical blind discrete source separation publication-title: Proc. EUSIPCO – volume: 14 start-page: 1064 year: 1993 end-page: 1083 ident: br0380 article-title: A decomposition of three-way arrays publication-title: SIAM J. Matrix Anal. Appl. – year: 2005 ident: br0200 article-title: Infinite latent feature models and the Indian buffet process publication-title: Advances in Neural Information Processing Systems 18 – volume: 420 start-page: 540 year: 2007 end-page: 552 ident: br0420 article-title: On Kruskal's uniqueness condition for the CANDECOMP/PARAFAC decomposition publication-title: Linear Algebra Appl. – volume: 10 start-page: 701 year: 2016 end-page: 711 ident: br0260 article-title: Generic uniqueness of a structured matrix factorization and applications in blind source separation publication-title: IEEE J. Sel. Top. Signal Process. – year: 2007 ident: br0230 article-title: Temporal analysis of semantic graphs using ASALSAN publication-title: Proc. of the Seventh IEEE International Conference on Data Mining (ICDM 2007) – volume: 30 start-page: 1254 year: 2008 end-page: 1279 ident: br0430 article-title: Symmetric tensors and symmetric tensor rank publication-title: SIAM J. Matrix Anal. Appl. – volume: 30 start-page: 1033 year: 2008 end-page: 1066 ident: br0290 article-title: Decomposition of a higher-order tensor in block terms — Part II: definitions and uniqueness publication-title: SIAM J. Matrix Anal. Appl. – volume: 28 start-page: 642 year: 2006 end-page: 666 ident: br0310 article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. Appl. – volume: 193 start-page: 1691 year: 2014 end-page: 1702 ident: br0250 article-title: Refined methods for the identifiability of tensors publication-title: Ann. Mat. Pura Appl. – volume: 16 start-page: 1 year: 1970 end-page: 84 ident: br0030 article-title: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis publication-title: UCLA Work. Pap. Phon. – volume: 65 start-page: 4132 year: 2017 end-page: 4145 ident: br0150 article-title: Blind multichannel deconvolution and convolutive extensions of canonical polyadic and block term decompositions publication-title: IEEE Trans. Signal Process. – volume: 65 start-page: 3551 year: 2017 end-page: 3582 ident: br0020 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. – volume: 48 start-page: 2377 year: 2000 end-page: 2388 ident: br0060 article-title: Parallel factor analysis in sensor array processing publication-title: IEEE Trans. Signal Process. – volume: 44 start-page: 1136 year: 1996 end-page: 1155 ident: br0070 article-title: An analytical constant modulus algorithm publication-title: IEEE Trans. Signal Process. – volume: 45 start-page: 1078 year: 1997 end-page: 1082 ident: br0180 article-title: Analytical method for blind binary signal separation publication-title: IEEE Trans. Signal Process. – volume: 61 start-page: 493 year: 2013 end-page: 506 ident: br0240 article-title: From publication-title: IEEE Trans. Signal Process. – volume: 66 start-page: 3665 year: 2018 end-page: 3680 ident: br0140 article-title: Coupled canonical polyadic decompositions and multiple shift-invariance in array processing publication-title: IEEE Trans. Signal Process. – volume: 34 start-page: 855 year: 2013 end-page: 875 ident: br0320 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix publication-title: SIAM J. Matrix Anal. Appl. – volume: 32 start-page: 145 year: 2015 end-page: 163 ident: br0010 article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. – volume: 36 start-page: 496 year: 2015 end-page: 522 ident: br0120 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- publication-title: SIAM J. Matrix Anal. Appl. – volume: 18 start-page: 95 year: 1977 end-page: 138 ident: br0350 article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics publication-title: Linear Algebra Appl. – year: 2019 ident: br0280 article-title: Canonical polyadic decomposition of a tensor that has missing fibers: a monomial factorization approach publication-title: Proc. of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 513 start-page: 342 year: 2017 end-page: 375 ident: br0390 article-title: Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm publication-title: Linear Algebra Appl. – volume: 66 start-page: 4854 year: 2018 end-page: 4868 ident: br0110 article-title: Tensors, learning, and ‘Kolmogorov extension’ for finite-alphabet random vectors publication-title: IEEE Trans. Signal Process. – volume: 34 start-page: 876 year: 2013 end-page: 903 ident: br0330 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness publication-title: SIAM J. Matrix Anal. Appl. – volume: 65 start-page: 528 year: 2017 end-page: 539 ident: br0170 article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part II: algorithm and multirate sampling publication-title: IEEE Trans. Signal Process. – volume: 1 start-page: 388 year: 2017 end-page: 414 ident: br0270 article-title: Identifiability of an X-rank decomposition of polynomial maps publication-title: SIAM J. Appl. Algebra Geom. – volume: 23 start-page: 432 year: 2009 end-page: 441 ident: br0100 article-title: Nonnegative approximations of nonnegative tensors publication-title: J. Chemom. – volume: 37 start-page: 3099 year: 2009 end-page: 3132 ident: br0090 article-title: Identifiability of parameters in latent structure models with many observed variables publication-title: Ann. Stat. – volume: 36 start-page: 1015 year: 2015 end-page: 1045 ident: br0130 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- publication-title: SIAM J. Matrix Anal. Appl. – volume: 52 start-page: 2625 year: 2004 end-page: 2636 ident: br0300 article-title: Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear model with constant modulus constraints publication-title: IEEE Trans. Signal Process. – volume: 35 start-page: 283 year: 1970 end-page: 319 ident: br0040 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition publication-title: Psychometrika – year: 1984 ident: br0370 article-title: Permanents – year: 2018 ident: br0220 article-title: Learning binary latent variable models: a tensor eigenpair approach publication-title: Proc. of the 35th International Conference on Machine Learning – volume: 65 start-page: 517 year: 2017 end-page: 527 ident: br0160 article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part I: model and identifiability publication-title: IEEE Trans. Signal Process. – year: 2013 ident: br0210 article-title: Matrix factorization with binary components publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13) – volume: 126 start-page: 107 year: 1989 end-page: 124 ident: br0400 article-title: Mixed discriminants of positive semidefinite matrices publication-title: Linear Algebra Appl. – volume: 5 start-page: 376 year: 1961 end-page: 381 ident: br0360 article-title: On the relation between the determinant and the permanent publication-title: Ill. J. Math. – year: 1997 ident: br0410 article-title: Nonnegative Matrices and Applications – volume: 35 start-page: 636 year: 2014 end-page: 660 ident: br0340 article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 52 start-page: 2625 year: 2004 ident: 10.1016/j.laa.2021.03.022_br0300 article-title: Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear model with constant modulus constraints publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.832022 – volume: 48 start-page: 2377 year: 2000 ident: 10.1016/j.laa.2021.03.022_br0060 article-title: Parallel factor analysis in sensor array processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.852018 – volume: 65 start-page: 3551 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0020 article-title: Tensor decomposition for signal processing and machine learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2690524 – volume: 28 start-page: 642 year: 2006 ident: 10.1016/j.laa.2021.03.022_br0310 article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/040608830 – volume: 32 start-page: 984 year: 1989 ident: 10.1016/j.laa.2021.03.022_br0050 article-title: Estimation of signal parameters via rotational invariance techniques publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.32276 – volume: 126 start-page: 107 year: 1989 ident: 10.1016/j.laa.2021.03.022_br0400 article-title: Mixed discriminants of positive semidefinite matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90009-8 – year: 2000 ident: 10.1016/j.laa.2021.03.022_br0190 article-title: Analytical blind discrete source separation – volume: 16 start-page: 1 year: 1970 ident: 10.1016/j.laa.2021.03.022_br0030 article-title: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis publication-title: UCLA Work. Pap. Phon. – volume: 37 start-page: 3099 year: 2009 ident: 10.1016/j.laa.2021.03.022_br0090 article-title: Identifiability of parameters in latent structure models with many observed variables publication-title: Ann. Stat. doi: 10.1214/09-AOS689 – volume: 5 start-page: 376 year: 1961 ident: 10.1016/j.laa.2021.03.022_br0360 article-title: On the relation between the determinant and the permanent publication-title: Ill. J. Math. – year: 1984 ident: 10.1016/j.laa.2021.03.022_br0370 – volume: 44 start-page: 1136 year: 1996 ident: 10.1016/j.laa.2021.03.022_br0070 article-title: An analytical constant modulus algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.502327 – volume: 23 start-page: 432 year: 2009 ident: 10.1016/j.laa.2021.03.022_br0100 article-title: Nonnegative approximations of nonnegative tensors publication-title: J. Chemom. doi: 10.1002/cem.1244 – volume: 14 start-page: 1064 year: 1993 ident: 10.1016/j.laa.2021.03.022_br0380 article-title: A decomposition of three-way arrays publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0614071 – volume: 35 start-page: 636 year: 2014 ident: 10.1016/j.laa.2021.03.022_br0340 article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/130916084 – year: 2018 ident: 10.1016/j.laa.2021.03.022_br0220 article-title: Learning binary latent variable models: a tensor eigenpair approach – year: 2007 ident: 10.1016/j.laa.2021.03.022_br0230 article-title: Temporal analysis of semantic graphs using ASALSAN – volume: 10 start-page: 701 year: 2016 ident: 10.1016/j.laa.2021.03.022_br0260 article-title: Generic uniqueness of a structured matrix factorization and applications in blind source separation publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2016.2526971 – volume: 66 start-page: 4854 year: 2018 ident: 10.1016/j.laa.2021.03.022_br0110 article-title: Tensors, learning, and ‘Kolmogorov extension’ for finite-alphabet random vectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2862383 – volume: 193 start-page: 1691 year: 2014 ident: 10.1016/j.laa.2021.03.022_br0250 article-title: Refined methods for the identifiability of tensors publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-013-0352-8 – volume: 513 start-page: 342 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0390 article-title: Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2016.10.019 – volume: 35 start-page: 283 year: 1970 ident: 10.1016/j.laa.2021.03.022_br0040 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition publication-title: Psychometrika doi: 10.1007/BF02310791 – volume: 65 start-page: 4132 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0150 article-title: Blind multichannel deconvolution and convolutive extensions of canonical polyadic and block term decompositions publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2706183 – volume: 30 start-page: 1254 year: 2008 ident: 10.1016/j.laa.2021.03.022_br0430 article-title: Symmetric tensors and symmetric tensor rank publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/060661569 – year: 2019 ident: 10.1016/j.laa.2021.03.022_br0280 article-title: Canonical polyadic decomposition of a tensor that has missing fibers: a monomial factorization approach – volume: 34 start-page: 855 year: 2013 ident: 10.1016/j.laa.2021.03.022_br0320 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120877234 – volume: 61 start-page: 493 year: 2013 ident: 10.1016/j.laa.2021.03.022_br0240 article-title: From K-means to higher-way co-clustering: multilinear decomposition with sparse latent factors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2225052 – start-page: 792 year: 2005 ident: 10.1016/j.laa.2021.03.022_br0080 article-title: Non-negative tensor factorization with applications to statistics and computer vision – volume: 66 start-page: 3665 year: 2018 ident: 10.1016/j.laa.2021.03.022_br0140 article-title: Coupled canonical polyadic decompositions and multiple shift-invariance in array processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2835423 – volume: 65 start-page: 517 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0160 article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part I: model and identifiability publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2614796 – volume: 36 start-page: 1015 year: 2015 ident: 10.1016/j.laa.2021.03.022_br0130 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr,n,Lr,n,1) terms — Part II: algorithms publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140956865 – volume: 30 start-page: 1033 year: 2008 ident: 10.1016/j.laa.2021.03.022_br0290 article-title: Decomposition of a higher-order tensor in block terms — Part II: definitions and uniqueness publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/070690729 – volume: 1 start-page: 388 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0270 article-title: Identifiability of an X-rank decomposition of polynomial maps publication-title: SIAM J. Appl. Algebra Geom. doi: 10.1137/16M1108388 – volume: 45 start-page: 1078 year: 1997 ident: 10.1016/j.laa.2021.03.022_br0180 article-title: Analytical method for blind binary signal separation publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.564198 – year: 2013 ident: 10.1016/j.laa.2021.03.022_br0210 article-title: Matrix factorization with binary components – year: 1997 ident: 10.1016/j.laa.2021.03.022_br0410 – volume: 34 start-page: 876 year: 2013 ident: 10.1016/j.laa.2021.03.022_br0330 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120877258 – volume: 36 start-page: 496 year: 2015 ident: 10.1016/j.laa.2021.03.022_br0120 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr,n,Lr,n,1) terms — Part I: uniqueness publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140956853 – year: 2005 ident: 10.1016/j.laa.2021.03.022_br0200 article-title: Infinite latent feature models and the Indian buffet process – volume: 32 start-page: 145 year: 2015 ident: 10.1016/j.laa.2021.03.022_br0010 article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2297439 – volume: 420 start-page: 540 year: 2007 ident: 10.1016/j.laa.2021.03.022_br0420 article-title: On Kruskal's uniqueness condition for the CANDECOMP/PARAFAC decomposition publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2006.08.010 – volume: 65 start-page: 528 year: 2017 ident: 10.1016/j.laa.2021.03.022_br0170 article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part II: algorithm and multirate sampling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2614797 – volume: 18 start-page: 95 year: 1977 ident: 10.1016/j.laa.2021.03.022_br0350 article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(77)90069-6 |
SSID | ssj0004702 |
Score | 2.322141 |
Snippet | The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 296 |
SubjectTerms | Algorithms Block term decomposition Canonical polyadic decomposition Coupled decomposition Decomposition Eigenvalue decomposition Eigenvalues Equality Factorization Linear algebra Machine learning Mathematical analysis Monomial Signal processing Tensor Tensors Uniqueness |
Title | Bilinear factorizations subject to monomial equality constraints via tensor decompositions |
URI | https://dx.doi.org/10.1016/j.laa.2021.03.022 https://www.proquest.com/docview/2555683461 |
Volume | 621 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zXvQg_sQfc-TgSahrkzRpj9twTGU7KQwvIU1SmOgmWyd48W83L20VBXfw2DZJw0v63kv6fV8QuiDGcK4SHjCdw9aNpUFqEh1YSkSaRWmqPBhzNObDB3Y7iScN1K-5MACrrHx_6dO9t67udCprdl6nU-D4ejE9F3-8cBksgShLPIlv0vvmRoqwUgxnAZSu_2x6jNezAukhEnmdU0L-ik2_vLQPPYNdtFPljLhbdmsPNexsH22PvgRXlwfosTeFfFEtcHmATs2uxMtVBjstuJjjF09Bdg3Zkkn5jjUkh3BGRLHEb1OFAc0-X2BjAWheo7kO0cPg-r4_DKpjEwJNSVwEiuSp1THPWS5U4sIxF8xk7u3ahIa7FMHSyApFRa6IJW48YhARVG5hJOJMuAzkCDVn85k9Rpgo99w1lysesswYlRqmtTBZpHlsaHiCwtpgUlea4tDtZ1mDx56ks7EEG8uQSmfjE3T5VeW1FNRYV5jVoyB_zArpHP66aq16xGT1SS6lWzvFPKGMR6f_a_UMbcEVbOxGcQs1i8XKnruMpMjaaOPqI2qjze7N3XDc9hPwE0YV4jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYMnodjm2R5VXOpj9-SCeAlpksKK7sq2Cv57M22qKOjBa9NMwySdmSTffIPQMbFWCJ2KiJkSjm4cjTKbmshRIrMiyTLdgDGHI5GP2fU9v19AF10uDMAqg-1vbXpjrcOT06DN05fJBHJ8GzI9738a4jK_BVoEdirWQ4tnVzf56Cs9UsaBNJxF0KG73GxgXk8a2IdI0lCdEvKbe_phqBvvM1hDqyFsxGftyNbRgptuoJXhJ-dqtYkezicQMuo5bmvodAmWuHot4LAF1zP83GQhe0GuTaZ8xwbiQygTUVf4baIxANpnc2wdYM07QNcWGg8u7y7yKFROiAwlvI40KTNnuChZKXXqPbKQzBb-68bGVvgowdHESU1lqYkjfko48AhqvzeSvJA-CNlGvels6nYQJtq3e3GlFjErrNWZZcZIWyRGcEvjPoo7hSkTaMVh2E-qw489Kq9jBTpWMVVex3108tnlpeXU-Otl1s2C-rYwlLf5f3Xb72ZMhb-yUn77xEVKmUh2_yf1CC3ld8NbdXs1utlDy9AC57wJ30e9ev7qDnyAUheHYQF-AK-o4-E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinear+factorizations+subject+to+monomial+equality+constraints+via+tensor+decompositions&rft.jtitle=Linear+algebra+and+its+applications&rft.au=S%C3%B8rensen%2C+Mikael&rft.au=De+Lathauwer%2C+Lieven&rft.au=Sidiropoulos%2C+Nicholaos+D.&rft.date=2021-07-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=621&rft.spage=296&rft.epage=333&rft_id=info:doi/10.1016%2Fj.laa.2021.03.022&rft.externalDocID=S0024379521001191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |