Bilinear factorizations subject to monomial equality constraints via tensor decompositions

The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraint...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 621; pp. 296 - 333
Main Authors Sørensen, Mikael, De Lathauwer, Lieven, Sidiropoulos, Nicholaos D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.07.2021
American Elsevier Company, Inc
Subjects
Online AccessGet full text
ISSN0024-3795
1873-1856
DOI10.1016/j.laa.2021.03.022

Cover

Loading…
Abstract The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraints. This includes extensions of multilinear algebraic uniqueness conditions originally developed for the CPD. We obtain a deterministic uniqueness condition that admits a constructive interpretation. Computationally, we reduce the bilinear factorization problem into a CPD problem, which can be solved via a matrix EigenValue Decomposition (EVD). Under the given conditions, the discussed EVD-based algorithms are guaranteed to return the exact bilinear factorization. Finally, we make a connection between bilinear factorizations subject to monomial equality constraints and the coupled block term decomposition, which allows us to translate monomial structures into low-rank structures.
AbstractList The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine learning. In this paper we extend the CPD framework to the more general case of bilinear factorizations subject to monomial equality constraints. This includes extensions of multilinear algebraic uniqueness conditions originally developed for the CPD. We obtain a deterministic uniqueness condition that admits a constructive interpretation. Computationally, we reduce the bilinear factorization problem into a CPD problem, which can be solved via a matrix EigenValue Decomposition (EVD). Under the given conditions, the discussed EVD-based algorithms are guaranteed to return the exact bilinear factorization. Finally, we make a connection between bilinear factorizations subject to monomial equality constraints and the coupled block term decomposition, which allows us to translate monomial structures into low-rank structures.
Author Sidiropoulos, Nicholaos D.
Sørensen, Mikael
De Lathauwer, Lieven
Author_xml – sequence: 1
  givenname: Mikael
  orcidid: 0000-0003-4337-7417
  surname: Sørensen
  fullname: Sørensen, Mikael
  email: ms8tz@virginia.edu
  organization: University of Virginia, Dept. of Electrical and Computer Engineering, Thornton Hall 351 McCormick Road, Charlottesville, VA 22904, USA
– sequence: 2
  givenname: Lieven
  surname: De Lathauwer
  fullname: De Lathauwer, Lieven
  email: Lieven.DeLathauwer@kuleuven.be
  organization: Group Science, Engineering and Technology, KU Leuven - Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
– sequence: 3
  givenname: Nicholaos D.
  orcidid: 0000-0002-3385-7911
  surname: Sidiropoulos
  fullname: Sidiropoulos, Nicholaos D.
  email: nikos@virginia.edu
  organization: University of Virginia, Dept. of Electrical and Computer Engineering, Thornton Hall 351 McCormick Road, Charlottesville, VA 22904, USA
BookMark eNp9kLtOAzEQRS0EEgnwAXSWqHfxY21vRAURLykSDTQ0luOdlbza2IntRIKvx0moKKimuWdm7pmiUx88IHRNSU0JlbdDPRpTM8JoTXhNGDtBE9oqXtFWyFM0IYQ1FVczcY6mKQ2EkEYRNkGfD250HkzEvbE5RPdtsgs-4bRdDmAzzgGvgg8rZ0YMm60ZXf7CtiRyNM7nhHfO4Aw-hYg7sGG1DskdVlyis96MCa5-5wX6eHp8n79Ui7fn1_n9orKciVwZ1s_ACtk3vTJtK7hUTbcs39iOdJIoAZyCMlz1hgFb0plgasYMpY0SSyUlv0A3x73rGDZbSFkPYRt9OamZEEK2vJG0pNQxZWNIKUKvrcuHrvsio6ZE70XqQReRei9SE66LyELSP-Q6upWJX_8yd0cGSvGdg6iTdeAtdC4Wq7oL7h_6B-Fxjx8
CitedBy_id crossref_primary_10_1109_TSP_2022_3200215
Cites_doi 10.1109/TSP.2004.832022
10.1109/78.852018
10.1109/TSP.2017.2690524
10.1137/040608830
10.1109/29.32276
10.1016/0024-3795(89)90009-8
10.1214/09-AOS689
10.1109/78.502327
10.1002/cem.1244
10.1137/0614071
10.1137/130916084
10.1109/JSTSP.2016.2526971
10.1109/TSP.2018.2862383
10.1007/s10231-013-0352-8
10.1016/j.laa.2016.10.019
10.1007/BF02310791
10.1109/TSP.2017.2706183
10.1137/060661569
10.1137/120877234
10.1109/TSP.2012.2225052
10.1109/TSP.2018.2835423
10.1109/TSP.2016.2614796
10.1137/140956865
10.1137/070690729
10.1137/16M1108388
10.1109/78.564198
10.1137/120877258
10.1137/140956853
10.1109/MSP.2013.2297439
10.1016/j.laa.2006.08.010
10.1109/TSP.2016.2614797
10.1016/0024-3795(77)90069-6
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright American Elsevier Company, Inc. Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Jul 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.laa.2021.03.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 333
ExternalDocumentID 10_1016_j_laa_2021_03_022
S0024379521001191
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
RIG
SEW
SSH
SSZ
T9H
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-a2f9ec56f4f7a8853674dbfaccd0d6075e31e7a37fa2e2b1952792a11475b7663
IEDL.DBID IXB
ISSN 0024-3795
IngestDate Fri Jul 25 07:47:28 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Jul 16 16:49:14 EDT 2025
Fri Feb 23 02:45:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Canonical polyadic decomposition
Tensor
Coupled decomposition
15A23
Uniqueness
Monomial
Eigenvalue decomposition
15A15
Block term decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-a2f9ec56f4f7a8853674dbfaccd0d6075e31e7a37fa2e2b1952792a11475b7663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3385-7911
0000-0003-4337-7417
PQID 2555683461
PQPubID 2047554
PageCount 38
ParticipantIDs proquest_journals_2555683461
crossref_citationtrail_10_1016_j_laa_2021_03_022
crossref_primary_10_1016_j_laa_2021_03_022
elsevier_sciencedirect_doi_10_1016_j_laa_2021_03_022
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2021
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Cichocki, Mandic, Caifa, Phan, Zhou, De Lathauwer (br0010) 2015; 32
Bapat, Raghavan (br0410) 1997
Lim, Comon (br0100) 2009; 23
Minc (br0370) 1984
Domanov, De Lathauwer (br0390) 2017; 513
Sørensen, Van Eeghem, De Lathauwer (br0150) 2017; 65
Shashua, Hazan (br0080) 2005
Bader, Harshman, Kolda (br0230) 2007
Domanov, De Lathauwer (br0340) 2014; 35
Domanov, De Lathauwer (br0260) 2016; 10
Jiang, Sidiropoulos (br0300) 2004; 52
Comon, Qi, Usevich (br0270) 2017; 1
Bapat (br0400) 1989; 126
Sørensen, Sidiropoulos, De Lathauwer (br0280) 2019
Marcus, Minc (br0360) 1961; 5
Leurgans, Ross, Abel (br0380) 1993; 14
Comon, Golub, Lim, Mourrain (br0430) 2008; 30
Sidiropoulos, Bro, Giannakis (br0060) 2000; 48
Allman, Matias, Rhodes (br0090) 2009; 37
De Lathauwer (br0290) 2008; 30
Domanov, De Lathauwer (br0320) 2013; 34
Sørensen, Domanov, De Lathauwer (br0140) 2018; 66
Kruskal (br0350) 1977; 18
Ghahramani, Griffiths (br0200) 2005
Bocci, Chiantini, Ottaviani (br0250) 2014; 193
Slawski, Hein, Lutsik (br0210) 2013
Kargas, Sidiropoulos, Fu (br0110) 2018; 66
Carroll, Chang (br0040) 1970; 35
Domanov, De Lathauwer (br0330) 2013; 34
Harshman (br0030) 1970; 16
Sørensen, De Lathauwer (br0170) 2017; 65
van der Veen, Paulraj (br0070) 1996; 44
Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos (br0020) 2017; 65
De Lathauwer (br0310) 2006; 28
Papalexakis, Sidiropolous, Bro (br0240) 2013; 61
van der Veen (br0180) 1997; 45
Sørensen, Domanov, De Lathauwer (br0130) 2015; 36
Stegeman, Sidiropoulos (br0420) 2007; 420
Roy, Kailath (br0050) 1989; 32
Sørensen, De Lathauwer (br0120) 2015; 36
Sørensen, De Lathauwer (br0160) 2017; 65
Grellier, Comon (br0190) 2000
Jaffe, Weiss, Nadler, Carmi, Kluger (br0220) 2018
Sørensen (10.1016/j.laa.2021.03.022_br0140) 2018; 66
Jaffe (10.1016/j.laa.2021.03.022_br0220) 2018
Roy (10.1016/j.laa.2021.03.022_br0050) 1989; 32
Domanov (10.1016/j.laa.2021.03.022_br0330) 2013; 34
Harshman (10.1016/j.laa.2021.03.022_br0030) 1970; 16
Kargas (10.1016/j.laa.2021.03.022_br0110) 2018; 66
Sørensen (10.1016/j.laa.2021.03.022_br0150) 2017; 65
Sørensen (10.1016/j.laa.2021.03.022_br0120) 2015; 36
Bader (10.1016/j.laa.2021.03.022_br0230) 2007
Kruskal (10.1016/j.laa.2021.03.022_br0350) 1977; 18
Domanov (10.1016/j.laa.2021.03.022_br0390) 2017; 513
Stegeman (10.1016/j.laa.2021.03.022_br0420) 2007; 420
Shashua (10.1016/j.laa.2021.03.022_br0080) 2005
Domanov (10.1016/j.laa.2021.03.022_br0320) 2013; 34
Grellier (10.1016/j.laa.2021.03.022_br0190) 2000
van der Veen (10.1016/j.laa.2021.03.022_br0070) 1996; 44
Sørensen (10.1016/j.laa.2021.03.022_br0280) 2019
Sørensen (10.1016/j.laa.2021.03.022_br0160) 2017; 65
Minc (10.1016/j.laa.2021.03.022_br0370) 1984
Carroll (10.1016/j.laa.2021.03.022_br0040) 1970; 35
Comon (10.1016/j.laa.2021.03.022_br0270) 2017; 1
Bapat (10.1016/j.laa.2021.03.022_br0410) 1997
Sørensen (10.1016/j.laa.2021.03.022_br0130) 2015; 36
Ghahramani (10.1016/j.laa.2021.03.022_br0200) 2005
Domanov (10.1016/j.laa.2021.03.022_br0260) 2016; 10
De Lathauwer (10.1016/j.laa.2021.03.022_br0290) 2008; 30
Domanov (10.1016/j.laa.2021.03.022_br0340) 2014; 35
Allman (10.1016/j.laa.2021.03.022_br0090) 2009; 37
Sørensen (10.1016/j.laa.2021.03.022_br0170) 2017; 65
Lim (10.1016/j.laa.2021.03.022_br0100) 2009; 23
Sidiropoulos (10.1016/j.laa.2021.03.022_br0060) 2000; 48
De Lathauwer (10.1016/j.laa.2021.03.022_br0310) 2006; 28
Jiang (10.1016/j.laa.2021.03.022_br0300) 2004; 52
Marcus (10.1016/j.laa.2021.03.022_br0360) 1961; 5
Comon (10.1016/j.laa.2021.03.022_br0430) 2008; 30
Papalexakis (10.1016/j.laa.2021.03.022_br0240) 2013; 61
Bocci (10.1016/j.laa.2021.03.022_br0250) 2014; 193
Leurgans (10.1016/j.laa.2021.03.022_br0380) 1993; 14
Slawski (10.1016/j.laa.2021.03.022_br0210) 2013
Sidiropoulos (10.1016/j.laa.2021.03.022_br0020) 2017; 65
van der Veen (10.1016/j.laa.2021.03.022_br0180) 1997; 45
Cichocki (10.1016/j.laa.2021.03.022_br0010) 2015; 32
Bapat (10.1016/j.laa.2021.03.022_br0400) 1989; 126
References_xml – volume: 32
  start-page: 984
  year: 1989
  end-page: 995
  ident: br0050
  article-title: Estimation of signal parameters via rotational invariance techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– start-page: 792
  year: 2005
  end-page: 799
  ident: br0080
  article-title: Non-negative tensor factorization with applications to statistics and computer vision
  publication-title: Proceedings of the 22nd International Conference on Machine Learning (ICML'05)
– year: 2000
  ident: br0190
  article-title: Analytical blind discrete source separation
  publication-title: Proc. EUSIPCO
– volume: 14
  start-page: 1064
  year: 1993
  end-page: 1083
  ident: br0380
  article-title: A decomposition of three-way arrays
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2005
  ident: br0200
  article-title: Infinite latent feature models and the Indian buffet process
  publication-title: Advances in Neural Information Processing Systems 18
– volume: 420
  start-page: 540
  year: 2007
  end-page: 552
  ident: br0420
  article-title: On Kruskal's uniqueness condition for the CANDECOMP/PARAFAC decomposition
  publication-title: Linear Algebra Appl.
– volume: 10
  start-page: 701
  year: 2016
  end-page: 711
  ident: br0260
  article-title: Generic uniqueness of a structured matrix factorization and applications in blind source separation
  publication-title: IEEE J. Sel. Top. Signal Process.
– year: 2007
  ident: br0230
  article-title: Temporal analysis of semantic graphs using ASALSAN
  publication-title: Proc. of the Seventh IEEE International Conference on Data Mining (ICDM 2007)
– volume: 30
  start-page: 1254
  year: 2008
  end-page: 1279
  ident: br0430
  article-title: Symmetric tensors and symmetric tensor rank
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 30
  start-page: 1033
  year: 2008
  end-page: 1066
  ident: br0290
  article-title: Decomposition of a higher-order tensor in block terms — Part II: definitions and uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 28
  start-page: 642
  year: 2006
  end-page: 666
  ident: br0310
  article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 193
  start-page: 1691
  year: 2014
  end-page: 1702
  ident: br0250
  article-title: Refined methods for the identifiability of tensors
  publication-title: Ann. Mat. Pura Appl.
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  ident: br0030
  article-title: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Work. Pap. Phon.
– volume: 65
  start-page: 4132
  year: 2017
  end-page: 4145
  ident: br0150
  article-title: Blind multichannel deconvolution and convolutive extensions of canonical polyadic and block term decompositions
  publication-title: IEEE Trans. Signal Process.
– volume: 65
  start-page: 3551
  year: 2017
  end-page: 3582
  ident: br0020
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal Process.
– volume: 48
  start-page: 2377
  year: 2000
  end-page: 2388
  ident: br0060
  article-title: Parallel factor analysis in sensor array processing
  publication-title: IEEE Trans. Signal Process.
– volume: 44
  start-page: 1136
  year: 1996
  end-page: 1155
  ident: br0070
  article-title: An analytical constant modulus algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 45
  start-page: 1078
  year: 1997
  end-page: 1082
  ident: br0180
  article-title: Analytical method for blind binary signal separation
  publication-title: IEEE Trans. Signal Process.
– volume: 61
  start-page: 493
  year: 2013
  end-page: 506
  ident: br0240
  article-title: From
  publication-title: IEEE Trans. Signal Process.
– volume: 66
  start-page: 3665
  year: 2018
  end-page: 3680
  ident: br0140
  article-title: Coupled canonical polyadic decompositions and multiple shift-invariance in array processing
  publication-title: IEEE Trans. Signal Process.
– volume: 34
  start-page: 855
  year: 2013
  end-page: 875
  ident: br0320
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 32
  start-page: 145
  year: 2015
  end-page: 163
  ident: br0010
  article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 36
  start-page: 496
  year: 2015
  end-page: 522
  ident: br0120
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 18
  start-page: 95
  year: 1977
  end-page: 138
  ident: br0350
  article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
  publication-title: Linear Algebra Appl.
– year: 2019
  ident: br0280
  article-title: Canonical polyadic decomposition of a tensor that has missing fibers: a monomial factorization approach
  publication-title: Proc. of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 513
  start-page: 342
  year: 2017
  end-page: 375
  ident: br0390
  article-title: Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm
  publication-title: Linear Algebra Appl.
– volume: 66
  start-page: 4854
  year: 2018
  end-page: 4868
  ident: br0110
  article-title: Tensors, learning, and ‘Kolmogorov extension’ for finite-alphabet random vectors
  publication-title: IEEE Trans. Signal Process.
– volume: 34
  start-page: 876
  year: 2013
  end-page: 903
  ident: br0330
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 65
  start-page: 528
  year: 2017
  end-page: 539
  ident: br0170
  article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part II: algorithm and multirate sampling
  publication-title: IEEE Trans. Signal Process.
– volume: 1
  start-page: 388
  year: 2017
  end-page: 414
  ident: br0270
  article-title: Identifiability of an X-rank decomposition of polynomial maps
  publication-title: SIAM J. Appl. Algebra Geom.
– volume: 23
  start-page: 432
  year: 2009
  end-page: 441
  ident: br0100
  article-title: Nonnegative approximations of nonnegative tensors
  publication-title: J. Chemom.
– volume: 37
  start-page: 3099
  year: 2009
  end-page: 3132
  ident: br0090
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: Ann. Stat.
– volume: 36
  start-page: 1015
  year: 2015
  end-page: 1045
  ident: br0130
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 52
  start-page: 2625
  year: 2004
  end-page: 2636
  ident: br0300
  article-title: Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear model with constant modulus constraints
  publication-title: IEEE Trans. Signal Process.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: br0040
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition
  publication-title: Psychometrika
– year: 1984
  ident: br0370
  article-title: Permanents
– year: 2018
  ident: br0220
  article-title: Learning binary latent variable models: a tensor eigenpair approach
  publication-title: Proc. of the 35th International Conference on Machine Learning
– volume: 65
  start-page: 517
  year: 2017
  end-page: 527
  ident: br0160
  article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part I: model and identifiability
  publication-title: IEEE Trans. Signal Process.
– year: 2013
  ident: br0210
  article-title: Matrix factorization with binary components
  publication-title: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13)
– volume: 126
  start-page: 107
  year: 1989
  end-page: 124
  ident: br0400
  article-title: Mixed discriminants of positive semidefinite matrices
  publication-title: Linear Algebra Appl.
– volume: 5
  start-page: 376
  year: 1961
  end-page: 381
  ident: br0360
  article-title: On the relation between the determinant and the permanent
  publication-title: Ill. J. Math.
– year: 1997
  ident: br0410
  article-title: Nonnegative Matrices and Applications
– volume: 35
  start-page: 636
  year: 2014
  end-page: 660
  ident: br0340
  article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 52
  start-page: 2625
  year: 2004
  ident: 10.1016/j.laa.2021.03.022_br0300
  article-title: Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear model with constant modulus constraints
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.832022
– volume: 48
  start-page: 2377
  year: 2000
  ident: 10.1016/j.laa.2021.03.022_br0060
  article-title: Parallel factor analysis in sensor array processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.852018
– volume: 65
  start-page: 3551
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0020
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2690524
– volume: 28
  start-page: 642
  year: 2006
  ident: 10.1016/j.laa.2021.03.022_br0310
  article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040608830
– volume: 32
  start-page: 984
  year: 1989
  ident: 10.1016/j.laa.2021.03.022_br0050
  article-title: Estimation of signal parameters via rotational invariance techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.32276
– volume: 126
  start-page: 107
  year: 1989
  ident: 10.1016/j.laa.2021.03.022_br0400
  article-title: Mixed discriminants of positive semidefinite matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90009-8
– year: 2000
  ident: 10.1016/j.laa.2021.03.022_br0190
  article-title: Analytical blind discrete source separation
– volume: 16
  start-page: 1
  year: 1970
  ident: 10.1016/j.laa.2021.03.022_br0030
  article-title: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Work. Pap. Phon.
– volume: 37
  start-page: 3099
  year: 2009
  ident: 10.1016/j.laa.2021.03.022_br0090
  article-title: Identifiability of parameters in latent structure models with many observed variables
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS689
– volume: 5
  start-page: 376
  year: 1961
  ident: 10.1016/j.laa.2021.03.022_br0360
  article-title: On the relation between the determinant and the permanent
  publication-title: Ill. J. Math.
– year: 1984
  ident: 10.1016/j.laa.2021.03.022_br0370
– volume: 44
  start-page: 1136
  year: 1996
  ident: 10.1016/j.laa.2021.03.022_br0070
  article-title: An analytical constant modulus algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.502327
– volume: 23
  start-page: 432
  year: 2009
  ident: 10.1016/j.laa.2021.03.022_br0100
  article-title: Nonnegative approximations of nonnegative tensors
  publication-title: J. Chemom.
  doi: 10.1002/cem.1244
– volume: 14
  start-page: 1064
  year: 1993
  ident: 10.1016/j.laa.2021.03.022_br0380
  article-title: A decomposition of three-way arrays
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0614071
– volume: 35
  start-page: 636
  year: 2014
  ident: 10.1016/j.laa.2021.03.022_br0340
  article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/130916084
– year: 2018
  ident: 10.1016/j.laa.2021.03.022_br0220
  article-title: Learning binary latent variable models: a tensor eigenpair approach
– year: 2007
  ident: 10.1016/j.laa.2021.03.022_br0230
  article-title: Temporal analysis of semantic graphs using ASALSAN
– volume: 10
  start-page: 701
  year: 2016
  ident: 10.1016/j.laa.2021.03.022_br0260
  article-title: Generic uniqueness of a structured matrix factorization and applications in blind source separation
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2526971
– volume: 66
  start-page: 4854
  year: 2018
  ident: 10.1016/j.laa.2021.03.022_br0110
  article-title: Tensors, learning, and ‘Kolmogorov extension’ for finite-alphabet random vectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2862383
– volume: 193
  start-page: 1691
  year: 2014
  ident: 10.1016/j.laa.2021.03.022_br0250
  article-title: Refined methods for the identifiability of tensors
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-013-0352-8
– volume: 513
  start-page: 342
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0390
  article-title: Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2016.10.019
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.laa.2021.03.022_br0040
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 65
  start-page: 4132
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0150
  article-title: Blind multichannel deconvolution and convolutive extensions of canonical polyadic and block term decompositions
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2706183
– volume: 30
  start-page: 1254
  year: 2008
  ident: 10.1016/j.laa.2021.03.022_br0430
  article-title: Symmetric tensors and symmetric tensor rank
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/060661569
– year: 2019
  ident: 10.1016/j.laa.2021.03.022_br0280
  article-title: Canonical polyadic decomposition of a tensor that has missing fibers: a monomial factorization approach
– volume: 34
  start-page: 855
  year: 2013
  ident: 10.1016/j.laa.2021.03.022_br0320
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120877234
– volume: 61
  start-page: 493
  year: 2013
  ident: 10.1016/j.laa.2021.03.022_br0240
  article-title: From K-means to higher-way co-clustering: multilinear decomposition with sparse latent factors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2225052
– start-page: 792
  year: 2005
  ident: 10.1016/j.laa.2021.03.022_br0080
  article-title: Non-negative tensor factorization with applications to statistics and computer vision
– volume: 66
  start-page: 3665
  year: 2018
  ident: 10.1016/j.laa.2021.03.022_br0140
  article-title: Coupled canonical polyadic decompositions and multiple shift-invariance in array processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2835423
– volume: 65
  start-page: 517
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0160
  article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part I: model and identifiability
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2614796
– volume: 36
  start-page: 1015
  year: 2015
  ident: 10.1016/j.laa.2021.03.022_br0130
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr,n,Lr,n,1) terms — Part II: algorithms
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140956865
– volume: 30
  start-page: 1033
  year: 2008
  ident: 10.1016/j.laa.2021.03.022_br0290
  article-title: Decomposition of a higher-order tensor in block terms — Part II: definitions and uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/070690729
– volume: 1
  start-page: 388
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0270
  article-title: Identifiability of an X-rank decomposition of polynomial maps
  publication-title: SIAM J. Appl. Algebra Geom.
  doi: 10.1137/16M1108388
– volume: 45
  start-page: 1078
  year: 1997
  ident: 10.1016/j.laa.2021.03.022_br0180
  article-title: Analytical method for blind binary signal separation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.564198
– year: 2013
  ident: 10.1016/j.laa.2021.03.022_br0210
  article-title: Matrix factorization with binary components
– year: 1997
  ident: 10.1016/j.laa.2021.03.022_br0410
– volume: 34
  start-page: 876
  year: 2013
  ident: 10.1016/j.laa.2021.03.022_br0330
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120877258
– volume: 36
  start-page: 496
  year: 2015
  ident: 10.1016/j.laa.2021.03.022_br0120
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(Lr,n,Lr,n,1) terms — Part I: uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140956853
– year: 2005
  ident: 10.1016/j.laa.2021.03.022_br0200
  article-title: Infinite latent feature models and the Indian buffet process
– volume: 32
  start-page: 145
  year: 2015
  ident: 10.1016/j.laa.2021.03.022_br0010
  article-title: Tensor decompositions for signal processing applications: from two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 420
  start-page: 540
  year: 2007
  ident: 10.1016/j.laa.2021.03.022_br0420
  article-title: On Kruskal's uniqueness condition for the CANDECOMP/PARAFAC decomposition
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.08.010
– volume: 65
  start-page: 528
  year: 2017
  ident: 10.1016/j.laa.2021.03.022_br0170
  article-title: Multidimensional harmonic retrieval via coupled canonical polyadic decomposition — Part II: algorithm and multirate sampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2614797
– volume: 18
  start-page: 95
  year: 1977
  ident: 10.1016/j.laa.2021.03.022_br0350
  article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(77)90069-6
SSID ssj0004702
Score 2.322141
Snippet The Canonical Polyadic Decomposition (CPD), which decomposes a tensor into a sum of rank one terms, plays an important role in signal processing and machine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 296
SubjectTerms Algorithms
Block term decomposition
Canonical polyadic decomposition
Coupled decomposition
Decomposition
Eigenvalue decomposition
Eigenvalues
Equality
Factorization
Linear algebra
Machine learning
Mathematical analysis
Monomial
Signal processing
Tensor
Tensors
Uniqueness
Title Bilinear factorizations subject to monomial equality constraints via tensor decompositions
URI https://dx.doi.org/10.1016/j.laa.2021.03.022
https://www.proquest.com/docview/2555683461
Volume 621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zXvQg_sQfc-TgSahrkzRpj9twTGU7KQwvIU1SmOgmWyd48W83L20VBXfw2DZJw0v63kv6fV8QuiDGcK4SHjCdw9aNpUFqEh1YSkSaRWmqPBhzNObDB3Y7iScN1K-5MACrrHx_6dO9t67udCprdl6nU-D4ejE9F3-8cBksgShLPIlv0vvmRoqwUgxnAZSu_2x6jNezAukhEnmdU0L-ik2_vLQPPYNdtFPljLhbdmsPNexsH22PvgRXlwfosTeFfFEtcHmATs2uxMtVBjstuJjjF09Bdg3Zkkn5jjUkh3BGRLHEb1OFAc0-X2BjAWheo7kO0cPg-r4_DKpjEwJNSVwEiuSp1THPWS5U4sIxF8xk7u3ahIa7FMHSyApFRa6IJW48YhARVG5hJOJMuAzkCDVn85k9Rpgo99w1lysesswYlRqmtTBZpHlsaHiCwtpgUlea4tDtZ1mDx56ks7EEG8uQSmfjE3T5VeW1FNRYV5jVoyB_zArpHP66aq16xGT1SS6lWzvFPKGMR6f_a_UMbcEVbOxGcQs1i8XKnruMpMjaaOPqI2qjze7N3XDc9hPwE0YV4jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MT1mYMnodjm2R5VXOpj9-SCeAlpksKK7sq2Cv57M22qKOjBa9NMwySdmSTffIPQMbFWCJ2KiJkSjm4cjTKbmshRIrMiyTLdgDGHI5GP2fU9v19AF10uDMAqg-1vbXpjrcOT06DN05fJBHJ8GzI9738a4jK_BVoEdirWQ4tnVzf56Cs9UsaBNJxF0KG73GxgXk8a2IdI0lCdEvKbe_phqBvvM1hDqyFsxGftyNbRgptuoJXhJ-dqtYkezicQMuo5bmvodAmWuHot4LAF1zP83GQhe0GuTaZ8xwbiQygTUVf4baIxANpnc2wdYM07QNcWGg8u7y7yKFROiAwlvI40KTNnuChZKXXqPbKQzBb-68bGVvgowdHESU1lqYkjfko48AhqvzeSvJA-CNlGvels6nYQJtq3e3GlFjErrNWZZcZIWyRGcEvjPoo7hSkTaMVh2E-qw489Kq9jBTpWMVVex3108tnlpeXU-Otl1s2C-rYwlLf5f3Xb72ZMhb-yUn77xEVKmUh2_yf1CC3ld8NbdXs1utlDy9AC57wJ30e9ev7qDnyAUheHYQF-AK-o4-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinear+factorizations+subject+to+monomial+equality+constraints+via+tensor+decompositions&rft.jtitle=Linear+algebra+and+its+applications&rft.au=S%C3%B8rensen%2C+Mikael&rft.au=De+Lathauwer%2C+Lieven&rft.au=Sidiropoulos%2C+Nicholaos+D.&rft.date=2021-07-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=621&rft.spage=296&rft.epage=333&rft_id=info:doi/10.1016%2Fj.laa.2021.03.022&rft.externalDocID=S0024379521001191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon