Optimization of Capacity Configuration of Wind–Solar–Diesel–Storage Using Improved Sparrow Search Algorithm
In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the...
Saved in:
Published in | Journal of electrical engineering & technology Vol. 17; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.01.2022
대한전기학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1975-0102 2093-7423 |
DOI | 10.1007/s42835-021-00840-3 |
Cover
Loading…
Abstract | In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more efficient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization effect of multi-objective sparrow search algorithm, and the Levy flight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the effectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology. |
---|---|
AbstractList | In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more efficient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization effect of multi-objective sparrow search algorithm, and the Levy flight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the effectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology. In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more effi cient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization eff ect of multi-objective sparrow search algorithm, and the Levy fl ight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the eff ectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology KCI Citation Count: 0 |
Author | Liu, Lianxin Si, Shuqian Dou, Zhenhai Dong, Jun Wang, Zichen |
Author_xml | – sequence: 1 givenname: Jun surname: Dong fullname: Dong, Jun organization: Shandong University of Technology (SDUT) – sequence: 2 givenname: Zhenhai orcidid: 0000-0002-9739-4397 surname: Dou fullname: Dou, Zhenhai email: douzhenhai1105@126.com organization: Shandong University of Technology (SDUT), Inner Mongolia University of Science and Technology (IMUST), China Agricultural University (CAU) – sequence: 3 givenname: Shuqian surname: Si fullname: Si, Shuqian organization: Shandong University of Technology (SDUT) – sequence: 4 givenname: Zichen surname: Wang fullname: Wang, Zichen organization: Shandong University of Technology (SDUT) – sequence: 5 givenname: Lianxin surname: Liu fullname: Liu, Lianxin organization: Shandong University of Technology (SDUT) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798106$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMFO4zAQhi0EEqXLC3DKlUN2x3bSJMequ8tWQkKiRRytSWIHQ2qHcdgVnHgH3pAnwbSIwx44_dLMfDOa74jtO-80YyccvnOA4kfIRCnzFARPAcoMUrnHJgIqmRaZkPtswqsitjmIQ3YUwi3AjEMuJ-z-Yhjtxj7haL1LvEkWOGBjx8dk4Z2x3QN9dq6ta1-fX1a-R4r50-qg-_fC6Ak7nVwF67pkuRnI_9VtshqQyP9LVhqpuUnmfefJjjebb-zAYB_08UdO2fr3r_XiT3p-cbZczM_TRop8TKum5UK3eQm1KEoDHFFnWM2yuuYaJTdZHR-oBZi6bgpsZ0IbKOsCZiZHruWUne7WOjLqrrHKo91m59UdqfnleqmqCooy-pkysZttyIdA2qiB7AbpUXFQ737Vzq-KftXWr5IRKv-DoratrJHQ9l-jcoeGeMd1mtStfyAXbXxFvQE-NZao |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3461155 crossref_primary_10_4018_IJSIR_315636 crossref_primary_10_1007_s10586_023_04200_w crossref_primary_10_3390_met15020105 crossref_primary_10_1088_2631_8695_adaca6 crossref_primary_10_1007_s42835_022_01155_7 crossref_primary_10_1007_s42835_023_01574_0 crossref_primary_10_1016_j_est_2024_111989 crossref_primary_10_1002_tee_23819 crossref_primary_10_1051_ijmqe_2024012 crossref_primary_10_1007_s10825_023_02067_z crossref_primary_10_3390_en17092001 crossref_primary_10_3390_pr11010169 crossref_primary_10_3390_en15145174 crossref_primary_10_1007_s00202_023_02055_3 crossref_primary_10_3390_ijerph191912509 crossref_primary_10_37391_ijeer_120231 crossref_primary_10_1142_S021951942540010X crossref_primary_10_3390_electronics11203404 crossref_primary_10_1155_2024_2361858 crossref_primary_10_3389_fenrg_2024_1336205 crossref_primary_10_1016_j_ipm_2024_104038 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1007_s00500_023_09508_8 crossref_primary_10_1063_5_0198446 crossref_primary_10_1016_j_energy_2022_126283 crossref_primary_10_3389_fenrg_2023_1217279 crossref_primary_10_1007_s40032_024_01155_8 crossref_primary_10_3390_math10091367 crossref_primary_10_1016_j_apenergy_2023_121623 crossref_primary_10_3390_en18061320 crossref_primary_10_3390_jmse12071049 crossref_primary_10_1007_s11831_023_09887_z crossref_primary_10_3390_en15124408 crossref_primary_10_1088_2631_8695_adb37a crossref_primary_10_1109_ACCESS_2024_3372851 crossref_primary_10_3233_JIFS_213387 crossref_primary_10_3390_en16196787 crossref_primary_10_1016_j_est_2025_115534 crossref_primary_10_1177_0958305X241241029 crossref_primary_10_3390_machines10090729 crossref_primary_10_1007_s10462_023_10435_1 crossref_primary_10_1109_ACCESS_2022_3182241 crossref_primary_10_3934_mbe_2023767 crossref_primary_10_1080_15376494_2024_2361859 crossref_primary_10_1016_j_knosys_2022_108626 crossref_primary_10_1038_s41598_023_33615_z crossref_primary_10_3389_fpls_2024_1354290 crossref_primary_10_3390_biomimetics9100647 crossref_primary_10_3390_membranes12070691 crossref_primary_10_1177_0309524X241257429 crossref_primary_10_1080_00207721_2023_2293687 crossref_primary_10_1109_ACCESS_2023_3343103 crossref_primary_10_1088_1742_6596_2549_1_012030 crossref_primary_10_3390_electronics13224553 crossref_primary_10_1155_2023_5299919 crossref_primary_10_3390_app12147332 |
Cites_doi | 10.1109/TSTE.2013.2288804 10.1080/21642583.2019.1708830 10.1007/s42835-020-00345-5 10.1002/dac.4617 10.13451/j.sxu.ns.2020135 10.1016/j.ijepes.2015.11.085 10.13700/j.bh.1001-5965.2020.0298 10.1016/j.enconman.2020.112465 10.1016/j.energy.2016.09.104 10.1016/j.egyr.2020.11.102 10.1109/TIE.2011.2159692 10.3390/app9245446 10.1002/tee.23001 10.1016/J.EPSR.2020.106638 10.1109/TPWRS.2012.2237043 10.1109/TSTE.2017.2762364 10.1007/s00202-016-0475-1 10.1007/s00202-018-0726-4 10.1049/iet-gtd.2020.0625 |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical Engineers 2021 |
Copyright_xml | – notice: The Korean Institute of Electrical Engineers 2021 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42835-021-00840-3 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-7423 |
EndPage | 14 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9907842 10_1007_s42835_021_00840_3 |
GrantInformation_xml | – fundername: the National Key R & D Program of China grantid: No. 2017YFB092800 – fundername: Key Technology Research and Development Program of Shandong (CN) grantid: No. 2019ZBXC498 |
GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD FRJ GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC Z7R Z7S Z7X Z88 |
ID | FETCH-LOGICAL-c325t-9cd12ed580b278f01aae4a964bb1ea31f4b053b20fbbc7ad62ef08b706f5a1e3 |
ISSN | 1975-0102 |
IngestDate | Tue Nov 21 21:47:40 EST 2023 Thu Apr 24 23:07:46 EDT 2025 Tue Jul 01 00:40:52 EDT 2025 Fri Feb 21 02:46:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Sparrow search algorithm Capacity configuration Niche optimization technology |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-9cd12ed580b278f01aae4a964bb1ea31f4b053b20fbbc7ad62ef08b706f5a1e3 |
ORCID | 0000-0002-9739-4397 |
PageCount | 14 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9907842 crossref_primary_10_1007_s42835_021_00840_3 crossref_citationtrail_10_1007_s42835_021_00840_3 springer_journals_10_1007_s42835_021_00840_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 2022-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of electrical engineering & technology |
PublicationTitleAbbrev | J. Electr. Eng. Technol |
PublicationYear | 2022 |
Publisher | Springer Singapore 대한전기학회 |
Publisher_xml | – name: Springer Singapore – name: 대한전기학회 |
References | Yu W, Wang W, Ma X, Zhang Z, Wu X (2018) Optimization design of hybrid wind-PV system based on improved genetic algorithm. Res Explor Lab 37(1):125–129+185 Xin L, Xiaodong M, Jun Z, Zhen W (2021) Chaos sparrow search optimization algorithm. J Beijing Univ Aeronaut Astronaut 1–10 [2020-09-05]. https://doi.org/10.13700/j.bh.1001-5965.2020.0298 Georgilakis PS, Hatziargyriou ND (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428. https://doi.org/10.1109/TPWRS.2012.2237043 EssamMAtwaYMEl-SaadanyEFContiSRizzoSAMicro-grids reliability enhancement under different penetration levels of hybrid DG unitsJ Electr Eng Technol201813414071418 ElazimSMAAliESOptimal locations and sizing of capacitors in radial distribution systems using mine blast algorithmElectr Eng201810011910.1007/s00202-016-0475-1 Andi T, Tong H, Dengwu X, Lei X (2021) Path planning method of unmanned aerial vehicle based onchaos sparrow search algorithm[J/OL]. J Comput Appl 1–11 [2021-07-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html El-HanaBHRSharjeelJMAbubakarSYShoaibSMMuhammadRMAYaqoubLDecomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertaintyEnergy Rep20217526910.1016/j.egyr.2020.11.102 Li Y, Wang G, Ma J, Yang H, Zhu L, Yan H (2020) Study on optimal capacity in the construction of wind-solar-diesel-battery hybrid power system based on bettle antennae search algorithm improved genetic algorithm. Energy Storage Sci Technol 9(3):918–926 WeiYBai-yueYXiao-yaWChen-peiMYing-yingWResearch on inventory-distribution optimization of cold chainlogistics enterprises in low-carbon environmentPackaging Eng202142114552 DingMWangBZhaoBChenZConfiguration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgridPower Syst Technol20133703575581 AliESElazimSMAAbdelazizAYAnt lion optimization algorithm for renewable distributed generationsEnergy201611644545810.1016/j.energy.2016.09.104 Xie X, Zhang W, Yang Z (2002) A dissipative particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation, pp 1456–1461 GeWTengJPanCWangSGaoKOperation regulation strategy of source-storage-load with wind energy storage energyPower Syst Protect Control2019471361006105 ZhangJLeiYLiuNXiaoRCapacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desalination loadTrans China Electrotech Soc2014292102112 Qinghua M, Qiang Z, Chengcheng M, Jiaxuan B (2021) Mixing sine and cosine algorithm with Lévy flying chaotic sparrow algorithm[J/OL]. J Shanxi Univ (Nat Sci Ed):1–6 [2021-07-06]. https://doi.org/10.13451/j.sxu.ns.2020135 LiuWXuYRandomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generationIET Gener Transm Distrib202014245909591710.1049/iet-gtd.2020.0625 CaiZGeYLiYMaSOptimal placement and schedule of hybrid energy management system in microgridElectric Mach Control20172154250 Tang Y, Fang G, Tan Q, Wen X, Lei X, Ding Z (2020) Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity. Energy Convers Manag 206:112465 Sa’Ed JA, Amer M, Bodair A, Baransi A, Zizzo G (2019) A simplified analytical approach for optimal planning of distributed generation in electrical distribution networks. Appl Sci 9(24):5446 Wei-yan Z, Yun-hui F, Hua-feng J, Jia-qi L, Pei-li L, Jian-ye C et al (2016) A research review of locating and sizing distributed generation. J Nanjing Inst Technol (Nat Sci Ed) 14(03):45–51 Zheng Y, Zhao J, Song Y, Luo F, Meng K, Qiu J et al (2018) Optimal operation of battery energy storage system considering distribution system uncertainty. IEEE Trans Sustain Energy 9(3):1051–1060 ShengSChenYZhangJResearch on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic systemPower Syst Prot Control201846112329 Abd ElazimSMAliESOptimal network restructure via improved whale optimization approachInt J Commun Syst202010.1002/dac.4617 Ali ES, Elazim SMA, Abdelaziz AY (2016) Improved Harmony Algorithm and Power Loss Index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. https://doi.org/10.1016/j.ijepes.2015.11.085 XueJBoSA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng2020812234405298010.1080/21642583.2019.1708830 Zeyu W, Jun X, Gang X, Xinying X (2021) Multi-objective sparrow search algorithm based on new crowding distance[J/OL]. Comput Eng Appl 1–10 [2021-07-06]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210311.1136.008.html Al-ShetwiAQSujodMZModeling and design of photovoltaic power plant connected to the MV side of Malaysian grid with TNB technical regulation compatibilityElectr Eng201810042407241910.1007/s00202-018-0726-4 BoLYanZNaYImproved particle swarm optimization method and its application in the siting and sizing of distributed generation planningTrans China Electrotech Soc20082103108 Hirose T, Matsuo H (2012) Standalone hybrid wind-solar power generation system applying dump power control without dump load. IEEE Trans Ind Electron 59(2):988–997 Mohammadjafari M, Ebrahimi R, Darabad VP (2020) Optimal Energy management of a microgrid incorporating a novel efficient demand response and battery storage system. J Electr Eng Technol 15(3):571–590 MattiKKonstantinosPRodrigoHEENeilDPoulSApplication of microscale wind and detailed wind power plantdata in large-scale wind generation simulationsElectric PowerSyst Res202119010.1016/J.EPSR.2020.106638 ZhouTWeiSOptimization of battery-supercapacitor hybrid energy storage station in wind/solar generation systemIEEE Trans Sustain Energy20145240841510.1109/TSTE.2013.2288804 Zia U, Shaorong W, Jordan R (2019) A novel method based on PPSO for optimal placement and sizing of distributed generation. IEEJ Trans Electr Electron Eng 14(12):1754–1763 SM Abd Elazim (840_CR12) 2020 J Zhang (840_CR17) 2014; 29 K Matti (840_CR24) 2021; 190 BHR El-Hana (840_CR30) 2021; 7 840_CR19 T Zhou (840_CR15) 2014; 5 M Ding (840_CR29) 2013; 37 840_CR20 Y Wei (840_CR23) 2021; 42 M Essam (840_CR11) 2018; 13 840_CR21 840_CR22 SMA Elazim (840_CR13) 2018; 100 AQ Al-Shetwi (840_CR31) 2018; 100 L Bo (840_CR27) 2008; 2 J Xue (840_CR28) 2020; 8 840_CR26 S Sheng (840_CR33) 2018; 46 Z Cai (840_CR14) 2017; 21 W Ge (840_CR18) 2019; 47 840_CR3 840_CR2 840_CR10 840_CR32 840_CR5 840_CR4 840_CR7 840_CR6 840_CR9 W Liu (840_CR25) 2020; 14 840_CR8 ES Ali (840_CR16) 2016; 116 840_CR1 |
References_xml | – reference: WeiYBai-yueYXiao-yaWChen-peiMYing-yingWResearch on inventory-distribution optimization of cold chainlogistics enterprises in low-carbon environmentPackaging Eng202142114552 – reference: Al-ShetwiAQSujodMZModeling and design of photovoltaic power plant connected to the MV side of Malaysian grid with TNB technical regulation compatibilityElectr Eng201810042407241910.1007/s00202-018-0726-4 – reference: EssamMAtwaYMEl-SaadanyEFContiSRizzoSAMicro-grids reliability enhancement under different penetration levels of hybrid DG unitsJ Electr Eng Technol201813414071418 – reference: ZhangJLeiYLiuNXiaoRCapacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desalination loadTrans China Electrotech Soc2014292102112 – reference: ShengSChenYZhangJResearch on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic systemPower Syst Prot Control201846112329 – reference: Yu W, Wang W, Ma X, Zhang Z, Wu X (2018) Optimization design of hybrid wind-PV system based on improved genetic algorithm. Res Explor Lab 37(1):125–129+185 – reference: ElazimSMAAliESOptimal locations and sizing of capacitors in radial distribution systems using mine blast algorithmElectr Eng201810011910.1007/s00202-016-0475-1 – reference: Xin L, Xiaodong M, Jun Z, Zhen W (2021) Chaos sparrow search optimization algorithm. J Beijing Univ Aeronaut Astronaut 1–10 [2020-09-05]. https://doi.org/10.13700/j.bh.1001-5965.2020.0298 – reference: XueJBoSA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng2020812234405298010.1080/21642583.2019.1708830 – reference: CaiZGeYLiYMaSOptimal placement and schedule of hybrid energy management system in microgridElectric Mach Control20172154250 – reference: Hirose T, Matsuo H (2012) Standalone hybrid wind-solar power generation system applying dump power control without dump load. IEEE Trans Ind Electron 59(2):988–997 – reference: LiuWXuYRandomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generationIET Gener Transm Distrib202014245909591710.1049/iet-gtd.2020.0625 – reference: Xie X, Zhang W, Yang Z (2002) A dissipative particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation, pp 1456–1461 – reference: DingMWangBZhaoBChenZConfiguration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgridPower Syst Technol20133703575581 – reference: AliESElazimSMAAbdelazizAYAnt lion optimization algorithm for renewable distributed generationsEnergy201611644545810.1016/j.energy.2016.09.104 – reference: Qinghua M, Qiang Z, Chengcheng M, Jiaxuan B (2021) Mixing sine and cosine algorithm with Lévy flying chaotic sparrow algorithm[J/OL]. J Shanxi Univ (Nat Sci Ed):1–6 [2021-07-06]. https://doi.org/10.13451/j.sxu.ns.2020135 – reference: Zeyu W, Jun X, Gang X, Xinying X (2021) Multi-objective sparrow search algorithm based on new crowding distance[J/OL]. Comput Eng Appl 1–10 [2021-07-06]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210311.1136.008.html – reference: Georgilakis PS, Hatziargyriou ND (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428. https://doi.org/10.1109/TPWRS.2012.2237043 – reference: Zheng Y, Zhao J, Song Y, Luo F, Meng K, Qiu J et al (2018) Optimal operation of battery energy storage system considering distribution system uncertainty. IEEE Trans Sustain Energy 9(3):1051–1060 – reference: Ali ES, Elazim SMA, Abdelaziz AY (2016) Improved Harmony Algorithm and Power Loss Index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. https://doi.org/10.1016/j.ijepes.2015.11.085 – reference: El-HanaBHRSharjeelJMAbubakarSYShoaibSMMuhammadRMAYaqoubLDecomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertaintyEnergy Rep20217526910.1016/j.egyr.2020.11.102 – reference: Sa’Ed JA, Amer M, Bodair A, Baransi A, Zizzo G (2019) A simplified analytical approach for optimal planning of distributed generation in electrical distribution networks. Appl Sci 9(24):5446 – reference: BoLYanZNaYImproved particle swarm optimization method and its application in the siting and sizing of distributed generation planningTrans China Electrotech Soc20082103108 – reference: Abd ElazimSMAliESOptimal network restructure via improved whale optimization approachInt J Commun Syst202010.1002/dac.4617 – reference: GeWTengJPanCWangSGaoKOperation regulation strategy of source-storage-load with wind energy storage energyPower Syst Protect Control2019471361006105 – reference: Wei-yan Z, Yun-hui F, Hua-feng J, Jia-qi L, Pei-li L, Jian-ye C et al (2016) A research review of locating and sizing distributed generation. J Nanjing Inst Technol (Nat Sci Ed) 14(03):45–51 – reference: Li Y, Wang G, Ma J, Yang H, Zhu L, Yan H (2020) Study on optimal capacity in the construction of wind-solar-diesel-battery hybrid power system based on bettle antennae search algorithm improved genetic algorithm. Energy Storage Sci Technol 9(3):918–926 – reference: Andi T, Tong H, Dengwu X, Lei X (2021) Path planning method of unmanned aerial vehicle based onchaos sparrow search algorithm[J/OL]. J Comput Appl 1–11 [2021-07-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html – reference: Zia U, Shaorong W, Jordan R (2019) A novel method based on PPSO for optimal placement and sizing of distributed generation. IEEJ Trans Electr Electron Eng 14(12):1754–1763 – reference: Tang Y, Fang G, Tan Q, Wen X, Lei X, Ding Z (2020) Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity. Energy Convers Manag 206:112465 – reference: MattiKKonstantinosPRodrigoHEENeilDPoulSApplication of microscale wind and detailed wind power plantdata in large-scale wind generation simulationsElectric PowerSyst Res202119010.1016/J.EPSR.2020.106638 – reference: Mohammadjafari M, Ebrahimi R, Darabad VP (2020) Optimal Energy management of a microgrid incorporating a novel efficient demand response and battery storage system. J Electr Eng Technol 15(3):571–590 – reference: ZhouTWeiSOptimization of battery-supercapacitor hybrid energy storage station in wind/solar generation systemIEEE Trans Sustain Energy20145240841510.1109/TSTE.2013.2288804 – volume: 46 start-page: 23 issue: 11 year: 2018 ident: 840_CR33 publication-title: Power Syst Prot Control – volume: 5 start-page: 408 issue: 2 year: 2014 ident: 840_CR15 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2013.2288804 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 840_CR28 publication-title: Syst Sci Control Eng doi: 10.1080/21642583.2019.1708830 – volume: 47 start-page: 6100 issue: 13 year: 2019 ident: 840_CR18 publication-title: Power Syst Protect Control – ident: 840_CR6 doi: 10.1007/s42835-020-00345-5 – year: 2020 ident: 840_CR12 publication-title: Int J Commun Syst doi: 10.1002/dac.4617 – ident: 840_CR3 – ident: 840_CR19 doi: 10.13451/j.sxu.ns.2020135 – ident: 840_CR5 – ident: 840_CR10 doi: 10.1016/j.ijepes.2015.11.085 – ident: 840_CR21 – ident: 840_CR22 doi: 10.13700/j.bh.1001-5965.2020.0298 – ident: 840_CR7 doi: 10.1016/j.enconman.2020.112465 – volume: 116 start-page: 445 year: 2016 ident: 840_CR16 publication-title: Energy doi: 10.1016/j.energy.2016.09.104 – volume: 7 start-page: 52 year: 2021 ident: 840_CR30 publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.102 – ident: 840_CR8 doi: 10.1109/TIE.2011.2159692 – ident: 840_CR4 doi: 10.3390/app9245446 – volume: 42 start-page: 45 issue: 11 year: 2021 ident: 840_CR23 publication-title: Packaging Eng – ident: 840_CR2 doi: 10.1002/tee.23001 – ident: 840_CR32 – volume: 29 start-page: 102 issue: 2 year: 2014 ident: 840_CR17 publication-title: Trans China Electrotech Soc – ident: 840_CR26 – volume: 190 year: 2021 ident: 840_CR24 publication-title: Electric PowerSyst Res doi: 10.1016/J.EPSR.2020.106638 – ident: 840_CR1 doi: 10.1109/TPWRS.2012.2237043 – ident: 840_CR9 doi: 10.1109/TSTE.2017.2762364 – volume: 13 start-page: 1407 issue: 4 year: 2018 ident: 840_CR11 publication-title: J Electr Eng Technol – volume: 2 start-page: 103 year: 2008 ident: 840_CR27 publication-title: Trans China Electrotech Soc – volume: 37 start-page: 575 issue: 03 year: 2013 ident: 840_CR29 publication-title: Power Syst Technol – volume: 21 start-page: 42 issue: 5 year: 2017 ident: 840_CR14 publication-title: Electric Mach Control – ident: 840_CR20 – volume: 100 start-page: 1 issue: 1 year: 2018 ident: 840_CR13 publication-title: Electr Eng doi: 10.1007/s00202-016-0475-1 – volume: 100 start-page: 2407 issue: 4 year: 2018 ident: 840_CR31 publication-title: Electr Eng doi: 10.1007/s00202-018-0726-4 – volume: 14 start-page: 5909 issue: 24 year: 2020 ident: 840_CR25 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2020.0625 |
SSID | ssj0061053 |
Score | 2.4920807 |
Snippet | In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학 |
Title | Optimization of Capacity Configuration of Wind–Solar–Diesel–Storage Using Improved Sparrow Search Algorithm |
URI | https://link.springer.com/article/10.1007/s42835-021-00840-3 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798106 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Electrical Engineering & Technology, 2022, 17(1), , pp.1-14 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENak6QUODM-h5TEahlswY8sP2ceU0inMUA4N0w4XjaTISaap07r2hRP_gV_EX-GXsHrYcTDtUC52LMUaRftF2l19u0LotZ9JkWkqDs-k70W5kJ6YZtSjgUwUSaiMpXbofzpKDr9EH0_j08HgZ4e1VFfirfz217iS_5EqlIFcdZTsLSTbNgoF8BnkC1eQMFz_Scaf4f9-7gIpbaAVWMBardZxfItZXbY1J2B6N7yG8Fibs-3Tvs4TsVxXghGueTyOS2B8DlopvTDZGkeWnjwaL2erclHNz69Rbu3pOgYAap3x0OCs6jnz9xtacF2si2qzbTJXxZwvWjeQoR4cz-vLDqhPnMf7qya1Fl0vBiEdL4adeDOqSYS-nZmVKSN-Fnp6J3ljtqY9VNqpN-is4TYutbc6WELIlckx52luij5NAJah9VrY7P__sUS2xMU2ybNpg0EbzLTBwi20TcBSIUO0PT7Y2ztq1AFQT00q1PYHusgtE7_Z68mGdrRVlHlvg97oPZP76J6TKR5b9D1AA1U8RHc7aSwfocsuDvEqxw0O8QYOdY3G4a_vPwwC4W6xpwss6rBBHW5Qhx3qsEUdblH3GE0O3k_eHXruKA9PhiSuvExOA6KmceoLQtPcDzhXEc-SSIhA8TDIIwHDJIifCyEpnyZE5X4qqJ_kMQ9U-AQNi1WhniIMb6hc0RhajKJpSnkS8zyEYYS5SIExsoOCZgSZdGnu9WkrS3a97HbQqH3nwiZ5ufHbr0Aw7EwumM7Nru-zFTsrGVigHxhodzSNoBtvGrkxN2Nc3dDm7q168AzdAb09MozF5DkaVmWtXoBuXImXDn2_AYfttvc |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Capacity+Configuration+of+Wind%E2%80%93Solar%E2%80%93Diesel%E2%80%93Storage+Using+Improved+Sparrow+Search+Algorithm&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Dong%2C+Jun&rft.au=Dou%2C+Zhenhai&rft.au=Si%2C+Shuqian&rft.au=Wang%2C+Zichen&rft.date=2022-01-01&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1007%2Fs42835-021-00840-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42835_021_00840_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |