Optimization of Capacity Configuration of Wind–Solar–Diesel–Storage Using Improved Sparrow Search Algorithm

In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 17; no. 1; pp. 1 - 14
Main Authors Dong, Jun, Dou, Zhenhai, Si, Shuqian, Wang, Zichen, Liu, Lianxin
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.01.2022
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-021-00840-3

Cover

Loading…
Abstract In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more efficient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization effect of multi-objective sparrow search algorithm, and the Levy flight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the effectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology.
AbstractList In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more efficient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization effect of multi-objective sparrow search algorithm, and the Levy flight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the effectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology.
In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a multi-objective optimization model with investment cost, environmental protection and power supply quality as indicators has been established, and the multi-objective sparrow search algorithm is used to optimize the solution. Although the multi-objective search algorithm is more effi cient than the traditional single objective algorithm, it is easy to fall into local optimum. To this end, the niche optimization technology is used to improve the optimization eff ect of multi-objective sparrow search algorithm, and the Levy fl ight strategy is introduced to enhance the ability of multi-objective sparrow search algorithm to jump out of local optimum. The calculation example uses the traditional multi-object search algorithm and the niche multi-objective sparrow search algorithm with levy disturbance to solve the proposed model. The simulation results verify the eff ectiveness of the multi-objective sparrow search algorithm improved by levy disturbance and niche optimization technology KCI Citation Count: 0
Author Liu, Lianxin
Si, Shuqian
Dou, Zhenhai
Dong, Jun
Wang, Zichen
Author_xml – sequence: 1
  givenname: Jun
  surname: Dong
  fullname: Dong, Jun
  organization: Shandong University of Technology (SDUT)
– sequence: 2
  givenname: Zhenhai
  orcidid: 0000-0002-9739-4397
  surname: Dou
  fullname: Dou, Zhenhai
  email: douzhenhai1105@126.com
  organization: Shandong University of Technology (SDUT), Inner Mongolia University of Science and Technology (IMUST), China Agricultural University (CAU)
– sequence: 3
  givenname: Shuqian
  surname: Si
  fullname: Si, Shuqian
  organization: Shandong University of Technology (SDUT)
– sequence: 4
  givenname: Zichen
  surname: Wang
  fullname: Wang, Zichen
  organization: Shandong University of Technology (SDUT)
– sequence: 5
  givenname: Lianxin
  surname: Liu
  fullname: Liu, Lianxin
  organization: Shandong University of Technology (SDUT)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798106$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMFO4zAQhi0EEqXLC3DKlUN2x3bSJMequ8tWQkKiRRytSWIHQ2qHcdgVnHgH3pAnwbSIwx44_dLMfDOa74jtO-80YyccvnOA4kfIRCnzFARPAcoMUrnHJgIqmRaZkPtswqsitjmIQ3YUwi3AjEMuJ-z-Yhjtxj7haL1LvEkWOGBjx8dk4Z2x3QN9dq6ta1-fX1a-R4r50-qg-_fC6Ak7nVwF67pkuRnI_9VtshqQyP9LVhqpuUnmfefJjjebb-zAYB_08UdO2fr3r_XiT3p-cbZczM_TRop8TKum5UK3eQm1KEoDHFFnWM2yuuYaJTdZHR-oBZi6bgpsZ0IbKOsCZiZHruWUne7WOjLqrrHKo91m59UdqfnleqmqCooy-pkysZttyIdA2qiB7AbpUXFQ737Vzq-KftXWr5IRKv-DoratrJHQ9l-jcoeGeMd1mtStfyAXbXxFvQE-NZao
CitedBy_id crossref_primary_10_1109_JSEN_2024_3461155
crossref_primary_10_4018_IJSIR_315636
crossref_primary_10_1007_s10586_023_04200_w
crossref_primary_10_3390_met15020105
crossref_primary_10_1088_2631_8695_adaca6
crossref_primary_10_1007_s42835_022_01155_7
crossref_primary_10_1007_s42835_023_01574_0
crossref_primary_10_1016_j_est_2024_111989
crossref_primary_10_1002_tee_23819
crossref_primary_10_1051_ijmqe_2024012
crossref_primary_10_1007_s10825_023_02067_z
crossref_primary_10_3390_en17092001
crossref_primary_10_3390_pr11010169
crossref_primary_10_3390_en15145174
crossref_primary_10_1007_s00202_023_02055_3
crossref_primary_10_3390_ijerph191912509
crossref_primary_10_37391_ijeer_120231
crossref_primary_10_1142_S021951942540010X
crossref_primary_10_3390_electronics11203404
crossref_primary_10_1155_2024_2361858
crossref_primary_10_3389_fenrg_2024_1336205
crossref_primary_10_1016_j_ipm_2024_104038
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_1007_s00500_023_09508_8
crossref_primary_10_1063_5_0198446
crossref_primary_10_1016_j_energy_2022_126283
crossref_primary_10_3389_fenrg_2023_1217279
crossref_primary_10_1007_s40032_024_01155_8
crossref_primary_10_3390_math10091367
crossref_primary_10_1016_j_apenergy_2023_121623
crossref_primary_10_3390_en18061320
crossref_primary_10_3390_jmse12071049
crossref_primary_10_1007_s11831_023_09887_z
crossref_primary_10_3390_en15124408
crossref_primary_10_1088_2631_8695_adb37a
crossref_primary_10_1109_ACCESS_2024_3372851
crossref_primary_10_3233_JIFS_213387
crossref_primary_10_3390_en16196787
crossref_primary_10_1016_j_est_2025_115534
crossref_primary_10_1177_0958305X241241029
crossref_primary_10_3390_machines10090729
crossref_primary_10_1007_s10462_023_10435_1
crossref_primary_10_1109_ACCESS_2022_3182241
crossref_primary_10_3934_mbe_2023767
crossref_primary_10_1080_15376494_2024_2361859
crossref_primary_10_1016_j_knosys_2022_108626
crossref_primary_10_1038_s41598_023_33615_z
crossref_primary_10_3389_fpls_2024_1354290
crossref_primary_10_3390_biomimetics9100647
crossref_primary_10_3390_membranes12070691
crossref_primary_10_1177_0309524X241257429
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_1109_ACCESS_2023_3343103
crossref_primary_10_1088_1742_6596_2549_1_012030
crossref_primary_10_3390_electronics13224553
crossref_primary_10_1155_2023_5299919
crossref_primary_10_3390_app12147332
Cites_doi 10.1109/TSTE.2013.2288804
10.1080/21642583.2019.1708830
10.1007/s42835-020-00345-5
10.1002/dac.4617
10.13451/j.sxu.ns.2020135
10.1016/j.ijepes.2015.11.085
10.13700/j.bh.1001-5965.2020.0298
10.1016/j.enconman.2020.112465
10.1016/j.energy.2016.09.104
10.1016/j.egyr.2020.11.102
10.1109/TIE.2011.2159692
10.3390/app9245446
10.1002/tee.23001
10.1016/J.EPSR.2020.106638
10.1109/TPWRS.2012.2237043
10.1109/TSTE.2017.2762364
10.1007/s00202-016-0475-1
10.1007/s00202-018-0726-4
10.1049/iet-gtd.2020.0625
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2021
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2021
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-021-00840-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 14
ExternalDocumentID oai_kci_go_kr_ARTI_9907842
10_1007_s42835_021_00840_3
GrantInformation_xml – fundername: the National Key R & D Program of China
  grantid: No. 2017YFB092800
– fundername: Key Technology Research and Development Program of Shandong (CN)
  grantid: No. 2019ZBXC498
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c325t-9cd12ed580b278f01aae4a964bb1ea31f4b053b20fbbc7ad62ef08b706f5a1e3
ISSN 1975-0102
IngestDate Tue Nov 21 21:47:40 EST 2023
Thu Apr 24 23:07:46 EDT 2025
Tue Jul 01 00:40:52 EDT 2025
Fri Feb 21 02:46:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sparrow search algorithm
Capacity configuration
Niche optimization technology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-9cd12ed580b278f01aae4a964bb1ea31f4b053b20fbbc7ad62ef08b706f5a1e3
ORCID 0000-0002-9739-4397
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9907842
crossref_primary_10_1007_s42835_021_00840_3
crossref_citationtrail_10_1007_s42835_021_00840_3
springer_journals_10_1007_s42835_021_00840_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2022
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References Yu W, Wang W, Ma X, Zhang Z, Wu X (2018) Optimization design of hybrid wind-PV system based on improved genetic algorithm. Res Explor Lab 37(1):125–129+185
Xin L, Xiaodong M, Jun Z, Zhen W (2021) Chaos sparrow search optimization algorithm. J Beijing Univ Aeronaut Astronaut 1–10 [2020-09-05]. https://doi.org/10.13700/j.bh.1001-5965.2020.0298
Georgilakis PS, Hatziargyriou ND (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428. https://doi.org/10.1109/TPWRS.2012.2237043
EssamMAtwaYMEl-SaadanyEFContiSRizzoSAMicro-grids reliability enhancement under different penetration levels of hybrid DG unitsJ Electr Eng Technol201813414071418
ElazimSMAAliESOptimal locations and sizing of capacitors in radial distribution systems using mine blast algorithmElectr Eng201810011910.1007/s00202-016-0475-1
Andi T, Tong H, Dengwu X, Lei X (2021) Path planning method of unmanned aerial vehicle based onchaos sparrow search algorithm[J/OL]. J Comput Appl 1–11 [2021-07-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
El-HanaBHRSharjeelJMAbubakarSYShoaibSMMuhammadRMAYaqoubLDecomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertaintyEnergy Rep20217526910.1016/j.egyr.2020.11.102
Li Y, Wang G, Ma J, Yang H, Zhu L, Yan H (2020) Study on optimal capacity in the construction of wind-solar-diesel-battery hybrid power system based on bettle antennae search algorithm improved genetic algorithm. Energy Storage Sci Technol 9(3):918–926
WeiYBai-yueYXiao-yaWChen-peiMYing-yingWResearch on inventory-distribution optimization of cold chainlogistics enterprises in low-carbon environmentPackaging Eng202142114552
DingMWangBZhaoBChenZConfiguration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgridPower Syst Technol20133703575581
AliESElazimSMAAbdelazizAYAnt lion optimization algorithm for renewable distributed generationsEnergy201611644545810.1016/j.energy.2016.09.104
Xie X, Zhang W, Yang Z (2002) A dissipative particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation, pp 1456–1461
GeWTengJPanCWangSGaoKOperation regulation strategy of source-storage-load with wind energy storage energyPower Syst Protect Control2019471361006105
ZhangJLeiYLiuNXiaoRCapacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desalination loadTrans China Electrotech Soc2014292102112
Qinghua M, Qiang Z, Chengcheng M, Jiaxuan B (2021) Mixing sine and cosine algorithm with Lévy flying chaotic sparrow algorithm[J/OL]. J Shanxi Univ (Nat Sci Ed):1–6 [2021-07-06]. https://doi.org/10.13451/j.sxu.ns.2020135
LiuWXuYRandomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generationIET Gener Transm Distrib202014245909591710.1049/iet-gtd.2020.0625
CaiZGeYLiYMaSOptimal placement and schedule of hybrid energy management system in microgridElectric Mach Control20172154250
Tang Y, Fang G, Tan Q, Wen X, Lei X, Ding Z (2020) Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity. Energy Convers Manag 206:112465
Sa’Ed JA, Amer M, Bodair A, Baransi A, Zizzo G (2019) A simplified analytical approach for optimal planning of distributed generation in electrical distribution networks. Appl Sci 9(24):5446
Wei-yan Z, Yun-hui F, Hua-feng J, Jia-qi L, Pei-li L, Jian-ye C et al (2016) A research review of locating and sizing distributed generation. J Nanjing Inst Technol (Nat Sci Ed) 14(03):45–51
Zheng Y, Zhao J, Song Y, Luo F, Meng K, Qiu J et al (2018) Optimal operation of battery energy storage system considering distribution system uncertainty. IEEE Trans Sustain Energy 9(3):1051–1060
ShengSChenYZhangJResearch on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic systemPower Syst Prot Control201846112329
Abd ElazimSMAliESOptimal network restructure via improved whale optimization approachInt J Commun Syst202010.1002/dac.4617
Ali ES, Elazim SMA, Abdelaziz AY (2016) Improved Harmony Algorithm and Power Loss Index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. https://doi.org/10.1016/j.ijepes.2015.11.085
XueJBoSA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng2020812234405298010.1080/21642583.2019.1708830
Zeyu W, Jun X, Gang X, Xinying X (2021) Multi-objective sparrow search algorithm based on new crowding distance[J/OL]. Comput Eng Appl 1–10 [2021-07-06]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210311.1136.008.html
Al-ShetwiAQSujodMZModeling and design of photovoltaic power plant connected to the MV side of Malaysian grid with TNB technical regulation compatibilityElectr Eng201810042407241910.1007/s00202-018-0726-4
BoLYanZNaYImproved particle swarm optimization method and its application in the siting and sizing of distributed generation planningTrans China Electrotech Soc20082103108
Hirose T, Matsuo H (2012) Standalone hybrid wind-solar power generation system applying dump power control without dump load. IEEE Trans Ind Electron 59(2):988–997
Mohammadjafari M, Ebrahimi R, Darabad VP (2020) Optimal Energy management of a microgrid incorporating a novel efficient demand response and battery storage system. J Electr Eng Technol 15(3):571–590
MattiKKonstantinosPRodrigoHEENeilDPoulSApplication of microscale wind and detailed wind power plantdata in large-scale wind generation simulationsElectric PowerSyst Res202119010.1016/J.EPSR.2020.106638
ZhouTWeiSOptimization of battery-supercapacitor hybrid energy storage station in wind/solar generation systemIEEE Trans Sustain Energy20145240841510.1109/TSTE.2013.2288804
Zia U, Shaorong W, Jordan R (2019) A novel method based on PPSO for optimal placement and sizing of distributed generation. IEEJ Trans Electr Electron Eng 14(12):1754–1763
SM Abd Elazim (840_CR12) 2020
J Zhang (840_CR17) 2014; 29
K Matti (840_CR24) 2021; 190
BHR El-Hana (840_CR30) 2021; 7
840_CR19
T Zhou (840_CR15) 2014; 5
M Ding (840_CR29) 2013; 37
840_CR20
Y Wei (840_CR23) 2021; 42
M Essam (840_CR11) 2018; 13
840_CR21
840_CR22
SMA Elazim (840_CR13) 2018; 100
AQ Al-Shetwi (840_CR31) 2018; 100
L Bo (840_CR27) 2008; 2
J Xue (840_CR28) 2020; 8
840_CR26
S Sheng (840_CR33) 2018; 46
Z Cai (840_CR14) 2017; 21
W Ge (840_CR18) 2019; 47
840_CR3
840_CR2
840_CR10
840_CR32
840_CR5
840_CR4
840_CR7
840_CR6
840_CR9
W Liu (840_CR25) 2020; 14
840_CR8
ES Ali (840_CR16) 2016; 116
840_CR1
References_xml – reference: WeiYBai-yueYXiao-yaWChen-peiMYing-yingWResearch on inventory-distribution optimization of cold chainlogistics enterprises in low-carbon environmentPackaging Eng202142114552
– reference: Al-ShetwiAQSujodMZModeling and design of photovoltaic power plant connected to the MV side of Malaysian grid with TNB technical regulation compatibilityElectr Eng201810042407241910.1007/s00202-018-0726-4
– reference: EssamMAtwaYMEl-SaadanyEFContiSRizzoSAMicro-grids reliability enhancement under different penetration levels of hybrid DG unitsJ Electr Eng Technol201813414071418
– reference: ZhangJLeiYLiuNXiaoRCapacity configuration optimization for island microgrid with wind/photovoltaic/diesel/storage and seawater desalination loadTrans China Electrotech Soc2014292102112
– reference: ShengSChenYZhangJResearch on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic systemPower Syst Prot Control201846112329
– reference: Yu W, Wang W, Ma X, Zhang Z, Wu X (2018) Optimization design of hybrid wind-PV system based on improved genetic algorithm. Res Explor Lab 37(1):125–129+185
– reference: ElazimSMAAliESOptimal locations and sizing of capacitors in radial distribution systems using mine blast algorithmElectr Eng201810011910.1007/s00202-016-0475-1
– reference: Xin L, Xiaodong M, Jun Z, Zhen W (2021) Chaos sparrow search optimization algorithm. J Beijing Univ Aeronaut Astronaut 1–10 [2020-09-05]. https://doi.org/10.13700/j.bh.1001-5965.2020.0298
– reference: XueJBoSA novel swarm intelligence optimization approach: sparrow search algorithmSyst Sci Control Eng2020812234405298010.1080/21642583.2019.1708830
– reference: CaiZGeYLiYMaSOptimal placement and schedule of hybrid energy management system in microgridElectric Mach Control20172154250
– reference: Hirose T, Matsuo H (2012) Standalone hybrid wind-solar power generation system applying dump power control without dump load. IEEE Trans Ind Electron 59(2):988–997
– reference: LiuWXuYRandomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generationIET Gener Transm Distrib202014245909591710.1049/iet-gtd.2020.0625
– reference: Xie X, Zhang W, Yang Z (2002) A dissipative particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation, pp 1456–1461
– reference: DingMWangBZhaoBChenZConfiguration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgridPower Syst Technol20133703575581
– reference: AliESElazimSMAAbdelazizAYAnt lion optimization algorithm for renewable distributed generationsEnergy201611644545810.1016/j.energy.2016.09.104
– reference: Qinghua M, Qiang Z, Chengcheng M, Jiaxuan B (2021) Mixing sine and cosine algorithm with Lévy flying chaotic sparrow algorithm[J/OL]. J Shanxi Univ (Nat Sci Ed):1–6 [2021-07-06]. https://doi.org/10.13451/j.sxu.ns.2020135
– reference: Zeyu W, Jun X, Gang X, Xinying X (2021) Multi-objective sparrow search algorithm based on new crowding distance[J/OL]. Comput Eng Appl 1–10 [2021-07-06]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210311.1136.008.html
– reference: Georgilakis PS, Hatziargyriou ND (2013) Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans Power Syst 28(3):3420–3428. https://doi.org/10.1109/TPWRS.2012.2237043
– reference: Zheng Y, Zhao J, Song Y, Luo F, Meng K, Qiu J et al (2018) Optimal operation of battery energy storage system considering distribution system uncertainty. IEEE Trans Sustain Energy 9(3):1051–1060
– reference: Ali ES, Elazim SMA, Abdelaziz AY (2016) Improved Harmony Algorithm and Power Loss Index for optimal locations and sizing of capacitors in radial distribution systems. Int J Electr Power Energy Syst 80:252–263. https://doi.org/10.1016/j.ijepes.2015.11.085
– reference: El-HanaBHRSharjeelJMAbubakarSYShoaibSMMuhammadRMAYaqoubLDecomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertaintyEnergy Rep20217526910.1016/j.egyr.2020.11.102
– reference: Sa’Ed JA, Amer M, Bodair A, Baransi A, Zizzo G (2019) A simplified analytical approach for optimal planning of distributed generation in electrical distribution networks. Appl Sci 9(24):5446
– reference: BoLYanZNaYImproved particle swarm optimization method and its application in the siting and sizing of distributed generation planningTrans China Electrotech Soc20082103108
– reference: Abd ElazimSMAliESOptimal network restructure via improved whale optimization approachInt J Commun Syst202010.1002/dac.4617
– reference: GeWTengJPanCWangSGaoKOperation regulation strategy of source-storage-load with wind energy storage energyPower Syst Protect Control2019471361006105
– reference: Wei-yan Z, Yun-hui F, Hua-feng J, Jia-qi L, Pei-li L, Jian-ye C et al (2016) A research review of locating and sizing distributed generation. J Nanjing Inst Technol (Nat Sci Ed) 14(03):45–51
– reference: Li Y, Wang G, Ma J, Yang H, Zhu L, Yan H (2020) Study on optimal capacity in the construction of wind-solar-diesel-battery hybrid power system based on bettle antennae search algorithm improved genetic algorithm. Energy Storage Sci Technol 9(3):918–926
– reference: Andi T, Tong H, Dengwu X, Lei X (2021) Path planning method of unmanned aerial vehicle based onchaos sparrow search algorithm[J/OL]. J Comput Appl 1–11 [2021-07-06]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
– reference: Zia U, Shaorong W, Jordan R (2019) A novel method based on PPSO for optimal placement and sizing of distributed generation. IEEJ Trans Electr Electron Eng 14(12):1754–1763
– reference: Tang Y, Fang G, Tan Q, Wen X, Lei X, Ding Z (2020) Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity. Energy Convers Manag 206:112465
– reference: MattiKKonstantinosPRodrigoHEENeilDPoulSApplication of microscale wind and detailed wind power plantdata in large-scale wind generation simulationsElectric PowerSyst Res202119010.1016/J.EPSR.2020.106638
– reference: Mohammadjafari M, Ebrahimi R, Darabad VP (2020) Optimal Energy management of a microgrid incorporating a novel efficient demand response and battery storage system. J Electr Eng Technol 15(3):571–590
– reference: ZhouTWeiSOptimization of battery-supercapacitor hybrid energy storage station in wind/solar generation systemIEEE Trans Sustain Energy20145240841510.1109/TSTE.2013.2288804
– volume: 46
  start-page: 23
  issue: 11
  year: 2018
  ident: 840_CR33
  publication-title: Power Syst Prot Control
– volume: 5
  start-page: 408
  issue: 2
  year: 2014
  ident: 840_CR15
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2013.2288804
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 840_CR28
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 47
  start-page: 6100
  issue: 13
  year: 2019
  ident: 840_CR18
  publication-title: Power Syst Protect Control
– ident: 840_CR6
  doi: 10.1007/s42835-020-00345-5
– year: 2020
  ident: 840_CR12
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.4617
– ident: 840_CR3
– ident: 840_CR19
  doi: 10.13451/j.sxu.ns.2020135
– ident: 840_CR5
– ident: 840_CR10
  doi: 10.1016/j.ijepes.2015.11.085
– ident: 840_CR21
– ident: 840_CR22
  doi: 10.13700/j.bh.1001-5965.2020.0298
– ident: 840_CR7
  doi: 10.1016/j.enconman.2020.112465
– volume: 116
  start-page: 445
  year: 2016
  ident: 840_CR16
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.104
– volume: 7
  start-page: 52
  year: 2021
  ident: 840_CR30
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.11.102
– ident: 840_CR8
  doi: 10.1109/TIE.2011.2159692
– ident: 840_CR4
  doi: 10.3390/app9245446
– volume: 42
  start-page: 45
  issue: 11
  year: 2021
  ident: 840_CR23
  publication-title: Packaging Eng
– ident: 840_CR2
  doi: 10.1002/tee.23001
– ident: 840_CR32
– volume: 29
  start-page: 102
  issue: 2
  year: 2014
  ident: 840_CR17
  publication-title: Trans China Electrotech Soc
– ident: 840_CR26
– volume: 190
  year: 2021
  ident: 840_CR24
  publication-title: Electric PowerSyst Res
  doi: 10.1016/J.EPSR.2020.106638
– ident: 840_CR1
  doi: 10.1109/TPWRS.2012.2237043
– ident: 840_CR9
  doi: 10.1109/TSTE.2017.2762364
– volume: 13
  start-page: 1407
  issue: 4
  year: 2018
  ident: 840_CR11
  publication-title: J Electr Eng Technol
– volume: 2
  start-page: 103
  year: 2008
  ident: 840_CR27
  publication-title: Trans China Electrotech Soc
– volume: 37
  start-page: 575
  issue: 03
  year: 2013
  ident: 840_CR29
  publication-title: Power Syst Technol
– volume: 21
  start-page: 42
  issue: 5
  year: 2017
  ident: 840_CR14
  publication-title: Electric Mach Control
– ident: 840_CR20
– volume: 100
  start-page: 1
  issue: 1
  year: 2018
  ident: 840_CR13
  publication-title: Electr Eng
  doi: 10.1007/s00202-016-0475-1
– volume: 100
  start-page: 2407
  issue: 4
  year: 2018
  ident: 840_CR31
  publication-title: Electr Eng
  doi: 10.1007/s00202-018-0726-4
– volume: 14
  start-page: 5909
  issue: 24
  year: 2020
  ident: 840_CR25
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2020.0625
SSID ssj0061053
Score 2.4920807
Snippet In order to reasonably allocate the capacity of distributed generation and realize the goal of stable, economic and clean operation of the system, a...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Optimization of Capacity Configuration of Wind–Solar–Diesel–Storage Using Improved Sparrow Search Algorithm
URI https://link.springer.com/article/10.1007/s42835-021-00840-3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002798106
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2022, 17(1), , pp.1-14
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENak6QUODM-h5TEahlswY8sP2ceU0inMUA4N0w4XjaTISaap07r2hRP_gV_EX-GXsHrYcTDtUC52LMUaRftF2l19u0LotZ9JkWkqDs-k70W5kJ6YZtSjgUwUSaiMpXbofzpKDr9EH0_j08HgZ4e1VFfirfz217iS_5EqlIFcdZTsLSTbNgoF8BnkC1eQMFz_Scaf4f9-7gIpbaAVWMBardZxfItZXbY1J2B6N7yG8Fibs-3Tvs4TsVxXghGueTyOS2B8DlopvTDZGkeWnjwaL2erclHNz69Rbu3pOgYAap3x0OCs6jnz9xtacF2si2qzbTJXxZwvWjeQoR4cz-vLDqhPnMf7qya1Fl0vBiEdL4adeDOqSYS-nZmVKSN-Fnp6J3ljtqY9VNqpN-is4TYutbc6WELIlckx52luij5NAJah9VrY7P__sUS2xMU2ybNpg0EbzLTBwi20TcBSIUO0PT7Y2ztq1AFQT00q1PYHusgtE7_Z68mGdrRVlHlvg97oPZP76J6TKR5b9D1AA1U8RHc7aSwfocsuDvEqxw0O8QYOdY3G4a_vPwwC4W6xpwss6rBBHW5Qhx3qsEUdblH3GE0O3k_eHXruKA9PhiSuvExOA6KmceoLQtPcDzhXEc-SSIhA8TDIIwHDJIifCyEpnyZE5X4qqJ_kMQ9U-AQNi1WhniIMb6hc0RhajKJpSnkS8zyEYYS5SIExsoOCZgSZdGnu9WkrS3a97HbQqH3nwiZ5ufHbr0Aw7EwumM7Nru-zFTsrGVigHxhodzSNoBtvGrkxN2Nc3dDm7q168AzdAb09MozF5DkaVmWtXoBuXImXDn2_AYfttvc
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Capacity+Configuration+of+Wind%E2%80%93Solar%E2%80%93Diesel%E2%80%93Storage+Using+Improved+Sparrow+Search+Algorithm&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Dong%2C+Jun&rft.au=Dou%2C+Zhenhai&rft.au=Si%2C+Shuqian&rft.au=Wang%2C+Zichen&rft.date=2022-01-01&rft.issn=1975-0102&rft.eissn=2093-7423&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1007%2Fs42835-021-00840-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42835_021_00840_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon