Competition for light drives yield components in strip intercropping in the Netherlands
The partitioning of light between species in intercrops changes over time in relation to the earliness of canopy development of each species, the final plant height, and the growth duration. Seasonal patterns of light capture in crop species mixtures may be reflected in the yield components of the s...
Saved in:
Published in | Field crops research Vol. 320; p. 109647 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The partitioning of light between species in intercrops changes over time in relation to the earliness of canopy development of each species, the final plant height, and the growth duration. Seasonal patterns of light capture in crop species mixtures may be reflected in the yield components of the species.
We test the hypothesis that seasonal patterns of light capture in intercrops can explain intercropping effects on seed number, seed weight, and seed yield in different species mixture compositions, including relay and simultaneous intercrops.
We determined the seed number per unit land area, thousand-seed weight, and seed yield of maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.), grown as four monocrops or as six bi-specific strip intercrops – maize/wheat, maize/faba bean, maize/pea, faba bean/wheat, faba bean/pea, and wheat/pea – in the Netherlands. Species were spring-sown and managed conventionally (i.e., non-organic). Maize was sown and harvested later than the three other species, which had approximately simultaneous growing periods. Light capture by each species before and during seed filling was estimated using a model based on strip width, plant height, and leaf area index. We then assessed the relationships between accumulated light captured per species, seed yield, and its components.
Seed yields in intercrops and monocrops were strongly related to seed number for each species. In relay intercrops, both species had increased seed yield due to an increased number of seeds. Species grown in simultaneous intercrops did not have higher seed yield or seed number than the monocrop, except for faba bean intercropped with wheat or pea. Increased seed number of early-sown species in relay intercrops was related to greater light capture before seed filling compared to monocrops. Increased seed number in maize was associated with better light availability after maize overtopped the companion species. The early-sown species showed trade-offs between seed number and weight, whereas the improved light availability resulting from the early harvesting of companions allowed intercropped maize to fill all seeds to the same extent as monocropped maize did.
Seed yield was more strongly related to seed number than seed weight in all species in both monocrops and intercrops. In relay intercrops, seed yield increases were realised by species filling seeds to take advantage of the larger seed number.
The findings show the importance of achieving high seed number and effective seed filling for increasing seed yield in conventionally managed strip intercrops under Dutch growing conditions.
•We determined how competition for light in strip intercrops affects yield and yield components.•Seed yield was more strongly correlated with seed number than with seed weight.•Temporally complementary light capture in relay intercrops increased seed number in both species.•Intercropped maize had increased light capture per seed during seed filling.•In simultaneous intercrops, seed number was increased in the species dominating light capture. |
---|---|
AbstractList | The partitioning of light between species in intercrops changes over time in relation to the earliness of canopy development of each species, the final plant height, and the growth duration. Seasonal patterns of light capture in crop species mixtures may be reflected in the yield components of the species. We test the hypothesis that seasonal patterns of light capture in intercrops can explain intercropping effects on seed number, seed weight, and seed yield in different species mixture compositions, including relay and simultaneous intercrops. We determined the seed number per unit land area, thousand-seed weight, and seed yield of maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.), grown as four monocrops or as six bi-specific strip intercrops – maize/wheat, maize/faba bean, maize/pea, faba bean/wheat, faba bean/pea, and wheat/pea – in the Netherlands. Species were spring-sown and managed conventionally (i.e., non-organic). Maize was sown and harvested later than the three other species, which had approximately simultaneous growing periods. Light capture by each species before and during seed filling was estimated using a model based on strip width, plant height, and leaf area index. We then assessed the relationships between accumulated light captured per species, seed yield, and its components. Seed yields in intercrops and monocrops were strongly related to seed number for each species. In relay intercrops, both species had increased seed yield due to an increased number of seeds. Species grown in simultaneous intercrops did not have higher seed yield or seed number than the monocrop, except for faba bean intercropped with wheat or pea. Increased seed number of early-sown species in relay intercrops was related to greater light capture before seed filling compared to monocrops. Increased seed number in maize was associated with better light availability after maize overtopped the companion species. The early-sown species showed trade-offs between seed number and weight, whereas the improved light availability resulting from the early harvesting of companions allowed intercropped maize to fill all seeds to the same extent as monocropped maize did. Seed yield was more strongly related to seed number than seed weight in all species in both monocrops and intercrops. In relay intercrops, seed yield increases were realised by species filling seeds to take advantage of the larger seed number. The findings show the importance of achieving high seed number and effective seed filling for increasing seed yield in conventionally managed strip intercrops under Dutch growing conditions. The partitioning of light between species in intercrops changes over time in relation to the earliness of canopy development of each species, the final plant height, and the growth duration. Seasonal patterns of light capture in crop species mixtures may be reflected in the yield components of the species. We test the hypothesis that seasonal patterns of light capture in intercrops can explain intercropping effects on seed number, seed weight, and seed yield in different species mixture compositions, including relay and simultaneous intercrops. We determined the seed number per unit land area, thousand-seed weight, and seed yield of maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and pea (Pisum sativum L.), grown as four monocrops or as six bi-specific strip intercrops – maize/wheat, maize/faba bean, maize/pea, faba bean/wheat, faba bean/pea, and wheat/pea – in the Netherlands. Species were spring-sown and managed conventionally (i.e., non-organic). Maize was sown and harvested later than the three other species, which had approximately simultaneous growing periods. Light capture by each species before and during seed filling was estimated using a model based on strip width, plant height, and leaf area index. We then assessed the relationships between accumulated light captured per species, seed yield, and its components. Seed yields in intercrops and monocrops were strongly related to seed number for each species. In relay intercrops, both species had increased seed yield due to an increased number of seeds. Species grown in simultaneous intercrops did not have higher seed yield or seed number than the monocrop, except for faba bean intercropped with wheat or pea. Increased seed number of early-sown species in relay intercrops was related to greater light capture before seed filling compared to monocrops. Increased seed number in maize was associated with better light availability after maize overtopped the companion species. The early-sown species showed trade-offs between seed number and weight, whereas the improved light availability resulting from the early harvesting of companions allowed intercropped maize to fill all seeds to the same extent as monocropped maize did. Seed yield was more strongly related to seed number than seed weight in all species in both monocrops and intercrops. In relay intercrops, seed yield increases were realised by species filling seeds to take advantage of the larger seed number. The findings show the importance of achieving high seed number and effective seed filling for increasing seed yield in conventionally managed strip intercrops under Dutch growing conditions. •We determined how competition for light in strip intercrops affects yield and yield components.•Seed yield was more strongly correlated with seed number than with seed weight.•Temporally complementary light capture in relay intercrops increased seed number in both species.•Intercropped maize had increased light capture per seed during seed filling.•In simultaneous intercrops, seed number was increased in the species dominating light capture. |
ArticleNumber | 109647 |
Author | Stomph, Tjeerd-Jan Dong, Bei van der Werf, Wopke van der Putten, Peter E.L. Evers, Jochem B. Wang, Zishen |
Author_xml | – sequence: 1 givenname: Zishen surname: Wang fullname: Wang, Zishen email: wang.zishen@outlook.com, zishen.wang@wur.nl – sequence: 2 givenname: Bei surname: Dong fullname: Dong, Bei – sequence: 3 givenname: Tjeerd-Jan surname: Stomph fullname: Stomph, Tjeerd-Jan – sequence: 4 givenname: Jochem B. surname: Evers fullname: Evers, Jochem B. – sequence: 5 givenname: Peter E.L. surname: van der Putten fullname: van der Putten, Peter E.L. – sequence: 6 givenname: Wopke surname: van der Werf fullname: van der Werf, Wopke |
BookMark | eNp9kLtOAzEQRV0EiQT4ALotaRL8WntXVCjiJUXQgCgtx55NHG3sxXYi5e9xtNQ0Hs_o3nmcGZr44AGhW4IXBBNxv1t0Ji4oprzkreBygqaYyWbOaYsv0SylHcZYCCKm6HsZ9gNkl13wVRdi1bvNNlc2uiOk6uSgt5UpkjLB51Q5X6Uc3VA-GaKJYRic35zLeQvVO5Q39trbdI0uOt0nuPmLV-jr-elz-Tpffby8LR9Xc8Noneet1p2RzDSasc5ySwiTYk1kKymh2hhec20xbnTDDZFECtGCEGsutbSsbg27Qndj3yGGnwOkrPYuGejLEhAOSTFSc1oQUFmkZJSWtVOK0Kkhur2OJ0WwOoNTO1XAqTM4NYIrnofRA-WGo4OoknHgDVgXwWRlg_vH_QsUa3qQ |
Cites_doi | 10.1071/FP14048 10.1016/j.eja.2016.01.005 10.1016/j.fcr.2018.04.004 10.1023/A:1026230527597 10.1016/j.fcr.2022.108561 10.1016/j.fcr.2019.107575 10.1016/j.fcr.2013.09.021 10.1016/j.fcr.2021.108208 10.1016/j.scitotenv.2017.10.024 10.1007/s00442-005-0256-4 10.1093/aob/mci052 10.1016/j.baae.2022.03.009 10.2135/cropsci1978.0011183X001800060004x 10.1016/0378-3774(90)90069-B 10.1002/csc2.20385 10.1016/j.eja.2018.01.001 10.1111/ele.14017 10.1111/j.1469-8137.2009.02848.x 10.1111/j.1744-7348.1991.tb04895.x 10.1016/j.fcr.2023.108926 10.1023/A:1022352229863 10.1016/j.fcr.2022.108671 10.1016/j.fcr.2022.108785 10.1111/j.1365-3040.1991.tb01373.x 10.1111/j.2041-210x.2012.00261.x 10.1016/bs.agron.2019.10.002 10.1002/fes3.226 10.2135/cropsci2018.06.0396 10.18637/jss.v067.i01 10.1016/j.fcr.2016.10.021 10.1016/j.fcr.2007.12.014 10.1093/jxb/ery288 10.1016/j.fcr.2021.108239 10.1002/fes3.270 10.21105/joss.03139 10.1016/j.fcr.2007.12.010 10.1111/nph.13416 10.1093/jxb/ert408 10.1016/j.eja.2019.125936 10.1111/aab.12268 10.1016/j.fcr.2022.108523 10.1016/j.fcr.2009.06.005 10.1016/j.fcr.2011.11.014 10.1007/s13593-014-0277-7 10.1016/j.eja.2020.126117 10.1093/jxb/erab119 10.1016/j.eja.2024.127119 10.1016/j.fcr.2019.107656 10.2135/cropsci2004.0653 10.1016/j.eja.2020.126077 10.1016/j.fcr.2020.107819 10.1016/j.fcr.2022.108755 10.1016/j.fcr.2015.09.010 10.1017/S0021859600056616 10.1038/s41477-020-0680-9 10.1016/j.fcr.2022.108757 10.1016/j.fcr.2016.07.017 10.2134/agronj1989.00021962008100010011x 10.1146/annurev.es.16.110185.002051 10.1002/fes3.170 10.1016/j.fcr.2023.109093 10.1002/fes3.187 10.1016/j.eja.2016.10.014 10.2135/cropsci1971.0011183X001100060003x 10.1093/aob/mcl020 10.1093/jxb/erab077 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fcr.2024.109647 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_fcr_2024_109647 S0378429024004003 |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABFRF ABGRD ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K UNMZH Y6R ~G- ~KM 29H AALCJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ LW9 LY9 M41 R2- RIG SEN SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c325t-9aafc73c8a33fd4d11376b1797212acc454ad008a84c1717669e66b47a7d359c3 |
IEDL.DBID | .~1 |
ISSN | 0378-4290 |
IngestDate | Fri Aug 22 20:21:45 EDT 2025 Tue Jul 01 04:25:10 EDT 2025 Wed Dec 04 16:47:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Light capture Yield components Strip intercropping Seed yield Relay intercropping |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-9aafc73c8a33fd4d11376b1797212acc454ad008a84c1717669e66b47a7d359c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378429024004003 |
PQID | 3154264727 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154264727 crossref_primary_10_1016_j_fcr_2024_109647 elsevier_sciencedirect_doi_10_1016_j_fcr_2024_109647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Field crops research |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – sequence: 0 name: Elsevier B.V |
References | Monsi, Saeki, Schortemeyer (bib39) 2005; 95 Martin-Guay, Paquette, Dupras, Rivest (bib37) 2018; 615 Monti, Pellicanò, Santonoceto, Preiti, Pristeri (bib40) 2016; 196 Li, Hoffland, Kuyper, Yu, Zhang, Li, Zhang, van der Werf (bib29) 2020; 6 Evers, Vos, Andrieu, Struik (bib13) 2006; 97 Grafius (bib21) 1978; 18 MacLaren, Waswa, Aliyu, Claessens, Mead, Schöb, Vanlauwe, Storkey (bib35) 2023; 297 Patrick, Colyvas (bib42) 2014; 41 Li, van der Werf, Zhu, Guo, Li, Ma, Evers (bib33) 2021; 72 Zhang, van der Werf, Bastiaans, Zhang, Li, Spiertz (bib70) 2008; 107 Zhu, van der Werf, Vos, Anten, van der Putten, Evers (bib73) 2016; 168 (bib11) 1975 Bedoussac, Journet, Hauggaard-Nielsen, Naudin, Corre-Hellou, Jensen, Prieur, Justes (bib5) 2015; 35 Li, Sun, Zhang, Guo, Bao, Smith, Smith (bib32) 2006; 147 Homulle, George, Karley (bib23) 2021 Zhu, Vos, van der Werf, van der Putten, Evers (bib74) 2014; 65 Hu, Tan, Yu, Zhao, Fan, Yin, Chai, Coulter, Cao (bib24) 2020; 119 Xue, Zhu, Musick, Stewart, Dusek (bib63) 2003; 257 Wang, Bai, Sun, Zhang, Zhang, Wang, Evers, Stomph, van der Werf, Feng, Zhang (bib57) 2021; 10 Wang, Dong, Stomph, Evers, L. van der Putten, Ma, Missale, van der Werf (bib58) 2023; 291 Subedi, Ma (bib53) 2005; 45 Evers, Van Der Werf, Stomph, Bastiaans, Anten (bib12) 2019; 70 Grant, Jackson, Kiniry, Arkin (bib22) 1989; 81 Stomph, Dordas, Baranger, de Rijk, Dong, Evers, Gu, Li, Simon, Jensen, Wang, Wang, Wang, Xu, Zhang, Zhang, Zhang, Bedoussac, van der Werf (bib52) 2020 (accessed 4.12.22). Yang, Zhang, Xu, Yu, Su, Surigaoge, Wang, Yang, Lambers, Li (bib64) 2023; 302 Wang, Zhang, Zhang, Yang, Zhu, Yan, Fei, Rong, Peng, Luo (bib61) 2022; 287 Zhang, Sun, Su, Du, Bai, Wang, Wang, Nie, Sun, Feng, Zhang, Yang, Zhang, Evers, van der Werf, Zhang (bib69) 2022; 282 Nakagawa, Schielzeth (bib41) 2013; 4 Mao, Zhang, Zhao, Liu, van der Werf, Zhang, Spiertz, Li (bib36) 2014; 155 Sadras, Slafer (bib51) 2012; 127 Dong, Yang, Liu, Qiao, Zhang, Wang, Xie, Liu (bib9) 2019; 59 Zhang, van der Werf, Zhang, Li, Spiertz (bib71) 2008; 106 Ye, Tajima, Sadaike, Saito, Ogawa, Kawamura, Ishimori, Nakajima, Uno, Kano, Ito, Suyama, Kato, Kikuchi, Homma (bib65) 2023; 291 Zhang, Du, Sun, Bai, Wang, Feng, Zheng, Zhang, Liu, Yang, Yang, Feng, Cai, Evers, van der Werf, Zhang (bib67) 2018; 94 Patrick, Stoddard (bib43) 2010; 115 Wang, Sun, Bai, Wang, Wang, Zhang, Zhang, Yang, Liu, Nie, Chen, Duan, Zhang (bib59) 2021; 271 Altendorf, DeHaan, Heineck, Zhang, Anderson (bib3) 2021; 61 Feng, Sun, Zhang, Feng, Zheng, Bai, Gu, Wang, Xu, van der Werf (bib14) 2021; 270 Zhang, Li (bib68) 2003 Justes, Bedoussac, Dordas, Frak, Louarn, Boudsocq, Journet, Lithourgidis, Pankou, Zhang, Carlsson, Jensen, Watson, Li (bib26) 2021; 8 Bloom, Chapin, Mooney (bib6) 1985; 16 Ajal, Kiær, Pakeman, Scherber, Weih (bib2) 2022; 61 Gao, Zhang, van der Werf, Ning, Zhang, Wan, Zhang (bib17) 2022; 284 Robinson, Linehan, Caul (bib48) 1991; 14 Huang, Liu, Gou, Li, Zhang, van der Werf, Zhang (bib25) 2017; 201 Gou, van Ittersum, Simon, Leffelaar, van der Putten, Zhang, van der Werf (bib19) 2017; 84 Lake, Godoy-Kutchartt, Calderini, Verrell, Sadras (bib27) 2019; 241 Qian, Zang, Xu, Hu, Ren, Guo, Wang, Zeng (bib45) 2018; 223 R Core Team, (2023) R: A Language and Environment for Statistical Computing. Gong, Hodgson, Tscharntke, Liu, Werf, van der, Batáry, Knops, Zou (bib18) 2022 Zhu, van der Werf, Anten, Vos, Evers (bib72) 2015; 207 Li, Stomph, Makowski, Li, Zhang, Zhang, Werf, van der (bib31) 2023; 120 Yu, Stomph, Makowski, van der Werf (bib66) 2015; 184 van der Werf, Zhang, Li, Chen, Feng, Xu, Zhang, Gu, Bastiaans, Makowski, Stomph (bib55) 2021; 8 Ahmed, Raza, Yuan, Du, Iqbal, Chachar, Soomro, Ibrahim, Hussain, Wang, Liu, Yang (bib1) 2020; 9 Li, Ma, Wu, Zhao, Chen, Gao (bib30) 2020; 248 Prine (bib44) 1971; 11 Cagnola, Parco, Rotili, Ploschuk, Curin, Amas, Luque, Maddonni, Otegui, Casal (bib7) 2021; 72 Willey (bib62) 1990; 17 Raza, Feng, van der Werf, Cai, Khalid, Iqbal, Hassan, Meraj, Naeem, Khan, Rehman, Ansar, Ahmed, Yang, Yang (bib47) 2019; 8 Lüdecke, Ben-Shachar, Patil, Waggoner, Makowski (bib34) 2021; 6 Gao, Meng, Zhang, Werf, Zhang, Wan, Zhang (bib16) 2020; 9 Egamberdieva, Zoghi, Nazarov, Wirth, Sonoko, Bellingrath-Kimura (bib10) 2020; 3 Gallagher, Biscoe (bib15) 1978; 91 Gou, van Ittersum, Wang, van der Putten, van der Werf (bib20) 2016; 76 Bates, Mächler, Bolker, Walker (bib4) 2015; 67 Dong, Wang, Evers, Jan Stomph, van der Putten, Yin, Wang, Sprangers, Hang, van der Werf (bib8) 2024; 155 Lancashire, Bleiholder, van den Boom, Langelüddeke, Stauss, Weber, Witzenberger (bib28) 1991; 119 Sadras, Denison (bib50) 2009; 183 van Oort, Gou, Stomph, van der Werf (bib56) 2020; 112 Umesh, Angadi, Begna, Gowda, Lauriault, Hagevoort, Darapuneni (bib54) 2023; 290 Ministerie van Landbouw Natuur en Voedselkwaliteit, 2019. Table 2 Stikstof landbouwgrond (in Dutch) [WWW Document]. URL Rodriguez, Carlsson, Englund, Flöhr, Pelzer, Jeuffroy, Makowski, Jensen (bib49) 2020; 118 Wang, Sun, Zhang, Yang, Feng, Bai, Zhang, Wang, Evers, Liu, Ren, Zhang, van der Werf (bib60) 2020; 253 Egamberdieva (10.1016/j.fcr.2024.109647_bib10) 2020; 3 Zhu (10.1016/j.fcr.2024.109647_bib72) 2015; 207 Evers (10.1016/j.fcr.2024.109647_bib12) 2019; 70 (10.1016/j.fcr.2024.109647_bib11) 1975 Li (10.1016/j.fcr.2024.109647_bib29) 2020; 6 Monti (10.1016/j.fcr.2024.109647_bib40) 2016; 196 Lüdecke (10.1016/j.fcr.2024.109647_bib34) 2021; 6 Homulle (10.1016/j.fcr.2024.109647_bib23) 2021 Wang (10.1016/j.fcr.2024.109647_bib60) 2020; 253 Bloom (10.1016/j.fcr.2024.109647_bib6) 1985; 16 Zhu (10.1016/j.fcr.2024.109647_bib73) 2016; 168 Monsi (10.1016/j.fcr.2024.109647_bib39) 2005; 95 Wang (10.1016/j.fcr.2024.109647_bib57) 2021; 10 Xue (10.1016/j.fcr.2024.109647_bib63) 2003; 257 Lake (10.1016/j.fcr.2024.109647_bib27) 2019; 241 Li (10.1016/j.fcr.2024.109647_bib33) 2021; 72 MacLaren (10.1016/j.fcr.2024.109647_bib35) 2023; 297 Stomph (10.1016/j.fcr.2024.109647_bib52) 2020 Rodriguez (10.1016/j.fcr.2024.109647_bib49) 2020; 118 Lancashire (10.1016/j.fcr.2024.109647_bib28) 1991; 119 Grafius (10.1016/j.fcr.2024.109647_bib21) 1978; 18 Umesh (10.1016/j.fcr.2024.109647_bib54) 2023; 290 Bates (10.1016/j.fcr.2024.109647_bib4) 2015; 67 Feng (10.1016/j.fcr.2024.109647_bib14) 2021; 270 Martin-Guay (10.1016/j.fcr.2024.109647_bib37) 2018; 615 Dong (10.1016/j.fcr.2024.109647_bib9) 2019; 59 Gou (10.1016/j.fcr.2024.109647_bib20) 2016; 76 Mao (10.1016/j.fcr.2024.109647_bib36) 2014; 155 Willey (10.1016/j.fcr.2024.109647_bib62) 1990; 17 Ahmed (10.1016/j.fcr.2024.109647_bib1) 2020; 9 Robinson (10.1016/j.fcr.2024.109647_bib48) 1991; 14 Altendorf (10.1016/j.fcr.2024.109647_bib3) 2021; 61 Prine (10.1016/j.fcr.2024.109647_bib44) 1971; 11 Gao (10.1016/j.fcr.2024.109647_bib16) 2020; 9 Li (10.1016/j.fcr.2024.109647_bib30) 2020; 248 Gou (10.1016/j.fcr.2024.109647_bib19) 2017; 84 Sadras (10.1016/j.fcr.2024.109647_bib50) 2009; 183 Nakagawa (10.1016/j.fcr.2024.109647_bib41) 2013; 4 Yu (10.1016/j.fcr.2024.109647_bib66) 2015; 184 Hu (10.1016/j.fcr.2024.109647_bib24) 2020; 119 Zhu (10.1016/j.fcr.2024.109647_bib74) 2014; 65 Subedi (10.1016/j.fcr.2024.109647_bib53) 2005; 45 Yang (10.1016/j.fcr.2024.109647_bib64) 2023; 302 Zhang (10.1016/j.fcr.2024.109647_bib71) 2008; 106 Justes (10.1016/j.fcr.2024.109647_bib26) 2021; 8 Raza (10.1016/j.fcr.2024.109647_bib47) 2019; 8 Wang (10.1016/j.fcr.2024.109647_bib58) 2023; 291 Zhang (10.1016/j.fcr.2024.109647_bib67) 2018; 94 10.1016/j.fcr.2024.109647_bib38 Sadras (10.1016/j.fcr.2024.109647_bib51) 2012; 127 Gong (10.1016/j.fcr.2024.109647_bib18) 2022 Zhang (10.1016/j.fcr.2024.109647_bib70) 2008; 107 van der Werf (10.1016/j.fcr.2024.109647_bib55) 2021; 8 Huang (10.1016/j.fcr.2024.109647_bib25) 2017; 201 Cagnola (10.1016/j.fcr.2024.109647_bib7) 2021; 72 Dong (10.1016/j.fcr.2024.109647_bib8) 2024; 155 Li (10.1016/j.fcr.2024.109647_bib31) 2023; 120 Gallagher (10.1016/j.fcr.2024.109647_bib15) 1978; 91 Patrick (10.1016/j.fcr.2024.109647_bib43) 2010; 115 van Oort (10.1016/j.fcr.2024.109647_bib56) 2020; 112 Gao (10.1016/j.fcr.2024.109647_bib17) 2022; 284 Patrick (10.1016/j.fcr.2024.109647_bib42) 2014; 41 Qian (10.1016/j.fcr.2024.109647_bib45) 2018; 223 Wang (10.1016/j.fcr.2024.109647_bib59) 2021; 271 Wang (10.1016/j.fcr.2024.109647_bib61) 2022; 287 Bedoussac (10.1016/j.fcr.2024.109647_bib5) 2015; 35 Ye (10.1016/j.fcr.2024.109647_bib65) 2023; 291 Evers (10.1016/j.fcr.2024.109647_bib13) 2006; 97 Li (10.1016/j.fcr.2024.109647_bib32) 2006; 147 Zhang (10.1016/j.fcr.2024.109647_bib69) 2022; 282 Grant (10.1016/j.fcr.2024.109647_bib22) 1989; 81 Ajal (10.1016/j.fcr.2024.109647_bib2) 2022; 61 10.1016/j.fcr.2024.109647_bib46 Zhang (10.1016/j.fcr.2024.109647_bib68) 2003 |
References_xml | – volume: 61 start-page: 41 year: 2022 end-page: 52 ident: bib2 article-title: Intercropping drives plant phenotypic plasticity and changes in functional trait space publication-title: Basic Appl. Ecol. – volume: 115 start-page: 234 year: 2010 end-page: 242 ident: bib43 article-title: Physiology of flowering and grain filling in faba bean publication-title: Field Crops Res – volume: 35 start-page: 911 year: 2015 end-page: 935 ident: bib5 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review publication-title: Agron. Sustain Dev. – volume: 72 start-page: 3902 year: 2021 end-page: 3913 ident: bib7 article-title: Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops publication-title: J. Exp. Bot. – volume: 4 start-page: 133 year: 2013 end-page: 142 ident: bib41 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods Ecol. Evol. – volume: 112 year: 2020 ident: bib56 article-title: Effects of strip width on yields in relay-strip intercropping: a simulation study publication-title: Eur. J. Agron. – volume: 14 start-page: 77 year: 1991 end-page: 85 ident: bib48 article-title: What limits nitrate uptake from soil? publication-title: Plant Cell Environ. – volume: 290 year: 2023 ident: bib54 article-title: Intercropping and species interactions on physiological and light use characteristics of forage cereals-legumes combinations in semi-arid regions publication-title: Field Crops Res – volume: 8 start-page: 481 year: 2021 end-page: 489 ident: bib55 article-title: Comparing performance of crop species mixtures and pure stands publication-title: Front Agric. Sci. Eng. – volume: 41 start-page: 893 year: 2014 end-page: 913 ident: bib42 article-title: Crop yield components – photoassimilate supply- or utilisation limited-organ development? publication-title: Funct. Plant Biol. – volume: 84 start-page: 125 year: 2017 end-page: 139 ident: bib19 article-title: Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE publication-title: Eur. J. Agron. – volume: 201 start-page: 41 year: 2017 end-page: 51 ident: bib25 article-title: Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition publication-title: Field Crops Res – year: 2022 ident: bib18 article-title: Biodiversity and yield trade-offs for organic farming publication-title: Ecol. Lett. – volume: 106 start-page: 258 year: 2008 end-page: 268 ident: bib71 article-title: Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat publication-title: Field Crops Res – volume: 119 year: 2020 ident: bib24 article-title: Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas publication-title: Eur. J. Agron. – volume: 107 start-page: 29 year: 2008 end-page: 42 ident: bib70 article-title: Light interception and utilization in relay intercrops of wheat and cotton publication-title: Field Crops Res – volume: 95 start-page: 549 year: 2005 end-page: 567 ident: bib39 article-title: On the Factor Light in Plant Communities and its Importance for Matter Production publication-title: Ann. Bot. – volume: 18 start-page: 931 year: 1978 end-page: 934 ident: bib21 article-title: Multiple characters and correlated response publication-title: Crop Sci. – volume: 291 year: 2023 ident: bib58 article-title: Temporal complementarity drives species combinability in strip intercropping in the Netherlands publication-title: Field Crops Res – volume: 16 start-page: 363 year: 1985 end-page: 392 ident: bib6 article-title: Resource limitation in plants-an economic analogy publication-title: Ann. Rev. Ecol. Syst. – volume: 70 start-page: 2381 year: 2019 end-page: 2388 ident: bib12 article-title: Understanding and optimizing species mixtures using functional–structural plant modelling publication-title: J. Exp. Bot. – volume: 271 year: 2021 ident: bib59 article-title: Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping publication-title: Field Crops Res – volume: 291 year: 2023 ident: bib65 article-title: Mixed cropping of determinate and indeterminate soybean lines enhances productivity publication-title: Field Crops Res – volume: 76 start-page: 17 year: 2016 end-page: 27 ident: bib20 article-title: Yield and yield components of wheat and maize in wheat–maize intercropping in the Netherlands publication-title: Eur. J. Agron. – volume: 196 start-page: 379 year: 2016 end-page: 388 ident: bib40 article-title: Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment publication-title: Field Crops Res – volume: 94 start-page: 1 year: 2018 end-page: 11 ident: bib67 article-title: Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate publication-title: Eur. J. Agron. – start-page: 1 year: 2021 end-page: 26 ident: bib23 article-title: Root traits with team benefits: understanding belowground interactions in intercropping systems publication-title: Plant Soil 2021 – volume: 284 year: 2022 ident: bib17 article-title: Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut publication-title: Field Crops Res – volume: 297 year: 2023 ident: bib35 article-title: Predicting intercrop competition, facilitation, and productivity from simple functional traits publication-title: Field Crops Res – volume: 282 year: 2022 ident: bib69 article-title: Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition publication-title: Field Crops Res – volume: 168 start-page: 357 year: 2016 end-page: 372 ident: bib73 article-title: High productivity of wheat intercropped with maize is associated with plant architectural responses publication-title: Ann. Appl. Biol. – volume: 223 start-page: 33 year: 2018 end-page: 40 ident: bib45 article-title: Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: Yield advantages and economic benefits publication-title: Field Crops Res – volume: 97 start-page: 649 year: 2006 end-page: 658 ident: bib13 article-title: Cessation of tillering in spring wheat in relation to light interception and red: far-red ratio publication-title: Ann. Bot. – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib4 article-title: Fitting Linear Mixed-Effects Models Using lme4 publication-title: J. Stat. Softw. – reference: Ministerie van Landbouw Natuur en Voedselkwaliteit, 2019. Table 2 Stikstof landbouwgrond (in Dutch) [WWW Document]. URL – volume: 10 start-page: 285 year: 2021 end-page: 298 ident: bib57 article-title: Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density? publication-title: Food Energy Secur – volume: 8 start-page: 387 year: 2021 end-page: 399 ident: bib26 article-title: The 4C approach as a way to understand species interactions determining intercropping productivity publication-title: Front Agric. Sci. Eng. – volume: 287 year: 2022 ident: bib61 article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment publication-title: Field Crops Res – volume: 155 year: 2024 ident: bib8 article-title: Competition for light and nitrogen with an earlier-sown species negatively affects leaf traits and leaf photosynthetic capacity of maize in relay intercropping publication-title: Eur. J. Agron. – volume: 118 year: 2020 ident: bib49 article-title: Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis publication-title: Eur. J. Agron. – reference: R Core Team, (2023) R: A Language and Environment for Statistical Computing. – volume: 11 start-page: 782 year: 1971 end-page: 786 ident: bib44 article-title: A Critical Period for Ear Development in Maize1 publication-title: Crop Sci. – volume: 127 start-page: 215 year: 2012 end-page: 224 ident: bib51 article-title: Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities publication-title: Field Crops Res – volume: 81 start-page: 61 year: 1989 end-page: 65 ident: bib22 article-title: Water Deficit Timing Effects on Yield Components in Maize publication-title: Agron. J. – volume: 72 start-page: 3630 year: 2021 end-page: 3646 ident: bib33 article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping publication-title: J. Exp. Bot. – volume: 6 start-page: 3139 year: 2021 ident: bib34 article-title: performance: an R Package for Assessment, Comparison and Testing of Statistical Models publication-title: J. Open Source Softw. – volume: 257 start-page: 151 year: 2003 end-page: 161 ident: bib63 article-title: Root growth and water uptake in winter wheat under deficit irrigation publication-title: Plant Soil – volume: 119 start-page: 561 year: 1991 end-page: 601 ident: bib28 article-title: A uniform decimal code for growth stages of crops and weeds publication-title: Ann. Appl. Biol. – volume: 207 start-page: 1213 year: 2015 end-page: 1222 ident: bib72 article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures publication-title: N. Phytol. – volume: 120 year: 2023 ident: bib31 article-title: The productive performance of intercropping publication-title: Proc. Natl. Acad. Sci. – volume: 9 year: 2020 ident: bib16 article-title: Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input publication-title: Food Energy Secur – reference: (accessed 4.12.22). – volume: 17 start-page: 215 year: 1990 end-page: 231 ident: bib62 article-title: Resource use in intercropping systems publication-title: Agric. Water Manag – volume: 147 start-page: 280 year: 2006 end-page: 290 ident: bib32 article-title: Root distribution and interactions between intercropped species publication-title: Oecologia – year: 1975 ident: bib11 publication-title: Crop Physiology: Some Case Histories – volume: 8 year: 2019 ident: bib47 article-title: Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system publication-title: Food Energy Secur – volume: 91 start-page: 47 year: 1978 end-page: 60 ident: bib15 article-title: Radiation absorption, growth and yield of cereals publication-title: J. Agric. Sci. – volume: 241 year: 2019 ident: bib27 article-title: Yield determination and the critical period of faba bean (Vicia faba L.) publication-title: Field Crops Res – volume: 155 start-page: 67 year: 2014 end-page: 76 ident: bib36 article-title: Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator publication-title: Field Crops Res – volume: 270 year: 2021 ident: bib14 article-title: Maize/peanut intercropping increases land productivity: A meta-analysis publication-title: Field Crops Res – start-page: 1 year: 2020 end-page: 50 ident: bib52 article-title: Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? publication-title: Advances in Agronomy – volume: 3 start-page: 319 year: 2020 end-page: 324 ident: bib10 article-title: Plant growth response of broad bean (Vicia faba L.) to biochar amendment of loamy sand soil under irrigated and drought conditions publication-title: Environ. Sustain. 2020 – volume: 9 year: 2020 ident: bib1 article-title: Optimized planting time and co-growth duration reduce the yield difference between intercropped and sole soybean by enhancing soybean resilience toward size-asymmetric competition publication-title: Food Energy Secur – volume: 248 year: 2020 ident: bib30 article-title: Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping publication-title: Field Crops Res – year: 2003 ident: bib68 article-title: Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency publication-title: Plant Soil – volume: 59 start-page: 363 year: 2019 end-page: 378 ident: bib9 article-title: Effects of shading stress on grain number, yield, and photosynthesis during early reproductive growth in wheat publication-title: Crop Sci. – volume: 184 start-page: 133 year: 2015 end-page: 144 ident: bib66 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis publication-title: Field Crops Res – volume: 302 year: 2023 ident: bib64 article-title: Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems publication-title: Field Crops Res – volume: 253 year: 2020 ident: bib60 article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping publication-title: Field Crops Res – volume: 615 start-page: 767 year: 2018 end-page: 772 ident: bib37 article-title: The new green revolution: sustainable intensification of agriculture by intercropping publication-title: Sci. Total Environ. – volume: 61 start-page: 1073 year: 2021 end-page: 1088 ident: bib3 article-title: Floret site utilization and reproductive tiller number are primary components of grain yield in intermediate wheatgrass spaced plants publication-title: Crop Sci. – volume: 6 start-page: 653 year: 2020 end-page: 660 ident: bib29 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nat. Plants – volume: 65 start-page: 641 year: 2014 end-page: 653 ident: bib74 article-title: Early competition shapes maize whole-plant development in mixed stands publication-title: J. Exp. Bot. – volume: 45 start-page: 2246 year: 2005 end-page: 2257 ident: bib53 article-title: Ear Position, Leaf Area, and Contribution of Individual Leaves to Grain Yield in Conventional and Leafy Maize Hybrids publication-title: Crop Sci. – volume: 183 start-page: 565 year: 2009 end-page: 574 ident: bib50 article-title: Do plant parts compete for resources? An evolutionary viewpoint publication-title: N. Phytol. – volume: 41 start-page: 893 year: 2014 ident: 10.1016/j.fcr.2024.109647_bib42 article-title: Crop yield components – photoassimilate supply- or utilisation limited-organ development? publication-title: Funct. Plant Biol. doi: 10.1071/FP14048 – volume: 76 start-page: 17 year: 2016 ident: 10.1016/j.fcr.2024.109647_bib20 article-title: Yield and yield components of wheat and maize in wheat–maize intercropping in the Netherlands publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.01.005 – volume: 223 start-page: 33 year: 2018 ident: 10.1016/j.fcr.2024.109647_bib45 article-title: Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: Yield advantages and economic benefits publication-title: Field Crops Res doi: 10.1016/j.fcr.2018.04.004 – volume: 257 start-page: 151 year: 2003 ident: 10.1016/j.fcr.2024.109647_bib63 article-title: Root growth and water uptake in winter wheat under deficit irrigation publication-title: Plant Soil doi: 10.1023/A:1026230527597 – volume: 284 year: 2022 ident: 10.1016/j.fcr.2024.109647_bib17 article-title: Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108561 – volume: 241 year: 2019 ident: 10.1016/j.fcr.2024.109647_bib27 article-title: Yield determination and the critical period of faba bean (Vicia faba L.) publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107575 – volume: 155 start-page: 67 year: 2014 ident: 10.1016/j.fcr.2024.109647_bib36 article-title: Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator publication-title: Field Crops Res doi: 10.1016/j.fcr.2013.09.021 – volume: 270 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib14 article-title: Maize/peanut intercropping increases land productivity: A meta-analysis publication-title: Field Crops Res doi: 10.1016/j.fcr.2021.108208 – volume: 615 start-page: 767 year: 2018 ident: 10.1016/j.fcr.2024.109647_bib37 article-title: The new green revolution: sustainable intensification of agriculture by intercropping publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.024 – volume: 120 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib31 article-title: The productive performance of intercropping publication-title: Proc. Natl. Acad. Sci. – volume: 147 start-page: 280 year: 2006 ident: 10.1016/j.fcr.2024.109647_bib32 article-title: Root distribution and interactions between intercropped species publication-title: Oecologia doi: 10.1007/s00442-005-0256-4 – volume: 95 start-page: 549 year: 2005 ident: 10.1016/j.fcr.2024.109647_bib39 article-title: On the Factor Light in Plant Communities and its Importance for Matter Production publication-title: Ann. Bot. doi: 10.1093/aob/mci052 – volume: 61 start-page: 41 year: 2022 ident: 10.1016/j.fcr.2024.109647_bib2 article-title: Intercropping drives plant phenotypic plasticity and changes in functional trait space publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2022.03.009 – volume: 18 start-page: 931 year: 1978 ident: 10.1016/j.fcr.2024.109647_bib21 article-title: Multiple characters and correlated response publication-title: Crop Sci. doi: 10.2135/cropsci1978.0011183X001800060004x – volume: 17 start-page: 215 year: 1990 ident: 10.1016/j.fcr.2024.109647_bib62 article-title: Resource use in intercropping systems publication-title: Agric. Water Manag doi: 10.1016/0378-3774(90)90069-B – volume: 61 start-page: 1073 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib3 article-title: Floret site utilization and reproductive tiller number are primary components of grain yield in intermediate wheatgrass spaced plants publication-title: Crop Sci. doi: 10.1002/csc2.20385 – volume: 94 start-page: 1 year: 2018 ident: 10.1016/j.fcr.2024.109647_bib67 article-title: Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.01.001 – year: 2022 ident: 10.1016/j.fcr.2024.109647_bib18 article-title: Biodiversity and yield trade-offs for organic farming publication-title: Ecol. Lett. doi: 10.1111/ele.14017 – volume: 8 start-page: 387 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib26 article-title: The 4C approach as a way to understand species interactions determining intercropping productivity publication-title: Front Agric. Sci. Eng. – ident: 10.1016/j.fcr.2024.109647_bib38 – volume: 183 start-page: 565 year: 2009 ident: 10.1016/j.fcr.2024.109647_bib50 article-title: Do plant parts compete for resources? An evolutionary viewpoint publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2009.02848.x – volume: 119 start-page: 561 year: 1991 ident: 10.1016/j.fcr.2024.109647_bib28 article-title: A uniform decimal code for growth stages of crops and weeds publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1991.tb04895.x – volume: 297 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib35 article-title: Predicting intercrop competition, facilitation, and productivity from simple functional traits publication-title: Field Crops Res doi: 10.1016/j.fcr.2023.108926 – year: 2003 ident: 10.1016/j.fcr.2024.109647_bib68 article-title: Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency publication-title: Plant Soil doi: 10.1023/A:1022352229863 – volume: 287 year: 2022 ident: 10.1016/j.fcr.2024.109647_bib61 article-title: Intercropping-driven nitrogen trade-off enhances maize productivity in a long-term experiment publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108671 – volume: 291 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib65 article-title: Mixed cropping of determinate and indeterminate soybean lines enhances productivity publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108785 – volume: 3 start-page: 319 issue: 3 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib10 article-title: Plant growth response of broad bean (Vicia faba L.) to biochar amendment of loamy sand soil under irrigated and drought conditions publication-title: Environ. Sustain. 2020 – volume: 14 start-page: 77 year: 1991 ident: 10.1016/j.fcr.2024.109647_bib48 article-title: What limits nitrate uptake from soil? publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1991.tb01373.x – volume: 4 start-page: 133 year: 2013 ident: 10.1016/j.fcr.2024.109647_bib41 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210x.2012.00261.x – start-page: 1 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib52 article-title: Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? doi: 10.1016/bs.agron.2019.10.002 – volume: 9 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib1 article-title: Optimized planting time and co-growth duration reduce the yield difference between intercropped and sole soybean by enhancing soybean resilience toward size-asymmetric competition publication-title: Food Energy Secur doi: 10.1002/fes3.226 – volume: 59 start-page: 363 year: 2019 ident: 10.1016/j.fcr.2024.109647_bib9 article-title: Effects of shading stress on grain number, yield, and photosynthesis during early reproductive growth in wheat publication-title: Crop Sci. doi: 10.2135/cropsci2018.06.0396 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.fcr.2024.109647_bib4 article-title: Fitting Linear Mixed-Effects Models Using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 201 start-page: 41 year: 2017 ident: 10.1016/j.fcr.2024.109647_bib25 article-title: Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.10.021 – volume: 107 start-page: 29 year: 2008 ident: 10.1016/j.fcr.2024.109647_bib70 article-title: Light interception and utilization in relay intercrops of wheat and cotton publication-title: Field Crops Res doi: 10.1016/j.fcr.2007.12.014 – volume: 70 start-page: 2381 year: 2019 ident: 10.1016/j.fcr.2024.109647_bib12 article-title: Understanding and optimizing species mixtures using functional–structural plant modelling publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery288 – volume: 271 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib59 article-title: Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping publication-title: Field Crops Res doi: 10.1016/j.fcr.2021.108239 – volume: 10 start-page: 285 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib57 article-title: Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density? publication-title: Food Energy Secur doi: 10.1002/fes3.270 – volume: 6 start-page: 3139 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib34 article-title: performance: an R Package for Assessment, Comparison and Testing of Statistical Models publication-title: J. Open Source Softw. doi: 10.21105/joss.03139 – volume: 106 start-page: 258 year: 2008 ident: 10.1016/j.fcr.2024.109647_bib71 article-title: Temperature-mediated developmental delay may limit yield of cotton in relay intercrops with wheat publication-title: Field Crops Res doi: 10.1016/j.fcr.2007.12.010 – volume: 207 start-page: 1213 year: 2015 ident: 10.1016/j.fcr.2024.109647_bib72 article-title: The contribution of phenotypic plasticity to complementary light capture in plant mixtures publication-title: N. Phytol. doi: 10.1111/nph.13416 – volume: 65 start-page: 641 year: 2014 ident: 10.1016/j.fcr.2024.109647_bib74 article-title: Early competition shapes maize whole-plant development in mixed stands publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert408 – volume: 112 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib56 article-title: Effects of strip width on yields in relay-strip intercropping: a simulation study publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125936 – volume: 168 start-page: 357 year: 2016 ident: 10.1016/j.fcr.2024.109647_bib73 article-title: High productivity of wheat intercropped with maize is associated with plant architectural responses publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12268 – volume: 282 year: 2022 ident: 10.1016/j.fcr.2024.109647_bib69 article-title: Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108523 – volume: 115 start-page: 234 year: 2010 ident: 10.1016/j.fcr.2024.109647_bib43 article-title: Physiology of flowering and grain filling in faba bean publication-title: Field Crops Res doi: 10.1016/j.fcr.2009.06.005 – year: 1975 ident: 10.1016/j.fcr.2024.109647_bib11 – volume: 127 start-page: 215 year: 2012 ident: 10.1016/j.fcr.2024.109647_bib51 article-title: Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities publication-title: Field Crops Res doi: 10.1016/j.fcr.2011.11.014 – volume: 35 start-page: 911 year: 2015 ident: 10.1016/j.fcr.2024.109647_bib5 article-title: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review publication-title: Agron. Sustain Dev. doi: 10.1007/s13593-014-0277-7 – volume: 119 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib24 article-title: Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126117 – volume: 72 start-page: 3902 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib7 article-title: Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab119 – volume: 155 year: 2024 ident: 10.1016/j.fcr.2024.109647_bib8 article-title: Competition for light and nitrogen with an earlier-sown species negatively affects leaf traits and leaf photosynthetic capacity of maize in relay intercropping publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2024.127119 – volume: 248 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib30 article-title: Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping publication-title: Field Crops Res doi: 10.1016/j.fcr.2019.107656 – volume: 45 start-page: 2246 year: 2005 ident: 10.1016/j.fcr.2024.109647_bib53 article-title: Ear Position, Leaf Area, and Contribution of Individual Leaves to Grain Yield in Conventional and Leafy Maize Hybrids publication-title: Crop Sci. doi: 10.2135/cropsci2004.0653 – volume: 118 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib49 article-title: Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126077 – volume: 253 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib60 article-title: Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping publication-title: Field Crops Res doi: 10.1016/j.fcr.2020.107819 – volume: 290 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib54 article-title: Intercropping and species interactions on physiological and light use characteristics of forage cereals-legumes combinations in semi-arid regions publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108755 – volume: 184 start-page: 133 year: 2015 ident: 10.1016/j.fcr.2024.109647_bib66 article-title: Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis publication-title: Field Crops Res doi: 10.1016/j.fcr.2015.09.010 – volume: 91 start-page: 47 year: 1978 ident: 10.1016/j.fcr.2024.109647_bib15 article-title: Radiation absorption, growth and yield of cereals publication-title: J. Agric. Sci. doi: 10.1017/S0021859600056616 – volume: 6 start-page: 653 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib29 article-title: Syndromes of production in intercropping impact yield gains publication-title: Nat. Plants doi: 10.1038/s41477-020-0680-9 – volume: 291 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib58 article-title: Temporal complementarity drives species combinability in strip intercropping in the Netherlands publication-title: Field Crops Res doi: 10.1016/j.fcr.2022.108757 – volume: 196 start-page: 379 year: 2016 ident: 10.1016/j.fcr.2024.109647_bib40 article-title: Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment publication-title: Field Crops Res doi: 10.1016/j.fcr.2016.07.017 – volume: 81 start-page: 61 year: 1989 ident: 10.1016/j.fcr.2024.109647_bib22 article-title: Water Deficit Timing Effects on Yield Components in Maize publication-title: Agron. J. doi: 10.2134/agronj1989.00021962008100010011x – volume: 16 start-page: 363 year: 1985 ident: 10.1016/j.fcr.2024.109647_bib6 article-title: Resource limitation in plants-an economic analogy publication-title: Ann. Rev. Ecol. Syst. doi: 10.1146/annurev.es.16.110185.002051 – volume: 8 year: 2019 ident: 10.1016/j.fcr.2024.109647_bib47 article-title: Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system publication-title: Food Energy Secur doi: 10.1002/fes3.170 – volume: 8 start-page: 481 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib55 article-title: Comparing performance of crop species mixtures and pure stands publication-title: Front Agric. Sci. Eng. – volume: 302 year: 2023 ident: 10.1016/j.fcr.2024.109647_bib64 article-title: Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems publication-title: Field Crops Res doi: 10.1016/j.fcr.2023.109093 – ident: 10.1016/j.fcr.2024.109647_bib46 – volume: 9 year: 2020 ident: 10.1016/j.fcr.2024.109647_bib16 article-title: Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input publication-title: Food Energy Secur doi: 10.1002/fes3.187 – volume: 84 start-page: 125 year: 2017 ident: 10.1016/j.fcr.2024.109647_bib19 article-title: Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.10.014 – volume: 11 start-page: 782 year: 1971 ident: 10.1016/j.fcr.2024.109647_bib44 article-title: A Critical Period for Ear Development in Maize1 publication-title: Crop Sci. doi: 10.2135/cropsci1971.0011183X001100060003x – volume: 97 start-page: 649 year: 2006 ident: 10.1016/j.fcr.2024.109647_bib13 article-title: Cessation of tillering in spring wheat in relation to light interception and red: far-red ratio publication-title: Ann. Bot. doi: 10.1093/aob/mcl020 – start-page: 1 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib23 article-title: Root traits with team benefits: understanding belowground interactions in intercropping systems publication-title: Plant Soil 2021 – volume: 72 start-page: 3630 year: 2021 ident: 10.1016/j.fcr.2024.109647_bib33 article-title: Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab077 |
SSID | ssj0006616 |
Score | 2.4580858 |
Snippet | The partitioning of light between species in intercrops changes over time in relation to the earliness of canopy development of each species, the final plant... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 109647 |
SubjectTerms | canopy continuous cropping corn crops early development faba beans intercropping leaf area index Light capture Netherlands peas Pisum sativum plant height Relay intercropping seed weight Seed yield species Strip intercropping Triticum aestivum Vicia faba wheat Yield components Zea mays |
Title | Competition for light drives yield components in strip intercropping in the Netherlands |
URI | https://dx.doi.org/10.1016/j.fcr.2024.109647 https://www.proquest.com/docview/3154264727 |
Volume | 320 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VsMCAeIryqIzEhBTaxk7cjFVFVUB0gYpulmM7qAilVWgHFn47d04iHkIMrFZiWZfzd-f4u-8Azm3krA6lDRDqbCBwNwVpkmSB4C6TJo5C6ZtN3I3j0UTcTKNpAwZ1LQzRKivsLzHdo3U10q6s2V7MZu37Dpc9RFMS6SJPJMVPISR5-eX7J80D4095X4mnJXq6vtn0HK_MkCRoKEhUKaYOK7_Hph8o7UPPcBu2qpyR9ctl7UDD5buw2X8qKt0MtwePA5__ev4VwzyUvdChm9mCVGXZG9HUGLHH5zkRJ9gsZ9SvY8FILaKgLl5UNkXDmA-yL0XA-zAZXj0MRkHVMyEwPIyWQaJ1ZiQ3Pc15ZoXtdhFBUtx1eNILtTEiEtpi3Nc9YbqS1CETF8epkFpaHiWGH8Bajms5BIaZrNWOClk7WrhYJjif5DJLnYwxaRRNuKitpRalNIaqOWPPCk2ryLSqNG0TRG1P9e37KoTuv147q22v0O_pMkPnbr56VRxzv5C07-XR_6Y-ho2Qevn63yknsLYsVu4UE4xl2vIe1IL1_vXtaPwBwQrPdg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPfRvAkLLWb7KZ7LEVp7eNii72FbJKViqxlbQ_-e2f2ISriwWsgIXybfPmymfkG4MoGzmpfWg-pznoCd5MXR1HiCe4SacLAl3mxidE47E3F_SyY1aBb5cJQWGXJ_QWn52xdtjRLNJuL-bz5cMNlG9mUTLpoJfI1aJA7VVCHRqc_6I0_CRmPoOLJEi9M1KF63MzDvBJDrqC-IF-lkIqs_H48_SDq_PS524atUjayTjGzHai5dBc2O09ZaZ3h9uCxm0vgPASLoRRlL3TvZjYjY1n2TpFqjALIX1OKnWDzlFHJjgUjw4iMCnlR5hQ1oyRkX_KA92F6dzvp9ryybIJnuB8svUjrxEhu2przxArbaiGJxLjx8LLna2MQJG3x6NdtYVqSDCIjF4axkFpaHkSGH0A9xbkcAkMxa7WjXNYbLVwoIxxPcpnEToaoG8URXFdoqUXhjqGqsLFnhdAqglYV0B6BqPBU3z6xQvb-q9tlhb3CpU_vGTp1r6s3xVH--WR_L4__N_QFrPcmo6Ea9seDE9jwqbRv_nflFOrLbOXOUG8s4_NyPX0A7qvSJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competition+for+light+drives+yield+components+in+strip+intercropping+in+the+Netherlands&rft.jtitle=Field+crops+research&rft.au=Wang%2C+Zishen&rft.au=Dong%2C+Bei&rft.au=Stomph%2C+Tjeerd-Jan&rft.au=Evers%2C+Jochem+B&rft.date=2025-01-01&rft.issn=0378-4290&rft.volume=320+p.109647-&rft_id=info:doi/10.1016%2Fj.fcr.2024.109647&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |