Spectral extremal graphs for intersecting cliques

The (k,r)-fan is the graph consisting of k copies of the complete graph Kr which intersect in a single vertex, and is denoted by Fk,r. Erdős et al. (1995) [14] determined the maximum number of edges in an n-vertex graph that does not contain Fk,3 as a subgraph. Furthermore, Chen et al. (2003) [5] pr...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 644; pp. 234 - 258
Main Authors Desai, Dheer Noal, Kang, Liying, Li, Yongtao, Ni, Zhenyu, Tait, Michael, Wang, Jing
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.07.2022
American Elsevier Company, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The (k,r)-fan is the graph consisting of k copies of the complete graph Kr which intersect in a single vertex, and is denoted by Fk,r. Erdős et al. (1995) [14] determined the maximum number of edges in an n-vertex graph that does not contain Fk,3 as a subgraph. Furthermore, Chen et al. (2003) [5] proved the analogous result on Fk,r for the general case r≥3. In this paper, we show that for sufficiently large n, the graphs of order n that contain no copy of Fk,r and attain the maximum spectral radius are also edge-extremal. That is, such graphs must have ex(n,Fk,r) edges.
AbstractList The (k,r)-fan is the graph consisting of k copies of the complete graph Kr which intersect in a single vertex, and is denoted by Fk,r. Erdős et al. (1995) [14] determined the maximum number of edges in an n-vertex graph that does not contain Fk,3 as a subgraph. Furthermore, Chen et al. (2003) [5] proved the analogous result on Fk,r for the general case r≥3. In this paper, we show that for sufficiently large n, the graphs of order n that contain no copy of Fk,r and attain the maximum spectral radius are also edge-extremal. That is, such graphs must have ex(n,Fk,r) edges.
The (k,r)-fan is the graph consisting of k copies of the complete graph Kr which intersect in a single vertex, and is denoted by Fk,r. Erdős et al. (1995) [14] determined the maximum number of edges in an n-vertex graph that does not contain Fk,3 as a subgraph. Furthermore, Chen et al. (2003) [5] proved the analogous result on Fk,r for the general case r ≥ 3. In this paper, we show that for sufficiently large n, the graphs of order n that contain no copy of Fk,r and attain the maximum spectral radius are also edge-extremal. That is, such graphs must have ex(n, Fk,r) edges.
Author Tait, Michael
Ni, Zhenyu
Desai, Dheer Noal
Li, Yongtao
Wang, Jing
Kang, Liying
Author_xml – sequence: 1
  givenname: Dheer Noal
  orcidid: 0000-0002-2529-8937
  surname: Desai
  fullname: Desai, Dheer Noal
  email: dheernsd@udel.edu
  organization: Department of Mathematical Sciences, University of Delaware, USA
– sequence: 2
  givenname: Liying
  orcidid: 0000-0002-7752-0392
  surname: Kang
  fullname: Kang, Liying
  email: lykang@shu.edu.cn
  organization: Department of Mathematics, Shanghai University, Shanghai 200444, PR China
– sequence: 3
  givenname: Yongtao
  surname: Li
  fullname: Li, Yongtao
  email: ytli0921@hnu.edu.cn
  organization: School of Mathematics, Hunan University, Changsha, PR China
– sequence: 4
  givenname: Zhenyu
  surname: Ni
  fullname: Ni, Zhenyu
  email: 1051466287@qq.com
  organization: Department of Mathematics, Hainan University, Haikou 570228, PR China
– sequence: 5
  givenname: Michael
  orcidid: 0000-0003-3695-6883
  surname: Tait
  fullname: Tait, Michael
  email: michael.tait@villanova.edu
  organization: Department of Mathematics and Statistics, Villanova University, USA
– sequence: 6
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  email: wj517062214@163.com
  organization: Department of Mathematics, Shanghai University, Shanghai 200444, PR China
BookMark eNp9kLtOwzAUhi1UJFrgAdgiMScc23FiiwlV3KRKDMBsuc5JcZQ6wU4RvD2uysTQyUfW_53LtyAzP3gk5IpCQYFWN13RG1MwYKwAXgAVJ2ROZc1zKkU1I3MAVua8VuKMLGLsAKCsgc0JfR3RTsH0GX5PAbep2AQzfsSsHULm_IQhpoDzm8z27nOH8YKctqaPePn3npP3h_u35VO-enl8Xt6tcsuZmHIlGqlaY1ipgBnRYFO1wlLO1XoNTDRcMlUpDpLytUwf2FKUyoCywAVrDT8n14e-Yxj2cyfdDbvg00jN6rQ_iJJBStFDyoYhxoCtHoPbmvCjKei9Gd3pZEbvzWjgOplJTP2PsW4ykxt8EuH6o-TtgcR0-JfDoKN16C02LiRLuhncEfoXOJN-Cw
CitedBy_id crossref_primary_10_1016_j_laa_2024_12_018
crossref_primary_10_1016_j_disc_2024_114141
crossref_primary_10_1016_j_disc_2022_113264
crossref_primary_10_1016_j_disc_2023_113680
crossref_primary_10_1016_j_laa_2024_05_015
crossref_primary_10_1016_j_dam_2023_06_048
crossref_primary_10_1016_j_laa_2023_05_008
crossref_primary_10_1016_j_laa_2024_02_025
crossref_primary_10_1016_j_ejc_2025_104136
crossref_primary_10_1016_j_laa_2023_11_018
crossref_primary_10_1016_j_jctb_2022_11_002
crossref_primary_10_1016_j_laa_2023_02_019
crossref_primary_10_1137_22M1507814
crossref_primary_10_1016_j_disc_2024_113977
crossref_primary_10_1137_22M150650X
Cites_doi 10.1016/j.aml.2005.11.030
10.1016/j.laa.2009.01.005
10.37236/122
10.1017/S0963548309009687
10.1016/j.laa.2007.07.010
10.1016/0095-8956(76)90004-6
10.1007/978-1-4471-6569-9
10.1016/0097-3165(72)90103-3
10.1016/j.ejc.2021.103420
10.1016/j.jctb.2015.05.001
10.1016/j.laa.2012.05.006
10.1006/jcta.1996.0067
10.1090/S0002-9904-1946-08715-7
10.1016/j.disc.2011.07.018
10.1006/jctb.1995.1026
10.37236/212
10.26493/1855-3974.499.103
10.1016/0095-8956(86)90069-9
10.1017/S0963548301004928
10.1017/S0963548300001814
10.1016/j.laa.2009.05.023
10.1002/jgt.20399
10.1016/j.laa.2021.01.018
10.4064/cm-3-1-50-57
10.1016/j.laa.2009.10.040
10.1016/S0095-8956(03)00044-3
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright American Elsevier Company, Inc. Jul 1, 2022
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Jul 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.laa.2022.03.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 258
ExternalDocumentID 10_1016_j_laa_2022_03_015
S0024379522001161
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2011553
  funderid: https://doi.org/10.13039/100000001
– fundername: NSFC
  grantid: 11931002; 11671124
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Nature Science Foundation of China
  grantid: 11871329; 11971298
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
RIG
SEW
SSH
SSZ
T9H
WUQ
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-95d89faa24902a5ded6f5c1339bb025d38296930813b8025ef1e89a09c0352fa3
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Sun Jul 13 04:09:30 EDT 2025
Tue Jul 01 03:18:11 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Fri Feb 23 02:41:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intersecting cliques
05C50
Spectral radius
Extremal graph
Stability method
15A69
05C35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-95d89faa24902a5ded6f5c1339bb025d38296930813b8025ef1e89a09c0352fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3695-6883
0000-0002-2529-8937
0000-0002-7752-0392
PQID 2700005420
PQPubID 2047554
PageCount 25
ParticipantIDs proquest_journals_2700005420
crossref_primary_10_1016_j_laa_2022_03_015
crossref_citationtrail_10_1016_j_laa_2022_03_015
elsevier_sciencedirect_doi_10_1016_j_laa_2022_03_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2022
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Erdős, Füredi, Gould, Gunderson (br0140) 1995; 64
Nikiforov (br0310) 2011; vol. 392
Turán (br0350) 1941; 48
Mantel (br0230) 1907; 10
Delorme (br0110) 2012; 312
Wilf (br0360) 1986; 65
Erdős, Simonovits (br0120) 1966; 1
Nikiforov (br0240) 2002; 11
Nikiforov (br0260) 2009; 16
Li, Peng (br0370) 2021
Chen, Liu, Zhang (br0060) 2021
Fiedler, Nikiforov (br0160) 2010; 432
Kövári, Sós, Turán (br0220) 1954; 3
Erdős, Stone (br0130) 1946; 52
Stevanović, Gutman, Rehman (br0340) 2015; 9
Abbott, Hanson, Sauer (br0010) 1972; 12
Nikiforov (br0290) 2009; 18
Nikiforov (br0300) 2009; 62
Simonovits (br0330) 2013
Babai, Guiduli (br0020) 2009; 15
Chen, Gould, Pfender, Wei (br0050) 2003; 89
Cioabă, Feng, Tait, Zhang (br0080) 2020; 27
Bapat (br0030) 2014
Simonovits (br0320) 1968
Füredi (br0170) 1996; 5
Füredi (br0190) 2015; 115
Füredi, Simonovits (br0200) 2013; vol. 25
Nikiforov (br0270) 2010; 414
Nikiforov (br0280) 2010; 432
Feng, Li, Zhang (br0150) 2007; 20
Cioabă, Desai, Tait (br0090) 2022; 99
Zhao, Huang, Guo (br0390) 2021; 618
Keevash (br0210) 2011
Nikiforov (br0250) 2007; 427
Cvetković, Doob, Sachs (br0100) 1980
Chvátal, Hanson (br0070) 1976; 20
Zhai, Wang (br0380) 2012; 430
Bollobás (br0040) 1978
Füredi (br0180) 1996; 75
Erdős (10.1016/j.laa.2022.03.015_br0140) 1995; 64
Wilf (10.1016/j.laa.2022.03.015_br0360) 1986; 65
Füredi (10.1016/j.laa.2022.03.015_br0170) 1996; 5
Chen (10.1016/j.laa.2022.03.015_br0060)
Füredi (10.1016/j.laa.2022.03.015_br0190) 2015; 115
Li (10.1016/j.laa.2022.03.015_br0370)
Nikiforov (10.1016/j.laa.2022.03.015_br0250) 2007; 427
Feng (10.1016/j.laa.2022.03.015_br0150) 2007; 20
Füredi (10.1016/j.laa.2022.03.015_br0180) 1996; 75
Zhai (10.1016/j.laa.2022.03.015_br0380) 2012; 430
Fiedler (10.1016/j.laa.2022.03.015_br0160) 2010; 432
Keevash (10.1016/j.laa.2022.03.015_br0210) 2011
Erdős (10.1016/j.laa.2022.03.015_br0130) 1946; 52
Chvátal (10.1016/j.laa.2022.03.015_br0070) 1976; 20
Bapat (10.1016/j.laa.2022.03.015_br0030) 2014
Erdős (10.1016/j.laa.2022.03.015_br0120) 1966; 1
Delorme (10.1016/j.laa.2022.03.015_br0110) 2012; 312
Kövári (10.1016/j.laa.2022.03.015_br0220) 1954; 3
Nikiforov (10.1016/j.laa.2022.03.015_br0240) 2002; 11
Babai (10.1016/j.laa.2022.03.015_br0020) 2009; 15
Cioabă (10.1016/j.laa.2022.03.015_br0080) 2020; 27
Simonovits (10.1016/j.laa.2022.03.015_br0330) 2013
Füredi (10.1016/j.laa.2022.03.015_br0200) 2013; vol. 25
Bollobás (10.1016/j.laa.2022.03.015_br0040) 1978
Nikiforov (10.1016/j.laa.2022.03.015_br0310) 2011; vol. 392
Nikiforov (10.1016/j.laa.2022.03.015_br0300) 2009; 62
Cvetković (10.1016/j.laa.2022.03.015_br0100) 1980
Simonovits (10.1016/j.laa.2022.03.015_br0320) 1968
Nikiforov (10.1016/j.laa.2022.03.015_br0260) 2009; 16
Nikiforov (10.1016/j.laa.2022.03.015_br0270) 2010; 414
Cioabă (10.1016/j.laa.2022.03.015_br0090) 2022; 99
Stevanović (10.1016/j.laa.2022.03.015_br0340) 2015; 9
Nikiforov (10.1016/j.laa.2022.03.015_br0280) 2010; 432
Nikiforov (10.1016/j.laa.2022.03.015_br0290) 2009; 18
Turán (10.1016/j.laa.2022.03.015_br0350) 1941; 48
Mantel (10.1016/j.laa.2022.03.015_br0230) 1907; 10
Abbott (10.1016/j.laa.2022.03.015_br0010) 1972; 12
Chen (10.1016/j.laa.2022.03.015_br0050) 2003; 89
Zhao (10.1016/j.laa.2022.03.015_br0390) 2021; 618
References_xml – volume: 312
  start-page: 2532
  year: 2012
  end-page: 2535
  ident: br0110
  article-title: Eigenvalues of complete multipartite graphs
  publication-title: Discrete Math.
– volume: 115
  start-page: 66
  year: 2015
  end-page: 71
  ident: br0190
  article-title: A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity
  publication-title: J. Comb. Theory, Ser. B
– year: 1978
  ident: br0040
  article-title: Extremal Graph Theory
– volume: 20
  start-page: 128
  year: 1976
  end-page: 138
  ident: br0070
  article-title: Degrees and matchings
  publication-title: J. Comb. Theory, Ser. B
– volume: 20
  start-page: 158
  year: 2007
  end-page: 162
  ident: br0150
  article-title: Spectral radii of graphs with given chromatic number
  publication-title: Appl. Math. Lett.
– volume: 75
  start-page: 141
  year: 1996
  end-page: 144
  ident: br0180
  article-title: New asympotics for bipartite Turán numbers
  publication-title: J. Comb. Theory, Ser. A
– start-page: 279
  year: 1968
  end-page: 319
  ident: br0320
  article-title: A method for solving extremal problems in graph theory, stability problems
  publication-title: Theory of Graphs
– volume: 9
  start-page: 109
  year: 2015
  end-page: 113
  ident: br0340
  article-title: On spectral radius and enery of complete multipartite graphs
  publication-title: Ars Math. Contemp.
– volume: 618
  start-page: 12
  year: 2021
  end-page: 21
  ident: br0390
  article-title: The signless Laplacian spectral radius of graphs with no intersecting triangles
  publication-title: Linear Algebra Appl.
– volume: 15
  start-page: R123
  year: 2009
  ident: br0020
  article-title: Spectral extrema for graphs: the Zarankiewicz problem
  publication-title: Electron. J. Comb.
– volume: 18
  start-page: 455
  year: 2009
  end-page: 458
  ident: br0290
  article-title: A spectral Erdős-Stone-Bollobás theorem
  publication-title: Comb. Probab. Comput.
– volume: 62
  start-page: 362
  year: 2009
  end-page: 368
  ident: br0300
  article-title: Stability for large forbidden subgraphs
  publication-title: J. Graph Theory
– volume: 5
  start-page: 29
  year: 1996
  end-page: 33
  ident: br0170
  article-title: An upper bound on Zarankiewicz problem
  publication-title: Comb. Probab. Comput.
– volume: 52
  start-page: 1087
  year: 1946
  end-page: 1091
  ident: br0130
  article-title: On the structure of linear graphs
  publication-title: Bull. Am. Math. Soc.
– year: 2014
  ident: br0030
  article-title: Graphs and Matrices
  publication-title: Universitext
– start-page: 83
  year: 2011
  end-page: 140
  ident: br0210
  article-title: Hypergraph Turán problems
  publication-title: Surveys in Combinatorics
– volume: 432
  start-page: 2170
  year: 2010
  end-page: 2173
  ident: br0160
  article-title: Spectral radius and Hamiltonicity of graphs
  publication-title: Linear Algebra Appl.
– year: 2021
  ident: br0370
  article-title: The spectral radius of graphs with no intersecting odd cycles
– volume: 16
  start-page: R33
  year: 2009
  ident: br0260
  article-title: Spectral saturation: inverting the spectral Turán theorem
  publication-title: Electron. J. Comb.
– start-page: 245
  year: 2013
  end-page: 311
  ident: br0330
  article-title: Paul Erdős' influence on extremal graph theory
  publication-title: The Mathematics of Paul Erdős II
– volume: 64
  start-page: 89
  year: 1995
  end-page: 100
  ident: br0140
  article-title: Extremal graphs for intersecting triangles
  publication-title: J. Comb. Theory, Ser. B
– volume: vol. 25
  start-page: 169
  year: 2013
  end-page: 264
  ident: br0200
  article-title: The history of degenerate (bipartite) extremal graph problems
  publication-title: Erdős Centennial
– volume: 3
  start-page: 50
  year: 1954
  end-page: 57
  ident: br0220
  article-title: On a problem of K. Zarankiewicz
  publication-title: Colloq. Math.
– volume: 432
  start-page: 2243
  year: 2010
  end-page: 2256
  ident: br0280
  article-title: The spectral radius of graphs without paths and cycles of specified length
  publication-title: Linear Algebra Appl.
– volume: 48
  start-page: 436
  year: 1941
  end-page: 452
  ident: br0350
  article-title: On an extremal problem in graph theory
  publication-title: Mat. Fiz. Lapok
– volume: 89
  start-page: 159
  year: 2003
  end-page: 171
  ident: br0050
  article-title: Extremal graphs for intersecting cliques
  publication-title: J. Comb. Theory, Ser. B
– volume: 427
  start-page: 183
  year: 2007
  end-page: 189
  ident: br0250
  article-title: Bounds on graph eigenvalues II
  publication-title: Linear Algebra Appl.
– volume: 10
  start-page: 60
  year: 1907
  end-page: 61
  ident: br0230
  article-title: Problem 28, solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff
  publication-title: Wiskundige Opgaven
– volume: 430
  start-page: 1641
  year: 2012
  end-page: 1647
  ident: br0380
  article-title: Proof of a conjecture on the spectral radius of
  publication-title: Linear Algebra Appl.
– volume: 414
  start-page: 1405
  year: 2010
  end-page: 1411
  ident: br0270
  article-title: A contribution to the Zarankiewicz problem
  publication-title: Linear Algebra Appl.
– volume: 11
  start-page: 179
  year: 2002
  end-page: 189
  ident: br0240
  article-title: Some inequalities for the largest eigenvalue of a graph
  publication-title: Comb. Probab. Comput.
– volume: 99
  year: 2022
  ident: br0090
  article-title: The spectral radius of graphs with no odd wheels
  publication-title: Eur. J. Comb.
– year: 2021
  ident: br0060
  article-title: The signless Laplacian spectral radius of graphs without intersecting odd cycles
– year: 1980
  ident: br0100
  article-title: Spectra of Graphs
– volume: 12
  start-page: 381
  year: 1972
  end-page: 389
  ident: br0010
  article-title: Intersection theorems for systems of sets
  publication-title: J. Comb. Theory, Ser. A
– volume: 27
  year: 2020
  ident: br0080
  article-title: The spectral radius of graphs with no intersecting triangles
  publication-title: Electron. J. Comb.
– volume: vol. 392
  start-page: 141
  year: 2011
  end-page: 181
  ident: br0310
  article-title: Some new results in extremal graph theory
  publication-title: Surveys in Combinatorics
– volume: 1
  start-page: 51
  year: 1966
  end-page: 57
  ident: br0120
  article-title: A limit theorem in graph theory
  publication-title: Studia Sci. Math. Hung.
– volume: 65
  start-page: 113
  year: 1986
  end-page: 117
  ident: br0360
  article-title: Spectral bounds for the clique and independence numbers of graphs
  publication-title: J. Comb. Theory, Ser. B
– volume: 20
  start-page: 158
  year: 2007
  ident: 10.1016/j.laa.2022.03.015_br0150
  article-title: Spectral radii of graphs with given chromatic number
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2005.11.030
– volume: 432
  start-page: 2170
  year: 2010
  ident: 10.1016/j.laa.2022.03.015_br0160
  article-title: Spectral radius and Hamiltonicity of graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.01.005
– volume: 16
  start-page: R33
  issue: 1
  year: 2009
  ident: 10.1016/j.laa.2022.03.015_br0260
  article-title: Spectral saturation: inverting the spectral Turán theorem
  publication-title: Electron. J. Comb.
  doi: 10.37236/122
– volume: 18
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.laa.2022.03.015_br0290
  article-title: A spectral Erdős-Stone-Bollobás theorem
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548309009687
– year: 1978
  ident: 10.1016/j.laa.2022.03.015_br0040
– volume: 427
  start-page: 183
  year: 2007
  ident: 10.1016/j.laa.2022.03.015_br0250
  article-title: Bounds on graph eigenvalues II
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2007.07.010
– start-page: 245
  year: 2013
  ident: 10.1016/j.laa.2022.03.015_br0330
  article-title: Paul Erdős' influence on extremal graph theory
– ident: 10.1016/j.laa.2022.03.015_br0370
– volume: 20
  start-page: 128
  year: 1976
  ident: 10.1016/j.laa.2022.03.015_br0070
  article-title: Degrees and matchings
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/0095-8956(76)90004-6
– year: 2014
  ident: 10.1016/j.laa.2022.03.015_br0030
  article-title: Graphs and Matrices
  doi: 10.1007/978-1-4471-6569-9
– volume: 12
  start-page: 381
  year: 1972
  ident: 10.1016/j.laa.2022.03.015_br0010
  article-title: Intersection theorems for systems of sets
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1016/0097-3165(72)90103-3
– volume: 99
  year: 2022
  ident: 10.1016/j.laa.2022.03.015_br0090
  article-title: The spectral radius of graphs with no odd wheels
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2021.103420
– volume: 115
  start-page: 66
  year: 2015
  ident: 10.1016/j.laa.2022.03.015_br0190
  article-title: A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2015.05.001
– volume: 430
  start-page: 1641
  year: 2012
  ident: 10.1016/j.laa.2022.03.015_br0380
  article-title: Proof of a conjecture on the spectral radius of C4-free graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2012.05.006
– volume: 75
  start-page: 141
  year: 1996
  ident: 10.1016/j.laa.2022.03.015_br0180
  article-title: New asympotics for bipartite Turán numbers
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1006/jcta.1996.0067
– volume: 48
  start-page: 436
  year: 1941
  ident: 10.1016/j.laa.2022.03.015_br0350
  article-title: On an extremal problem in graph theory
  publication-title: Mat. Fiz. Lapok
– volume: 52
  start-page: 1087
  year: 1946
  ident: 10.1016/j.laa.2022.03.015_br0130
  article-title: On the structure of linear graphs
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1946-08715-7
– start-page: 83
  year: 2011
  ident: 10.1016/j.laa.2022.03.015_br0210
  article-title: Hypergraph Turán problems
– volume: 10
  start-page: 60
  year: 1907
  ident: 10.1016/j.laa.2022.03.015_br0230
  article-title: Problem 28, solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff
  publication-title: Wiskundige Opgaven
– volume: 312
  start-page: 2532
  year: 2012
  ident: 10.1016/j.laa.2022.03.015_br0110
  article-title: Eigenvalues of complete multipartite graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.07.018
– volume: 64
  start-page: 89
  year: 1995
  ident: 10.1016/j.laa.2022.03.015_br0140
  article-title: Extremal graphs for intersecting triangles
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1995.1026
– volume: 15
  start-page: R123
  year: 2009
  ident: 10.1016/j.laa.2022.03.015_br0020
  article-title: Spectral extrema for graphs: the Zarankiewicz problem
  publication-title: Electron. J. Comb.
  doi: 10.37236/212
– volume: 9
  start-page: 109
  year: 2015
  ident: 10.1016/j.laa.2022.03.015_br0340
  article-title: On spectral radius and enery of complete multipartite graphs
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.499.103
– year: 1980
  ident: 10.1016/j.laa.2022.03.015_br0100
– volume: vol. 392
  start-page: 141
  year: 2011
  ident: 10.1016/j.laa.2022.03.015_br0310
  article-title: Some new results in extremal graph theory
– volume: 65
  start-page: 113
  year: 1986
  ident: 10.1016/j.laa.2022.03.015_br0360
  article-title: Spectral bounds for the clique and independence numbers of graphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/0095-8956(86)90069-9
– volume: 1
  start-page: 51
  year: 1966
  ident: 10.1016/j.laa.2022.03.015_br0120
  article-title: A limit theorem in graph theory
  publication-title: Studia Sci. Math. Hung.
– volume: 11
  start-page: 179
  year: 2002
  ident: 10.1016/j.laa.2022.03.015_br0240
  article-title: Some inequalities for the largest eigenvalue of a graph
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548301004928
– volume: 5
  start-page: 29
  year: 1996
  ident: 10.1016/j.laa.2022.03.015_br0170
  article-title: An upper bound on Zarankiewicz problem
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548300001814
– volume: 432
  start-page: 2243
  year: 2010
  ident: 10.1016/j.laa.2022.03.015_br0280
  article-title: The spectral radius of graphs without paths and cycles of specified length
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.05.023
– volume: 62
  start-page: 362
  issue: 4
  year: 2009
  ident: 10.1016/j.laa.2022.03.015_br0300
  article-title: Stability for large forbidden subgraphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20399
– volume: 618
  start-page: 12
  year: 2021
  ident: 10.1016/j.laa.2022.03.015_br0390
  article-title: The signless Laplacian spectral radius of graphs with no intersecting triangles
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2021.01.018
– ident: 10.1016/j.laa.2022.03.015_br0060
– volume: 27
  issue: 4
  year: 2020
  ident: 10.1016/j.laa.2022.03.015_br0080
  article-title: The spectral radius of graphs with no intersecting triangles
  publication-title: Electron. J. Comb.
– volume: vol. 25
  start-page: 169
  year: 2013
  ident: 10.1016/j.laa.2022.03.015_br0200
  article-title: The history of degenerate (bipartite) extremal graph problems
– volume: 3
  start-page: 50
  year: 1954
  ident: 10.1016/j.laa.2022.03.015_br0220
  article-title: On a problem of K. Zarankiewicz
  publication-title: Colloq. Math.
  doi: 10.4064/cm-3-1-50-57
– volume: 414
  start-page: 1405
  year: 2010
  ident: 10.1016/j.laa.2022.03.015_br0270
  article-title: A contribution to the Zarankiewicz problem
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.10.040
– volume: 89
  start-page: 159
  year: 2003
  ident: 10.1016/j.laa.2022.03.015_br0050
  article-title: Extremal graphs for intersecting cliques
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/S0095-8956(03)00044-3
– start-page: 279
  year: 1968
  ident: 10.1016/j.laa.2022.03.015_br0320
  article-title: A method for solving extremal problems in graph theory, stability problems
SSID ssj0004702
Score 2.521436
Snippet The (k,r)-fan is the graph consisting of k copies of the complete graph Kr which intersect in a single vertex, and is denoted by Fk,r. Erdős et al. (1995) [14]...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Extremal graph
Graph theory
Graphs
Intersecting cliques
Linear algebra
Spectral radius
Stability method
Title Spectral extremal graphs for intersecting cliques
URI https://dx.doi.org/10.1016/j.laa.2022.03.015
https://www.proquest.com/docview/2700005420
Volume 644
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sTpHD14EuLaJF2T4xiOqbiTg91CkqYyKXOs8-rfbl6aThTZwWNDEspL-r0vzXvfQ-gmLQpHO0SOTcFizJRIMCeGYk0EV9bxbW58tMV0MJmxx3k6b6FRkwsDYZUB-2tM92gdWvrBmv3VYgE5vl5MzxEIf5vgM9hZBrv87vM7zINlcVAMZxh6NzebPsarVCA9RIjXOYXKuH_7pl8o7V3P-AgdBs4YDevXOkYtuzxBB89bwdXqFCVQRx5-WkQObNeuuYy8FHUVOVIagSbEugJoW75GpgTJ1uoMzcb3L6MJDtUQsKEk3WCR5lwUSrnzUkxUmtt8UKTGHTGF1o645JQTAXUNeUI1dw22SCwXKhYGJE8LRc9Re_m-tBco4tZSoijXWlNmCdWZ0QPiphHa-euMd1Dc2EGaIBUOFStK2cSEvUlnOgmmkzGVznQddLsdsqp1MnZ1Zo1x5Y_Flg7Hdw3rNgshw5dWSbg4B95J4sv_zXqF9uGpDsHtovZm_WGvHdHY6J7fST20N3x4mky_AKv5z5M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHtSD8WdEUXfwZDLZ2g3aoyESVOAECbem7TqDWSZhePVv971uw2gMB69d22yv69evfa_fI-Q2TlOgHSLxTRoFfqRE6HNqmK-p4MoC3-bGRVtMusNZ9DyP5w3Sr-_CYFhlhf0lpju0rko6lTU7y8UC7_g6MT0gEM6bAFugnQimL6YxuP_8jvOIekElGR75WL12bbogr0yh9hClTugUU-P-vTj9gmm39gwOyUFFGr2H8r2OSMPmx2R_vFFcLU5IiInk8dTCA7RdQXHmOS3qwgNW6qEoxKpAbMtfPZOhZmtxSmaDx2l_6FfpEHzDaLz2RZxwkSoFG6aAqjixSTeNDewxhdbAXBL4dIGJDXnINIcCm4aWCxUIg5qnqWJnpJm_5_aceNxaRhXjWmsWWcp0z-guhW6EhgW7x1skqO0gTaUVjikrMlkHhb1JMJ1E08mASTBdi9xtmixLoYxtlaPauPLHaEsA8m3N2vVAyGqqFRI950g8aXDxv15vyO5wOh7J0dPk5ZLs4ZMyHrdNmuvVh70C1rHW1-6v-gKZ-NEh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+extremal+graphs+for+intersecting+cliques&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Desai%2C+Dheer+Noal&rft.au=Kang%2C+Liying&rft.au=Li%2C+Yongtao&rft.au=Ni%2C+Zhenyu&rft.date=2022-07-01&rft.pub=American+Elsevier+Company%2C+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=644&rft.spage=234&rft_id=info:doi/10.1016%2Fj.laa.2022.03.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon