A social-semantic recommender system for advertisements

•Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommenda...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 57; no. 2; p. 102153
Main Authors García-Sánchez, Francisco, Colomo-Palacios, Ricardo, Valencia-García, Rafael
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommendation.•Accuracy boosted adapting user profiles to changing needs. Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users’ contributions to social sites and gaining insights into the consumers’ needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users’ interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users’ profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%.
AbstractList •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommendation.•Accuracy boosted adapting user profiles to changing needs. Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users’ contributions to social sites and gaining insights into the consumers’ needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users’ interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users’ profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%.
Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users' contributions to social sites and gaining insights into the consumers' needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users' interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users' profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%.
ArticleNumber 102153
Author Valencia-García, Rafael
Colomo-Palacios, Ricardo
García-Sánchez, Francisco
Author_xml – sequence: 1
  givenname: Francisco
  surname: García-Sánchez
  fullname: García-Sánchez, Francisco
  email: frgarcia@um.es
  organization: DIS, Faculty of Computer Science, University of Murcia, 30100 Murcia, Spain
– sequence: 2
  givenname: Ricardo
  surname: Colomo-Palacios
  fullname: Colomo-Palacios, Ricardo
  email: ricardo.colomo-palacios@hiof.no
  organization: Department of Computer Sciences, Østfold University College, Norway
– sequence: 3
  givenname: Rafael
  surname: Valencia-García
  fullname: Valencia-García, Rafael
  email: valencia@um.es
  organization: DIS, Faculty of Computer Science, University of Murcia, 30100 Murcia, Spain
BookMark eNp9kMtqwzAQRUVJoUnaD-jO0LVTPW2HrkLoCwLdtGshj8cgE0uppATy91VwV110NQzcc4c5CzJz3iEh94yuGGXV47Cyh3HFKVvnnTMlrsicNbUolajZjMypoFUpVS1uyCLGgVIqFeNzUm-K6MGafRlxNC5ZKAKCH0d0HYYinmPCseh9KEx3wpBsjqFL8ZZc92Yf8e53LsnXy_Pn9q3cfby-bze7EgRXqVzTugOz5g1UXUX7ToCAWgLnCquGGYqKS4VKArYMGwVtaxQKVE1nTNsCiCV5mHoPwX8fMSY9-GNw-aTmQsmGSt7InKqnFAQfY8Beg00mWe9SMHavGdUXS3rQ2ZK-WNKTpUyyP-Qh2NGE87_M08RgfvxkMegIFh1gZ7O7pDtv_6F_AKW1gh4
CitedBy_id crossref_primary_10_1142_S021962202350030X
crossref_primary_10_1016_j_ipm_2020_102485
crossref_primary_10_1016_j_asoc_2024_112140
crossref_primary_10_1016_j_sigpro_2024_109797
crossref_primary_10_3390_electronics10080905
crossref_primary_10_1109_ACCESS_2020_2971087
crossref_primary_10_1016_j_mlwa_2021_100114
crossref_primary_10_1016_j_ipm_2021_102721
crossref_primary_10_1155_2020_1747315
crossref_primary_10_1145_3661821
crossref_primary_10_1016_j_advengsoft_2022_103368
crossref_primary_10_3390_app14114679
crossref_primary_10_1007_s12652_020_02806_1
crossref_primary_10_1108_JKM_10_2020_0801
crossref_primary_10_1111_exsy_13143
crossref_primary_10_3390_info12110480
crossref_primary_10_3390_s21092893
crossref_primary_10_1007_s00500_021_05586_8
crossref_primary_10_1155_2022_7609555
crossref_primary_10_1016_j_eswa_2024_125141
crossref_primary_10_1007_s11042_021_11856_2
crossref_primary_10_1016_j_future_2023_07_003
crossref_primary_10_1109_ACCESS_2021_3059312
crossref_primary_10_1177_01655515231220172
crossref_primary_10_1016_j_dss_2024_114197
crossref_primary_10_1109_TNSE_2021_3093782
crossref_primary_10_3233_JIFS_220110
crossref_primary_10_1016_j_eswa_2024_125816
crossref_primary_10_1016_j_ins_2020_05_071
crossref_primary_10_3390_computers13070168
crossref_primary_10_1093_comjnl_bxad088
crossref_primary_10_1080_17517575_2020_1812003
crossref_primary_10_1016_j_jksuci_2022_10_017
crossref_primary_10_1007_s10660_021_09495_8
crossref_primary_10_3390_electronics11010141
crossref_primary_10_1186_s40537_022_00566_7
crossref_primary_10_3390_app12010143
crossref_primary_10_3390_app12041940
crossref_primary_10_3390_info14010019
crossref_primary_10_1016_j_ipm_2023_103586
crossref_primary_10_1155_2022_9203665
crossref_primary_10_1016_j_ipm_2020_102474
crossref_primary_10_1016_j_jik_2024_100569
crossref_primary_10_1016_j_elerap_2023_101310
crossref_primary_10_1016_j_eswa_2021_115555
crossref_primary_10_3390_app10031040
crossref_primary_10_1007_s41237_022_00161_3
crossref_primary_10_1109_ACCESS_2021_3072165
crossref_primary_10_1002_spe_2828
crossref_primary_10_2478_dim_2020_0048
crossref_primary_10_1155_2022_6958596
crossref_primary_10_1109_ACCESS_2023_3244065
Cites_doi 10.1007/s10462-018-9654-y
10.1016/j.future.2017.03.015
10.1016/j.ipm.2018.08.001
10.1016/j.websem.2009.01.001
10.1109/TKDE.2007.22
10.1177/0165551517698787
10.1109/ACCESS.2018.2890388
10.1186/s13174-018-0076-5
10.1016/j.ins.2017.12.050
10.1016/j.ijhcs.2018.04.002
10.1016/j.future.2017.09.015
10.1007/978-3-319-94649-8_5
10.1016/j.knosys.2017.08.015
10.1016/j.advengsoft.2013.06.008
10.1016/j.future.2017.05.036
10.1109/MIS.2017.45
10.1016/j.procs.2015.04.040
10.1016/j.compeleceng.2018.01.034
10.1111/exsy.12365
10.4018/IJISSC.2016010101
10.1016/j.ins.2012.06.012
10.1016/j.is.2016.11.003
10.1016/j.datak.2016.12.003
10.1016/j.aci.2016.08.002
10.1177/0165551516645528
10.1016/j.eswa.2016.10.024
10.1016/j.dss.2017.05.013
10.1016/j.knosys.2017.10.031
10.1016/j.eswa.2012.03.025
10.1109/ACCESS.2017.2655150
10.1016/j.artmed.2017.03.002
10.1109/ACCESS.2019.2895824
10.1007/s10115-018-1160-7
10.1016/j.neucom.2019.02.045
10.1016/j.neucom.2016.10.079
10.1016/j.eswa.2012.02.093
10.1016/j.ipm.2018.03.004
10.1016/j.tele.2017.08.008
10.1016/j.ipm.2018.12.009
10.1016/S0169-023X(97)00056-6
10.1016/j.ipm.2019.01.006
10.4018/jswis.2009081901
10.1109/ACCESS.2019.2912012
10.4018/JITR.2017100103
10.1016/j.eswa.2017.09.058
10.1016/j.ipm.2012.07.010
10.1016/j.chb.2017.10.033
10.1109/MIS.2006.62
10.3233/IDA-163209
10.1145/2529995.2529997
10.1504/IJWMC.2018.090005
10.1016/j.ipm.2018.04.008
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Pergamon Press Inc. Mar 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Mar 2020
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2019.102153
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList
Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2019_102153
S0306457319307265
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
E3H
EFKBS
F2A
ID FETCH-LOGICAL-c325t-907dca928c6d60fd3c3c74c225e681a0e5245e54ceb1e85cbba5e3e58daabbcc3
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Fri Jul 25 03:02:16 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
Fri Feb 23 02:48:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Natural language processing
Knowledge-based systems
Social network services
Advertising
Recommender systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-907dca928c6d60fd3c3c74c225e681a0e5245e54ceb1e85cbba5e3e58daabbcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2354804284
PQPubID 46166
ParticipantIDs proquest_journals_2354804284
crossref_citationtrail_10_1016_j_ipm_2019_102153
crossref_primary_10_1016_j_ipm_2019_102153
elsevier_sciencedirect_doi_10_1016_j_ipm_2019_102153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Lee, Ha, Jung, Lee (bib0037) 2013; 7
Lai, Lee, Huang (bib0035) 2019; 121
Mezghani, Péninou, Zayani, Amous, Sèdes (bib0041) 2017; 108
García-Sánchez, García-Díaz, Gómez-Berbís, Valencia-García (bib0024) 2019
Salton, McGill (bib0052) 1986
Xu, Zheng, Cai, Min, Gao, Zhu (bib0066) 2018; 140
Eirinaki, Gao, Varlamis, Tserpes (bib0021) 2018; 78
Bizer, Heath, Berners-Lee (bib0009) 2009; 5
Huang, Shen, Meng (bib0027) 2019; 56
Bai, Wang, Lee, Yang, Kong, Xia (bib0006) 2019; 7
Batmaz, Yurekli, Bilge, Kaleli (bib0007) 2019; 52
Altınel, Ganiz (bib0003) 2018; 54
Chen, Wang, Shi, Feng, Chen (bib0018) 2019; 341
Belém, Heringer, Almeida, Gonçalves (bib0008) 2019; 56
Resnick, Iacovou, Suchak, Bergstrom, Riedl (bib0048) 1994; 94
Calegari, Pasi (bib0011) 2013; 49
Han, Chen, Li (bib0026) 2013; 65
Vargas-Vera, Motta, Domingue, Lanzoni, Stutt, Ciravegna (bib0064) 2002; 2473
Ragunathan, Battula, Jorika, Mounika, Sruthi, Vani (bib0046) 2015; 50
Salas-Zárate, Valencia-García, Ruiz-Martínez, Colomo-Palacios (bib0051) 2017; 43
Karimi, Jannach, Jugovac (bib0033) 2018; 54
Colombo-Mendoza, Valencia-García, Rodríguez-González, Colomo-Palacios, Alor-Hernández (bib0019) 2018; 44
Thomas, Pan, Taylor, Ren, Jekjantuk, Zhao (bib0062) 2010; 6152
Manning, Raghavan, Schutze (bib0039) 2008
Seo, Kim, Lee, Baik (bib0054) 2017; 69
Aggarwal (bib0001) 2016
Wang, Liu, Wu (bib0065) 2018; 14
Çano, Morisio (bib0012) 2017; 21
Retrieved from
.
Bagherifard, Rahmani, Nilashi, Rafe (bib0005) 2017; 34
Kalaï, Zayani, Amous, Abdelghani, Sèdes (bib0031) 2018; 80
Esteban-Gil, García-Sanchez, Valencia-García, Fernández-Breis (bib0023) 2013; 278
Roffo, Vinciarelli (bib0049) 2016; 1680
Zheng, Chen, Jiang (bib0070) 2012; 216
Vani (bib0063) 2016; 5
Chamoso, Rivas, Rodríguez, Bajo (bib0015) 2018; 433–434
Pereira, Campos, Ströele, David, Braga (bib0045) 2018; 9
Zamanzadeh, B., Ashish, N., Ramakrishnan, C., & Zimmerman, J. (2013). Semantic advertising.
Yu, Zhang, Zhu, Cao, Tian (bib0068) 2012
Kang, Lee (bib0032) 2017; 65
Esteban-Gil, Garcia-Sanchez, Valencia-Garcia, Fernandez-Breis (bib0022) 2012; 39
Ryu, Lee, Lee (bib0050) 2017; 32
Aguilar, Valdiviezo-Díaz, Riofrio (bib0002) 2017; 13
Carrer-Neto, Hernández-Alcaraz, Valencia-García, García-Sánchez (bib0013) 2012; 39
Darabi, Tabrizi (bib0020) 2016
Castells, Fernandez, Vallet (bib0014) 2007; 19
Studer, Benjamins, Fensel (bib0058) 1998; 25
Jiang, Yang (bib0029) 2017; 81
Razia Sulthana, Ramasamy (bib0047) 2019; 74
Chen, Meng, Xu, Lukasiewicz (bib0016) 2017; 5
Gonzalez Camacho, Alves-Souza (bib0025) 2018; 54
Shadbolt, Berners-Lee, Hall (bib0055) 2006; 21
Hwang, Chen, Jiang (bib0028) 2015
Nakatsuji, Yoshida, Ishida (bib0043) 2009; 7
Sulieman, Malek, Kadima, Laurent (bib0059) 2016; 7
Xu, Liu (bib0067) 2019; 7
Statista. (2019). Global advertising spending from 2014 to 2021. Retrieved June 20, 2019, from
Lalwani, Somayajulu, Krishna (bib0036) 2015
Musto, Lops, de Gemmis, Semeraro (bib0042) 2017; 136
Nilashi, Ibrahim, Bagherifard (bib0044) 2018; 92
American Marketing Association Board of Directors. (2013). Definitions of marketing. Retrieved June 20, 2019, from
Samin, Azim (bib0053) 2019; 7
Lagos-Ortiz, Medina-Moreira, Paredes-Valverde, Espinoza-Morán, Valencia-García (bib0034) 2017; 10
Boratto, Carta, Fenu, Saia (bib0010) 2017; 254
Jin (bib0030) 2018; 79
Liu, Yang, Ma, Xu, Hua (bib0038) 2019; 36
Margaris, Vassilakis, Georgiadis (bib0040) 2018; 78
Shareef, Mukerji, Dwivedi, Rana, Islam (bib0056) 2017
Sun, Lee (bib0060) 2017; 101
Chen, Zheng, Jiang, Xia, Zhao (bib0017) 2019; 59
Technavio. (2016). Global internet advertisement market 2016-2020. Retrieved June 20, 2019, from
Lagos-Ortiz (10.1016/j.ipm.2019.102153_bib0034) 2017; 10
Shadbolt (10.1016/j.ipm.2019.102153_bib0055) 2006; 21
Eirinaki (10.1016/j.ipm.2019.102153_bib0021) 2018; 78
Manning (10.1016/j.ipm.2019.102153_bib0039) 2008
Sun (10.1016/j.ipm.2019.102153_bib0060) 2017; 101
10.1016/j.ipm.2019.102153_bib0061
Salas-Zárate (10.1016/j.ipm.2019.102153_bib0051) 2017; 43
Shareef (10.1016/j.ipm.2019.102153_bib0056) 2017
Huang (10.1016/j.ipm.2019.102153_bib0027) 2019; 56
Zheng (10.1016/j.ipm.2019.102153_bib0070) 2012; 216
Wang (10.1016/j.ipm.2019.102153_bib0065) 2018; 14
Esteban-Gil (10.1016/j.ipm.2019.102153_bib0022) 2012; 39
10.1016/j.ipm.2019.102153_bib0069
Chamoso (10.1016/j.ipm.2019.102153_bib0015) 2018; 433–434
Chen (10.1016/j.ipm.2019.102153_bib0017) 2019; 59
Bizer (10.1016/j.ipm.2019.102153_bib0009) 2009; 5
Salton (10.1016/j.ipm.2019.102153_bib0052) 1986
Vani (10.1016/j.ipm.2019.102153_bib0063) 2016; 5
Roffo (10.1016/j.ipm.2019.102153_bib0049) 2016; 1680
Studer (10.1016/j.ipm.2019.102153_bib0058) 1998; 25
Thomas (10.1016/j.ipm.2019.102153_bib0062) 2010; 6152
Resnick (10.1016/j.ipm.2019.102153_bib0048) 1994; 94
Boratto (10.1016/j.ipm.2019.102153_bib0010) 2017; 254
Calegari (10.1016/j.ipm.2019.102153_bib0011) 2013; 49
Colombo-Mendoza (10.1016/j.ipm.2019.102153_bib0019) 2018; 44
Gonzalez Camacho (10.1016/j.ipm.2019.102153_bib0025) 2018; 54
Jiang (10.1016/j.ipm.2019.102153_bib0029) 2017; 81
Mezghani (10.1016/j.ipm.2019.102153_bib0041) 2017; 108
Castells (10.1016/j.ipm.2019.102153_bib0014) 2007; 19
Ragunathan (10.1016/j.ipm.2019.102153_bib0046) 2015; 50
Kang (10.1016/j.ipm.2019.102153_bib0032) 2017; 65
Xu (10.1016/j.ipm.2019.102153_bib0067) 2019; 7
Batmaz (10.1016/j.ipm.2019.102153_bib0007) 2019; 52
Pereira (10.1016/j.ipm.2019.102153_bib0045) 2018; 9
Xu (10.1016/j.ipm.2019.102153_bib0066) 2018; 140
Nakatsuji (10.1016/j.ipm.2019.102153_bib0043) 2009; 7
Lee (10.1016/j.ipm.2019.102153_bib0037) 2013; 7
Karimi (10.1016/j.ipm.2019.102153_bib0033) 2018; 54
Aguilar (10.1016/j.ipm.2019.102153_bib0002) 2017; 13
Hwang (10.1016/j.ipm.2019.102153_bib0028) 2015
Ryu (10.1016/j.ipm.2019.102153_bib0050) 2017; 32
Aggarwal (10.1016/j.ipm.2019.102153_bib0001) 2016
Jin (10.1016/j.ipm.2019.102153_bib0030) 2018; 79
Seo (10.1016/j.ipm.2019.102153_bib0054) 2017; 69
Musto (10.1016/j.ipm.2019.102153_bib0042) 2017; 136
Altınel (10.1016/j.ipm.2019.102153_bib0003) 2018; 54
Bai (10.1016/j.ipm.2019.102153_bib0006) 2019; 7
Vargas-Vera (10.1016/j.ipm.2019.102153_bib0064) 2002; 2473
Carrer-Neto (10.1016/j.ipm.2019.102153_bib0013) 2012; 39
Kalaï (10.1016/j.ipm.2019.102153_bib0031) 2018; 80
10.1016/j.ipm.2019.102153_bib0004
Sulieman (10.1016/j.ipm.2019.102153_bib0059) 2016; 7
Chen (10.1016/j.ipm.2019.102153_bib0016) 2017; 5
Margaris (10.1016/j.ipm.2019.102153_bib0040) 2018; 78
Chen (10.1016/j.ipm.2019.102153_bib0018) 2019; 341
Razia Sulthana (10.1016/j.ipm.2019.102153_bib0047) 2019; 74
Samin (10.1016/j.ipm.2019.102153_bib0053) 2019; 7
Bagherifard (10.1016/j.ipm.2019.102153_bib0005) 2017; 34
Lai (10.1016/j.ipm.2019.102153_bib0035) 2019; 121
García-Sánchez (10.1016/j.ipm.2019.102153_bib0024) 2019
Yu (10.1016/j.ipm.2019.102153_bib0068) 2012
Darabi (10.1016/j.ipm.2019.102153_bib0020) 2016
Lalwani (10.1016/j.ipm.2019.102153_bib0036) 2015
Çano (10.1016/j.ipm.2019.102153_bib0012) 2017; 21
Nilashi (10.1016/j.ipm.2019.102153_bib0044) 2018; 92
Liu (10.1016/j.ipm.2019.102153_bib0038) 2019; 36
Esteban-Gil (10.1016/j.ipm.2019.102153_bib0023) 2013; 278
Han (10.1016/j.ipm.2019.102153_bib0026) 2013; 65
10.1016/j.ipm.2019.102153_bib0057
Belém (10.1016/j.ipm.2019.102153_bib0008) 2019; 56
References_xml – volume: 39
  start-page: 10990
  year: 2012
  end-page: 11000
  ident: bib0013
  article-title: Social knowledge-based recommender system. Application to the movies domain
  publication-title: Expert Systems with Applications
– volume: 81
  start-page: 63
  year: 2017
  end-page: 77
  ident: bib0029
  article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network
  publication-title: Artificial Intelligence in Medicine
– volume: 7
  year: 2013
  ident: bib0037
  article-title: Semantic contextual advertising based on the open directory project
  publication-title: ACM Transactions on the Web
– volume: 79
  start-page: 154
  year: 2018
  end-page: 168
  ident: bib0030
  article-title: “Celebrity 2.0 and beyond!” Effects of Facebook profile sources on social networking advertising
  publication-title: Computers in Human Behavior
– volume: 52
  start-page: 1
  year: 2019
  end-page: 37
  ident: bib0007
  article-title: A review on deep learning for recommender systems: Challenges and remedies
  publication-title: Artificial Intelligence Review
– volume: 1680
  start-page: 18
  year: 2016
  end-page: 25
  ident: bib0049
  article-title: Personality in computational advertising: A benchmark
– volume: 101
  start-page: 28
  year: 2017
  end-page: 39
  ident: bib0060
  article-title: Tour recommendations by mining photo sharing social media
  publication-title: Decision Support Systems
– year: 2008
  ident: bib0039
  article-title: Introduction to information retrieval
– volume: 25
  start-page: 161
  year: 1998
  end-page: 197
  ident: bib0058
  article-title: Knowledge engineering: Principles and methods
  publication-title: Data & Knowledge Engineering
– start-page: 29
  year: 2015
  end-page: 33
  ident: bib0028
  article-title: Personalized internet advertisement recommendation service based on keyword similarity
  publication-title: 2015 IEEE 39th annual computer software and applications conference
– volume: 5
  start-page: 599
  year: 2016
  end-page: 604
  ident: bib0063
  article-title: A recommender system for online advertising
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 39
  start-page: 9715
  year: 2012
  end-page: 9722
  ident: bib0022
  article-title: SocialBROKER: A collaborative social space for gathering semantically-enhanced financial information
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 107
  year: 2009
  end-page: 120
  ident: bib0043
  article-title: Detecting innovative topics based on user-interest ontology
  publication-title: Web Semantics
– volume: 78
  start-page: 440
  year: 2018
  end-page: 450
  ident: bib0040
  article-title: Query personalization using social network information and collaborative filtering techniques
  publication-title: Future Generation Computer Systems
– start-page: 398
  year: 2016
  end-page: 403
  ident: bib0020
  article-title: An ontology-based framework to model user interests
  publication-title: 2016 international conference on computational science and computational intelligence (CSCI)
– start-page: 431
  year: 2012
  end-page: 443
  ident: bib0068
  article-title: Towards personalized context-aware recommendation by mining context logs through topic models
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 36
  start-page: e12365
  year: 2019
  ident: bib0038
  article-title: A social recommendation system for academic collaboration in undergraduate research
  publication-title: Expert Systems
– volume: 69
  start-page: 135
  year: 2017
  end-page: 148
  ident: bib0054
  article-title: Personalized recommender system based on friendship strength in social network services
  publication-title: Expert Systems with Applications
– volume: 34
  start-page: 1772
  year: 2017
  end-page: 1792
  ident: bib0005
  article-title: Performance improvement for recommender systems using ontology
  publication-title: Telematics and Informatics
– volume: 92
  start-page: 507
  year: 2018
  end-page: 520
  ident: bib0044
  article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 1
  year: 2016
  end-page: 30
  ident: bib0059
  article-title: Toward social-semantic recommender systems
  publication-title: International Journal of Information Systems and Social Change
– volume: 44
  start-page: 464
  year: 2018
  end-page: 490
  ident: bib0019
  article-title: Towards a knowledge-based probabilistic and context-aware social recommender system
  publication-title: Journal of Information Science
– volume: 54
  start-page: 1203
  year: 2018
  end-page: 1227
  ident: bib0033
  article-title: News recommender systems – Survey and roads ahead
  publication-title: Information Processing & Management
– year: 2017
  ident: bib0056
  article-title: Social media marketing: Comparative effect of advertisement sources
  publication-title: Journal of Retailing and Consumer Services
– volume: 278
  start-page: 534
  year: 2013
  end-page: 539
  ident: bib0023
  article-title: A social-empowered platform for gathering semantic information
  publication-title: Communications in computer and information science
– volume: 6152
  start-page: 96
  year: 2010
  end-page: 105
  ident: bib0062
  article-title: Semantic advertising for web 3.0
  publication-title: Lecture notes in computer science
– volume: 50
  start-page: 329
  year: 2015
  end-page: 334
  ident: bib0046
  article-title: Advertisement posting based on consumer behaviour
  publication-title: Procedia Computer Science
– volume: 32
  start-page: 7
  year: 2017
  end-page: 13
  ident: bib0050
  article-title: Utilizing verbal intent in semantic contextual advertising
  publication-title: IEEE Intelligent Systems
– volume: 5
  start-page: 1
  year: 2009
  end-page: 22
  ident: bib0009
  article-title: Linked data - The story so far
  publication-title: International Journal on Semantic Web and Information Systems
– volume: 108
  start-page: 15
  year: 2017
  end-page: 29
  ident: bib0041
  article-title: Producing relevant interests from social networks by mining users’ tagging behaviour: A first step towards adapting social information
  publication-title: Data & Knowledge Engineering
– volume: 21
  start-page: 96
  year: 2006
  end-page: 101
  ident: bib0055
  article-title: The semantic Web revisited
  publication-title: IEEE Intelligent Systems
– volume: 140
  start-page: 120
  year: 2018
  end-page: 133
  ident: bib0066
  article-title: Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks
  publication-title: Knowledge-Based Systems
– reference: American Marketing Association Board of Directors. (2013). Definitions of marketing. Retrieved June 20, 2019, from
– start-page: 36
  year: 2019
  end-page: 44
  ident: bib0024
  article-title: Ontology-based advertisement recommendation in social networks
  publication-title: Advances in intelligent systems and computing 800
– volume: 80
  start-page: 355
  year: 2018
  end-page: 367
  ident: bib0031
  article-title: Social collaborative service recommendation approach based on user's trust and domain-specific expertise
  publication-title: Future Generation Computer Systems
– volume: 49
  start-page: 640
  year: 2013
  end-page: 658
  ident: bib0011
  article-title: Personal ontologies: Generation of user profiles based on the YAGO ontology
  publication-title: Information Processing & Management
– reference: Statista. (2019). Global advertising spending from 2014 to 2021. Retrieved June 20, 2019, from
– volume: 9
  start-page: 7
  year: 2018
  ident: bib0045
  article-title: BROAD-RSI – Educational recommender system using social networks interactions and linked data
  publication-title: Journal of Internet Services and Applications
– volume: 14
  start-page: 97
  year: 2018
  end-page: 101
  ident: bib0065
  article-title: Research on financial advertisement personalised recommendation method based on customer segmentation
  publication-title: International Journal of Wireless and Mobile Computing
– volume: 7
  start-page: 9324
  year: 2019
  end-page: 9339
  ident: bib0006
  article-title: Scientific paper recommendation: A survey
  publication-title: IEEE Access
– volume: 56
  start-page: 939
  year: 2019
  end-page: 954
  ident: bib0027
  article-title: Item diversified recommendation based on influence diffusion
  publication-title: Information Processing & Management
– volume: 65
  start-page: 132
  year: 2013
  end-page: 137
  ident: bib0026
  article-title: A method for the acquisition of ontology-based user profiles
  publication-title: Advances in Engineering Software
– volume: 2473
  start-page: 379
  year: 2002
  end-page: 391
  ident: bib0064
  article-title: MnM: Ontology driven semi-automatic and automatic support for semantic markup
  publication-title: Knowledge engineering and knowledge management: ontologies and the semantic web. EKAW 2002. Lecture notes in computer science
– volume: 43
  start-page: 458
  year: 2017
  end-page: 479
  ident: bib0051
  article-title: Feature-based opinion mining in financial news: An ontology-driven approach
  publication-title: Journal of Information Science
– volume: 216
  start-page: 138
  year: 2012
  end-page: 154
  ident: bib0070
  article-title: An ontology-based approach to Chinese semantic advertising
  publication-title: Information Sciences
– volume: 54
  start-page: 1129
  year: 2018
  end-page: 1153
  ident: bib0003
  article-title: Semantic text classification: A survey of past and recent advances
  publication-title: Information Processing & Management
– reference: Technavio. (2016). Global internet advertisement market 2016-2020. Retrieved June 20, 2019, from
– reference: . Retrieved from
– reference: Zamanzadeh, B., Ashish, N., Ramakrishnan, C., & Zimmerman, J. (2013). Semantic advertising.
– start-page: 1
  year: 2016
  end-page: 28
  ident: bib0001
  article-title: An introduction to recommender systems
  publication-title: Recommender systems
– volume: 433–434
  start-page: 204
  year: 2018
  end-page: 220
  ident: bib0015
  article-title: Relationship recommender system in a business and employment-oriented social network
  publication-title: Information Sciences
– volume: 341
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0018
  article-title: Social recommendation based on users’ attention and preference
  publication-title: Neurocomputing
– volume: 5
  start-page: 1624
  year: 2017
  end-page: 1638
  ident: bib0016
  article-title: Location-aware personalized news recommendation with deep semantic analysis
  publication-title: IEEE Access
– volume: 94
  start-page: 175
  year: 1994
  end-page: 186
  ident: bib0048
  article-title: GroupLens: An open architecture for collaborative filtering of netnews
  publication-title: Proceedings of the 1994 ACM conference on computer supported cooperative work - CSCW
– volume: 56
  start-page: 771
  year: 2019
  end-page: 790
  ident: bib0008
  article-title: Exploiting syntactic and neighbourhood attributes to address cold start in tag recommendation
  publication-title: Information Processing & Management
– volume: 121
  start-page: 42
  year: 2019
  end-page: 57
  ident: bib0035
  article-title: A social recommendation method based on the integration of social relationship and product popularity
  publication-title: International Journal of Human-Computer Studies
– volume: 78
  start-page: 413
  year: 2018
  end-page: 418
  ident: bib0021
  article-title: Recommender systems for large-scale social networks: A review of challenges and solutions
  publication-title: Future Generation Computer Systems
– volume: 21
  start-page: 1487
  year: 2017
  end-page: 1524
  ident: bib0012
  article-title: Hybrid recommender systems: A systematic literature review
  publication-title: Intelligent Data Analysis
– reference: .
– volume: 7
  start-page: 67081
  year: 2019
  end-page: 67093
  ident: bib0053
  article-title: Knowledge based recommender system for academia using machine learning: A case study on higher education landscape of Pakistan
  publication-title: IEEE Access
– volume: 10
  start-page: 42
  year: 2017
  end-page: 55
  ident: bib0034
  article-title: An ontology-based decision support system for the diagnosis of plant diseases
  publication-title: Journal of Information Technology Research
– volume: 7
  start-page: 17493
  year: 2019
  end-page: 17502
  ident: bib0067
  article-title: Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks
  publication-title: IEEE Access
– volume: 59
  start-page: 387
  year: 2019
  end-page: 412
  ident: bib0017
  article-title: A probabilistic model for semantic advertising
  publication-title: Knowledge and Information Systems
– volume: 74
  start-page: 498
  year: 2019
  end-page: 510
  ident: bib0047
  article-title: Ontology and context based recommendation system using Neuro-Fuzzy Classification
  publication-title: Computers & Electrical Engineering
– volume: 254
  start-page: 79
  year: 2017
  end-page: 85
  ident: bib0010
  article-title: Semantics-aware content-based recommender systems: Design and architecture guidelines
  publication-title: Neurocomputing
– volume: 13
  start-page: 147
  year: 2017
  end-page: 160
  ident: bib0002
  article-title: A general framework for intelligent recommender systems
  publication-title: Applied Computing and Informatics
– volume: 19
  start-page: 261
  year: 2007
  end-page: 272
  ident: bib0014
  article-title: An adaptation of the vector-space model for ontology-based information retrieval
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 1986
  ident: bib0052
  article-title: Introduction to modern information retrieval
– volume: 54
  start-page: 529
  year: 2018
  end-page: 544
  ident: bib0025
  article-title: Social network data to alleviate cold-start in recommender system: A systematic review
  publication-title: Information Processing & Management
– volume: 136
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0042
  article-title: Semantics-aware recommender systems exploiting linked open data and graph-based features
  publication-title: Knowledge-Based Systems
– start-page: 821
  year: 2015
  end-page: 826
  ident: bib0036
  article-title: A community driven social recommendation system
  publication-title: 2015 IEEE international conference on big data (big data)
– volume: 65
  start-page: 52
  year: 2017
  end-page: 64
  ident: bib0032
  article-title: Modeling user interest in social media using news media and wikipedia
  publication-title: Information Systems
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0007
  article-title: A review on deep learning for recommender systems: Challenges and remedies
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-018-9654-y
– volume: 78
  start-page: 440
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0040
  article-title: Query personalization using social network information and collaborative filtering techniques
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.03.015
– volume: 54
  start-page: 1129
  issue: 6
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0003
  article-title: Semantic text classification: A survey of past and recent advances
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.08.001
– volume: 7
  start-page: 107
  issue: 2
  year: 2009
  ident: 10.1016/j.ipm.2019.102153_bib0043
  article-title: Detecting innovative topics based on user-interest ontology
  publication-title: Web Semantics
  doi: 10.1016/j.websem.2009.01.001
– volume: 19
  start-page: 261
  issue: 2
  year: 2007
  ident: 10.1016/j.ipm.2019.102153_bib0014
  article-title: An adaptation of the vector-space model for ontology-based information retrieval
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.22
– start-page: 821
  year: 2015
  ident: 10.1016/j.ipm.2019.102153_bib0036
  article-title: A community driven social recommendation system
– volume: 44
  start-page: 464
  issue: 4
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0019
  article-title: Towards a knowledge-based probabilistic and context-aware social recommender system
  publication-title: Journal of Information Science
  doi: 10.1177/0165551517698787
– volume: 7
  start-page: 9324
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0006
  article-title: Scientific paper recommendation: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890388
– volume: 9
  start-page: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0045
  article-title: BROAD-RSI – Educational recommender system using social networks interactions and linked data
  publication-title: Journal of Internet Services and Applications
  doi: 10.1186/s13174-018-0076-5
– volume: 433–434
  start-page: 204
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0015
  article-title: Relationship recommender system in a business and employment-oriented social network
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.12.050
– volume: 121
  start-page: 42
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0035
  article-title: A social recommendation method based on the integration of social relationship and product popularity
  publication-title: International Journal of Human-Computer Studies
  doi: 10.1016/j.ijhcs.2018.04.002
– year: 2008
  ident: 10.1016/j.ipm.2019.102153_bib0039
– volume: 278
  start-page: 534
  year: 2013
  ident: 10.1016/j.ipm.2019.102153_bib0023
  article-title: A social-empowered platform for gathering semantic information
– volume: 78
  start-page: 413
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0021
  article-title: Recommender systems for large-scale social networks: A review of challenges and solutions
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.09.015
– start-page: 36
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0024
  article-title: Ontology-based advertisement recommendation in social networks
  doi: 10.1007/978-3-319-94649-8_5
– start-page: 1
  year: 2016
  ident: 10.1016/j.ipm.2019.102153_bib0001
  article-title: An introduction to recommender systems
– volume: 136
  start-page: 1
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0042
  article-title: Semantics-aware recommender systems exploiting linked open data and graph-based features
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.08.015
– volume: 65
  start-page: 132
  year: 2013
  ident: 10.1016/j.ipm.2019.102153_bib0026
  article-title: A method for the acquisition of ontology-based user profiles
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.06.008
– ident: 10.1016/j.ipm.2019.102153_bib0069
– volume: 80
  start-page: 355
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0031
  article-title: Social collaborative service recommendation approach based on user's trust and domain-specific expertise
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.05.036
– volume: 32
  start-page: 7
  issue: 3
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0050
  article-title: Utilizing verbal intent in semantic contextual advertising
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2017.45
– volume: 2473
  start-page: 379
  year: 2002
  ident: 10.1016/j.ipm.2019.102153_bib0064
  article-title: MnM: Ontology driven semi-automatic and automatic support for semantic markup
– year: 1986
  ident: 10.1016/j.ipm.2019.102153_bib0052
– start-page: 431
  year: 2012
  ident: 10.1016/j.ipm.2019.102153_bib0068
  article-title: Towards personalized context-aware recommendation by mining context logs through topic models
– volume: 50
  start-page: 329
  year: 2015
  ident: 10.1016/j.ipm.2019.102153_bib0046
  article-title: Advertisement posting based on consumer behaviour
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.04.040
– volume: 74
  start-page: 498
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0047
  article-title: Ontology and context based recommendation system using Neuro-Fuzzy Classification
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2018.01.034
– volume: 36
  start-page: e12365
  issue: 2
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0038
  article-title: A social recommendation system for academic collaboration in undergraduate research
  publication-title: Expert Systems
  doi: 10.1111/exsy.12365
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ipm.2019.102153_bib0059
  article-title: Toward social-semantic recommender systems
  publication-title: International Journal of Information Systems and Social Change
  doi: 10.4018/IJISSC.2016010101
– volume: 216
  start-page: 138
  year: 2012
  ident: 10.1016/j.ipm.2019.102153_bib0070
  article-title: An ontology-based approach to Chinese semantic advertising
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.06.012
– start-page: 29
  year: 2015
  ident: 10.1016/j.ipm.2019.102153_bib0028
  article-title: Personalized internet advertisement recommendation service based on keyword similarity
– volume: 65
  start-page: 52
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0032
  article-title: Modeling user interest in social media using news media and wikipedia
  publication-title: Information Systems
  doi: 10.1016/j.is.2016.11.003
– volume: 108
  start-page: 15
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0041
  article-title: Producing relevant interests from social networks by mining users’ tagging behaviour: A first step towards adapting social information
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2016.12.003
– volume: 13
  start-page: 147
  issue: 2
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0002
  article-title: A general framework for intelligent recommender systems
  publication-title: Applied Computing and Informatics
  doi: 10.1016/j.aci.2016.08.002
– volume: 43
  start-page: 458
  issue: 4
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0051
  article-title: Feature-based opinion mining in financial news: An ontology-driven approach
  publication-title: Journal of Information Science
  doi: 10.1177/0165551516645528
– volume: 69
  start-page: 135
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0054
  article-title: Personalized recommender system based on friendship strength in social network services
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.10.024
– volume: 101
  start-page: 28
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0060
  article-title: Tour recommendations by mining photo sharing social media
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.05.013
– volume: 140
  start-page: 120
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0066
  article-title: Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.10.031
– volume: 39
  start-page: 10990
  issue: 12
  year: 2012
  ident: 10.1016/j.ipm.2019.102153_bib0013
  article-title: Social knowledge-based recommender system. Application to the movies domain
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.03.025
– volume: 5
  start-page: 1624
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0016
  article-title: Location-aware personalized news recommendation with deep semantic analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2655150
– volume: 81
  start-page: 63
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0029
  article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2017.03.002
– volume: 1680
  start-page: 18
  year: 2016
  ident: 10.1016/j.ipm.2019.102153_bib0049
  article-title: Personality in computational advertising: A benchmark
– volume: 7
  start-page: 17493
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0067
  article-title: Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895824
– volume: 59
  start-page: 387
  issue: 2
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0017
  article-title: A probabilistic model for semantic advertising
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-018-1160-7
– volume: 341
  start-page: 1
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0018
  article-title: Social recommendation based on users’ attention and preference
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.045
– volume: 5
  start-page: 599
  issue: 2
  year: 2016
  ident: 10.1016/j.ipm.2019.102153_bib0063
  article-title: A recommender system for online advertising
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 254
  start-page: 79
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0010
  article-title: Semantics-aware content-based recommender systems: Design and architecture guidelines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.079
– ident: 10.1016/j.ipm.2019.102153_bib0061
– volume: 39
  start-page: 9715
  issue: 10
  year: 2012
  ident: 10.1016/j.ipm.2019.102153_bib0022
  article-title: SocialBROKER: A collaborative social space for gathering semantically-enhanced financial information
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.093
– volume: 54
  start-page: 529
  issue: 4
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0025
  article-title: Social network data to alleviate cold-start in recommender system: A systematic review
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.03.004
– volume: 34
  start-page: 1772
  issue: 8
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0005
  article-title: Performance improvement for recommender systems using ontology
  publication-title: Telematics and Informatics
  doi: 10.1016/j.tele.2017.08.008
– volume: 56
  start-page: 771
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0008
  article-title: Exploiting syntactic and neighbourhood attributes to address cold start in tag recommendation
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.12.009
– volume: 25
  start-page: 161
  issue: 1–2
  year: 1998
  ident: 10.1016/j.ipm.2019.102153_bib0058
  article-title: Knowledge engineering: Principles and methods
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/S0169-023X(97)00056-6
– ident: 10.1016/j.ipm.2019.102153_bib0004
– volume: 56
  start-page: 939
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0027
  article-title: Item diversified recommendation based on influence diffusion
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.01.006
– volume: 5
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.ipm.2019.102153_bib0009
  article-title: Linked data - The story so far
  publication-title: International Journal on Semantic Web and Information Systems
  doi: 10.4018/jswis.2009081901
– volume: 7
  start-page: 67081
  year: 2019
  ident: 10.1016/j.ipm.2019.102153_bib0053
  article-title: Knowledge based recommender system for academia using machine learning: A case study on higher education landscape of Pakistan
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912012
– volume: 6152
  start-page: 96
  year: 2010
  ident: 10.1016/j.ipm.2019.102153_bib0062
  article-title: Semantic advertising for web 3.0
– volume: 10
  start-page: 42
  issue: 4
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0034
  article-title: An ontology-based decision support system for the diagnosis of plant diseases
  publication-title: Journal of Information Technology Research
  doi: 10.4018/JITR.2017100103
– volume: 92
  start-page: 507
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0044
  article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.058
– volume: 49
  start-page: 640
  issue: 3
  year: 2013
  ident: 10.1016/j.ipm.2019.102153_bib0011
  article-title: Personal ontologies: Generation of user profiles based on the YAGO ontology
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2012.07.010
– volume: 79
  start-page: 154
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0030
  article-title: “Celebrity 2.0 and beyond!” Effects of Facebook profile sources on social networking advertising
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2017.10.033
– volume: 21
  start-page: 96
  issue: 3
  year: 2006
  ident: 10.1016/j.ipm.2019.102153_bib0055
  article-title: The semantic Web revisited
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2006.62
– volume: 21
  start-page: 1487
  issue: 6
  year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0012
  article-title: Hybrid recommender systems: A systematic literature review
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-163209
– volume: 7
  issue: 4
  year: 2013
  ident: 10.1016/j.ipm.2019.102153_bib0037
  article-title: Semantic contextual advertising based on the open directory project
  publication-title: ACM Transactions on the Web
  doi: 10.1145/2529995.2529997
– volume: 94
  start-page: 175
  year: 1994
  ident: 10.1016/j.ipm.2019.102153_bib0048
  article-title: GroupLens: An open architecture for collaborative filtering of netnews
– volume: 14
  start-page: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0065
  article-title: Research on financial advertisement personalised recommendation method based on customer segmentation
  publication-title: International Journal of Wireless and Mobile Computing
  doi: 10.1504/IJWMC.2018.090005
– year: 2017
  ident: 10.1016/j.ipm.2019.102153_bib0056
  article-title: Social media marketing: Comparative effect of advertisement sources
  publication-title: Journal of Retailing and Consumer Services
– ident: 10.1016/j.ipm.2019.102153_bib0057
– start-page: 398
  year: 2016
  ident: 10.1016/j.ipm.2019.102153_bib0020
  article-title: An ontology-based framework to model user interests
– volume: 54
  start-page: 1203
  issue: 6
  year: 2018
  ident: 10.1016/j.ipm.2019.102153_bib0033
  article-title: News recommender systems – Survey and roads ahead
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.04.008
SSID ssj0004512
Score 2.5448573
Snippet •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support...
Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102153
SubjectTerms Advertisements
Advertising
Computer simulation
Data integration
Decision analysis
Decision making
End users
Knowledge management
Knowledge representation
Knowledge-based systems
Natural language processing
Ontology
Recommender systems
Semantic web
Semantics
Social network services
Social networks
Title A social-semantic recommender system for advertisements
URI https://dx.doi.org/10.1016/j.ipm.2019.102153
https://www.proquest.com/docview/2354804284
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXryIn1htSw7iQYjdfG56LMVSFXvRQm8hyWahYmux9epvN8lmRQV78Loky_J2ZjKzO-8NABekL11pS4kM9-7GfI2BfBIrEC1NIAQX3EV1_YeJGE_Z3YzPGmBYc2FCW2WK_VVMj9E6XeklNHur-bz3GLJdxnNvQ95OiQhEc8byYOXXH_ibYjhOfxIECqvrP5uxx2u-CmR03A8CBpjTv86mX1E6Hj2jfbCXckY4qB7rADTc8hB0EuMAXsJEKQoQw-SrRyAfwOp7OFq7hYdvbmEofheLODsOVgrO0G-Eup7JHNlux2A6unkajlGakoAsJXyDfHVbWN0n0opCZGVBLbU5s95PnZBYZ44T5hFn1kdlJ7k1RnNHHZeF1sZYS09Ac_m6dKcAuiLXNLfEcpoxLaXO_NGFNSbYCYNp0QJZjY-ySUI8TLJ4UXWv2LPykKoAqaogbYGrry2rSj9j22JWg65-GIHy8X3btnb9glTywLUiNCjZ-eKKnf3vrudgl4TaOvabtUFz8_buOj4B2ZhutLAu2Bnc3o8nn9122RE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3oxfkYUtAfjwWSyfm4cCZGgAhch4dZ0XZfMCBLBq3-7r1tn1EQOXpe2WX57n-t7v4fQFe3ENjNZHCQC1I1DjhFAECsDliWuITgVtmDXH43lYMofZmJWQ72qF8aVVXrbX9r0wlr7J22PZnuZ5-0nF-1yEYEMgZxSKbbQNgf1dWMMbj_IN8pw4q8SZOCWV1ebRZFXvnTd6KTjGAyIYH85p19muvA9_X2054NG3C3f6wDV7OIQtXzLAb7GvqfIYYy9sh6hqIvLH-LBys4Bv9xgl_3O58XwOFxSOGPYiHU1lLlodztG0_7dpDcI_JiEwDAq1gGkt6nRHRobmcowS5lhJuIGFNXKmOjQCsoBcm7ALNtYmCTRwjIr4lTrJDGGnaD64nVhTxG2aaRZZKgRLOQ6jnUIvotoQomVCWFpA4UVPsp4DnE3yuJFVcVizwogVQ5SVULaQDdfW5YlgcamxbwCXf2QAgUGftO2ZvWBlFfBlaLMUdlBdsXP_nfqJdoZTEZDNbwfP56jXeoS7aL4rInq67d324JoZJ1cFNL2CfYX2p8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+social-semantic+recommender+system+for+advertisements&rft.jtitle=Information+processing+%26+management&rft.au=Garc%C3%ADa-S%C3%A1nchez%2C+Francisco&rft.au=Colomo-Palacios%2C+Ricardo&rft.au=Valencia-Garc%C3%ADa%2C+Rafael&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=57&rft.issue=2&rft_id=info:doi/10.1016%2Fj.ipm.2019.102153&rft.externalDocID=S0306457319307265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon