A social-semantic recommender system for advertisements
•Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommenda...
Saved in:
Published in | Information processing & management Vol. 57; no. 2; p. 102153 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommendation.•Accuracy boosted adapting user profiles to changing needs.
Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users’ contributions to social sites and gaining insights into the consumers’ needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users’ interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users’ profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%. |
---|---|
AbstractList | •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support recommendation.•Shared ontology model aligns advertisements with users’ profiles.•Textual contributions and network connections leveraged to improve recommendation.•Accuracy boosted adapting user profiles to changing needs.
Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users’ contributions to social sites and gaining insights into the consumers’ needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users’ interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users’ profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%. Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and their likes and dislikes has become available. Having access to users' contributions to social sites and gaining insights into the consumers' needs is of the utmost importance for marketing decision making in general, and to advertisement recommendation in particular. By analyzing this information, advertisement recommendation systems can attain a better understanding of the users' interests and preferences, thus allowing these solutions to provide more precise ad suggestions. However, in addition to the already complex challenges that hamper the performance of recommender systems (i.e., data sparsity, cold-start, diversity, accuracy and scalability), new issues that should be considered have also emerged from the need to deal with heterogeneous data gathered from disparate sources. The technologies surrounding Linked Data and the Semantic Web have proved effective for knowledge management and data integration. In this work, an ontology-based advertisement recommendation system that leverages the data produced by users in social networking sites is proposed, and this approach is substantiated by a shared ontology model with which to represent both users' profiles and the content of advertisements. Both users and advertisement are represented by means of vectors generated using natural language processing techniques, which collect ontological entities from textual content. The ad recommender framework has been extensively validated in a simulated environment, obtaining an aggregated f-measure of 79.2% and a Mean Average Precision at 3 (MAP@3) of 85.6%. |
ArticleNumber | 102153 |
Author | Valencia-García, Rafael Colomo-Palacios, Ricardo García-Sánchez, Francisco |
Author_xml | – sequence: 1 givenname: Francisco surname: García-Sánchez fullname: García-Sánchez, Francisco email: frgarcia@um.es organization: DIS, Faculty of Computer Science, University of Murcia, 30100 Murcia, Spain – sequence: 2 givenname: Ricardo surname: Colomo-Palacios fullname: Colomo-Palacios, Ricardo email: ricardo.colomo-palacios@hiof.no organization: Department of Computer Sciences, Østfold University College, Norway – sequence: 3 givenname: Rafael surname: Valencia-García fullname: Valencia-García, Rafael email: valencia@um.es organization: DIS, Faculty of Computer Science, University of Murcia, 30100 Murcia, Spain |
BookMark | eNp9kMtqwzAQRUVJoUnaD-jO0LVTPW2HrkLoCwLdtGshj8cgE0uppATy91VwV110NQzcc4c5CzJz3iEh94yuGGXV47Cyh3HFKVvnnTMlrsicNbUolajZjMypoFUpVS1uyCLGgVIqFeNzUm-K6MGafRlxNC5ZKAKCH0d0HYYinmPCseh9KEx3wpBsjqFL8ZZc92Yf8e53LsnXy_Pn9q3cfby-bze7EgRXqVzTugOz5g1UXUX7ToCAWgLnCquGGYqKS4VKArYMGwVtaxQKVE1nTNsCiCV5mHoPwX8fMSY9-GNw-aTmQsmGSt7InKqnFAQfY8Beg00mWe9SMHavGdUXS3rQ2ZK-WNKTpUyyP-Qh2NGE87_M08RgfvxkMegIFh1gZ7O7pDtv_6F_AKW1gh4 |
CitedBy_id | crossref_primary_10_1142_S021962202350030X crossref_primary_10_1016_j_ipm_2020_102485 crossref_primary_10_1016_j_asoc_2024_112140 crossref_primary_10_1016_j_sigpro_2024_109797 crossref_primary_10_3390_electronics10080905 crossref_primary_10_1109_ACCESS_2020_2971087 crossref_primary_10_1016_j_mlwa_2021_100114 crossref_primary_10_1016_j_ipm_2021_102721 crossref_primary_10_1155_2020_1747315 crossref_primary_10_1145_3661821 crossref_primary_10_1016_j_advengsoft_2022_103368 crossref_primary_10_3390_app14114679 crossref_primary_10_1007_s12652_020_02806_1 crossref_primary_10_1108_JKM_10_2020_0801 crossref_primary_10_1111_exsy_13143 crossref_primary_10_3390_info12110480 crossref_primary_10_3390_s21092893 crossref_primary_10_1007_s00500_021_05586_8 crossref_primary_10_1155_2022_7609555 crossref_primary_10_1016_j_eswa_2024_125141 crossref_primary_10_1007_s11042_021_11856_2 crossref_primary_10_1016_j_future_2023_07_003 crossref_primary_10_1109_ACCESS_2021_3059312 crossref_primary_10_1177_01655515231220172 crossref_primary_10_1016_j_dss_2024_114197 crossref_primary_10_1109_TNSE_2021_3093782 crossref_primary_10_3233_JIFS_220110 crossref_primary_10_1016_j_eswa_2024_125816 crossref_primary_10_1016_j_ins_2020_05_071 crossref_primary_10_3390_computers13070168 crossref_primary_10_1093_comjnl_bxad088 crossref_primary_10_1080_17517575_2020_1812003 crossref_primary_10_1016_j_jksuci_2022_10_017 crossref_primary_10_1007_s10660_021_09495_8 crossref_primary_10_3390_electronics11010141 crossref_primary_10_1186_s40537_022_00566_7 crossref_primary_10_3390_app12010143 crossref_primary_10_3390_app12041940 crossref_primary_10_3390_info14010019 crossref_primary_10_1016_j_ipm_2023_103586 crossref_primary_10_1155_2022_9203665 crossref_primary_10_1016_j_ipm_2020_102474 crossref_primary_10_1016_j_jik_2024_100569 crossref_primary_10_1016_j_elerap_2023_101310 crossref_primary_10_1016_j_eswa_2021_115555 crossref_primary_10_3390_app10031040 crossref_primary_10_1007_s41237_022_00161_3 crossref_primary_10_1109_ACCESS_2021_3072165 crossref_primary_10_1002_spe_2828 crossref_primary_10_2478_dim_2020_0048 crossref_primary_10_1155_2022_6958596 crossref_primary_10_1109_ACCESS_2023_3244065 |
Cites_doi | 10.1007/s10462-018-9654-y 10.1016/j.future.2017.03.015 10.1016/j.ipm.2018.08.001 10.1016/j.websem.2009.01.001 10.1109/TKDE.2007.22 10.1177/0165551517698787 10.1109/ACCESS.2018.2890388 10.1186/s13174-018-0076-5 10.1016/j.ins.2017.12.050 10.1016/j.ijhcs.2018.04.002 10.1016/j.future.2017.09.015 10.1007/978-3-319-94649-8_5 10.1016/j.knosys.2017.08.015 10.1016/j.advengsoft.2013.06.008 10.1016/j.future.2017.05.036 10.1109/MIS.2017.45 10.1016/j.procs.2015.04.040 10.1016/j.compeleceng.2018.01.034 10.1111/exsy.12365 10.4018/IJISSC.2016010101 10.1016/j.ins.2012.06.012 10.1016/j.is.2016.11.003 10.1016/j.datak.2016.12.003 10.1016/j.aci.2016.08.002 10.1177/0165551516645528 10.1016/j.eswa.2016.10.024 10.1016/j.dss.2017.05.013 10.1016/j.knosys.2017.10.031 10.1016/j.eswa.2012.03.025 10.1109/ACCESS.2017.2655150 10.1016/j.artmed.2017.03.002 10.1109/ACCESS.2019.2895824 10.1007/s10115-018-1160-7 10.1016/j.neucom.2019.02.045 10.1016/j.neucom.2016.10.079 10.1016/j.eswa.2012.02.093 10.1016/j.ipm.2018.03.004 10.1016/j.tele.2017.08.008 10.1016/j.ipm.2018.12.009 10.1016/S0169-023X(97)00056-6 10.1016/j.ipm.2019.01.006 10.4018/jswis.2009081901 10.1109/ACCESS.2019.2912012 10.4018/JITR.2017100103 10.1016/j.eswa.2017.09.058 10.1016/j.ipm.2012.07.010 10.1016/j.chb.2017.10.033 10.1109/MIS.2006.62 10.3233/IDA-163209 10.1145/2529995.2529997 10.1504/IJWMC.2018.090005 10.1016/j.ipm.2018.04.008 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Pergamon Press Inc. Mar 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Mar 2020 |
DBID | AAYXX CITATION E3H F2A |
DOI | 10.1016/j.ipm.2019.102153 |
DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
ExternalDocumentID | 10_1016_j_ipm_2019_102153 S0306457319307265 |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH E3H EFKBS F2A |
ID | FETCH-LOGICAL-c325t-907dca928c6d60fd3c3c74c225e681a0e5245e54ceb1e85cbba5e3e58daabbcc3 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Fri Jul 25 03:02:16 EDT 2025 Tue Jul 01 00:44:33 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 Fri Feb 23 02:48:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Natural language processing Knowledge-based systems Social network services Advertising Recommender systems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-907dca928c6d60fd3c3c74c225e681a0e5245e54ceb1e85cbba5e3e58daabbcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2354804284 |
PQPubID | 46166 |
ParticipantIDs | proquest_journals_2354804284 crossref_citationtrail_10_1016_j_ipm_2019_102153 crossref_primary_10_1016_j_ipm_2019_102153 elsevier_sciencedirect_doi_10_1016_j_ipm_2019_102153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Lee, Ha, Jung, Lee (bib0037) 2013; 7 Lai, Lee, Huang (bib0035) 2019; 121 Mezghani, Péninou, Zayani, Amous, Sèdes (bib0041) 2017; 108 García-Sánchez, García-Díaz, Gómez-Berbís, Valencia-García (bib0024) 2019 Salton, McGill (bib0052) 1986 Xu, Zheng, Cai, Min, Gao, Zhu (bib0066) 2018; 140 Eirinaki, Gao, Varlamis, Tserpes (bib0021) 2018; 78 Bizer, Heath, Berners-Lee (bib0009) 2009; 5 Huang, Shen, Meng (bib0027) 2019; 56 Bai, Wang, Lee, Yang, Kong, Xia (bib0006) 2019; 7 Batmaz, Yurekli, Bilge, Kaleli (bib0007) 2019; 52 Altınel, Ganiz (bib0003) 2018; 54 Chen, Wang, Shi, Feng, Chen (bib0018) 2019; 341 Belém, Heringer, Almeida, Gonçalves (bib0008) 2019; 56 Resnick, Iacovou, Suchak, Bergstrom, Riedl (bib0048) 1994; 94 Calegari, Pasi (bib0011) 2013; 49 Han, Chen, Li (bib0026) 2013; 65 Vargas-Vera, Motta, Domingue, Lanzoni, Stutt, Ciravegna (bib0064) 2002; 2473 Ragunathan, Battula, Jorika, Mounika, Sruthi, Vani (bib0046) 2015; 50 Salas-Zárate, Valencia-García, Ruiz-Martínez, Colomo-Palacios (bib0051) 2017; 43 Karimi, Jannach, Jugovac (bib0033) 2018; 54 Colombo-Mendoza, Valencia-García, Rodríguez-González, Colomo-Palacios, Alor-Hernández (bib0019) 2018; 44 Thomas, Pan, Taylor, Ren, Jekjantuk, Zhao (bib0062) 2010; 6152 Manning, Raghavan, Schutze (bib0039) 2008 Seo, Kim, Lee, Baik (bib0054) 2017; 69 Aggarwal (bib0001) 2016 Wang, Liu, Wu (bib0065) 2018; 14 Çano, Morisio (bib0012) 2017; 21 Retrieved from . Bagherifard, Rahmani, Nilashi, Rafe (bib0005) 2017; 34 Kalaï, Zayani, Amous, Abdelghani, Sèdes (bib0031) 2018; 80 Esteban-Gil, García-Sanchez, Valencia-García, Fernández-Breis (bib0023) 2013; 278 Roffo, Vinciarelli (bib0049) 2016; 1680 Zheng, Chen, Jiang (bib0070) 2012; 216 Vani (bib0063) 2016; 5 Chamoso, Rivas, Rodríguez, Bajo (bib0015) 2018; 433–434 Pereira, Campos, Ströele, David, Braga (bib0045) 2018; 9 Zamanzadeh, B., Ashish, N., Ramakrishnan, C., & Zimmerman, J. (2013). Semantic advertising. Yu, Zhang, Zhu, Cao, Tian (bib0068) 2012 Kang, Lee (bib0032) 2017; 65 Esteban-Gil, Garcia-Sanchez, Valencia-Garcia, Fernandez-Breis (bib0022) 2012; 39 Ryu, Lee, Lee (bib0050) 2017; 32 Aguilar, Valdiviezo-Díaz, Riofrio (bib0002) 2017; 13 Carrer-Neto, Hernández-Alcaraz, Valencia-García, García-Sánchez (bib0013) 2012; 39 Darabi, Tabrizi (bib0020) 2016 Castells, Fernandez, Vallet (bib0014) 2007; 19 Studer, Benjamins, Fensel (bib0058) 1998; 25 Jiang, Yang (bib0029) 2017; 81 Razia Sulthana, Ramasamy (bib0047) 2019; 74 Chen, Meng, Xu, Lukasiewicz (bib0016) 2017; 5 Gonzalez Camacho, Alves-Souza (bib0025) 2018; 54 Shadbolt, Berners-Lee, Hall (bib0055) 2006; 21 Hwang, Chen, Jiang (bib0028) 2015 Nakatsuji, Yoshida, Ishida (bib0043) 2009; 7 Sulieman, Malek, Kadima, Laurent (bib0059) 2016; 7 Xu, Liu (bib0067) 2019; 7 Statista. (2019). Global advertising spending from 2014 to 2021. Retrieved June 20, 2019, from Lalwani, Somayajulu, Krishna (bib0036) 2015 Musto, Lops, de Gemmis, Semeraro (bib0042) 2017; 136 Nilashi, Ibrahim, Bagherifard (bib0044) 2018; 92 American Marketing Association Board of Directors. (2013). Definitions of marketing. Retrieved June 20, 2019, from Samin, Azim (bib0053) 2019; 7 Lagos-Ortiz, Medina-Moreira, Paredes-Valverde, Espinoza-Morán, Valencia-García (bib0034) 2017; 10 Boratto, Carta, Fenu, Saia (bib0010) 2017; 254 Jin (bib0030) 2018; 79 Liu, Yang, Ma, Xu, Hua (bib0038) 2019; 36 Margaris, Vassilakis, Georgiadis (bib0040) 2018; 78 Shareef, Mukerji, Dwivedi, Rana, Islam (bib0056) 2017 Sun, Lee (bib0060) 2017; 101 Chen, Zheng, Jiang, Xia, Zhao (bib0017) 2019; 59 Technavio. (2016). Global internet advertisement market 2016-2020. Retrieved June 20, 2019, from Lagos-Ortiz (10.1016/j.ipm.2019.102153_bib0034) 2017; 10 Shadbolt (10.1016/j.ipm.2019.102153_bib0055) 2006; 21 Eirinaki (10.1016/j.ipm.2019.102153_bib0021) 2018; 78 Manning (10.1016/j.ipm.2019.102153_bib0039) 2008 Sun (10.1016/j.ipm.2019.102153_bib0060) 2017; 101 10.1016/j.ipm.2019.102153_bib0061 Salas-Zárate (10.1016/j.ipm.2019.102153_bib0051) 2017; 43 Shareef (10.1016/j.ipm.2019.102153_bib0056) 2017 Huang (10.1016/j.ipm.2019.102153_bib0027) 2019; 56 Zheng (10.1016/j.ipm.2019.102153_bib0070) 2012; 216 Wang (10.1016/j.ipm.2019.102153_bib0065) 2018; 14 Esteban-Gil (10.1016/j.ipm.2019.102153_bib0022) 2012; 39 10.1016/j.ipm.2019.102153_bib0069 Chamoso (10.1016/j.ipm.2019.102153_bib0015) 2018; 433–434 Chen (10.1016/j.ipm.2019.102153_bib0017) 2019; 59 Bizer (10.1016/j.ipm.2019.102153_bib0009) 2009; 5 Salton (10.1016/j.ipm.2019.102153_bib0052) 1986 Vani (10.1016/j.ipm.2019.102153_bib0063) 2016; 5 Roffo (10.1016/j.ipm.2019.102153_bib0049) 2016; 1680 Studer (10.1016/j.ipm.2019.102153_bib0058) 1998; 25 Thomas (10.1016/j.ipm.2019.102153_bib0062) 2010; 6152 Resnick (10.1016/j.ipm.2019.102153_bib0048) 1994; 94 Boratto (10.1016/j.ipm.2019.102153_bib0010) 2017; 254 Calegari (10.1016/j.ipm.2019.102153_bib0011) 2013; 49 Colombo-Mendoza (10.1016/j.ipm.2019.102153_bib0019) 2018; 44 Gonzalez Camacho (10.1016/j.ipm.2019.102153_bib0025) 2018; 54 Jiang (10.1016/j.ipm.2019.102153_bib0029) 2017; 81 Mezghani (10.1016/j.ipm.2019.102153_bib0041) 2017; 108 Castells (10.1016/j.ipm.2019.102153_bib0014) 2007; 19 Ragunathan (10.1016/j.ipm.2019.102153_bib0046) 2015; 50 Kang (10.1016/j.ipm.2019.102153_bib0032) 2017; 65 Xu (10.1016/j.ipm.2019.102153_bib0067) 2019; 7 Batmaz (10.1016/j.ipm.2019.102153_bib0007) 2019; 52 Pereira (10.1016/j.ipm.2019.102153_bib0045) 2018; 9 Xu (10.1016/j.ipm.2019.102153_bib0066) 2018; 140 Nakatsuji (10.1016/j.ipm.2019.102153_bib0043) 2009; 7 Lee (10.1016/j.ipm.2019.102153_bib0037) 2013; 7 Karimi (10.1016/j.ipm.2019.102153_bib0033) 2018; 54 Aguilar (10.1016/j.ipm.2019.102153_bib0002) 2017; 13 Hwang (10.1016/j.ipm.2019.102153_bib0028) 2015 Ryu (10.1016/j.ipm.2019.102153_bib0050) 2017; 32 Aggarwal (10.1016/j.ipm.2019.102153_bib0001) 2016 Jin (10.1016/j.ipm.2019.102153_bib0030) 2018; 79 Seo (10.1016/j.ipm.2019.102153_bib0054) 2017; 69 Musto (10.1016/j.ipm.2019.102153_bib0042) 2017; 136 Altınel (10.1016/j.ipm.2019.102153_bib0003) 2018; 54 Bai (10.1016/j.ipm.2019.102153_bib0006) 2019; 7 Vargas-Vera (10.1016/j.ipm.2019.102153_bib0064) 2002; 2473 Carrer-Neto (10.1016/j.ipm.2019.102153_bib0013) 2012; 39 Kalaï (10.1016/j.ipm.2019.102153_bib0031) 2018; 80 10.1016/j.ipm.2019.102153_bib0004 Sulieman (10.1016/j.ipm.2019.102153_bib0059) 2016; 7 Chen (10.1016/j.ipm.2019.102153_bib0016) 2017; 5 Margaris (10.1016/j.ipm.2019.102153_bib0040) 2018; 78 Chen (10.1016/j.ipm.2019.102153_bib0018) 2019; 341 Razia Sulthana (10.1016/j.ipm.2019.102153_bib0047) 2019; 74 Samin (10.1016/j.ipm.2019.102153_bib0053) 2019; 7 Bagherifard (10.1016/j.ipm.2019.102153_bib0005) 2017; 34 Lai (10.1016/j.ipm.2019.102153_bib0035) 2019; 121 García-Sánchez (10.1016/j.ipm.2019.102153_bib0024) 2019 Yu (10.1016/j.ipm.2019.102153_bib0068) 2012 Darabi (10.1016/j.ipm.2019.102153_bib0020) 2016 Lalwani (10.1016/j.ipm.2019.102153_bib0036) 2015 Çano (10.1016/j.ipm.2019.102153_bib0012) 2017; 21 Nilashi (10.1016/j.ipm.2019.102153_bib0044) 2018; 92 Liu (10.1016/j.ipm.2019.102153_bib0038) 2019; 36 Esteban-Gil (10.1016/j.ipm.2019.102153_bib0023) 2013; 278 Han (10.1016/j.ipm.2019.102153_bib0026) 2013; 65 10.1016/j.ipm.2019.102153_bib0057 Belém (10.1016/j.ipm.2019.102153_bib0008) 2019; 56 |
References_xml | – volume: 39 start-page: 10990 year: 2012 end-page: 11000 ident: bib0013 article-title: Social knowledge-based recommender system. Application to the movies domain publication-title: Expert Systems with Applications – volume: 81 start-page: 63 year: 2017 end-page: 77 ident: bib0029 article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network publication-title: Artificial Intelligence in Medicine – volume: 7 year: 2013 ident: bib0037 article-title: Semantic contextual advertising based on the open directory project publication-title: ACM Transactions on the Web – volume: 79 start-page: 154 year: 2018 end-page: 168 ident: bib0030 article-title: “Celebrity 2.0 and beyond!” Effects of Facebook profile sources on social networking advertising publication-title: Computers in Human Behavior – volume: 52 start-page: 1 year: 2019 end-page: 37 ident: bib0007 article-title: A review on deep learning for recommender systems: Challenges and remedies publication-title: Artificial Intelligence Review – volume: 1680 start-page: 18 year: 2016 end-page: 25 ident: bib0049 article-title: Personality in computational advertising: A benchmark – volume: 101 start-page: 28 year: 2017 end-page: 39 ident: bib0060 article-title: Tour recommendations by mining photo sharing social media publication-title: Decision Support Systems – year: 2008 ident: bib0039 article-title: Introduction to information retrieval – volume: 25 start-page: 161 year: 1998 end-page: 197 ident: bib0058 article-title: Knowledge engineering: Principles and methods publication-title: Data & Knowledge Engineering – start-page: 29 year: 2015 end-page: 33 ident: bib0028 article-title: Personalized internet advertisement recommendation service based on keyword similarity publication-title: 2015 IEEE 39th annual computer software and applications conference – volume: 5 start-page: 599 year: 2016 end-page: 604 ident: bib0063 article-title: A recommender system for online advertising publication-title: International Journal of Advanced Research in Computer and Communication Engineering – volume: 39 start-page: 9715 year: 2012 end-page: 9722 ident: bib0022 article-title: SocialBROKER: A collaborative social space for gathering semantically-enhanced financial information publication-title: Expert Systems with Applications – volume: 7 start-page: 107 year: 2009 end-page: 120 ident: bib0043 article-title: Detecting innovative topics based on user-interest ontology publication-title: Web Semantics – volume: 78 start-page: 440 year: 2018 end-page: 450 ident: bib0040 article-title: Query personalization using social network information and collaborative filtering techniques publication-title: Future Generation Computer Systems – start-page: 398 year: 2016 end-page: 403 ident: bib0020 article-title: An ontology-based framework to model user interests publication-title: 2016 international conference on computational science and computational intelligence (CSCI) – start-page: 431 year: 2012 end-page: 443 ident: bib0068 article-title: Towards personalized context-aware recommendation by mining context logs through topic models publication-title: Advances in Knowledge Discovery and Data Mining – volume: 36 start-page: e12365 year: 2019 ident: bib0038 article-title: A social recommendation system for academic collaboration in undergraduate research publication-title: Expert Systems – volume: 69 start-page: 135 year: 2017 end-page: 148 ident: bib0054 article-title: Personalized recommender system based on friendship strength in social network services publication-title: Expert Systems with Applications – volume: 34 start-page: 1772 year: 2017 end-page: 1792 ident: bib0005 article-title: Performance improvement for recommender systems using ontology publication-title: Telematics and Informatics – volume: 92 start-page: 507 year: 2018 end-page: 520 ident: bib0044 article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques publication-title: Expert Systems with Applications – volume: 7 start-page: 1 year: 2016 end-page: 30 ident: bib0059 article-title: Toward social-semantic recommender systems publication-title: International Journal of Information Systems and Social Change – volume: 44 start-page: 464 year: 2018 end-page: 490 ident: bib0019 article-title: Towards a knowledge-based probabilistic and context-aware social recommender system publication-title: Journal of Information Science – volume: 54 start-page: 1203 year: 2018 end-page: 1227 ident: bib0033 article-title: News recommender systems – Survey and roads ahead publication-title: Information Processing & Management – year: 2017 ident: bib0056 article-title: Social media marketing: Comparative effect of advertisement sources publication-title: Journal of Retailing and Consumer Services – volume: 278 start-page: 534 year: 2013 end-page: 539 ident: bib0023 article-title: A social-empowered platform for gathering semantic information publication-title: Communications in computer and information science – volume: 6152 start-page: 96 year: 2010 end-page: 105 ident: bib0062 article-title: Semantic advertising for web 3.0 publication-title: Lecture notes in computer science – volume: 50 start-page: 329 year: 2015 end-page: 334 ident: bib0046 article-title: Advertisement posting based on consumer behaviour publication-title: Procedia Computer Science – volume: 32 start-page: 7 year: 2017 end-page: 13 ident: bib0050 article-title: Utilizing verbal intent in semantic contextual advertising publication-title: IEEE Intelligent Systems – volume: 5 start-page: 1 year: 2009 end-page: 22 ident: bib0009 article-title: Linked data - The story so far publication-title: International Journal on Semantic Web and Information Systems – volume: 108 start-page: 15 year: 2017 end-page: 29 ident: bib0041 article-title: Producing relevant interests from social networks by mining users’ tagging behaviour: A first step towards adapting social information publication-title: Data & Knowledge Engineering – volume: 21 start-page: 96 year: 2006 end-page: 101 ident: bib0055 article-title: The semantic Web revisited publication-title: IEEE Intelligent Systems – volume: 140 start-page: 120 year: 2018 end-page: 133 ident: bib0066 article-title: Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks publication-title: Knowledge-Based Systems – reference: American Marketing Association Board of Directors. (2013). Definitions of marketing. Retrieved June 20, 2019, from – start-page: 36 year: 2019 end-page: 44 ident: bib0024 article-title: Ontology-based advertisement recommendation in social networks publication-title: Advances in intelligent systems and computing 800 – volume: 80 start-page: 355 year: 2018 end-page: 367 ident: bib0031 article-title: Social collaborative service recommendation approach based on user's trust and domain-specific expertise publication-title: Future Generation Computer Systems – volume: 49 start-page: 640 year: 2013 end-page: 658 ident: bib0011 article-title: Personal ontologies: Generation of user profiles based on the YAGO ontology publication-title: Information Processing & Management – reference: Statista. (2019). Global advertising spending from 2014 to 2021. Retrieved June 20, 2019, from – volume: 9 start-page: 7 year: 2018 ident: bib0045 article-title: BROAD-RSI – Educational recommender system using social networks interactions and linked data publication-title: Journal of Internet Services and Applications – volume: 14 start-page: 97 year: 2018 end-page: 101 ident: bib0065 article-title: Research on financial advertisement personalised recommendation method based on customer segmentation publication-title: International Journal of Wireless and Mobile Computing – volume: 7 start-page: 9324 year: 2019 end-page: 9339 ident: bib0006 article-title: Scientific paper recommendation: A survey publication-title: IEEE Access – volume: 56 start-page: 939 year: 2019 end-page: 954 ident: bib0027 article-title: Item diversified recommendation based on influence diffusion publication-title: Information Processing & Management – volume: 65 start-page: 132 year: 2013 end-page: 137 ident: bib0026 article-title: A method for the acquisition of ontology-based user profiles publication-title: Advances in Engineering Software – volume: 2473 start-page: 379 year: 2002 end-page: 391 ident: bib0064 article-title: MnM: Ontology driven semi-automatic and automatic support for semantic markup publication-title: Knowledge engineering and knowledge management: ontologies and the semantic web. EKAW 2002. Lecture notes in computer science – volume: 43 start-page: 458 year: 2017 end-page: 479 ident: bib0051 article-title: Feature-based opinion mining in financial news: An ontology-driven approach publication-title: Journal of Information Science – volume: 216 start-page: 138 year: 2012 end-page: 154 ident: bib0070 article-title: An ontology-based approach to Chinese semantic advertising publication-title: Information Sciences – volume: 54 start-page: 1129 year: 2018 end-page: 1153 ident: bib0003 article-title: Semantic text classification: A survey of past and recent advances publication-title: Information Processing & Management – reference: Technavio. (2016). Global internet advertisement market 2016-2020. Retrieved June 20, 2019, from – reference: . Retrieved from – reference: Zamanzadeh, B., Ashish, N., Ramakrishnan, C., & Zimmerman, J. (2013). Semantic advertising. – start-page: 1 year: 2016 end-page: 28 ident: bib0001 article-title: An introduction to recommender systems publication-title: Recommender systems – volume: 433–434 start-page: 204 year: 2018 end-page: 220 ident: bib0015 article-title: Relationship recommender system in a business and employment-oriented social network publication-title: Information Sciences – volume: 341 start-page: 1 year: 2019 end-page: 9 ident: bib0018 article-title: Social recommendation based on users’ attention and preference publication-title: Neurocomputing – volume: 5 start-page: 1624 year: 2017 end-page: 1638 ident: bib0016 article-title: Location-aware personalized news recommendation with deep semantic analysis publication-title: IEEE Access – volume: 94 start-page: 175 year: 1994 end-page: 186 ident: bib0048 article-title: GroupLens: An open architecture for collaborative filtering of netnews publication-title: Proceedings of the 1994 ACM conference on computer supported cooperative work - CSCW – volume: 56 start-page: 771 year: 2019 end-page: 790 ident: bib0008 article-title: Exploiting syntactic and neighbourhood attributes to address cold start in tag recommendation publication-title: Information Processing & Management – volume: 121 start-page: 42 year: 2019 end-page: 57 ident: bib0035 article-title: A social recommendation method based on the integration of social relationship and product popularity publication-title: International Journal of Human-Computer Studies – volume: 78 start-page: 413 year: 2018 end-page: 418 ident: bib0021 article-title: Recommender systems for large-scale social networks: A review of challenges and solutions publication-title: Future Generation Computer Systems – volume: 21 start-page: 1487 year: 2017 end-page: 1524 ident: bib0012 article-title: Hybrid recommender systems: A systematic literature review publication-title: Intelligent Data Analysis – reference: . – volume: 7 start-page: 67081 year: 2019 end-page: 67093 ident: bib0053 article-title: Knowledge based recommender system for academia using machine learning: A case study on higher education landscape of Pakistan publication-title: IEEE Access – volume: 10 start-page: 42 year: 2017 end-page: 55 ident: bib0034 article-title: An ontology-based decision support system for the diagnosis of plant diseases publication-title: Journal of Information Technology Research – volume: 7 start-page: 17493 year: 2019 end-page: 17502 ident: bib0067 article-title: Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks publication-title: IEEE Access – volume: 59 start-page: 387 year: 2019 end-page: 412 ident: bib0017 article-title: A probabilistic model for semantic advertising publication-title: Knowledge and Information Systems – volume: 74 start-page: 498 year: 2019 end-page: 510 ident: bib0047 article-title: Ontology and context based recommendation system using Neuro-Fuzzy Classification publication-title: Computers & Electrical Engineering – volume: 254 start-page: 79 year: 2017 end-page: 85 ident: bib0010 article-title: Semantics-aware content-based recommender systems: Design and architecture guidelines publication-title: Neurocomputing – volume: 13 start-page: 147 year: 2017 end-page: 160 ident: bib0002 article-title: A general framework for intelligent recommender systems publication-title: Applied Computing and Informatics – volume: 19 start-page: 261 year: 2007 end-page: 272 ident: bib0014 article-title: An adaptation of the vector-space model for ontology-based information retrieval publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 1986 ident: bib0052 article-title: Introduction to modern information retrieval – volume: 54 start-page: 529 year: 2018 end-page: 544 ident: bib0025 article-title: Social network data to alleviate cold-start in recommender system: A systematic review publication-title: Information Processing & Management – volume: 136 start-page: 1 year: 2017 end-page: 14 ident: bib0042 article-title: Semantics-aware recommender systems exploiting linked open data and graph-based features publication-title: Knowledge-Based Systems – start-page: 821 year: 2015 end-page: 826 ident: bib0036 article-title: A community driven social recommendation system publication-title: 2015 IEEE international conference on big data (big data) – volume: 65 start-page: 52 year: 2017 end-page: 64 ident: bib0032 article-title: Modeling user interest in social media using news media and wikipedia publication-title: Information Systems – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0007 article-title: A review on deep learning for recommender systems: Challenges and remedies publication-title: Artificial Intelligence Review doi: 10.1007/s10462-018-9654-y – volume: 78 start-page: 440 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0040 article-title: Query personalization using social network information and collaborative filtering techniques publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.03.015 – volume: 54 start-page: 1129 issue: 6 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0003 article-title: Semantic text classification: A survey of past and recent advances publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.08.001 – volume: 7 start-page: 107 issue: 2 year: 2009 ident: 10.1016/j.ipm.2019.102153_bib0043 article-title: Detecting innovative topics based on user-interest ontology publication-title: Web Semantics doi: 10.1016/j.websem.2009.01.001 – volume: 19 start-page: 261 issue: 2 year: 2007 ident: 10.1016/j.ipm.2019.102153_bib0014 article-title: An adaptation of the vector-space model for ontology-based information retrieval publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.22 – start-page: 821 year: 2015 ident: 10.1016/j.ipm.2019.102153_bib0036 article-title: A community driven social recommendation system – volume: 44 start-page: 464 issue: 4 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0019 article-title: Towards a knowledge-based probabilistic and context-aware social recommender system publication-title: Journal of Information Science doi: 10.1177/0165551517698787 – volume: 7 start-page: 9324 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0006 article-title: Scientific paper recommendation: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890388 – volume: 9 start-page: 7 issue: 1 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0045 article-title: BROAD-RSI – Educational recommender system using social networks interactions and linked data publication-title: Journal of Internet Services and Applications doi: 10.1186/s13174-018-0076-5 – volume: 433–434 start-page: 204 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0015 article-title: Relationship recommender system in a business and employment-oriented social network publication-title: Information Sciences doi: 10.1016/j.ins.2017.12.050 – volume: 121 start-page: 42 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0035 article-title: A social recommendation method based on the integration of social relationship and product popularity publication-title: International Journal of Human-Computer Studies doi: 10.1016/j.ijhcs.2018.04.002 – year: 2008 ident: 10.1016/j.ipm.2019.102153_bib0039 – volume: 278 start-page: 534 year: 2013 ident: 10.1016/j.ipm.2019.102153_bib0023 article-title: A social-empowered platform for gathering semantic information – volume: 78 start-page: 413 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0021 article-title: Recommender systems for large-scale social networks: A review of challenges and solutions publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.09.015 – start-page: 36 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0024 article-title: Ontology-based advertisement recommendation in social networks doi: 10.1007/978-3-319-94649-8_5 – start-page: 1 year: 2016 ident: 10.1016/j.ipm.2019.102153_bib0001 article-title: An introduction to recommender systems – volume: 136 start-page: 1 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0042 article-title: Semantics-aware recommender systems exploiting linked open data and graph-based features publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.08.015 – volume: 65 start-page: 132 year: 2013 ident: 10.1016/j.ipm.2019.102153_bib0026 article-title: A method for the acquisition of ontology-based user profiles publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.06.008 – ident: 10.1016/j.ipm.2019.102153_bib0069 – volume: 80 start-page: 355 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0031 article-title: Social collaborative service recommendation approach based on user's trust and domain-specific expertise publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.05.036 – volume: 32 start-page: 7 issue: 3 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0050 article-title: Utilizing verbal intent in semantic contextual advertising publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2017.45 – volume: 2473 start-page: 379 year: 2002 ident: 10.1016/j.ipm.2019.102153_bib0064 article-title: MnM: Ontology driven semi-automatic and automatic support for semantic markup – year: 1986 ident: 10.1016/j.ipm.2019.102153_bib0052 – start-page: 431 year: 2012 ident: 10.1016/j.ipm.2019.102153_bib0068 article-title: Towards personalized context-aware recommendation by mining context logs through topic models – volume: 50 start-page: 329 year: 2015 ident: 10.1016/j.ipm.2019.102153_bib0046 article-title: Advertisement posting based on consumer behaviour publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.04.040 – volume: 74 start-page: 498 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0047 article-title: Ontology and context based recommendation system using Neuro-Fuzzy Classification publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2018.01.034 – volume: 36 start-page: e12365 issue: 2 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0038 article-title: A social recommendation system for academic collaboration in undergraduate research publication-title: Expert Systems doi: 10.1111/exsy.12365 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ipm.2019.102153_bib0059 article-title: Toward social-semantic recommender systems publication-title: International Journal of Information Systems and Social Change doi: 10.4018/IJISSC.2016010101 – volume: 216 start-page: 138 year: 2012 ident: 10.1016/j.ipm.2019.102153_bib0070 article-title: An ontology-based approach to Chinese semantic advertising publication-title: Information Sciences doi: 10.1016/j.ins.2012.06.012 – start-page: 29 year: 2015 ident: 10.1016/j.ipm.2019.102153_bib0028 article-title: Personalized internet advertisement recommendation service based on keyword similarity – volume: 65 start-page: 52 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0032 article-title: Modeling user interest in social media using news media and wikipedia publication-title: Information Systems doi: 10.1016/j.is.2016.11.003 – volume: 108 start-page: 15 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0041 article-title: Producing relevant interests from social networks by mining users’ tagging behaviour: A first step towards adapting social information publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2016.12.003 – volume: 13 start-page: 147 issue: 2 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0002 article-title: A general framework for intelligent recommender systems publication-title: Applied Computing and Informatics doi: 10.1016/j.aci.2016.08.002 – volume: 43 start-page: 458 issue: 4 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0051 article-title: Feature-based opinion mining in financial news: An ontology-driven approach publication-title: Journal of Information Science doi: 10.1177/0165551516645528 – volume: 69 start-page: 135 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0054 article-title: Personalized recommender system based on friendship strength in social network services publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.10.024 – volume: 101 start-page: 28 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0060 article-title: Tour recommendations by mining photo sharing social media publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.05.013 – volume: 140 start-page: 120 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0066 article-title: Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.10.031 – volume: 39 start-page: 10990 issue: 12 year: 2012 ident: 10.1016/j.ipm.2019.102153_bib0013 article-title: Social knowledge-based recommender system. Application to the movies domain publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.03.025 – volume: 5 start-page: 1624 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0016 article-title: Location-aware personalized news recommendation with deep semantic analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2655150 – volume: 81 start-page: 63 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0029 article-title: User recommendation in healthcare social media by assessing user similarity in heterogeneous network publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2017.03.002 – volume: 1680 start-page: 18 year: 2016 ident: 10.1016/j.ipm.2019.102153_bib0049 article-title: Personality in computational advertising: A benchmark – volume: 7 start-page: 17493 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0067 article-title: Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895824 – volume: 59 start-page: 387 issue: 2 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0017 article-title: A probabilistic model for semantic advertising publication-title: Knowledge and Information Systems doi: 10.1007/s10115-018-1160-7 – volume: 341 start-page: 1 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0018 article-title: Social recommendation based on users’ attention and preference publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.045 – volume: 5 start-page: 599 issue: 2 year: 2016 ident: 10.1016/j.ipm.2019.102153_bib0063 article-title: A recommender system for online advertising publication-title: International Journal of Advanced Research in Computer and Communication Engineering – volume: 254 start-page: 79 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0010 article-title: Semantics-aware content-based recommender systems: Design and architecture guidelines publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.079 – ident: 10.1016/j.ipm.2019.102153_bib0061 – volume: 39 start-page: 9715 issue: 10 year: 2012 ident: 10.1016/j.ipm.2019.102153_bib0022 article-title: SocialBROKER: A collaborative social space for gathering semantically-enhanced financial information publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.02.093 – volume: 54 start-page: 529 issue: 4 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0025 article-title: Social network data to alleviate cold-start in recommender system: A systematic review publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.03.004 – volume: 34 start-page: 1772 issue: 8 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0005 article-title: Performance improvement for recommender systems using ontology publication-title: Telematics and Informatics doi: 10.1016/j.tele.2017.08.008 – volume: 56 start-page: 771 issue: 3 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0008 article-title: Exploiting syntactic and neighbourhood attributes to address cold start in tag recommendation publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.12.009 – volume: 25 start-page: 161 issue: 1–2 year: 1998 ident: 10.1016/j.ipm.2019.102153_bib0058 article-title: Knowledge engineering: Principles and methods publication-title: Data & Knowledge Engineering doi: 10.1016/S0169-023X(97)00056-6 – ident: 10.1016/j.ipm.2019.102153_bib0004 – volume: 56 start-page: 939 issue: 3 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0027 article-title: Item diversified recommendation based on influence diffusion publication-title: Information Processing & Management doi: 10.1016/j.ipm.2019.01.006 – volume: 5 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.ipm.2019.102153_bib0009 article-title: Linked data - The story so far publication-title: International Journal on Semantic Web and Information Systems doi: 10.4018/jswis.2009081901 – volume: 7 start-page: 67081 year: 2019 ident: 10.1016/j.ipm.2019.102153_bib0053 article-title: Knowledge based recommender system for academia using machine learning: A case study on higher education landscape of Pakistan publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912012 – volume: 6152 start-page: 96 year: 2010 ident: 10.1016/j.ipm.2019.102153_bib0062 article-title: Semantic advertising for web 3.0 – volume: 10 start-page: 42 issue: 4 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0034 article-title: An ontology-based decision support system for the diagnosis of plant diseases publication-title: Journal of Information Technology Research doi: 10.4018/JITR.2017100103 – volume: 92 start-page: 507 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0044 article-title: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.09.058 – volume: 49 start-page: 640 issue: 3 year: 2013 ident: 10.1016/j.ipm.2019.102153_bib0011 article-title: Personal ontologies: Generation of user profiles based on the YAGO ontology publication-title: Information Processing & Management doi: 10.1016/j.ipm.2012.07.010 – volume: 79 start-page: 154 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0030 article-title: “Celebrity 2.0 and beyond!” Effects of Facebook profile sources on social networking advertising publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2017.10.033 – volume: 21 start-page: 96 issue: 3 year: 2006 ident: 10.1016/j.ipm.2019.102153_bib0055 article-title: The semantic Web revisited publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2006.62 – volume: 21 start-page: 1487 issue: 6 year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0012 article-title: Hybrid recommender systems: A systematic literature review publication-title: Intelligent Data Analysis doi: 10.3233/IDA-163209 – volume: 7 issue: 4 year: 2013 ident: 10.1016/j.ipm.2019.102153_bib0037 article-title: Semantic contextual advertising based on the open directory project publication-title: ACM Transactions on the Web doi: 10.1145/2529995.2529997 – volume: 94 start-page: 175 year: 1994 ident: 10.1016/j.ipm.2019.102153_bib0048 article-title: GroupLens: An open architecture for collaborative filtering of netnews – volume: 14 start-page: 97 issue: 1 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0065 article-title: Research on financial advertisement personalised recommendation method based on customer segmentation publication-title: International Journal of Wireless and Mobile Computing doi: 10.1504/IJWMC.2018.090005 – year: 2017 ident: 10.1016/j.ipm.2019.102153_bib0056 article-title: Social media marketing: Comparative effect of advertisement sources publication-title: Journal of Retailing and Consumer Services – ident: 10.1016/j.ipm.2019.102153_bib0057 – start-page: 398 year: 2016 ident: 10.1016/j.ipm.2019.102153_bib0020 article-title: An ontology-based framework to model user interests – volume: 54 start-page: 1203 issue: 6 year: 2018 ident: 10.1016/j.ipm.2019.102153_bib0033 article-title: News recommender systems – Survey and roads ahead publication-title: Information Processing & Management doi: 10.1016/j.ipm.2018.04.008 |
SSID | ssj0004512 |
Score | 2.5448573 |
Snippet | •Ads social recommenders challenged by sparsity, cold-start and heterogeneity.•Semantic Web technologies enable data integration and support... Social applications foster the involvement of end users in Web content creation, as a result of which a new source of vast amounts of data about users and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102153 |
SubjectTerms | Advertisements Advertising Computer simulation Data integration Decision analysis Decision making End users Knowledge management Knowledge representation Knowledge-based systems Natural language processing Ontology Recommender systems Semantic web Semantics Social network services Social networks |
Title | A social-semantic recommender system for advertisements |
URI | https://dx.doi.org/10.1016/j.ipm.2019.102153 https://www.proquest.com/docview/2354804284 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXryIn1htSw7iQYjdfG56LMVSFXvRQm8hyWahYmux9epvN8lmRQV78Loky_J2ZjKzO-8NABekL11pS4kM9-7GfI2BfBIrEC1NIAQX3EV1_YeJGE_Z3YzPGmBYc2FCW2WK_VVMj9E6XeklNHur-bz3GLJdxnNvQ95OiQhEc8byYOXXH_ibYjhOfxIECqvrP5uxx2u-CmR03A8CBpjTv86mX1E6Hj2jfbCXckY4qB7rADTc8hB0EuMAXsJEKQoQw-SrRyAfwOp7OFq7hYdvbmEofheLODsOVgrO0G-Eup7JHNlux2A6unkajlGakoAsJXyDfHVbWN0n0opCZGVBLbU5s95PnZBYZ44T5hFn1kdlJ7k1RnNHHZeF1sZYS09Ac_m6dKcAuiLXNLfEcpoxLaXO_NGFNSbYCYNp0QJZjY-ySUI8TLJ4UXWv2LPykKoAqaogbYGrry2rSj9j22JWg65-GIHy8X3btnb9glTywLUiNCjZ-eKKnf3vrudgl4TaOvabtUFz8_buOj4B2ZhutLAu2Bnc3o8nn9122RE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3oxfkYUtAfjwWSyfm4cCZGgAhch4dZ0XZfMCBLBq3-7r1tn1EQOXpe2WX57n-t7v4fQFe3ENjNZHCQC1I1DjhFAECsDliWuITgVtmDXH43lYMofZmJWQ72qF8aVVXrbX9r0wlr7J22PZnuZ5-0nF-1yEYEMgZxSKbbQNgf1dWMMbj_IN8pw4q8SZOCWV1ebRZFXvnTd6KTjGAyIYH85p19muvA9_X2054NG3C3f6wDV7OIQtXzLAb7GvqfIYYy9sh6hqIvLH-LBys4Bv9xgl_3O58XwOFxSOGPYiHU1lLlodztG0_7dpDcI_JiEwDAq1gGkt6nRHRobmcowS5lhJuIGFNXKmOjQCsoBcm7ALNtYmCTRwjIr4lTrJDGGnaD64nVhTxG2aaRZZKgRLOQ6jnUIvotoQomVCWFpA4UVPsp4DnE3yuJFVcVizwogVQ5SVULaQDdfW5YlgcamxbwCXf2QAgUGftO2ZvWBlFfBlaLMUdlBdsXP_nfqJdoZTEZDNbwfP56jXeoS7aL4rInq67d324JoZJ1cFNL2CfYX2p8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+social-semantic+recommender+system+for+advertisements&rft.jtitle=Information+processing+%26+management&rft.au=Garc%C3%ADa-S%C3%A1nchez%2C+Francisco&rft.au=Colomo-Palacios%2C+Ricardo&rft.au=Valencia-Garc%C3%ADa%2C+Rafael&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=57&rft.issue=2&rft_id=info:doi/10.1016%2Fj.ipm.2019.102153&rft.externalDocID=S0306457319307265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |