Non-iterative structural topology optimization using deep learning

This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 115; pp. 172 - 180
Main Authors Li, Baotong, Huang, Congjia, Li, Xin, Zheng, Shuai, Hong, Jun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.10.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2019.05.038

Cover

Loading…
Abstract This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design. •Non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning.•Generative adversarial network with thermal boundary condition as input instead of simulated intermediate pixel images.•Two-stage hierarchical refinement pipeline for more effective training and prediction.
AbstractList This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design. •Non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning.•Generative adversarial network with thermal boundary condition as input instead of simulated intermediate pixel images.•Two-stage hierarchical refinement pipeline for more effective training and prediction.
This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design.
Author Hong, Jun
Li, Baotong
Huang, Congjia
Zheng, Shuai
Li, Xin
Author_xml – sequence: 1
  givenname: Baotong
  surname: Li
  fullname: Li, Baotong
  organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China
– sequence: 2
  givenname: Congjia
  surname: Huang
  fullname: Huang, Congjia
  organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China
– sequence: 3
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: School of Electrical Engineering and Computer Science, Louisiana State University, United States
– sequence: 4
  givenname: Shuai
  surname: Zheng
  fullname: Zheng, Shuai
  organization: school of software engineering, Xi’an Jiaotong University, China
– sequence: 5
  givenname: Jun
  surname: Hong
  fullname: Hong, Jun
  email: jhong_email@163.com
  organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxJxwtuvYFhNUfEkVLDBbjuNWjtI42E6l8utJKRNDp9NJ73On95mhSec7i9A1hgIDLm-bwui6IIBlAawAKs7QFAsuc1IKNkFTAAz5YiHYBZrF2AAAwVRO0cOb73KXbNDJ7WwWUxhMGoJus-R73_rNPvN9clv3PQZ8lw3RdZustrbPWqtDN26X6Hyt22iv_uYcfT49fixf8tX78-vyfpUbSljKBSuNqDhoYwQBQ8EYTisjhC1Bc1ozwUgl1lpWIOSCiYowRjFQvuCyWteUztHN8W4f_NdgY1KNH0I3vlSEcC4lJliOKXxMmeBjDHat-uC2OuwVBnVQpRo1qlIHVQqYGlWNDP_HGJd--6agXXuSvDuSdiy-czaoaJztjK1dsCap2rsT9A94n4VC
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110885
crossref_primary_10_1007_s00158_022_03231_y
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1007_s10999_023_09676_3
crossref_primary_10_1016_j_cma_2021_114197
crossref_primary_10_1108_RPJ_02_2024_0102
crossref_primary_10_3390_aerospace10121025
crossref_primary_10_1007_s00158_022_03170_8
crossref_primary_10_1177_10812865241233013
crossref_primary_10_1016_j_cad_2024_103707
crossref_primary_10_1007_s00158_020_02788_w
crossref_primary_10_1016_j_autcon_2024_105747
crossref_primary_10_1115_1_4053859
crossref_primary_10_1007_s00158_024_03908_6
crossref_primary_10_1016_j_finel_2021_103572
crossref_primary_10_1115_1_4056929
crossref_primary_10_1016_j_cma_2023_116052
crossref_primary_10_2514_1_J062083
crossref_primary_10_1002_nme_70004
crossref_primary_10_1016_j_apm_2024_115738
crossref_primary_10_1007_s00158_022_03347_1
crossref_primary_10_1007_s00158_021_03137_1
crossref_primary_10_1142_S0219876223410074
crossref_primary_10_1016_j_cma_2022_115116
crossref_primary_10_1080_0305215X_2021_1902998
crossref_primary_10_1007_s00366_022_01760_0
crossref_primary_10_1016_j_cad_2022_103225
crossref_primary_10_1016_j_cma_2021_114083
crossref_primary_10_1177_09544054231223996
crossref_primary_10_1016_j_apm_2021_04_009
crossref_primary_10_1016_j_cma_2024_117698
crossref_primary_10_1016_j_cad_2021_103014
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_1007_s00158_022_03180_6
crossref_primary_10_1007_s00158_023_03688_5
crossref_primary_10_1007_s12206_022_0628_2
crossref_primary_10_3390_ma14247680
crossref_primary_10_1093_jcde_qwad070
crossref_primary_10_1007_s00466_023_02325_8
crossref_primary_10_1007_s11465_020_0614_2
crossref_primary_10_1007_s00500_023_07864_z
crossref_primary_10_1115_1_4064449
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_cad_2020_102947
crossref_primary_10_1016_j_engappai_2024_109991
crossref_primary_10_1021_acscatal_0c04525
crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_primary_10_1142_S1758825121500423
crossref_primary_10_1007_s00366_022_01636_3
crossref_primary_10_3390_ma16113946
crossref_primary_10_1016_j_icheatmasstransfer_2024_108332
crossref_primary_10_1115_1_4062352
crossref_primary_10_32604_cmes_2024_052620
crossref_primary_10_3390_e25101396
crossref_primary_10_1007_s10409_024_24207_x
crossref_primary_10_1016_j_engappai_2021_104483
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_1007_s00521_023_09308_z
crossref_primary_10_1007_s00466_021_02069_3
crossref_primary_10_1115_1_4064215
crossref_primary_10_1016_j_asoc_2023_110015
crossref_primary_10_1080_15376494_2022_2129888
crossref_primary_10_1016_j_jcp_2024_113506
crossref_primary_10_1016_j_jii_2022_100352
crossref_primary_10_1007_s00158_020_02544_0
crossref_primary_10_1016_j_engappai_2024_108370
crossref_primary_10_1002_nme_7221
crossref_primary_10_1115_1_4055377
crossref_primary_10_1007_s00158_022_03223_y
crossref_primary_10_1038_s41598_025_92793_0
crossref_primary_10_1007_s11081_023_09806_y
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1108_EC_01_2022_0034
crossref_primary_10_1007_s10338_025_00587_8
crossref_primary_10_32604_cmes_2024_048118
crossref_primary_10_1016_j_cad_2023_103639
crossref_primary_10_1016_j_swevo_2022_101120
crossref_primary_10_1016_j_advengsoft_2023_103413
crossref_primary_10_1007_s11831_021_09544_3
crossref_primary_10_1016_j_cad_2023_103634
Cites_doi 10.1115/1.1388075
10.1016/0045-7825(88)90086-2
10.1080/10407780802339031
10.1103/PhysRevLett.108.253002
10.1016/j.cma.2006.08.005
10.1002/nme.4344
10.1016/j.icheatmasstransfer.2016.04.016
10.1016/0045-7949(93)90035-C
10.1007/s00158-015-1372-3
10.1115/1.4042020
10.1007/s00231-007-0365-1
10.1080/10407790.2012.687979
10.1016/S0045-7825(00)00278-4
10.1109/TVCG.2015.2502588
10.1109/IIH-MSP.2006.265125
10.1016/S0045-7825(01)00216-X
10.1002/nme.3343
10.1103/PhysRevA.96.042113
10.1016/S0065-2717(08)70028-5
10.1007/s00158-007-0112-8
10.1007/s00158-010-0594-7
10.1109/TIA.2005.863905
10.1007/BF01650949
10.1016/j.ijheatmasstransfer.2004.06.010
10.1016/j.cma.2014.04.003
10.1007/978-3-319-09994-1_38
10.1016/j.applthermaleng.2010.06.014
10.1016/j.applthermaleng.2016.03.100
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Oct 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2019.05.038
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 180
ExternalDocumentID 10_1016_j_cad_2019_05_038
S001044851930185X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-856c8b70acc820c30cc73bc88e60a73d5852b8fa9b089458b25531037479bfd33
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Fri Jul 25 05:51:43 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Tue Jul 01 03:34:35 EDT 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Hierarchical refinement
Heat conduction
Topology optimization
Generative adversarial network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-856c8b70acc820c30cc73bc88e60a73d5852b8fa9b089458b25531037479bfd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2277991219
PQPubID 2045267
PageCount 9
ParticipantIDs proquest_journals_2277991219
crossref_primary_10_1016_j_cad_2019_05_038
crossref_citationtrail_10_1016_j_cad_2019_05_038
elsevier_sciencedirect_doi_10_1016_j_cad_2019_05_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer aided design
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mei, Wang (b21) 2004; 35
Brockherde, Li, Burke, Müller (b16) 2017
Zhang, Liu (b25) 2008; 44
Li, Steven, Xie, Querin (b27) 2004; 47
Radford, Metz, Chintala (b34) 2015; abs/1511.06434
Xin, Chang, Zongliang, Weisheng, Xu (b31) 2018
Andreassen, Clausen, Schevenels, Lazarov, Sigmund (b36) 2011; 43
Bendsøe (b18) 1989; 1
Marck, Nemer, Harion, Russeil, Bougeard (b29) 2012; 61
Zhuang, Xiong, Ding (b28) 2007; 196
Sosnovik, Oseledets (b32) 2017; abs/1709.09578
Wu, Dick, Westermann (b9) 2016; 22
Yang B, Gu F, Niu X. Block mean value based image perceptual hashing. In: 2006 international conference on intelligent information hiding and multimedia; 2006. p. 167–72.
Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b33) 2016; abs/1603.04467
Dobre, Stoica, Iavorschi, Pârvulescu (b5) 2010; 30
Bejan, Errera (b6) 2011; 05
Abdelmlek, Araoud, Ghnay, Abderrazak, Charrada, Zissis (b2) 2016; 102
Ulu E, Zhang R, Yumer ME, Kara LB. A data-driven investigation and estimation of optimal topologies under variable loading configurations. In: International symposium computational modeling of objects represented in images; 2014.
Bruns, Tortorelli (b12) 2001; 190
Nguyen, Paulino, Song, Le (b13) 2012; 92
Kim, Kim, Mechefske (b11) 2012; 90
Mills, Spanner, Tamblyn (b17) 2017; 96
Borrvall, Petersson (b8) 2001; 190
Bendsøe, Kikuchi (b19) 1988; 71
Peterson, Ortega (b1) 1990
Murdock, Torres, Connors, Lorenz (b3) 2006; 42
Zhou, Li (b26) 2008; 54
Jang, Kwak (b10) 2008; 35
Groen, Sigmund (b14) 2017
Eschenauer, Olhoff (b7) 2001; 54
Kingma D, Ba J. Adam: A method for stochastic optimization, In: International conference on learning representations; 2014.
.
Zhang, Jie, Jian, Xu (b22) 2016; 53
Li, Xuan, Liu, Hong (b23) 2019; 141
Ledig, Theis, Huszar, Caballero, Aitken, Tejani (b37) 2016; abs/1609.04802
Li, Hong, Tian (b4) 2016; 75
Snyder, Rupp, Hansen, Muller, Burke (b15) 2012; 108
Xie, Steven (b20) 1993; 49
Takezawa, Yoon, Jeong, Kobashi, Kitamura (b24) 2014; 276
Rawat, Shen (b35) 2019; abs/1901.04859
Wu (10.1016/j.cad.2019.05.038_b9) 2016; 22
Groen (10.1016/j.cad.2019.05.038_b14) 2017
10.1016/j.cad.2019.05.038_b30
Ledig (10.1016/j.cad.2019.05.038_b37) 2016; abs/1609.04802
Abdelmlek (10.1016/j.cad.2019.05.038_b2) 2016; 102
Bendsøe (10.1016/j.cad.2019.05.038_b18) 1989; 1
Li (10.1016/j.cad.2019.05.038_b27) 2004; 47
Brockherde (10.1016/j.cad.2019.05.038_b16) 2017
Rawat (10.1016/j.cad.2019.05.038_b35) 2019; abs/1901.04859
Zhuang (10.1016/j.cad.2019.05.038_b28) 2007; 196
Sosnovik (10.1016/j.cad.2019.05.038_b32) 2017; abs/1709.09578
Zhou (10.1016/j.cad.2019.05.038_b26) 2008; 54
Bejan (10.1016/j.cad.2019.05.038_b6) 2011; 05
Radford (10.1016/j.cad.2019.05.038_b34) 2015; abs/1511.06434
10.1016/j.cad.2019.05.038_b38
Zhang (10.1016/j.cad.2019.05.038_b25) 2008; 44
10.1016/j.cad.2019.05.038_b39
Xin (10.1016/j.cad.2019.05.038_b31) 2018
Mills (10.1016/j.cad.2019.05.038_b17) 2017; 96
Bendsøe (10.1016/j.cad.2019.05.038_b19) 1988; 71
Nguyen (10.1016/j.cad.2019.05.038_b13) 2012; 92
Abadi (10.1016/j.cad.2019.05.038_b33) 2016; abs/1603.04467
Kim (10.1016/j.cad.2019.05.038_b11) 2012; 90
Mei (10.1016/j.cad.2019.05.038_b21) 2004; 35
Li (10.1016/j.cad.2019.05.038_b23) 2019; 141
Xie (10.1016/j.cad.2019.05.038_b20) 1993; 49
Peterson (10.1016/j.cad.2019.05.038_b1) 1990
Jang (10.1016/j.cad.2019.05.038_b10) 2008; 35
Andreassen (10.1016/j.cad.2019.05.038_b36) 2011; 43
Murdock (10.1016/j.cad.2019.05.038_b3) 2006; 42
Borrvall (10.1016/j.cad.2019.05.038_b8) 2001; 190
Takezawa (10.1016/j.cad.2019.05.038_b24) 2014; 276
Marck (10.1016/j.cad.2019.05.038_b29) 2012; 61
Eschenauer (10.1016/j.cad.2019.05.038_b7) 2001; 54
Li (10.1016/j.cad.2019.05.038_b4) 2016; 75
Bruns (10.1016/j.cad.2019.05.038_b12) 2001; 190
Zhang (10.1016/j.cad.2019.05.038_b22) 2016; 53
Dobre (10.1016/j.cad.2019.05.038_b5) 2010; 30
Snyder (10.1016/j.cad.2019.05.038_b15) 2012; 108
References_xml – year: 2017
  ident: b16
  article-title: Bypassing the Kohn–Sham equations with machine learning
  publication-title: Nature communications
– volume: abs/1511.06434
  year: 2015
  ident: b34
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: CoRR
– volume: 190
  start-page: 6201
  year: 2001
  end-page: 6229
  ident: b8
  article-title: Large-scale topology optimization in 3D using parallel computing
  publication-title: Comput Methods Appl Mech Engrg
– volume: abs/1709.09578
  year: 2017
  ident: b32
  article-title: Neural networks for topology optimization
  publication-title: CoRR
– volume: 96
  year: 2017
  ident: b17
  article-title: Deep learning and the Schrodinger equation
  publication-title: Phys Rev A
– volume: abs/1609.04802
  year: 2016
  ident: b37
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: CoRR
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: b19
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Engrg
– volume: 54
  year: 2008
  ident: b26
  article-title: Computational design of microstructural composites with tailored thermal conductivity
  publication-title: Numer Heat Transfer A
– volume: 196
  start-page: 1074
  year: 2007
  end-page: 1084
  ident: b28
  article-title: A level set method for topology optimization of heat conduction problem under multiple load cases
  publication-title: Comput Methods Appl Mech Engrg
– volume: 108
  year: 2012
  ident: b15
  article-title: Finding density functionals with machine learning
  publication-title: Phys Rev Lett
– volume: 53
  start-page: 1243
  year: 2016
  end-page: 1260
  ident: b22
  article-title: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model
  publication-title: Struct Multidiscip Optim
– volume: 102
  start-page: 251
  year: 2016
  end-page: 260
  ident: b2
  article-title: Effect of thermal conduction path deficiency on thermal properties of LEDs package
  publication-title: Appl Therm Eng
– volume: 190
  start-page: 3443
  year: 2001
  end-page: 3459
  ident: b12
  article-title: Topology optimization of non-linear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Engrg
– volume: 90
  start-page: 752
  year: 2012
  end-page: 783
  ident: b11
  article-title: A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method
  publication-title: Internat J Numer Methods Engrg
– start-page: 181
  year: 1990
  end-page: 314
  ident: b1
  article-title: Thermal control of electronic equipment and devices
  publication-title: Advances in heat transfer, vol. 20
– volume: 61
  start-page: 439
  year: 2012
  end-page: 470
  ident: b29
  article-title: Topology optimization using the SIMP method for multiobjective conductive problems
  publication-title: Numer Heat Transfer B
– volume: 44
  start-page: 1217
  year: 2008
  end-page: 1227
  ident: b25
  article-title: Design of conducting paths based on topology optimization
  publication-title: Heat Mass Transf
– reference: Ulu E, Zhang R, Yumer ME, Kara LB. A data-driven investigation and estimation of optimal topologies under variable loading configurations. In: International symposium computational modeling of objects represented in images; 2014.
– reference: Kingma D, Ba J. Adam: A method for stochastic optimization, In: International conference on learning representations; 2014.
– volume: 276
  start-page: 341
  year: 2014
  end-page: 361
  ident: b24
  article-title: Structural topology optimization with strength and heat conduction constraints
  publication-title: Comput Methods Appl Mech Engrg
– volume: 141
  start-page: 051401
  year: 2019
  end-page: 051416
  ident: b23
  article-title: Generating constructal networks for area-to-point conduction problems via moving morphable components approach
  publication-title: J Mech Des
– reference: Yang B, Gu F, Niu X. Block mean value based image perceptual hashing. In: 2006 international conference on intelligent information hiding and multimedia; 2006. p. 167–72.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: b18
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct Optim
– volume: 30
  start-page: 2435
  year: 2010
  ident: b5
  article-title: Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components
  publication-title: Appl Therm Eng
– year: 2017
  ident: b14
  article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures
  publication-title: Internat J Numer Methods Engrg
– volume: 35
  start-page: 41
  year: 2008
  end-page: 54
  ident: b10
  article-title: Design space optimization using design space adjustment and refinement
  publication-title: Struct Multidiscip Optim
– volume: 35
  start-page: 415
  year: 2004
  end-page: 441
  ident: b21
  article-title: A level set method for structural topology optimization and its applications
  publication-title: Comput Methods Appl Mech Engrg
– volume: 22
  start-page: 1195
  year: 2016
  end-page: 1208
  ident: b9
  article-title: A system for high-resolution topology optimization
  publication-title: IEEE Trans Vis Comput Graphics
– volume: 43
  start-page: 1
  year: 2011
  end-page: 16
  ident: b36
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
– volume: 92
  start-page: 507
  year: 2012
  end-page: 530
  ident: b13
  article-title: Improving multiresolution topology optimization via multiple discretizations
  publication-title: Internat J Numer Methods Engrg
– reference: .
– volume: 42
  start-page: 552
  year: 2006
  end-page: 558
  ident: b3
  article-title: Active thermal control of power electronic modules
  publication-title: IEEE Trans Ind Appl
– volume: 75
  start-page: 177
  year: 2016
  end-page: 182
  ident: b4
  article-title: Generating optimal topologies for heat conduction by heat flow paths identification
  publication-title: Int Commun Heat Mass Transfer
– year: 2018
  ident: b31
  article-title: Machine learning driven real time topology optimization under moving morphable component (MMC)-based framework
  publication-title: J Appl Mech
– volume: 05
  year: 2011
  ident: b6
  article-title: Deterministic tree networks for fluid flow: Geometry for minimal flow resistance between a volume and one point
  publication-title: Fractals
– volume: abs/1901.04859
  year: 2019
  ident: b35
  article-title: A novel topology optimization approach using conditional deep learning
  publication-title: CoRR
– volume: 47
  start-page: 5071
  year: 2004
  end-page: 5083
  ident: b27
  article-title: Evolutionary topology optimization for temperature reduction of heat conducting fields
  publication-title: Int J Heat Mass Transfer
– volume: abs/1603.04467
  year: 2016
  ident: b33
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: CoRR
– volume: 54
  start-page: 1453
  year: 2001
  end-page: 1457
  ident: b7
  article-title: Topology optimization of continuum structures: A review
  publication-title: Appl Mech Rev
– volume: 49
  start-page: 885
  year: 1993
  end-page: 896
  ident: b20
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
– volume: 54
  start-page: 1453
  issue: 4
  year: 2001
  ident: 10.1016/j.cad.2019.05.038_b7
  article-title: Topology optimization of continuum structures: A review
  publication-title: Appl Mech Rev
  doi: 10.1115/1.1388075
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  ident: 10.1016/j.cad.2019.05.038_b19
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/0045-7825(88)90086-2
– volume: 54
  year: 2008
  ident: 10.1016/j.cad.2019.05.038_b26
  article-title: Computational design of microstructural composites with tailored thermal conductivity
  publication-title: Numer Heat Transfer A
  doi: 10.1080/10407780802339031
– volume: abs/1511.06434
  year: 2015
  ident: 10.1016/j.cad.2019.05.038_b34
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: CoRR
– volume: 108
  year: 2012
  ident: 10.1016/j.cad.2019.05.038_b15
  article-title: Finding density functionals with machine learning
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.253002
– volume: 35
  start-page: 415
  issue: 7
  year: 2004
  ident: 10.1016/j.cad.2019.05.038_b21
  article-title: A level set method for structural topology optimization and its applications
  publication-title: Comput Methods Appl Mech Engrg
– volume: 196
  start-page: 1074
  issue: 4
  year: 2007
  ident: 10.1016/j.cad.2019.05.038_b28
  article-title: A level set method for topology optimization of heat conduction problem under multiple load cases
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2006.08.005
– volume: 92
  start-page: 507
  issue: 6
  year: 2012
  ident: 10.1016/j.cad.2019.05.038_b13
  article-title: Improving multiresolution topology optimization via multiple discretizations
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.4344
– volume: 75
  start-page: 177
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b4
  article-title: Generating optimal topologies for heat conduction by heat flow paths identification
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.04.016
– volume: 49
  start-page: 885
  issue: 5
  year: 1993
  ident: 10.1016/j.cad.2019.05.038_b20
  article-title: A simple evolutionary procedure for structural optimization
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(93)90035-C
– volume: 53
  start-page: 1243
  issue: 6
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b22
  article-title: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1372-3
– volume: 05
  year: 2011
  ident: 10.1016/j.cad.2019.05.038_b6
  article-title: Deterministic tree networks for fluid flow: Geometry for minimal flow resistance between a volume and one point
  publication-title: Fractals
– volume: abs/1901.04859
  year: 2019
  ident: 10.1016/j.cad.2019.05.038_b35
  article-title: A novel topology optimization approach using conditional deep learning
  publication-title: CoRR
– volume: 141
  start-page: 051401
  issue: 5
  year: 2019
  ident: 10.1016/j.cad.2019.05.038_b23
  article-title: Generating constructal networks for area-to-point conduction problems via moving morphable components approach
  publication-title: J Mech Des
  doi: 10.1115/1.4042020
– volume: 44
  start-page: 1217
  issue: 10
  year: 2008
  ident: 10.1016/j.cad.2019.05.038_b25
  article-title: Design of conducting paths based on topology optimization
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-007-0365-1
– volume: 61
  start-page: 439
  issue: 6
  year: 2012
  ident: 10.1016/j.cad.2019.05.038_b29
  article-title: Topology optimization using the SIMP method for multiobjective conductive problems
  publication-title: Numer Heat Transfer B
  doi: 10.1080/10407790.2012.687979
– volume: 190
  start-page: 3443
  issue: 26
  year: 2001
  ident: 10.1016/j.cad.2019.05.038_b12
  article-title: Topology optimization of non-linear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(00)00278-4
– volume: abs/1603.04467
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b33
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: CoRR
– volume: 22
  start-page: 1195
  issue: 3
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b9
  article-title: A system for high-resolution topology optimization
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2015.2502588
– year: 2017
  ident: 10.1016/j.cad.2019.05.038_b16
  article-title: Bypassing the Kohn–Sham equations with machine learning
– ident: 10.1016/j.cad.2019.05.038_b39
  doi: 10.1109/IIH-MSP.2006.265125
– volume: 190
  start-page: 6201
  issue: 46
  year: 2001
  ident: 10.1016/j.cad.2019.05.038_b8
  article-title: Large-scale topology optimization in 3D using parallel computing
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(01)00216-X
– volume: 90
  start-page: 752
  issue: 6
  year: 2012
  ident: 10.1016/j.cad.2019.05.038_b11
  article-title: A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.3343
– volume: 96
  year: 2017
  ident: 10.1016/j.cad.2019.05.038_b17
  article-title: Deep learning and the Schrodinger equation
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.96.042113
– start-page: 181
  year: 1990
  ident: 10.1016/j.cad.2019.05.038_b1
  article-title: Thermal control of electronic equipment and devices
  doi: 10.1016/S0065-2717(08)70028-5
– volume: 35
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.cad.2019.05.038_b10
  article-title: Design space optimization using design space adjustment and refinement
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-007-0112-8
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.cad.2019.05.038_b36
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0594-7
– volume: 42
  start-page: 552
  issue: 2
  year: 2006
  ident: 10.1016/j.cad.2019.05.038_b3
  article-title: Active thermal control of power electronic modules
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2005.863905
– volume: abs/1609.04802
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b37
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: CoRR
– volume: abs/1709.09578
  year: 2017
  ident: 10.1016/j.cad.2019.05.038_b32
  article-title: Neural networks for topology optimization
  publication-title: CoRR
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 10.1016/j.cad.2019.05.038_b18
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct Optim
  doi: 10.1007/BF01650949
– ident: 10.1016/j.cad.2019.05.038_b38
– volume: 47
  start-page: 5071
  issue: 23
  year: 2004
  ident: 10.1016/j.cad.2019.05.038_b27
  article-title: Evolutionary topology optimization for temperature reduction of heat conducting fields
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.06.010
– volume: 276
  start-page: 341
  year: 2014
  ident: 10.1016/j.cad.2019.05.038_b24
  article-title: Structural topology optimization with strength and heat conduction constraints
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2014.04.003
– year: 2017
  ident: 10.1016/j.cad.2019.05.038_b14
  article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures
  publication-title: Internat J Numer Methods Engrg
– ident: 10.1016/j.cad.2019.05.038_b30
  doi: 10.1007/978-3-319-09994-1_38
– volume: 30
  start-page: 2435
  issue: 16
  year: 2010
  ident: 10.1016/j.cad.2019.05.038_b5
  article-title: Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.06.014
– volume: 102
  start-page: 251
  year: 2016
  ident: 10.1016/j.cad.2019.05.038_b2
  article-title: Effect of thermal conduction path deficiency on thermal properties of LEDs package
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.03.100
– year: 2018
  ident: 10.1016/j.cad.2019.05.038_b31
  article-title: Machine learning driven real time topology optimization under moving morphable component (MMC)-based framework
  publication-title: J Appl Mech
SSID ssj0002139
Score 2.5801265
Snippet This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 172
SubjectTerms Artificial neural networks
Boundary conditions
Computer simulation
Computing time
Conductive heat transfer
Datasets
Deep learning
Generative adversarial network
Heat conduction
Hierarchical refinement
Iterative methods
Machine learning
Neural networks
Optimization
Pixels
Predictions
Topology optimization
Training
Title Non-iterative structural topology optimization using deep learning
URI https://dx.doi.org/10.1016/j.cad.2019.05.038
https://www.proquest.com/docview/2277991219
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQgp1Yiexx1JRFRCdqNTNsh2nKoK0El1Y-O2cY4cvoQ4MGRLZUXSXvHun3L1D6IJmJhVEcaf8WERMlFkEh4hMlgjGTGJE7emHSTaesrtZOmuhYdML48oqA_Z7TK_ROlzpB2v2V4uF6_GFVIJxR0EIRJ2Z62BnudPPv3r_KvNIYuopMOCNW9382axrvIxyYqGxqMU7XYvK37HpF0rXoWe0h3YDZ8QD_1j7qGWrA7TzTUnwEF1PllXkFZIBvrBXhXWKGnjtpyC84SWAw0vousSu3H2OC2tXOMyNmB-h6ejmcTiOwniEyNAkXUc8zQzXOVHGQBg3lBiTU204txlROS0gEUg0L5XQhAuWcg3Zg5sqBgmE0GVB6TFqV8vKniAsVKYVs0qVlDrFMm5iDYmIBTKTsjJWHUQaw0gTtMPdCItn2RSJPUmwpXS2lCSVYMsOuvzcsvLCGZsWs8ba8of3JQD7pm3dxjMyfHqvMknyHEgvIPHp_-56hrbdma_Y66I2eMyeA_NY6179avXQ1uD2fjz5ANd71kI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKOwAD4lMUCnhgQoqaxk5ij6WiSmmbqZW6WbbjVCBIK9GFf885cSpAqANDliQXRXeXd3fK3TuE7kmkQ-5LZpkfM4_yPPLg4J6OAk6pDjQvLT1No2ROnxfhooEG9SyMbat02F9heonW7kzXabO7fnmxM75QSlBmUxAfos5iD7UsOxU4e6s_GifpFpCDHqmyYIAcK1D_3CzbvLS0fKE9XvJ32imVv8PTL6Auo8_wGB25tBH3qzc7QQ1TnKLDb2SCZ-gxXRVeRZIMCIYrYlhLqoE31SKET7wCfHh3g5fYdrwvcWbMGrvVEctzNB8-zQaJ5zYkeJoE4cZjYaSZin2pNURyTXytY6I0YybyZUwyqAUCxXLJlc84DZmCAsIuFoMagqs8I-QCNYtVYS4R5jJSkhopc0IsaRnTPQW1iIF8JqR5T7aRXytGaEcfbrdYvIm6T-xVgC6F1aXwQwG6bKOHrci64s7YdTOttS1-OIAAbN8l1qktI9zX9yGCII4h7wUwvvrfU-_QfjKbTsRklI6v0YG9UjXwdVATrGduIBHZqFvnaF9AKtjz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-iterative+structural+topology+optimization+using+deep+learning&rft.jtitle=Computer+aided+design&rft.au=Li%2C+Baotong&rft.au=Huang%2C+Congjia&rft.au=Li%2C+Xin&rft.au=Zheng%2C+Shuai&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=115&rft.spage=172&rft.epage=180&rft_id=info:doi/10.1016%2Fj.cad.2019.05.038&rft.externalDocID=S001044851930185X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon