Non-iterative structural topology optimization using deep learning
This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction...
Saved in:
Published in | Computer aided design Vol. 115; pp. 172 - 180 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.10.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2019.05.038 |
Cover
Loading…
Abstract | This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design.
•Non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning.•Generative adversarial network with thermal boundary condition as input instead of simulated intermediate pixel images.•Two-stage hierarchical refinement pipeline for more effective training and prediction. |
---|---|
AbstractList | This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design.
•Non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning.•Generative adversarial network with thermal boundary condition as input instead of simulated intermediate pixel images.•Two-stage hierarchical refinement pipeline for more effective training and prediction. This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is trained to deal with the black-and-white pixel images and generate near-optimal structures. Our design is a two-stage hierarchical prediction–refinement pipeline consisting of two coupled neural networks: a generative adversarial network (GAN) for predicting a low resolution near-optimal structure and a super-resolution generative adversarial network (SRGAN) for predicting the refined structure in high resolution. Training datasets with given boundary conditions and the optimized pixel image structures are obtained after simulating a big amount of topology optimization procedures. For more effective training and inference, these datasets are generated with two different resolutions. Experiments demonstrated that our learning based optimizer can provide accurate estimation of the conductive heat transfer topology using negligible computational time. This effective incorporation of deep learning into topology optimization could enable promising applications in large-scale engineering structure design. |
Author | Hong, Jun Li, Baotong Huang, Congjia Zheng, Shuai Li, Xin |
Author_xml | – sequence: 1 givenname: Baotong surname: Li fullname: Li, Baotong organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China – sequence: 2 givenname: Congjia surname: Huang fullname: Huang, Congjia organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China – sequence: 3 givenname: Xin surname: Li fullname: Li, Xin organization: School of Electrical Engineering and Computer Science, Louisiana State University, United States – sequence: 4 givenname: Shuai surname: Zheng fullname: Zheng, Shuai organization: school of software engineering, Xi’an Jiaotong University, China – sequence: 5 givenname: Jun surname: Hong fullname: Hong, Jun email: jhong_email@163.com organization: Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, China |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CLxJxwtuvYFhNUfEkVLDBbjuNWjtI42E6l8utJKRNDp9NJ73On95mhSec7i9A1hgIDLm-bwui6IIBlAawAKs7QFAsuc1IKNkFTAAz5YiHYBZrF2AAAwVRO0cOb73KXbNDJ7WwWUxhMGoJus-R73_rNPvN9clv3PQZ8lw3RdZustrbPWqtDN26X6Hyt22iv_uYcfT49fixf8tX78-vyfpUbSljKBSuNqDhoYwQBQ8EYTisjhC1Bc1ozwUgl1lpWIOSCiYowRjFQvuCyWteUztHN8W4f_NdgY1KNH0I3vlSEcC4lJliOKXxMmeBjDHat-uC2OuwVBnVQpRo1qlIHVQqYGlWNDP_HGJd--6agXXuSvDuSdiy-czaoaJztjK1dsCap2rsT9A94n4VC |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_110885 crossref_primary_10_1007_s00158_022_03231_y crossref_primary_10_1016_j_jobe_2024_110972 crossref_primary_10_1007_s10999_023_09676_3 crossref_primary_10_1016_j_cma_2021_114197 crossref_primary_10_1108_RPJ_02_2024_0102 crossref_primary_10_3390_aerospace10121025 crossref_primary_10_1007_s00158_022_03170_8 crossref_primary_10_1177_10812865241233013 crossref_primary_10_1016_j_cad_2024_103707 crossref_primary_10_1007_s00158_020_02788_w crossref_primary_10_1016_j_autcon_2024_105747 crossref_primary_10_1115_1_4053859 crossref_primary_10_1007_s00158_024_03908_6 crossref_primary_10_1016_j_finel_2021_103572 crossref_primary_10_1115_1_4056929 crossref_primary_10_1016_j_cma_2023_116052 crossref_primary_10_2514_1_J062083 crossref_primary_10_1002_nme_70004 crossref_primary_10_1016_j_apm_2024_115738 crossref_primary_10_1007_s00158_022_03347_1 crossref_primary_10_1007_s00158_021_03137_1 crossref_primary_10_1142_S0219876223410074 crossref_primary_10_1016_j_cma_2022_115116 crossref_primary_10_1080_0305215X_2021_1902998 crossref_primary_10_1007_s00366_022_01760_0 crossref_primary_10_1016_j_cad_2022_103225 crossref_primary_10_1016_j_cma_2021_114083 crossref_primary_10_1177_09544054231223996 crossref_primary_10_1016_j_apm_2021_04_009 crossref_primary_10_1016_j_cma_2024_117698 crossref_primary_10_1016_j_cad_2021_103014 crossref_primary_10_1093_jcde_qwad072 crossref_primary_10_1007_s00158_022_03180_6 crossref_primary_10_1007_s00158_023_03688_5 crossref_primary_10_1007_s12206_022_0628_2 crossref_primary_10_3390_ma14247680 crossref_primary_10_1093_jcde_qwad070 crossref_primary_10_1007_s00466_023_02325_8 crossref_primary_10_1007_s11465_020_0614_2 crossref_primary_10_1007_s00500_023_07864_z crossref_primary_10_1115_1_4064449 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_cad_2020_102947 crossref_primary_10_1016_j_engappai_2024_109991 crossref_primary_10_1021_acscatal_0c04525 crossref_primary_10_1016_j_euromechsol_2022_104869 crossref_primary_10_1142_S1758825121500423 crossref_primary_10_1007_s00366_022_01636_3 crossref_primary_10_3390_ma16113946 crossref_primary_10_1016_j_icheatmasstransfer_2024_108332 crossref_primary_10_1115_1_4062352 crossref_primary_10_32604_cmes_2024_052620 crossref_primary_10_3390_e25101396 crossref_primary_10_1007_s10409_024_24207_x crossref_primary_10_1016_j_engappai_2021_104483 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_1007_s00521_023_09308_z crossref_primary_10_1007_s00466_021_02069_3 crossref_primary_10_1115_1_4064215 crossref_primary_10_1016_j_asoc_2023_110015 crossref_primary_10_1080_15376494_2022_2129888 crossref_primary_10_1016_j_jcp_2024_113506 crossref_primary_10_1016_j_jii_2022_100352 crossref_primary_10_1007_s00158_020_02544_0 crossref_primary_10_1016_j_engappai_2024_108370 crossref_primary_10_1002_nme_7221 crossref_primary_10_1115_1_4055377 crossref_primary_10_1007_s00158_022_03223_y crossref_primary_10_1038_s41598_025_92793_0 crossref_primary_10_1007_s11081_023_09806_y crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1108_EC_01_2022_0034 crossref_primary_10_1007_s10338_025_00587_8 crossref_primary_10_32604_cmes_2024_048118 crossref_primary_10_1016_j_cad_2023_103639 crossref_primary_10_1016_j_swevo_2022_101120 crossref_primary_10_1016_j_advengsoft_2023_103413 crossref_primary_10_1007_s11831_021_09544_3 crossref_primary_10_1016_j_cad_2023_103634 |
Cites_doi | 10.1115/1.1388075 10.1016/0045-7825(88)90086-2 10.1080/10407780802339031 10.1103/PhysRevLett.108.253002 10.1016/j.cma.2006.08.005 10.1002/nme.4344 10.1016/j.icheatmasstransfer.2016.04.016 10.1016/0045-7949(93)90035-C 10.1007/s00158-015-1372-3 10.1115/1.4042020 10.1007/s00231-007-0365-1 10.1080/10407790.2012.687979 10.1016/S0045-7825(00)00278-4 10.1109/TVCG.2015.2502588 10.1109/IIH-MSP.2006.265125 10.1016/S0045-7825(01)00216-X 10.1002/nme.3343 10.1103/PhysRevA.96.042113 10.1016/S0065-2717(08)70028-5 10.1007/s00158-007-0112-8 10.1007/s00158-010-0594-7 10.1109/TIA.2005.863905 10.1007/BF01650949 10.1016/j.ijheatmasstransfer.2004.06.010 10.1016/j.cma.2014.04.003 10.1007/978-3-319-09994-1_38 10.1016/j.applthermaleng.2010.06.014 10.1016/j.applthermaleng.2016.03.100 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Oct 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2019.05.038 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 180 |
ExternalDocumentID | 10_1016_j_cad_2019_05_038 S001044851930185X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-856c8b70acc820c30cc73bc88e60a73d5852b8fa9b089458b25531037479bfd33 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Fri Jul 25 05:51:43 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Tue Jul 01 03:34:35 EDT 2025 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Hierarchical refinement Heat conduction Topology optimization Generative adversarial network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-856c8b70acc820c30cc73bc88e60a73d5852b8fa9b089458b25531037479bfd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2277991219 |
PQPubID | 2045267 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2277991219 crossref_primary_10_1016_j_cad_2019_05_038 crossref_citationtrail_10_1016_j_cad_2019_05_038 elsevier_sciencedirect_doi_10_1016_j_cad_2019_05_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mei, Wang (b21) 2004; 35 Brockherde, Li, Burke, Müller (b16) 2017 Zhang, Liu (b25) 2008; 44 Li, Steven, Xie, Querin (b27) 2004; 47 Radford, Metz, Chintala (b34) 2015; abs/1511.06434 Xin, Chang, Zongliang, Weisheng, Xu (b31) 2018 Andreassen, Clausen, Schevenels, Lazarov, Sigmund (b36) 2011; 43 Bendsøe (b18) 1989; 1 Marck, Nemer, Harion, Russeil, Bougeard (b29) 2012; 61 Zhuang, Xiong, Ding (b28) 2007; 196 Sosnovik, Oseledets (b32) 2017; abs/1709.09578 Wu, Dick, Westermann (b9) 2016; 22 Yang B, Gu F, Niu X. Block mean value based image perceptual hashing. In: 2006 international conference on intelligent information hiding and multimedia; 2006. p. 167–72. Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b33) 2016; abs/1603.04467 Dobre, Stoica, Iavorschi, Pârvulescu (b5) 2010; 30 Bejan, Errera (b6) 2011; 05 Abdelmlek, Araoud, Ghnay, Abderrazak, Charrada, Zissis (b2) 2016; 102 Ulu E, Zhang R, Yumer ME, Kara LB. A data-driven investigation and estimation of optimal topologies under variable loading configurations. In: International symposium computational modeling of objects represented in images; 2014. Bruns, Tortorelli (b12) 2001; 190 Nguyen, Paulino, Song, Le (b13) 2012; 92 Kim, Kim, Mechefske (b11) 2012; 90 Mills, Spanner, Tamblyn (b17) 2017; 96 Borrvall, Petersson (b8) 2001; 190 Bendsøe, Kikuchi (b19) 1988; 71 Peterson, Ortega (b1) 1990 Murdock, Torres, Connors, Lorenz (b3) 2006; 42 Zhou, Li (b26) 2008; 54 Jang, Kwak (b10) 2008; 35 Groen, Sigmund (b14) 2017 Eschenauer, Olhoff (b7) 2001; 54 Kingma D, Ba J. Adam: A method for stochastic optimization, In: International conference on learning representations; 2014. . Zhang, Jie, Jian, Xu (b22) 2016; 53 Li, Xuan, Liu, Hong (b23) 2019; 141 Ledig, Theis, Huszar, Caballero, Aitken, Tejani (b37) 2016; abs/1609.04802 Li, Hong, Tian (b4) 2016; 75 Snyder, Rupp, Hansen, Muller, Burke (b15) 2012; 108 Xie, Steven (b20) 1993; 49 Takezawa, Yoon, Jeong, Kobashi, Kitamura (b24) 2014; 276 Rawat, Shen (b35) 2019; abs/1901.04859 Wu (10.1016/j.cad.2019.05.038_b9) 2016; 22 Groen (10.1016/j.cad.2019.05.038_b14) 2017 10.1016/j.cad.2019.05.038_b30 Ledig (10.1016/j.cad.2019.05.038_b37) 2016; abs/1609.04802 Abdelmlek (10.1016/j.cad.2019.05.038_b2) 2016; 102 Bendsøe (10.1016/j.cad.2019.05.038_b18) 1989; 1 Li (10.1016/j.cad.2019.05.038_b27) 2004; 47 Brockherde (10.1016/j.cad.2019.05.038_b16) 2017 Rawat (10.1016/j.cad.2019.05.038_b35) 2019; abs/1901.04859 Zhuang (10.1016/j.cad.2019.05.038_b28) 2007; 196 Sosnovik (10.1016/j.cad.2019.05.038_b32) 2017; abs/1709.09578 Zhou (10.1016/j.cad.2019.05.038_b26) 2008; 54 Bejan (10.1016/j.cad.2019.05.038_b6) 2011; 05 Radford (10.1016/j.cad.2019.05.038_b34) 2015; abs/1511.06434 10.1016/j.cad.2019.05.038_b38 Zhang (10.1016/j.cad.2019.05.038_b25) 2008; 44 10.1016/j.cad.2019.05.038_b39 Xin (10.1016/j.cad.2019.05.038_b31) 2018 Mills (10.1016/j.cad.2019.05.038_b17) 2017; 96 Bendsøe (10.1016/j.cad.2019.05.038_b19) 1988; 71 Nguyen (10.1016/j.cad.2019.05.038_b13) 2012; 92 Abadi (10.1016/j.cad.2019.05.038_b33) 2016; abs/1603.04467 Kim (10.1016/j.cad.2019.05.038_b11) 2012; 90 Mei (10.1016/j.cad.2019.05.038_b21) 2004; 35 Li (10.1016/j.cad.2019.05.038_b23) 2019; 141 Xie (10.1016/j.cad.2019.05.038_b20) 1993; 49 Peterson (10.1016/j.cad.2019.05.038_b1) 1990 Jang (10.1016/j.cad.2019.05.038_b10) 2008; 35 Andreassen (10.1016/j.cad.2019.05.038_b36) 2011; 43 Murdock (10.1016/j.cad.2019.05.038_b3) 2006; 42 Borrvall (10.1016/j.cad.2019.05.038_b8) 2001; 190 Takezawa (10.1016/j.cad.2019.05.038_b24) 2014; 276 Marck (10.1016/j.cad.2019.05.038_b29) 2012; 61 Eschenauer (10.1016/j.cad.2019.05.038_b7) 2001; 54 Li (10.1016/j.cad.2019.05.038_b4) 2016; 75 Bruns (10.1016/j.cad.2019.05.038_b12) 2001; 190 Zhang (10.1016/j.cad.2019.05.038_b22) 2016; 53 Dobre (10.1016/j.cad.2019.05.038_b5) 2010; 30 Snyder (10.1016/j.cad.2019.05.038_b15) 2012; 108 |
References_xml | – year: 2017 ident: b16 article-title: Bypassing the Kohn–Sham equations with machine learning publication-title: Nature communications – volume: abs/1511.06434 year: 2015 ident: b34 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: CoRR – volume: 190 start-page: 6201 year: 2001 end-page: 6229 ident: b8 article-title: Large-scale topology optimization in 3D using parallel computing publication-title: Comput Methods Appl Mech Engrg – volume: abs/1709.09578 year: 2017 ident: b32 article-title: Neural networks for topology optimization publication-title: CoRR – volume: 96 year: 2017 ident: b17 article-title: Deep learning and the Schrodinger equation publication-title: Phys Rev A – volume: abs/1609.04802 year: 2016 ident: b37 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: CoRR – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b19 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg – volume: 54 year: 2008 ident: b26 article-title: Computational design of microstructural composites with tailored thermal conductivity publication-title: Numer Heat Transfer A – volume: 196 start-page: 1074 year: 2007 end-page: 1084 ident: b28 article-title: A level set method for topology optimization of heat conduction problem under multiple load cases publication-title: Comput Methods Appl Mech Engrg – volume: 108 year: 2012 ident: b15 article-title: Finding density functionals with machine learning publication-title: Phys Rev Lett – volume: 53 start-page: 1243 year: 2016 end-page: 1260 ident: b22 article-title: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model publication-title: Struct Multidiscip Optim – volume: 102 start-page: 251 year: 2016 end-page: 260 ident: b2 article-title: Effect of thermal conduction path deficiency on thermal properties of LEDs package publication-title: Appl Therm Eng – volume: 190 start-page: 3443 year: 2001 end-page: 3459 ident: b12 article-title: Topology optimization of non-linear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Engrg – volume: 90 start-page: 752 year: 2012 end-page: 783 ident: b11 article-title: A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method publication-title: Internat J Numer Methods Engrg – start-page: 181 year: 1990 end-page: 314 ident: b1 article-title: Thermal control of electronic equipment and devices publication-title: Advances in heat transfer, vol. 20 – volume: 61 start-page: 439 year: 2012 end-page: 470 ident: b29 article-title: Topology optimization using the SIMP method for multiobjective conductive problems publication-title: Numer Heat Transfer B – volume: 44 start-page: 1217 year: 2008 end-page: 1227 ident: b25 article-title: Design of conducting paths based on topology optimization publication-title: Heat Mass Transf – reference: Ulu E, Zhang R, Yumer ME, Kara LB. A data-driven investigation and estimation of optimal topologies under variable loading configurations. In: International symposium computational modeling of objects represented in images; 2014. – reference: Kingma D, Ba J. Adam: A method for stochastic optimization, In: International conference on learning representations; 2014. – volume: 276 start-page: 341 year: 2014 end-page: 361 ident: b24 article-title: Structural topology optimization with strength and heat conduction constraints publication-title: Comput Methods Appl Mech Engrg – volume: 141 start-page: 051401 year: 2019 end-page: 051416 ident: b23 article-title: Generating constructal networks for area-to-point conduction problems via moving morphable components approach publication-title: J Mech Des – reference: Yang B, Gu F, Niu X. Block mean value based image perceptual hashing. In: 2006 international conference on intelligent information hiding and multimedia; 2006. p. 167–72. – volume: 1 start-page: 193 year: 1989 end-page: 202 ident: b18 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim – volume: 30 start-page: 2435 year: 2010 ident: b5 article-title: Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components publication-title: Appl Therm Eng – year: 2017 ident: b14 article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures publication-title: Internat J Numer Methods Engrg – volume: 35 start-page: 41 year: 2008 end-page: 54 ident: b10 article-title: Design space optimization using design space adjustment and refinement publication-title: Struct Multidiscip Optim – volume: 35 start-page: 415 year: 2004 end-page: 441 ident: b21 article-title: A level set method for structural topology optimization and its applications publication-title: Comput Methods Appl Mech Engrg – volume: 22 start-page: 1195 year: 2016 end-page: 1208 ident: b9 article-title: A system for high-resolution topology optimization publication-title: IEEE Trans Vis Comput Graphics – volume: 43 start-page: 1 year: 2011 end-page: 16 ident: b36 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim – volume: 92 start-page: 507 year: 2012 end-page: 530 ident: b13 article-title: Improving multiresolution topology optimization via multiple discretizations publication-title: Internat J Numer Methods Engrg – reference: . – volume: 42 start-page: 552 year: 2006 end-page: 558 ident: b3 article-title: Active thermal control of power electronic modules publication-title: IEEE Trans Ind Appl – volume: 75 start-page: 177 year: 2016 end-page: 182 ident: b4 article-title: Generating optimal topologies for heat conduction by heat flow paths identification publication-title: Int Commun Heat Mass Transfer – year: 2018 ident: b31 article-title: Machine learning driven real time topology optimization under moving morphable component (MMC)-based framework publication-title: J Appl Mech – volume: 05 year: 2011 ident: b6 article-title: Deterministic tree networks for fluid flow: Geometry for minimal flow resistance between a volume and one point publication-title: Fractals – volume: abs/1901.04859 year: 2019 ident: b35 article-title: A novel topology optimization approach using conditional deep learning publication-title: CoRR – volume: 47 start-page: 5071 year: 2004 end-page: 5083 ident: b27 article-title: Evolutionary topology optimization for temperature reduction of heat conducting fields publication-title: Int J Heat Mass Transfer – volume: abs/1603.04467 year: 2016 ident: b33 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems publication-title: CoRR – volume: 54 start-page: 1453 year: 2001 end-page: 1457 ident: b7 article-title: Topology optimization of continuum structures: A review publication-title: Appl Mech Rev – volume: 49 start-page: 885 year: 1993 end-page: 896 ident: b20 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct – volume: 54 start-page: 1453 issue: 4 year: 2001 ident: 10.1016/j.cad.2019.05.038_b7 article-title: Topology optimization of continuum structures: A review publication-title: Appl Mech Rev doi: 10.1115/1.1388075 – volume: 71 start-page: 197 issue: 2 year: 1988 ident: 10.1016/j.cad.2019.05.038_b19 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/0045-7825(88)90086-2 – volume: 54 year: 2008 ident: 10.1016/j.cad.2019.05.038_b26 article-title: Computational design of microstructural composites with tailored thermal conductivity publication-title: Numer Heat Transfer A doi: 10.1080/10407780802339031 – volume: abs/1511.06434 year: 2015 ident: 10.1016/j.cad.2019.05.038_b34 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: CoRR – volume: 108 year: 2012 ident: 10.1016/j.cad.2019.05.038_b15 article-title: Finding density functionals with machine learning publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.253002 – volume: 35 start-page: 415 issue: 7 year: 2004 ident: 10.1016/j.cad.2019.05.038_b21 article-title: A level set method for structural topology optimization and its applications publication-title: Comput Methods Appl Mech Engrg – volume: 196 start-page: 1074 issue: 4 year: 2007 ident: 10.1016/j.cad.2019.05.038_b28 article-title: A level set method for topology optimization of heat conduction problem under multiple load cases publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2006.08.005 – volume: 92 start-page: 507 issue: 6 year: 2012 ident: 10.1016/j.cad.2019.05.038_b13 article-title: Improving multiresolution topology optimization via multiple discretizations publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.4344 – volume: 75 start-page: 177 year: 2016 ident: 10.1016/j.cad.2019.05.038_b4 article-title: Generating optimal topologies for heat conduction by heat flow paths identification publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.04.016 – volume: 49 start-page: 885 issue: 5 year: 1993 ident: 10.1016/j.cad.2019.05.038_b20 article-title: A simple evolutionary procedure for structural optimization publication-title: Comput Struct doi: 10.1016/0045-7949(93)90035-C – volume: 53 start-page: 1243 issue: 6 year: 2016 ident: 10.1016/j.cad.2019.05.038_b22 article-title: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1372-3 – volume: 05 year: 2011 ident: 10.1016/j.cad.2019.05.038_b6 article-title: Deterministic tree networks for fluid flow: Geometry for minimal flow resistance between a volume and one point publication-title: Fractals – volume: abs/1901.04859 year: 2019 ident: 10.1016/j.cad.2019.05.038_b35 article-title: A novel topology optimization approach using conditional deep learning publication-title: CoRR – volume: 141 start-page: 051401 issue: 5 year: 2019 ident: 10.1016/j.cad.2019.05.038_b23 article-title: Generating constructal networks for area-to-point conduction problems via moving morphable components approach publication-title: J Mech Des doi: 10.1115/1.4042020 – volume: 44 start-page: 1217 issue: 10 year: 2008 ident: 10.1016/j.cad.2019.05.038_b25 article-title: Design of conducting paths based on topology optimization publication-title: Heat Mass Transf doi: 10.1007/s00231-007-0365-1 – volume: 61 start-page: 439 issue: 6 year: 2012 ident: 10.1016/j.cad.2019.05.038_b29 article-title: Topology optimization using the SIMP method for multiobjective conductive problems publication-title: Numer Heat Transfer B doi: 10.1080/10407790.2012.687979 – volume: 190 start-page: 3443 issue: 26 year: 2001 ident: 10.1016/j.cad.2019.05.038_b12 article-title: Topology optimization of non-linear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(00)00278-4 – volume: abs/1603.04467 year: 2016 ident: 10.1016/j.cad.2019.05.038_b33 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems publication-title: CoRR – volume: 22 start-page: 1195 issue: 3 year: 2016 ident: 10.1016/j.cad.2019.05.038_b9 article-title: A system for high-resolution topology optimization publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2015.2502588 – year: 2017 ident: 10.1016/j.cad.2019.05.038_b16 article-title: Bypassing the Kohn–Sham equations with machine learning – ident: 10.1016/j.cad.2019.05.038_b39 doi: 10.1109/IIH-MSP.2006.265125 – volume: 190 start-page: 6201 issue: 46 year: 2001 ident: 10.1016/j.cad.2019.05.038_b8 article-title: Large-scale topology optimization in 3D using parallel computing publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(01)00216-X – volume: 90 start-page: 752 issue: 6 year: 2012 ident: 10.1016/j.cad.2019.05.038_b11 article-title: A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.3343 – volume: 96 year: 2017 ident: 10.1016/j.cad.2019.05.038_b17 article-title: Deep learning and the Schrodinger equation publication-title: Phys Rev A doi: 10.1103/PhysRevA.96.042113 – start-page: 181 year: 1990 ident: 10.1016/j.cad.2019.05.038_b1 article-title: Thermal control of electronic equipment and devices doi: 10.1016/S0065-2717(08)70028-5 – volume: 35 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.cad.2019.05.038_b10 article-title: Design space optimization using design space adjustment and refinement publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-007-0112-8 – volume: 43 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.cad.2019.05.038_b36 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – volume: 42 start-page: 552 issue: 2 year: 2006 ident: 10.1016/j.cad.2019.05.038_b3 article-title: Active thermal control of power electronic modules publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2005.863905 – volume: abs/1609.04802 year: 2016 ident: 10.1016/j.cad.2019.05.038_b37 article-title: Photo-realistic single image super-resolution using a generative adversarial network publication-title: CoRR – volume: abs/1709.09578 year: 2017 ident: 10.1016/j.cad.2019.05.038_b32 article-title: Neural networks for topology optimization publication-title: CoRR – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 10.1016/j.cad.2019.05.038_b18 article-title: Optimal shape design as a material distribution problem publication-title: Struct Optim doi: 10.1007/BF01650949 – ident: 10.1016/j.cad.2019.05.038_b38 – volume: 47 start-page: 5071 issue: 23 year: 2004 ident: 10.1016/j.cad.2019.05.038_b27 article-title: Evolutionary topology optimization for temperature reduction of heat conducting fields publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.06.010 – volume: 276 start-page: 341 year: 2014 ident: 10.1016/j.cad.2019.05.038_b24 article-title: Structural topology optimization with strength and heat conduction constraints publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2014.04.003 – year: 2017 ident: 10.1016/j.cad.2019.05.038_b14 article-title: Homogenization-based topology optimization for high-resolution manufacturable micro-structures publication-title: Internat J Numer Methods Engrg – ident: 10.1016/j.cad.2019.05.038_b30 doi: 10.1007/978-3-319-09994-1_38 – volume: 30 start-page: 2435 issue: 16 year: 2010 ident: 10.1016/j.cad.2019.05.038_b5 article-title: Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.06.014 – volume: 102 start-page: 251 year: 2016 ident: 10.1016/j.cad.2019.05.038_b2 article-title: Effect of thermal conduction path deficiency on thermal properties of LEDs package publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.03.100 – year: 2018 ident: 10.1016/j.cad.2019.05.038_b31 article-title: Machine learning driven real time topology optimization under moving morphable component (MMC)-based framework publication-title: J Appl Mech |
SSID | ssj0002139 |
Score | 2.5801265 |
Snippet | This paper presents a non-iterative topology optimizer for conductive heat transfer structures with the help of deep learning. An artificial neural network is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 172 |
SubjectTerms | Artificial neural networks Boundary conditions Computer simulation Computing time Conductive heat transfer Datasets Deep learning Generative adversarial network Heat conduction Hierarchical refinement Iterative methods Machine learning Neural networks Optimization Pixels Predictions Topology optimization Training |
Title | Non-iterative structural topology optimization using deep learning |
URI | https://dx.doi.org/10.1016/j.cad.2019.05.038 https://www.proquest.com/docview/2277991219 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQgp1Yiexx1JRFRCdqNTNsh2nKoK0El1Y-O2cY4cvoQ4MGRLZUXSXvHun3L1D6IJmJhVEcaf8WERMlFkEh4hMlgjGTGJE7emHSTaesrtZOmuhYdML48oqA_Z7TK_ROlzpB2v2V4uF6_GFVIJxR0EIRJ2Z62BnudPPv3r_KvNIYuopMOCNW9382axrvIxyYqGxqMU7XYvK37HpF0rXoWe0h3YDZ8QD_1j7qGWrA7TzTUnwEF1PllXkFZIBvrBXhXWKGnjtpyC84SWAw0vousSu3H2OC2tXOMyNmB-h6ejmcTiOwniEyNAkXUc8zQzXOVHGQBg3lBiTU204txlROS0gEUg0L5XQhAuWcg3Zg5sqBgmE0GVB6TFqV8vKniAsVKYVs0qVlDrFMm5iDYmIBTKTsjJWHUQaw0gTtMPdCItn2RSJPUmwpXS2lCSVYMsOuvzcsvLCGZsWs8ba8of3JQD7pm3dxjMyfHqvMknyHEgvIPHp_-56hrbdma_Y66I2eMyeA_NY6179avXQ1uD2fjz5ANd71kI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKOwAD4lMUCnhgQoqaxk5ij6WiSmmbqZW6WbbjVCBIK9GFf885cSpAqANDliQXRXeXd3fK3TuE7kmkQ-5LZpkfM4_yPPLg4J6OAk6pDjQvLT1No2ROnxfhooEG9SyMbat02F9heonW7kzXabO7fnmxM75QSlBmUxAfos5iD7UsOxU4e6s_GifpFpCDHqmyYIAcK1D_3CzbvLS0fKE9XvJ32imVv8PTL6Auo8_wGB25tBH3qzc7QQ1TnKLDb2SCZ-gxXRVeRZIMCIYrYlhLqoE31SKET7wCfHh3g5fYdrwvcWbMGrvVEctzNB8-zQaJ5zYkeJoE4cZjYaSZin2pNURyTXytY6I0YybyZUwyqAUCxXLJlc84DZmCAsIuFoMagqs8I-QCNYtVYS4R5jJSkhopc0IsaRnTPQW1iIF8JqR5T7aRXytGaEcfbrdYvIm6T-xVgC6F1aXwQwG6bKOHrci64s7YdTOttS1-OIAAbN8l1qktI9zX9yGCII4h7wUwvvrfU-_QfjKbTsRklI6v0YG9UjXwdVATrGduIBHZqFvnaF9AKtjz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-iterative+structural+topology+optimization+using+deep+learning&rft.jtitle=Computer+aided+design&rft.au=Li%2C+Baotong&rft.au=Huang%2C+Congjia&rft.au=Li%2C+Xin&rft.au=Zheng%2C+Shuai&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=115&rft.spage=172&rft.epage=180&rft_id=info:doi/10.1016%2Fj.cad.2019.05.038&rft.externalDocID=S001044851930185X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |