Alternating catalytic reactions
The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry,...
Saved in:
Published in | Reaction kinetics, mechanisms and catalysis Vol. 126; no. 2; pp. 577 - 586 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry, in biochemistry and related sciences, which take place in opposite directions, with consecutive alternations in time. However, the very existence of alternate reactions, now known as the oscillatory or oscillating reactions, has long been disputed because it was thought that it is contrary to the basic principles of thermodynamics. Nevertheless, according to our knowledge, there are no oscillatory reactions without catalytic loop as the essential part of a mechanism. There could be a fundamental rule that catalysis is necessary to generate oscillations in concentrations and reaction rates. Particularly, homogeneous oscillatory reactions are often subject of research as relatively simple systems with good chance to clearly define feedbacks responsible for instability phenomena. However, oscillations can at least equally often be found in heterogeneous catalytic reactions. Recently, changes in product selectivity was proved when Pd catalyzed carbonylation of phenylacetylene was moved to the oscillatory dynamic state. With this simple result, the doors are now open for wide spectrum of research projects and applications. |
---|---|
AbstractList | The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry, in biochemistry and related sciences, which take place in opposite directions, with consecutive alternations in time. However, the very existence of alternate reactions, now known as the oscillatory or oscillating reactions, has long been disputed because it was thought that it is contrary to the basic principles of thermodynamics. Nevertheless, according to our knowledge, there are no oscillatory reactions without catalytic loop as the essential part of a mechanism. There could be a fundamental rule that catalysis is necessary to generate oscillations in concentrations and reaction rates. Particularly, homogeneous oscillatory reactions are often subject of research as relatively simple systems with good chance to clearly define feedbacks responsible for instability phenomena. However, oscillations can at least equally often be found in heterogeneous catalytic reactions. Recently, changes in product selectivity was proved when Pd catalyzed carbonylation of phenylacetylene was moved to the oscillatory dynamic state. With this simple result, the doors are now open for wide spectrum of research projects and applications. |
Author | Čupić, Željko Ivanović-Šašić, Ana |
Author_xml | – sequence: 1 givenname: Željko orcidid: 0000-0002-4939-6718 surname: Čupić fullname: Čupić, Željko email: zcupic@ihtm.bg.ac.rs organization: Center of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade – sequence: 2 givenname: Ana surname: Ivanović-Šašić fullname: Ivanović-Šašić, Ana organization: Center of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade |
BookMark | eNp9kL9OAzEMhyNUJErpAzDRFwjETnJJxqrin1SJBebIl-aqq447lIShb89VBwtDvdjD77P8-ZrN-qGPjN2CuAchzEMGAKW4AMtBC-B4weZgjeUahZr9zeDEFVvmfBBjSTRWuzm7W3clpp5K2-9XgQp1x9KGVYoUSjv0-YZdNtTluPztC_bx9Pi-eeHbt-fXzXrLg0RduEVhd0EFpwUiACLWpCSppjaVUSSNdc4pY1CBpqpCbaythTFSSed21MgFM9PekIacU2x8aAudTiiJ2s6D8CdVP6n6UdWfVD2OJPwjv1L7Sel4lsGJyWO238fkD8P3-IUun4F-AACmZM8 |
CitedBy_id | crossref_primary_10_1007_s11144_025_02835_x crossref_primary_10_1039_D1RA03810A crossref_primary_10_1007_s11144_020_01793_w crossref_primary_10_1098_rsif_2024_0492 |
Cites_doi | 10.1016/S0360-0564(08)60644-6 10.1016/j.apcata.2006.02.023 10.1021/ja01453a010 10.1016/0167-2789(95)00009-S 10.1021/jp972666u 10.1016/0098-1354(94)85010-0 10.1063/1.5026791 10.1021/jp5019795 10.1515/IJNSNS.2009.10.11-12.1451 10.1016/j.molcata.2007.12.020 10.1007/s11144-016-0979-8 10.1016/j.eurpolymj.2018.10.038 10.1007/978-3-319-15482-4 10.1016/S0009-2509(54)80005-4 10.1063/1.2779857 10.1016/S0360-0564(08)60366-1 10.1021/ja01439a007 10.1002/tcr.201600009 10.1021/ed050p496 10.1039/C7CP07747E 10.1007/s11144-014-0685-3 10.3923/pjbs.2005.512.519 10.1007/BF02071179 10.1021/jf020578n 10.1039/C8TB00781K 10.1002/cphc.201700359 10.1134/S0023158407020073 10.1134/S0023158412040027 10.1016/j.electacta.2007.06.067 10.1016/j.eurpolymj.2017.08.033 10.1039/B713906C 10.1016/S0039-9140(99)00363-X 10.1155/2012/819190 10.1515/revce-2017-0085 10.1021/acs.jpcc.6b06692 10.1039/b905444h 10.1016/j.cplett.2006.12.040 10.1007/s11144-017-1282-z 10.1016/j.ces.2003.08.011 10.1039/C4CC01548G 10.1021/cr00035a012 10.1155/1987/27260 10.1002/anie.200800480 10.1007/s11144-017-1300-1 10.1039/a807608a 10.1016/j.cej.2013.07.094 10.1021/ac00100a007 10.1016/j.cattod.2010.03.016 10.1021/jp020856l |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2018 |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11144-018-1501-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1878-5204 |
EndPage | 586 |
ExternalDocumentID | 10_1007_s11144_018_1501_2 |
GrantInformation_xml | – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja grantid: 172015; 172015; 45001; 45001 funderid: http://dx.doi.org/10.13039/501100004564 |
GroupedDBID | -58 -5G -BR -EM -~C .VR .XO 06C 06D 0R~ 0VY 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 406 40D 40E 5VS 8UJ 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. BDATZ BGNMA BSONS CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF IJ- IKXTQ ITM IWAJR IZIGR I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O93 O9G O9J P9N PF0 PT4 QOR QOS R89 RKA ROL RSV S16 S27 S3B SAP SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z86 Z8M Z8N Z8P Z8T ZMTXR ~A9 -Y2 2VQ 4.4 AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA CITATION MET MKB N2Q RIG S1Z SCLPG |
ID | FETCH-LOGICAL-c325t-8208dc4c9502211222ba43a4fb7674a3789994772415a6625788b07734399daf3 |
IEDL.DBID | U2A |
ISSN | 1878-5190 |
IngestDate | Tue Jul 01 01:37:50 EDT 2025 Thu Apr 24 23:05:38 EDT 2025 Fri Feb 21 02:33:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Oscillatory reaction Phenylacetylene carbonilation Carbon monoxide oxidation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-8208dc4c9502211222ba43a4fb7674a3789994772415a6625788b07734399daf3 |
ORCID | 0000-0002-4939-6718 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1007_s11144_018_1501_2 crossref_primary_10_1007_s11144_018_1501_2 springer_journals_10_1007_s11144_018_1501_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190415 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190415 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Reaction kinetics, mechanisms and catalysis |
PublicationTitleAbbrev | Reac Kinet Mech Cat |
PublicationYear | 2019 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | ParkerJNovakovicKAutonomous reorganization of the oscillatory phase in the PdI2 catalyzed phenylacetylene carbonylation reactionReac Kinet Mech Cat2016118738510.1007/s11144-016-0979-81:CAS:528:DC%2BC28XisVGht70%3D NicolisGPrigogineISelf-organization in nonequilibrium systems1977LondonWiley JelićSČupićŽLjKolar-AnićVukojevićVPredictive modeling of the hypothalamic–pituitary–adrenal (HPA) function. Dynamic systems theory approach by stoichiometric network analysis and quenching small amplitude oscillationsInt J Nonlinear Sci Num20091011–1214511472 AnićSVeselinovićDVukojevićVRadenkovićMElectrochemical source of alternating current based on an oscillating reactionJ Serb Chem Soc199459457461 PejićNČupićŽAnićSVukojevićVLjKolar-AnićThe oscillatory Bray–Liebhafsky reaction as a matrix for analyzing enzyme and polymeric catalysts for hydrogen peroxideSci Sinter200133107115 GorodskySNConcentration oscillations in the oxidative carbonylation of non-1-yne in the PdI2–KI–CO–O2–CH3OH and PdI2–KI–CO–O2–phenylacetylene–CH3OH systemsKinet Catal20125349349610.1134/S00231584120400271:CAS:528:DC%2BC38XhtVygu7bE NovakovicKMukherjeeAWillisMWrightAScottSWrightARThe influence of reaction temperature on the oscillatory behaviour in the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys2009119044904910.1039/b905444h1:CAS:528:DC%2BD1MXht1artbfL19812824 BánságiTTaylorAFRole of differential transport in an oscillatory enzyme reactionJ Phys Chem B2014118236092609710.1021/jp50197951:CAS:528:DC%2BC2cXotVersLw%3D24830687 LotkaAJUndamped oscillations derived from the law of mass actionJ Am Chem Soc1920421595159910.1021/ja01453a0101:CAS:528:DyaB3cXhs12kuw%3D%3D DonlonLParkerJNovakovicKOscillatory carbonylation of phenylacetylene in the absence of externally supplied oxidantReac Kinet Mech Cat2014112111310.1007/s11144-014-0685-31:CAS:528:DC%2BC2cXislKqtr0%3D LázárANoszticziusZFörsterlingHDNagy-UngváraiZChemical waves in modified membranes. I. Developing the techniquePhysica D19958411211910.1016/0167-2789(95)00009-S BriggsTSRauscherWCAn oscillating iodine clockJ Chem Educ19735049610.1021/ed050p4961:CAS:528:DyaE3sXksFagt7g%3D CervellatiRRenzulliCGuerraMCSperoniEEvaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction methodJ Agric Food Chem2002507504750910.1021/jf020578n1:CAS:528:DC%2BD38XovVeqtbc%3D12475261 MalashkevichAVLevABrukGTemkinONNew oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylationJ Phys Chem A19971019825982710.1021/jp972666u1:CAS:528:DyaK1cXhs1alug%3D%3D IsakovaAMurdochBJNovakovicKFrom small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HIPhys Chem Chem Phys2018209281928810.1039/C7CP07747E1:CAS:528:DC%2BC1cXltlSmsrc%3D29561549 PejićNSarapNMaksimovićJAnićSLjKolar-AnićPulse perturbation technique for determination of piroxicam in pharmaceuticals using an oscillatory reaction systemCent Eur J Chem201311180188 IsakovaANovakovicKOscillatory chemical reactions in the quest for rhythmic motion of smart materialsEur Polym J20179543043910.1016/j.eurpolymj.2017.08.0331:CAS:528:DC%2BC2sXhtlOrs7rJ ČupićŽAnićSTerlecki-BaričevićALjKolar-AnićBray–Liebhafsky reaction. The Influence of some polymers based on poly (4-vynilpyridine)React Kinet Catal Lett199554434910.1007/BF02071179 ZhabotinskiiAMPeriodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Beolusov’s reactionBiofizika196493063111:CAS:528:DyaF2cXkt1yktbY%3D14206238 ImbihilRErtlGOscillatory kinetics in heterogeneous catalysisChem Rev19959569773310.1021/cr00035a012 StrizhakPEKhavrusVODetermination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reactionTalanta20005193594710.1016/S0039-9140(99)00363-X1:CAS:528:DC%2BD3cXitlKjtrY%3D18967925 Jiménez-PrietoRSilvaMPérez-BenditoDAnalyte pulse perturbation technique: a tool for analytical determinations in far-from-equillibrium dynamic systemsAnal Chem19956772973410.1021/ac00100a007 DonlonLNovakovicKOscillatory carbonylation using alkyne-functionalised poly(ethylene glycol)Chem Commun201450155061550810.1039/C4CC01548G1:CAS:528:DC%2BC2cXhtVGgu7rJ ZhangXWangXLiXWangXDengZLiXJiangCRenYOscillatory behaviour of the H2-SCR over Pt/HYChem Eng J201323226627210.1016/j.cej.2013.07.0941:CAS:528:DC%2BC3sXhsFWrtrjF BartoMBrunovskáAGomesVGOptimal periodic control of the input into a heterogeneous catalytic reactorComput Chem Eng199418321922610.1016/0098-1354(94)85010-01:CAS:528:DyaK2cXhs1Ort7k%3D GutscheaRLangeaRWittWThe effect of process nonlinearities on the performance of a periodically operated isothermal catalytic reactorChem Eng Sci2003585055506810.1016/j.ces.2003.08.0111:CAS:528:DC%2BD3sXosVemt74%3D NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARAchieving pH and Qr oscillations in a palladium-catalysed phenylacetylene oxidative carbonylation reaction using an automated reactor systemChem Phys Lett200743514214710.1016/j.cplett.2006.12.0401:CAS:528:DC%2BD2sXpvFSiuw%3D%3D ParkerJNovakovicKThe effect of temperature on selectivity in the oscillatory mode of the phenylacetylene oxidative carbonylation reactionChem Phys Chem201718151981198610.1002/cphc.2017003591:CAS:528:DC%2BC2sXhtVantL7L28556572 YuBychkov VTyuleninYPKorchakVNAptekarELStudy of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometryApp Catal A Gen2006304212910.1016/j.apcata.2006.02.0231:CAS:528:DC%2BD28XjvVGjt70%3D ČupićŽMaćešićSNovakovićKAnićSLjKolar-AnićStoichiometric network analysis of a reaction system with conservation constraintsChaos20182808311410.1063/1.50267911:CAS:528:DC%2BC1cXhsFGjsLrJ30180608 MaćešićSČupićŽNovakovicKParkerJAnićSLjKolar-AnićOscillatory carbonylation of poly(ethylene glycol)methyl ether acetylene. Modelling of reaction mechanism and stoichiometric network stability analysisMATCH Commun Math Comput Chem2019811534 DelmondeMVFSallumLFPeriniNGonzalezERSchlöglRVarelaHElectrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regimeJ Phys Chem C2016120223652237410.1021/acs.jpcc.6b066921:CAS:528:DC%2BC28XhsVKrt7nO LarterRUnderstanding complexity in biophysical chemistryJ Phys Chem B200310741542910.1021/jp020856l1:CAS:528:DC%2BD38XpsFCmsb0%3D KeilFJProcess intensificationRev Chem Eng20173213520010.1515/revce-2017-0085 KhabibulinVRKulikAVOshaninaIVBrukLGTemkinONNosovaVMUstynyukYABel’skiiVKStashAILysenkoKAAntipinMYMechanism of the oxidative carbonylation of terminal alkynes at the ≡C–H bond in solutions of palladium complexesKinet Catal20074822824410.1134/S00231584070200731:CAS:528:DC%2BD2sXksFantbs%3D BrayWCPeriodic reaction in homogenous solution and its relation to catalysisJ Am Chem Soc1921431262126710.1021/ja01439a0071:CAS:528:DyaB3MXitV2itA%3D%3D IsakovaAParkesGEMurdochBJTophamPDNovakovicKCombining polymer-bound catalyst with polymeric substrate for reproducible pH oscillations in palladium-catalysed oxidative carbonylation of alkynesEur Polym J20181617181:CAS:528:DC%2BC1cXitFant7nN10.1016/j.eurpolymj.2018.10.038 SlinkoMMOscillating reactions in heterogeneous catalysis: What new information can be obtained about reaction mechanisms?Catal Today2010154384510.1016/j.cattod.2010.03.0161:CAS:528:DC%2BC3cXptVaru7o%3D GrosjeanCNovakovicKScottSKWhitingAWillisMJWrightARProduct identification and distribution from the oscillatory versus non-oscillatory palladium(II) iodide-catalysed oxidative carbonylation of phenylacetyleneJ Mol Catal A Chem2008284333910.1016/j.molcata.2007.12.0201:CAS:528:DC%2BD1cXjtl2ht7s%3D ErtlGReactions at surfaces: from atoms to complexity (nobel lecture)Angew Chem Int Ed2008473524353510.1002/anie.2008004801:CAS:528:DC%2BD1cXmt1Gitr0%3D ErtlGOscillatory catalytic reactions at single-crystal surfacesAdv Catal1990372132771:CAS:528:DyaK3MXhsFWhs7o%3D TamateRMizutani AkimotoAYoshidaRRecent advances in self-oscillating polymer material systemsChem Rec2016161852186710.1002/tcr.2016000091:CAS:528:DC%2BC28Xpt1Grtb4%3D27265869 MarsPvan KrevelenDWOxidations carried out by the means of vanadium oxide catalystsSpec Suppl Chem Eng Sci19543415910.1016/S0009-2509(54)80005-41:CAS:528:DyaG28Xks1Wq GorodskySNNew type of oscillatory processes—oxidative carbonylation of alkynes in the homogeneous catalysis by Pd complexes. PhenylacetyleneReac Kinet Mech Cat20181239311210.1007/s11144-017-1300-11:CAS:528:DC%2BC2sXhslyrtb7L IsakovaANovakovicKPulsatile release from a flat self-oscillating chitosan macrogelJ Mater Chem B201865003501010.1039/C8TB00781K TorvelaHFeasibility of using oscillatory catalytic oxidation phenomenon for selective carbon monoxide sensingActive Passive Electron Comp19871229130110.1155/1987/27260 GorodskySNOxidative carbonylation of 2-propyn-1-ol and 2-methyl-3-butyn-2-ol in an oscillatory modeOrg Chem Int201210.1155/2012/819190 GaoJApplication of oscillating chemical reaction to analytical chemistry: recent developmentsPak J Biol Sci2005851251910.3923/pjbs.2005.512.5191:CAS:528:DC%2BD2MXmt1Cht7w%3D BakesDSchreiberovaLSchreiberIHauserMJBMixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction systemChaos200818101510210.1063/1.27798571:CAS:528:DC%2BD1cXkt12iu7c%3D18377083 HuGChenPWangWHuLSongJQiuLSongJKinetic determination of pyrogallol by a novel oscillating chemical reaction catalyzed by a tetraazamacrocyclic complexElectrochim Acta2007527996800210.1016/j.electacta.2007.06.0671:CAS:528:DC%2BD2sXpsFShsLc%3D LenteGDeterministic kinetics in chemistry and systems biology2015Cham/Heidelberg/New York/Dordrecht/LondonSpringer10.1007/978-3-319-15482-4 ParkerJNovakovicKThe effect of using a methanol–water solvent mixture on pH oscillations in the palladium-catalyzed phenylacetylene oxidative carbonylation reactionReac Kinet Mech Cat201812311312410.1007/s11144-017-1282-z1:CAS:528:DC%2BC2sXhsFyltbvK ChristiansenJAThe elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrationsAdv Catal195353113531:CAS:528:DyaG3sXnsVOiu N Pejić (1501_CR15) 2001; 33 R Imbihil (1501_CR28) 1995; 95 WC Bray (1501_CR3) 1921; 43 TS Briggs (1501_CR13) 1973; 50 K Novakovic (1501_CR49) 2008; 10 A Isakova (1501_CR55) 2018; 16 S Anić (1501_CR12) 1994; 59 R Tamate (1501_CR11) 2016; 16 J Parker (1501_CR42) 2016; 118 G Ertl (1501_CR24) 2008; 47 Bychkov V Yu (1501_CR29) 2006; 304 A Isakova (1501_CR40) 2018; 20 K Novakovic (1501_CR41) 2009; 11 D Bakes (1501_CR6) 2008; 18 J Parker (1501_CR43) 2018; 123 J Parker (1501_CR46) 2017; 18 A Isakova (1501_CR53) 2018; 6 J Gao (1501_CR20) 2005; 8 X Zhang (1501_CR30) 2013; 232 MVF Delmonde (1501_CR35) 2016; 120 AM Zhabotinskii (1501_CR26) 1964; 9 MM Slinko (1501_CR31) 2010; 154 FJ Keil (1501_CR34) 2017; 32 R Jiménez-Prieto (1501_CR16) 1995; 67 R Gutschea (1501_CR33) 2003; 58 V Vukojević (1501_CR17) 1999; 124 G Ertl (1501_CR27) 1990; 37 Ž Čupić (1501_CR14) 1995; 54 S Jelić (1501_CR9) 2009; 10 L Donlon (1501_CR44) 2014; 50 M Barto (1501_CR32) 1994; 18 G Hu (1501_CR21) 2007; 52 S Maćešić (1501_CR52) 2019; 81 PE Strizhak (1501_CR18) 2000; 51 G Nicolis (1501_CR5) 1977 T Bánsági (1501_CR7) 2014; 118 JA Christiansen (1501_CR25) 1953; 5 R Larter (1501_CR8) 2003; 107 SN Gorodsky (1501_CR48) 2012; 53 P Mars (1501_CR2) 1954; 3 H Torvela (1501_CR23) 1987; 12 Ž Čupić (1501_CR51) 2018; 28 SN Gorodsky (1501_CR47) 2012 A Lázár (1501_CR10) 1995; 84 AV Malashkevich (1501_CR36) 1997; 101 AJ Lotka (1501_CR4) 1920; 42 C Grosjean (1501_CR50) 2008; 284 N Pejić (1501_CR22) 2013; 11 L Donlon (1501_CR45) 2014; 112 A Isakova (1501_CR54) 2017; 95 SN Gorodsky (1501_CR39) 2018; 123 VR Khabibulin (1501_CR37) 2007; 48 G Lente (1501_CR1) 2015 R Cervellati (1501_CR19) 2002; 50 K Novakovic (1501_CR38) 2007; 435 |
References_xml | – reference: ČupićŽAnićSTerlecki-BaričevićALjKolar-AnićBray–Liebhafsky reaction. The Influence of some polymers based on poly (4-vynilpyridine)React Kinet Catal Lett199554434910.1007/BF02071179 – reference: IsakovaAMurdochBJNovakovicKFrom small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HIPhys Chem Chem Phys2018209281928810.1039/C7CP07747E1:CAS:528:DC%2BC1cXltlSmsrc%3D29561549 – reference: GorodskySNNew type of oscillatory processes—oxidative carbonylation of alkynes in the homogeneous catalysis by Pd complexes. PhenylacetyleneReac Kinet Mech Cat20181239311210.1007/s11144-017-1300-11:CAS:528:DC%2BC2sXhslyrtb7L – reference: NovakovicKMukherjeeAWillisMWrightAScottSWrightARThe influence of reaction temperature on the oscillatory behaviour in the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys2009119044904910.1039/b905444h1:CAS:528:DC%2BD1MXht1artbfL19812824 – reference: IsakovaAParkesGEMurdochBJTophamPDNovakovicKCombining polymer-bound catalyst with polymeric substrate for reproducible pH oscillations in palladium-catalysed oxidative carbonylation of alkynesEur Polym J20181617181:CAS:528:DC%2BC1cXitFant7nN10.1016/j.eurpolymj.2018.10.038 – reference: ImbihilRErtlGOscillatory kinetics in heterogeneous catalysisChem Rev19959569773310.1021/cr00035a012 – reference: LarterRUnderstanding complexity in biophysical chemistryJ Phys Chem B200310741542910.1021/jp020856l1:CAS:528:DC%2BD38XpsFCmsb0%3D – reference: DonlonLNovakovicKOscillatory carbonylation using alkyne-functionalised poly(ethylene glycol)Chem Commun201450155061550810.1039/C4CC01548G1:CAS:528:DC%2BC2cXhtVGgu7rJ – reference: TamateRMizutani AkimotoAYoshidaRRecent advances in self-oscillating polymer material systemsChem Rec2016161852186710.1002/tcr.2016000091:CAS:528:DC%2BC28Xpt1Grtb4%3D27265869 – reference: GrosjeanCNovakovicKScottSKWhitingAWillisMJWrightARProduct identification and distribution from the oscillatory versus non-oscillatory palladium(II) iodide-catalysed oxidative carbonylation of phenylacetyleneJ Mol Catal A Chem2008284333910.1016/j.molcata.2007.12.0201:CAS:528:DC%2BD1cXjtl2ht7s%3D – reference: JelićSČupićŽLjKolar-AnićVukojevićVPredictive modeling of the hypothalamic–pituitary–adrenal (HPA) function. Dynamic systems theory approach by stoichiometric network analysis and quenching small amplitude oscillationsInt J Nonlinear Sci Num20091011–1214511472 – reference: ParkerJNovakovicKAutonomous reorganization of the oscillatory phase in the PdI2 catalyzed phenylacetylene carbonylation reactionReac Kinet Mech Cat2016118738510.1007/s11144-016-0979-81:CAS:528:DC%2BC28XisVGht70%3D – reference: ChristiansenJAThe elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrationsAdv Catal195353113531:CAS:528:DyaG3sXnsVOiug%3D%3D – reference: AnićSVeselinovićDVukojevićVRadenkovićMElectrochemical source of alternating current based on an oscillating reactionJ Serb Chem Soc199459457461 – reference: BriggsTSRauscherWCAn oscillating iodine clockJ Chem Educ19735049610.1021/ed050p4961:CAS:528:DyaE3sXksFagt7g%3D – reference: MarsPvan KrevelenDWOxidations carried out by the means of vanadium oxide catalystsSpec Suppl Chem Eng Sci19543415910.1016/S0009-2509(54)80005-41:CAS:528:DyaG28Xks1Wq – reference: VukojevićVPejićNStanisavljevDAnićSLjKolar-AnićDetermination of Cl-, Br-, I-, malonic acid and quercetin by perturbation of a nonequilibrium stationary state in the Bray–Liebhafsky reactionAnalyst199912414715210.1039/a807608a – reference: GorodskySNConcentration oscillations in the oxidative carbonylation of non-1-yne in the PdI2–KI–CO–O2–CH3OH and PdI2–KI–CO–O2–phenylacetylene–CH3OH systemsKinet Catal20125349349610.1134/S00231584120400271:CAS:528:DC%2BC38XhtVygu7bE – reference: BakesDSchreiberovaLSchreiberIHauserMJBMixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction systemChaos200818101510210.1063/1.27798571:CAS:528:DC%2BD1cXkt12iu7c%3D18377083 – reference: BrayWCPeriodic reaction in homogenous solution and its relation to catalysisJ Am Chem Soc1921431262126710.1021/ja01439a0071:CAS:528:DyaB3MXitV2itA%3D%3D – reference: DelmondeMVFSallumLFPeriniNGonzalezERSchlöglRVarelaHElectrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regimeJ Phys Chem C2016120223652237410.1021/acs.jpcc.6b066921:CAS:528:DC%2BC28XhsVKrt7nO – reference: ParkerJNovakovicKThe effect of temperature on selectivity in the oscillatory mode of the phenylacetylene oxidative carbonylation reactionChem Phys Chem201718151981198610.1002/cphc.2017003591:CAS:528:DC%2BC2sXhtVantL7L28556572 – reference: LotkaAJUndamped oscillations derived from the law of mass actionJ Am Chem Soc1920421595159910.1021/ja01453a0101:CAS:528:DyaB3cXhs12kuw%3D%3D – reference: ErtlGReactions at surfaces: from atoms to complexity (nobel lecture)Angew Chem Int Ed2008473524353510.1002/anie.2008004801:CAS:528:DC%2BD1cXmt1Gitr0%3D – reference: SlinkoMMOscillating reactions in heterogeneous catalysis: What new information can be obtained about reaction mechanisms?Catal Today2010154384510.1016/j.cattod.2010.03.0161:CAS:528:DC%2BC3cXptVaru7o%3D – reference: ZhabotinskiiAMPeriodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Beolusov’s reactionBiofizika196493063111:CAS:528:DyaF2cXkt1yktbY%3D14206238 – reference: KeilFJProcess intensificationRev Chem Eng20173213520010.1515/revce-2017-0085 – reference: GorodskySNOxidative carbonylation of 2-propyn-1-ol and 2-methyl-3-butyn-2-ol in an oscillatory modeOrg Chem Int201210.1155/2012/819190 – reference: StrizhakPEKhavrusVODetermination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reactionTalanta20005193594710.1016/S0039-9140(99)00363-X1:CAS:528:DC%2BD3cXitlKjtrY%3D18967925 – reference: YuBychkov VTyuleninYPKorchakVNAptekarELStudy of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometryApp Catal A Gen2006304212910.1016/j.apcata.2006.02.0231:CAS:528:DC%2BD28XjvVGjt70%3D – reference: NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARThe influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys20081074975310.1039/B713906C1:CAS:528:DC%2BD1cXpsFyiuw%3D%3D19791459 – reference: ParkerJNovakovicKThe effect of using a methanol–water solvent mixture on pH oscillations in the palladium-catalyzed phenylacetylene oxidative carbonylation reactionReac Kinet Mech Cat201812311312410.1007/s11144-017-1282-z1:CAS:528:DC%2BC2sXhsFyltbvK – reference: KhabibulinVRKulikAVOshaninaIVBrukLGTemkinONNosovaVMUstynyukYABel’skiiVKStashAILysenkoKAAntipinMYMechanism of the oxidative carbonylation of terminal alkynes at the ≡C–H bond in solutions of palladium complexesKinet Catal20074822824410.1134/S00231584070200731:CAS:528:DC%2BD2sXksFantbs%3D – reference: HuGChenPWangWHuLSongJQiuLSongJKinetic determination of pyrogallol by a novel oscillating chemical reaction catalyzed by a tetraazamacrocyclic complexElectrochim Acta2007527996800210.1016/j.electacta.2007.06.0671:CAS:528:DC%2BD2sXpsFShsLc%3D – reference: NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARAchieving pH and Qr oscillations in a palladium-catalysed phenylacetylene oxidative carbonylation reaction using an automated reactor systemChem Phys Lett200743514214710.1016/j.cplett.2006.12.0401:CAS:528:DC%2BD2sXpvFSiuw%3D%3D – reference: ČupićŽMaćešićSNovakovićKAnićSLjKolar-AnićStoichiometric network analysis of a reaction system with conservation constraintsChaos20182808311410.1063/1.50267911:CAS:528:DC%2BC1cXhsFGjsLrJ30180608 – reference: ZhangXWangXLiXWangXDengZLiXJiangCRenYOscillatory behaviour of the H2-SCR over Pt/HYChem Eng J201323226627210.1016/j.cej.2013.07.0941:CAS:528:DC%2BC3sXhsFWrtrjF – reference: MaćešićSČupićŽNovakovicKParkerJAnićSLjKolar-AnićOscillatory carbonylation of poly(ethylene glycol)methyl ether acetylene. Modelling of reaction mechanism and stoichiometric network stability analysisMATCH Commun Math Comput Chem2019811534 – reference: TorvelaHFeasibility of using oscillatory catalytic oxidation phenomenon for selective carbon monoxide sensingActive Passive Electron Comp19871229130110.1155/1987/27260 – reference: BánságiTTaylorAFRole of differential transport in an oscillatory enzyme reactionJ Phys Chem B2014118236092609710.1021/jp50197951:CAS:528:DC%2BC2cXotVersLw%3D24830687 – reference: LenteGDeterministic kinetics in chemistry and systems biology2015Cham/Heidelberg/New York/Dordrecht/LondonSpringer10.1007/978-3-319-15482-4 – reference: Jiménez-PrietoRSilvaMPérez-BenditoDAnalyte pulse perturbation technique: a tool for analytical determinations in far-from-equillibrium dynamic systemsAnal Chem19956772973410.1021/ac00100a007 – reference: NicolisGPrigogineISelf-organization in nonequilibrium systems1977LondonWiley – reference: BartoMBrunovskáAGomesVGOptimal periodic control of the input into a heterogeneous catalytic reactorComput Chem Eng199418321922610.1016/0098-1354(94)85010-01:CAS:528:DyaK2cXhs1Ort7k%3D – reference: IsakovaANovakovicKOscillatory chemical reactions in the quest for rhythmic motion of smart materialsEur Polym J20179543043910.1016/j.eurpolymj.2017.08.0331:CAS:528:DC%2BC2sXhtlOrs7rJ – reference: GaoJApplication of oscillating chemical reaction to analytical chemistry: recent developmentsPak J Biol Sci2005851251910.3923/pjbs.2005.512.5191:CAS:528:DC%2BD2MXmt1Cht7w%3D – reference: PejićNSarapNMaksimovićJAnićSLjKolar-AnićPulse perturbation technique for determination of piroxicam in pharmaceuticals using an oscillatory reaction systemCent Eur J Chem201311180188 – reference: ErtlGOscillatory catalytic reactions at single-crystal surfacesAdv Catal1990372132771:CAS:528:DyaK3MXhsFWhs7o%3D – reference: LázárANoszticziusZFörsterlingHDNagy-UngváraiZChemical waves in modified membranes. I. Developing the techniquePhysica D19958411211910.1016/0167-2789(95)00009-S – reference: PejićNČupićŽAnićSVukojevićVLjKolar-AnićThe oscillatory Bray–Liebhafsky reaction as a matrix for analyzing enzyme and polymeric catalysts for hydrogen peroxideSci Sinter200133107115 – reference: MalashkevichAVLevABrukGTemkinONNew oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylationJ Phys Chem A19971019825982710.1021/jp972666u1:CAS:528:DyaK1cXhs1alug%3D%3D – reference: DonlonLParkerJNovakovicKOscillatory carbonylation of phenylacetylene in the absence of externally supplied oxidantReac Kinet Mech Cat2014112111310.1007/s11144-014-0685-31:CAS:528:DC%2BC2cXislKqtr0%3D – reference: CervellatiRRenzulliCGuerraMCSperoniEEvaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction methodJ Agric Food Chem2002507504750910.1021/jf020578n1:CAS:528:DC%2BD38XovVeqtbc%3D12475261 – reference: IsakovaANovakovicKPulsatile release from a flat self-oscillating chitosan macrogelJ Mater Chem B201865003501010.1039/C8TB00781K – reference: GutscheaRLangeaRWittWThe effect of process nonlinearities on the performance of a periodically operated isothermal catalytic reactorChem Eng Sci2003585055506810.1016/j.ces.2003.08.0111:CAS:528:DC%2BD3sXosVemt74%3D – volume: 5 start-page: 311 year: 1953 ident: 1501_CR25 publication-title: Adv Catal doi: 10.1016/S0360-0564(08)60644-6 – volume: 304 start-page: 21 year: 2006 ident: 1501_CR29 publication-title: App Catal A Gen doi: 10.1016/j.apcata.2006.02.023 – volume: 42 start-page: 1595 year: 1920 ident: 1501_CR4 publication-title: J Am Chem Soc doi: 10.1021/ja01453a010 – volume: 84 start-page: 112 year: 1995 ident: 1501_CR10 publication-title: Physica D doi: 10.1016/0167-2789(95)00009-S – volume: 33 start-page: 107 year: 2001 ident: 1501_CR15 publication-title: Sci Sinter – volume: 101 start-page: 9825 year: 1997 ident: 1501_CR36 publication-title: J Phys Chem A doi: 10.1021/jp972666u – volume: 18 start-page: 219 issue: 3 year: 1994 ident: 1501_CR32 publication-title: Comput Chem Eng doi: 10.1016/0098-1354(94)85010-0 – volume: 28 start-page: 083114 year: 2018 ident: 1501_CR51 publication-title: Chaos doi: 10.1063/1.5026791 – volume: 118 start-page: 6092 issue: 23 year: 2014 ident: 1501_CR7 publication-title: J Phys Chem B doi: 10.1021/jp5019795 – volume: 10 start-page: 1451 issue: 11–12 year: 2009 ident: 1501_CR9 publication-title: Int J Nonlinear Sci Num doi: 10.1515/IJNSNS.2009.10.11-12.1451 – volume: 284 start-page: 33 year: 2008 ident: 1501_CR50 publication-title: J Mol Catal A Chem doi: 10.1016/j.molcata.2007.12.020 – volume: 118 start-page: 73 year: 2016 ident: 1501_CR42 publication-title: Reac Kinet Mech Cat doi: 10.1007/s11144-016-0979-8 – volume: 16 start-page: 17 year: 2018 ident: 1501_CR55 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2018.10.038 – volume-title: Deterministic kinetics in chemistry and systems biology year: 2015 ident: 1501_CR1 doi: 10.1007/978-3-319-15482-4 – volume: 3 start-page: 41 year: 1954 ident: 1501_CR2 publication-title: Spec Suppl Chem Eng Sci doi: 10.1016/S0009-2509(54)80005-4 – volume: 18 start-page: 015102 issue: 1 year: 2008 ident: 1501_CR6 publication-title: Chaos doi: 10.1063/1.2779857 – volume: 81 start-page: 5 issue: 1 year: 2019 ident: 1501_CR52 publication-title: MATCH Commun Math Comput Chem – volume: 37 start-page: 213 year: 1990 ident: 1501_CR27 publication-title: Adv Catal doi: 10.1016/S0360-0564(08)60366-1 – volume: 43 start-page: 1262 year: 1921 ident: 1501_CR3 publication-title: J Am Chem Soc doi: 10.1021/ja01439a007 – volume: 16 start-page: 1852 year: 2016 ident: 1501_CR11 publication-title: Chem Rec doi: 10.1002/tcr.201600009 – volume: 50 start-page: 496 year: 1973 ident: 1501_CR13 publication-title: J Chem Educ doi: 10.1021/ed050p496 – volume: 20 start-page: 9281 year: 2018 ident: 1501_CR40 publication-title: Phys Chem Chem Phys doi: 10.1039/C7CP07747E – volume: 112 start-page: 1 issue: 1 year: 2014 ident: 1501_CR45 publication-title: Reac Kinet Mech Cat doi: 10.1007/s11144-014-0685-3 – volume: 8 start-page: 512 year: 2005 ident: 1501_CR20 publication-title: Pak J Biol Sci doi: 10.3923/pjbs.2005.512.519 – volume: 54 start-page: 43 year: 1995 ident: 1501_CR14 publication-title: React Kinet Catal Lett doi: 10.1007/BF02071179 – volume: 50 start-page: 7504 year: 2002 ident: 1501_CR19 publication-title: J Agric Food Chem doi: 10.1021/jf020578n – volume: 6 start-page: 5003 year: 2018 ident: 1501_CR53 publication-title: J Mater Chem B doi: 10.1039/C8TB00781K – volume: 18 start-page: 1981 issue: 15 year: 2017 ident: 1501_CR46 publication-title: Chem Phys Chem doi: 10.1002/cphc.201700359 – volume: 59 start-page: 457 year: 1994 ident: 1501_CR12 publication-title: J Serb Chem Soc – volume: 48 start-page: 228 year: 2007 ident: 1501_CR37 publication-title: Kinet Catal doi: 10.1134/S0023158407020073 – volume: 53 start-page: 493 year: 2012 ident: 1501_CR48 publication-title: Kinet Catal doi: 10.1134/S0023158412040027 – volume: 52 start-page: 7996 year: 2007 ident: 1501_CR21 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.06.067 – volume: 95 start-page: 430 year: 2017 ident: 1501_CR54 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2017.08.033 – volume: 10 start-page: 749 year: 2008 ident: 1501_CR49 publication-title: Phys Chem Chem Phys doi: 10.1039/B713906C – volume: 51 start-page: 935 year: 2000 ident: 1501_CR18 publication-title: Talanta doi: 10.1016/S0039-9140(99)00363-X – year: 2012 ident: 1501_CR47 publication-title: Org Chem Int doi: 10.1155/2012/819190 – volume: 32 start-page: 135 year: 2017 ident: 1501_CR34 publication-title: Rev Chem Eng doi: 10.1515/revce-2017-0085 – volume: 120 start-page: 22365 year: 2016 ident: 1501_CR35 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b06692 – volume: 11 start-page: 9044 year: 2009 ident: 1501_CR41 publication-title: Phys Chem Chem Phys doi: 10.1039/b905444h – volume: 435 start-page: 142 year: 2007 ident: 1501_CR38 publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2006.12.040 – volume: 123 start-page: 113 year: 2018 ident: 1501_CR43 publication-title: Reac Kinet Mech Cat doi: 10.1007/s11144-017-1282-z – volume-title: Self-organization in nonequilibrium systems year: 1977 ident: 1501_CR5 – volume: 11 start-page: 180 year: 2013 ident: 1501_CR22 publication-title: Cent Eur J Chem – volume: 58 start-page: 5055 year: 2003 ident: 1501_CR33 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2003.08.011 – volume: 50 start-page: 15506 year: 2014 ident: 1501_CR44 publication-title: Chem Commun doi: 10.1039/C4CC01548G – volume: 95 start-page: 697 year: 1995 ident: 1501_CR28 publication-title: Chem Rev doi: 10.1021/cr00035a012 – volume: 9 start-page: 306 year: 1964 ident: 1501_CR26 publication-title: Biofizika – volume: 12 start-page: 291 year: 1987 ident: 1501_CR23 publication-title: Active Passive Electron Comp doi: 10.1155/1987/27260 – volume: 47 start-page: 3524 year: 2008 ident: 1501_CR24 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200800480 – volume: 123 start-page: 93 year: 2018 ident: 1501_CR39 publication-title: Reac Kinet Mech Cat doi: 10.1007/s11144-017-1300-1 – volume: 124 start-page: 147 year: 1999 ident: 1501_CR17 publication-title: Analyst doi: 10.1039/a807608a – volume: 232 start-page: 266 year: 2013 ident: 1501_CR30 publication-title: Chem Eng J doi: 10.1016/j.cej.2013.07.094 – volume: 67 start-page: 729 year: 1995 ident: 1501_CR16 publication-title: Anal Chem doi: 10.1021/ac00100a007 – volume: 154 start-page: 38 year: 2010 ident: 1501_CR31 publication-title: Catal Today doi: 10.1016/j.cattod.2010.03.016 – volume: 107 start-page: 415 year: 2003 ident: 1501_CR8 publication-title: J Phys Chem B doi: 10.1021/jp020856l |
SSID | ssj0000327859 |
Score | 2.17452 |
SecondaryResourceType | review_article |
Snippet | The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 577 |
SubjectTerms | Catalysis Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Physical Chemistry |
Title | Alternating catalytic reactions |
URI | https://link.springer.com/article/10.1007/s11144-018-1501-2 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoAF8RTlUTIwgSIldpw4Y1o1VCA6EalMke04LFVAJAz8e85ukqoSIDFluVjKxb77vjvfHcCNJl7pK8lcgfYfCUopXE6pdiPth6xAh8aUKU5-WoTzLHhYsmVbx113t927lKS11JtiN4Tu5sYEsh6GHBjt7pAZ6o6bOCNJH1jxKIm4HZLmc2RIiFD6bOZPq2z7o-1kqPUx6QHst-DQSdZ_8xB2dHUEu9NuJtsxXCerNoBXvTo28vKFog4CP1ueUJ9Als6ep3O3HXHgKkpY46L_5YUKVMzQlyL0IUSKgIqglKbJjqAR0qE4QASMflaEoTlfXHpRRA2NKERJT2FQvVX6DJy4UEQi-uKSi0BqZL28jBRVpscZ0SEfgdd9aK7a_t9mDMUq33QuNrrJUTe50U1ORnDbv_K-bn7xl_Bdp728PQf179Ln_5K-gD0EKjaL47NLGDQfn_oKwUAjxzBM0slkYZ73L4-zsd0M3z9nqTk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kHupFfGJ9NQdPSiDZR7I9lmKp2vbUQG_L7mbjpUSx8eC_d3abpBRU8D4J7CQ7833zBLizJCpio3mo0P4jQSlUKCi1YWrjhOfo0LhxzcmzeTLJ2POSL-s-7nVT7d6kJL2l3ja7IXR3FRPIejhyYLS7-4gFhKvjysiwDaxElKTCL0mLBTIkRChtNvOnt-z6o91kqPcx4yM4rMFhMNx8zWPYs-UJdEfNTrZT6A9XdQCvfA185OULRQMEfr49YX0G2fhxMZqE9YqD0FDCqxD9r8gNMwOOvhShDyFaMapYod2QHUVTpEMDhggY_axKEne_hI7SlDoakauCnkOnfCvtBQSD3BCN6EtooZi2yHpFkRpq3IwzYhPRg6g5qDT1_G-3hmIlt5OLnW4k6kY63UjSg_v2kffN8Iu_hB8a7cn6Hqx_l778l3QfupPFbCqnT_OXKzhA0OIzOjG_hk718WlvEBhU-tb_CN_AoKkc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIgEL4inKqxmYQFETO07csSpE5VUxEKmbZTsOSxUqEgb-Pee8qkqAxH6JlIt93_f5fHcAV4Z4ma8VcyXGfxQomXQ5pcaNjB-yFAGNaVuc_DwLp0nwMGfzZs5p0d52b1OSdU2D7dKUl8Nlmg1XhW9I4-3tCVRADPUwxuBNjMa-XdYJGXeHLB4lEa8Gpvkc1RKylS6z-dNb1rFpPTFa4U28B7sNUXTG9Z_dhw2TH8D2pJ3PdgiD8aI5zMvfnOoU5gtNHSSBValCcQRJfPc6mbrNuANXU8JKF7GYpzrQI4a4ijSIECUDKoNM2YY7kkYojUYBsmHEXBmGdq9x5UURtZIilRk9hl7-npsTcEapJgqZGFdcBsqgAuZZpKm2_c6ICXkfvPZDhW56gduRFAux6mJsfSPQN8L6RpA-XHePLOtGGH8Z37TeE82eKH63Pv2X9QC2Xm5j8XQ_ezyDHeQvVXLHZ-fQKz8-zQVyhFJdVuvgG0gDrVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+catalytic+reactions&rft.jtitle=Reaction+kinetics%2C+mechanisms+and+catalysis&rft.au=%C4%8Cupi%C4%87%2C+%C5%BDeljko&rft.au=Ivanovi%C4%87-%C5%A0a%C5%A1i%C4%87%2C+Ana&rft.date=2019-04-15&rft.pub=Springer+International+Publishing&rft.issn=1878-5190&rft.eissn=1878-5204&rft.volume=126&rft.issue=2&rft.spage=577&rft.epage=586&rft_id=info:doi/10.1007%2Fs11144-018-1501-2&rft.externalDocID=10_1007_s11144_018_1501_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-5190&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-5190&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-5190&client=summon |