Alternating catalytic reactions

The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry,...

Full description

Saved in:
Bibliographic Details
Published inReaction kinetics, mechanisms and catalysis Vol. 126; no. 2; pp. 577 - 586
Main Authors Čupić, Željko, Ivanović-Šašić, Ana
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry, in biochemistry and related sciences, which take place in opposite directions, with consecutive alternations in time. However, the very existence of alternate reactions, now known as the oscillatory or oscillating reactions, has long been disputed because it was thought that it is contrary to the basic principles of thermodynamics. Nevertheless, according to our knowledge, there are no oscillatory reactions without catalytic loop as the essential part of a mechanism. There could be a fundamental rule that catalysis is necessary to generate oscillations in concentrations and reaction rates. Particularly, homogeneous oscillatory reactions are often subject of research as relatively simple systems with good chance to clearly define feedbacks responsible for instability phenomena. However, oscillations can at least equally often be found in heterogeneous catalytic reactions. Recently, changes in product selectivity was proved when Pd catalyzed carbonylation of phenylacetylene was moved to the oscillatory dynamic state. With this simple result, the doors are now open for wide spectrum of research projects and applications.
AbstractList The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the era of pioneering works in electric power production. There are also some processes in physical chemistry, organic and inorganic chemistry, in biochemistry and related sciences, which take place in opposite directions, with consecutive alternations in time. However, the very existence of alternate reactions, now known as the oscillatory or oscillating reactions, has long been disputed because it was thought that it is contrary to the basic principles of thermodynamics. Nevertheless, according to our knowledge, there are no oscillatory reactions without catalytic loop as the essential part of a mechanism. There could be a fundamental rule that catalysis is necessary to generate oscillations in concentrations and reaction rates. Particularly, homogeneous oscillatory reactions are often subject of research as relatively simple systems with good chance to clearly define feedbacks responsible for instability phenomena. However, oscillations can at least equally often be found in heterogeneous catalytic reactions. Recently, changes in product selectivity was proved when Pd catalyzed carbonylation of phenylacetylene was moved to the oscillatory dynamic state. With this simple result, the doors are now open for wide spectrum of research projects and applications.
Author Čupić, Željko
Ivanović-Šašić, Ana
Author_xml – sequence: 1
  givenname: Željko
  orcidid: 0000-0002-4939-6718
  surname: Čupić
  fullname: Čupić, Željko
  email: zcupic@ihtm.bg.ac.rs
  organization: Center of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade
– sequence: 2
  givenname: Ana
  surname: Ivanović-Šašić
  fullname: Ivanović-Šašić, Ana
  organization: Center of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade
BookMark eNp9kL9OAzEMhyNUJErpAzDRFwjETnJJxqrin1SJBebIl-aqq447lIShb89VBwtDvdjD77P8-ZrN-qGPjN2CuAchzEMGAKW4AMtBC-B4weZgjeUahZr9zeDEFVvmfBBjSTRWuzm7W3clpp5K2-9XgQp1x9KGVYoUSjv0-YZdNtTluPztC_bx9Pi-eeHbt-fXzXrLg0RduEVhd0EFpwUiACLWpCSppjaVUSSNdc4pY1CBpqpCbaythTFSSed21MgFM9PekIacU2x8aAudTiiJ2s6D8CdVP6n6UdWfVD2OJPwjv1L7Sel4lsGJyWO238fkD8P3-IUun4F-AACmZM8
CitedBy_id crossref_primary_10_1007_s11144_025_02835_x
crossref_primary_10_1039_D1RA03810A
crossref_primary_10_1007_s11144_020_01793_w
crossref_primary_10_1098_rsif_2024_0492
Cites_doi 10.1016/S0360-0564(08)60644-6
10.1016/j.apcata.2006.02.023
10.1021/ja01453a010
10.1016/0167-2789(95)00009-S
10.1021/jp972666u
10.1016/0098-1354(94)85010-0
10.1063/1.5026791
10.1021/jp5019795
10.1515/IJNSNS.2009.10.11-12.1451
10.1016/j.molcata.2007.12.020
10.1007/s11144-016-0979-8
10.1016/j.eurpolymj.2018.10.038
10.1007/978-3-319-15482-4
10.1016/S0009-2509(54)80005-4
10.1063/1.2779857
10.1016/S0360-0564(08)60366-1
10.1021/ja01439a007
10.1002/tcr.201600009
10.1021/ed050p496
10.1039/C7CP07747E
10.1007/s11144-014-0685-3
10.3923/pjbs.2005.512.519
10.1007/BF02071179
10.1021/jf020578n
10.1039/C8TB00781K
10.1002/cphc.201700359
10.1134/S0023158407020073
10.1134/S0023158412040027
10.1016/j.electacta.2007.06.067
10.1016/j.eurpolymj.2017.08.033
10.1039/B713906C
10.1016/S0039-9140(99)00363-X
10.1155/2012/819190
10.1515/revce-2017-0085
10.1021/acs.jpcc.6b06692
10.1039/b905444h
10.1016/j.cplett.2006.12.040
10.1007/s11144-017-1282-z
10.1016/j.ces.2003.08.011
10.1039/C4CC01548G
10.1021/cr00035a012
10.1155/1987/27260
10.1002/anie.200800480
10.1007/s11144-017-1300-1
10.1039/a807608a
10.1016/j.cej.2013.07.094
10.1021/ac00100a007
10.1016/j.cattod.2010.03.016
10.1021/jp020856l
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2018
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2018
DBID AAYXX
CITATION
DOI 10.1007/s11144-018-1501-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1878-5204
EndPage 586
ExternalDocumentID 10_1007_s11144_018_1501_2
GrantInformation_xml – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
  grantid: 172015; 172015; 45001; 45001
  funderid: http://dx.doi.org/10.13039/501100004564
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
.XO
06C
06D
0R~
0VY
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
40D
40E
5VS
8UJ
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
ITM
IWAJR
IZIGR
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9J
P9N
PF0
PT4
QOR
QOS
R89
RKA
ROL
RSV
S16
S27
S3B
SAP
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z86
Z8M
Z8N
Z8P
Z8T
ZMTXR
~A9
-Y2
2VQ
4.4
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
MET
MKB
N2Q
RIG
S1Z
SCLPG
ID FETCH-LOGICAL-c325t-8208dc4c9502211222ba43a4fb7674a3789994772415a6625788b07734399daf3
IEDL.DBID U2A
ISSN 1878-5190
IngestDate Tue Jul 01 01:37:50 EDT 2025
Thu Apr 24 23:05:38 EDT 2025
Fri Feb 21 02:33:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Oscillatory reaction
Phenylacetylene carbonilation
Carbon monoxide oxidation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-8208dc4c9502211222ba43a4fb7674a3789994772415a6625788b07734399daf3
ORCID 0000-0002-4939-6718
PageCount 10
ParticipantIDs crossref_citationtrail_10_1007_s11144_018_1501_2
crossref_primary_10_1007_s11144_018_1501_2
springer_journals_10_1007_s11144_018_1501_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190415
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 4
  year: 2019
  text: 20190415
  day: 15
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Reaction kinetics, mechanisms and catalysis
PublicationTitleAbbrev Reac Kinet Mech Cat
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References ParkerJNovakovicKAutonomous reorganization of the oscillatory phase in the PdI2 catalyzed phenylacetylene carbonylation reactionReac Kinet Mech Cat2016118738510.1007/s11144-016-0979-81:CAS:528:DC%2BC28XisVGht70%3D
NicolisGPrigogineISelf-organization in nonequilibrium systems1977LondonWiley
JelićSČupićŽLjKolar-AnićVukojevićVPredictive modeling of the hypothalamic–pituitary–adrenal (HPA) function. Dynamic systems theory approach by stoichiometric network analysis and quenching small amplitude oscillationsInt J Nonlinear Sci Num20091011–1214511472
AnićSVeselinovićDVukojevićVRadenkovićMElectrochemical source of alternating current based on an oscillating reactionJ Serb Chem Soc199459457461
PejićNČupićŽAnićSVukojevićVLjKolar-AnićThe oscillatory Bray–Liebhafsky reaction as a matrix for analyzing enzyme and polymeric catalysts for hydrogen peroxideSci Sinter200133107115
GorodskySNConcentration oscillations in the oxidative carbonylation of non-1-yne in the PdI2–KI–CO–O2–CH3OH and PdI2–KI–CO–O2–phenylacetylene–CH3OH systemsKinet Catal20125349349610.1134/S00231584120400271:CAS:528:DC%2BC38XhtVygu7bE
NovakovicKMukherjeeAWillisMWrightAScottSWrightARThe influence of reaction temperature on the oscillatory behaviour in the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys2009119044904910.1039/b905444h1:CAS:528:DC%2BD1MXht1artbfL19812824
BánságiTTaylorAFRole of differential transport in an oscillatory enzyme reactionJ Phys Chem B2014118236092609710.1021/jp50197951:CAS:528:DC%2BC2cXotVersLw%3D24830687
LotkaAJUndamped oscillations derived from the law of mass actionJ Am Chem Soc1920421595159910.1021/ja01453a0101:CAS:528:DyaB3cXhs12kuw%3D%3D
DonlonLParkerJNovakovicKOscillatory carbonylation of phenylacetylene in the absence of externally supplied oxidantReac Kinet Mech Cat2014112111310.1007/s11144-014-0685-31:CAS:528:DC%2BC2cXislKqtr0%3D
LázárANoszticziusZFörsterlingHDNagy-UngváraiZChemical waves in modified membranes. I. Developing the techniquePhysica D19958411211910.1016/0167-2789(95)00009-S
BriggsTSRauscherWCAn oscillating iodine clockJ Chem Educ19735049610.1021/ed050p4961:CAS:528:DyaE3sXksFagt7g%3D
CervellatiRRenzulliCGuerraMCSperoniEEvaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction methodJ Agric Food Chem2002507504750910.1021/jf020578n1:CAS:528:DC%2BD38XovVeqtbc%3D12475261
MalashkevichAVLevABrukGTemkinONNew oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylationJ Phys Chem A19971019825982710.1021/jp972666u1:CAS:528:DyaK1cXhs1alug%3D%3D
IsakovaAMurdochBJNovakovicKFrom small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HIPhys Chem Chem Phys2018209281928810.1039/C7CP07747E1:CAS:528:DC%2BC1cXltlSmsrc%3D29561549
PejićNSarapNMaksimovićJAnićSLjKolar-AnićPulse perturbation technique for determination of piroxicam in pharmaceuticals using an oscillatory reaction systemCent Eur J Chem201311180188
IsakovaANovakovicKOscillatory chemical reactions in the quest for rhythmic motion of smart materialsEur Polym J20179543043910.1016/j.eurpolymj.2017.08.0331:CAS:528:DC%2BC2sXhtlOrs7rJ
ČupićŽAnićSTerlecki-BaričevićALjKolar-AnićBray–Liebhafsky reaction. The Influence of some polymers based on poly (4-vynilpyridine)React Kinet Catal Lett199554434910.1007/BF02071179
ZhabotinskiiAMPeriodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Beolusov’s reactionBiofizika196493063111:CAS:528:DyaF2cXkt1yktbY%3D14206238
ImbihilRErtlGOscillatory kinetics in heterogeneous catalysisChem Rev19959569773310.1021/cr00035a012
StrizhakPEKhavrusVODetermination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reactionTalanta20005193594710.1016/S0039-9140(99)00363-X1:CAS:528:DC%2BD3cXitlKjtrY%3D18967925
Jiménez-PrietoRSilvaMPérez-BenditoDAnalyte pulse perturbation technique: a tool for analytical determinations in far-from-equillibrium dynamic systemsAnal Chem19956772973410.1021/ac00100a007
DonlonLNovakovicKOscillatory carbonylation using alkyne-functionalised poly(ethylene glycol)Chem Commun201450155061550810.1039/C4CC01548G1:CAS:528:DC%2BC2cXhtVGgu7rJ
ZhangXWangXLiXWangXDengZLiXJiangCRenYOscillatory behaviour of the H2-SCR over Pt/HYChem Eng J201323226627210.1016/j.cej.2013.07.0941:CAS:528:DC%2BC3sXhsFWrtrjF
BartoMBrunovskáAGomesVGOptimal periodic control of the input into a heterogeneous catalytic reactorComput Chem Eng199418321922610.1016/0098-1354(94)85010-01:CAS:528:DyaK2cXhs1Ort7k%3D
GutscheaRLangeaRWittWThe effect of process nonlinearities on the performance of a periodically operated isothermal catalytic reactorChem Eng Sci2003585055506810.1016/j.ces.2003.08.0111:CAS:528:DC%2BD3sXosVemt74%3D
NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARAchieving pH and Qr oscillations in a palladium-catalysed phenylacetylene oxidative carbonylation reaction using an automated reactor systemChem Phys Lett200743514214710.1016/j.cplett.2006.12.0401:CAS:528:DC%2BD2sXpvFSiuw%3D%3D
ParkerJNovakovicKThe effect of temperature on selectivity in the oscillatory mode of the phenylacetylene oxidative carbonylation reactionChem Phys Chem201718151981198610.1002/cphc.2017003591:CAS:528:DC%2BC2sXhtVantL7L28556572
YuBychkov VTyuleninYPKorchakVNAptekarELStudy of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometryApp Catal A Gen2006304212910.1016/j.apcata.2006.02.0231:CAS:528:DC%2BD28XjvVGjt70%3D
ČupićŽMaćešićSNovakovićKAnićSLjKolar-AnićStoichiometric network analysis of a reaction system with conservation constraintsChaos20182808311410.1063/1.50267911:CAS:528:DC%2BC1cXhsFGjsLrJ30180608
MaćešićSČupićŽNovakovicKParkerJAnićSLjKolar-AnićOscillatory carbonylation of poly(ethylene glycol)methyl ether acetylene. Modelling of reaction mechanism and stoichiometric network stability analysisMATCH Commun Math Comput Chem2019811534
DelmondeMVFSallumLFPeriniNGonzalezERSchlöglRVarelaHElectrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regimeJ Phys Chem C2016120223652237410.1021/acs.jpcc.6b066921:CAS:528:DC%2BC28XhsVKrt7nO
LarterRUnderstanding complexity in biophysical chemistryJ Phys Chem B200310741542910.1021/jp020856l1:CAS:528:DC%2BD38XpsFCmsb0%3D
KeilFJProcess intensificationRev Chem Eng20173213520010.1515/revce-2017-0085
KhabibulinVRKulikAVOshaninaIVBrukLGTemkinONNosovaVMUstynyukYABel’skiiVKStashAILysenkoKAAntipinMYMechanism of the oxidative carbonylation of terminal alkynes at the ≡C–H bond in solutions of palladium complexesKinet Catal20074822824410.1134/S00231584070200731:CAS:528:DC%2BD2sXksFantbs%3D
BrayWCPeriodic reaction in homogenous solution and its relation to catalysisJ Am Chem Soc1921431262126710.1021/ja01439a0071:CAS:528:DyaB3MXitV2itA%3D%3D
IsakovaAParkesGEMurdochBJTophamPDNovakovicKCombining polymer-bound catalyst with polymeric substrate for reproducible pH oscillations in palladium-catalysed oxidative carbonylation of alkynesEur Polym J20181617181:CAS:528:DC%2BC1cXitFant7nN10.1016/j.eurpolymj.2018.10.038
SlinkoMMOscillating reactions in heterogeneous catalysis: What new information can be obtained about reaction mechanisms?Catal Today2010154384510.1016/j.cattod.2010.03.0161:CAS:528:DC%2BC3cXptVaru7o%3D
GrosjeanCNovakovicKScottSKWhitingAWillisMJWrightARProduct identification and distribution from the oscillatory versus non-oscillatory palladium(II) iodide-catalysed oxidative carbonylation of phenylacetyleneJ Mol Catal A Chem2008284333910.1016/j.molcata.2007.12.0201:CAS:528:DC%2BD1cXjtl2ht7s%3D
ErtlGReactions at surfaces: from atoms to complexity (nobel lecture)Angew Chem Int Ed2008473524353510.1002/anie.2008004801:CAS:528:DC%2BD1cXmt1Gitr0%3D
ErtlGOscillatory catalytic reactions at single-crystal surfacesAdv Catal1990372132771:CAS:528:DyaK3MXhsFWhs7o%3D
TamateRMizutani AkimotoAYoshidaRRecent advances in self-oscillating polymer material systemsChem Rec2016161852186710.1002/tcr.2016000091:CAS:528:DC%2BC28Xpt1Grtb4%3D27265869
MarsPvan KrevelenDWOxidations carried out by the means of vanadium oxide catalystsSpec Suppl Chem Eng Sci19543415910.1016/S0009-2509(54)80005-41:CAS:528:DyaG28Xks1Wq
GorodskySNNew type of oscillatory processes—oxidative carbonylation of alkynes in the homogeneous catalysis by Pd complexes. PhenylacetyleneReac Kinet Mech Cat20181239311210.1007/s11144-017-1300-11:CAS:528:DC%2BC2sXhslyrtb7L
IsakovaANovakovicKPulsatile release from a flat self-oscillating chitosan macrogelJ Mater Chem B201865003501010.1039/C8TB00781K
TorvelaHFeasibility of using oscillatory catalytic oxidation phenomenon for selective carbon monoxide sensingActive Passive Electron Comp19871229130110.1155/1987/27260
GorodskySNOxidative carbonylation of 2-propyn-1-ol and 2-methyl-3-butyn-2-ol in an oscillatory modeOrg Chem Int201210.1155/2012/819190
GaoJApplication of oscillating chemical reaction to analytical chemistry: recent developmentsPak J Biol Sci2005851251910.3923/pjbs.2005.512.5191:CAS:528:DC%2BD2MXmt1Cht7w%3D
BakesDSchreiberovaLSchreiberIHauserMJBMixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction systemChaos200818101510210.1063/1.27798571:CAS:528:DC%2BD1cXkt12iu7c%3D18377083
HuGChenPWangWHuLSongJQiuLSongJKinetic determination of pyrogallol by a novel oscillating chemical reaction catalyzed by a tetraazamacrocyclic complexElectrochim Acta2007527996800210.1016/j.electacta.2007.06.0671:CAS:528:DC%2BD2sXpsFShsLc%3D
LenteGDeterministic kinetics in chemistry and systems biology2015Cham/Heidelberg/New York/Dordrecht/LondonSpringer10.1007/978-3-319-15482-4
ParkerJNovakovicKThe effect of using a methanol–water solvent mixture on pH oscillations in the palladium-catalyzed phenylacetylene oxidative carbonylation reactionReac Kinet Mech Cat201812311312410.1007/s11144-017-1282-z1:CAS:528:DC%2BC2sXhsFyltbvK
ChristiansenJAThe elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrationsAdv Catal195353113531:CAS:528:DyaG3sXnsVOiu
N Pejić (1501_CR15) 2001; 33
R Imbihil (1501_CR28) 1995; 95
WC Bray (1501_CR3) 1921; 43
TS Briggs (1501_CR13) 1973; 50
K Novakovic (1501_CR49) 2008; 10
A Isakova (1501_CR55) 2018; 16
S Anić (1501_CR12) 1994; 59
R Tamate (1501_CR11) 2016; 16
J Parker (1501_CR42) 2016; 118
G Ertl (1501_CR24) 2008; 47
Bychkov V Yu (1501_CR29) 2006; 304
A Isakova (1501_CR40) 2018; 20
K Novakovic (1501_CR41) 2009; 11
D Bakes (1501_CR6) 2008; 18
J Parker (1501_CR43) 2018; 123
J Parker (1501_CR46) 2017; 18
A Isakova (1501_CR53) 2018; 6
J Gao (1501_CR20) 2005; 8
X Zhang (1501_CR30) 2013; 232
MVF Delmonde (1501_CR35) 2016; 120
AM Zhabotinskii (1501_CR26) 1964; 9
MM Slinko (1501_CR31) 2010; 154
FJ Keil (1501_CR34) 2017; 32
R Jiménez-Prieto (1501_CR16) 1995; 67
R Gutschea (1501_CR33) 2003; 58
V Vukojević (1501_CR17) 1999; 124
G Ertl (1501_CR27) 1990; 37
Ž Čupić (1501_CR14) 1995; 54
S Jelić (1501_CR9) 2009; 10
L Donlon (1501_CR44) 2014; 50
M Barto (1501_CR32) 1994; 18
G Hu (1501_CR21) 2007; 52
S Maćešić (1501_CR52) 2019; 81
PE Strizhak (1501_CR18) 2000; 51
G Nicolis (1501_CR5) 1977
T Bánsági (1501_CR7) 2014; 118
JA Christiansen (1501_CR25) 1953; 5
R Larter (1501_CR8) 2003; 107
SN Gorodsky (1501_CR48) 2012; 53
P Mars (1501_CR2) 1954; 3
H Torvela (1501_CR23) 1987; 12
Ž Čupić (1501_CR51) 2018; 28
SN Gorodsky (1501_CR47) 2012
A Lázár (1501_CR10) 1995; 84
AV Malashkevich (1501_CR36) 1997; 101
AJ Lotka (1501_CR4) 1920; 42
C Grosjean (1501_CR50) 2008; 284
N Pejić (1501_CR22) 2013; 11
L Donlon (1501_CR45) 2014; 112
A Isakova (1501_CR54) 2017; 95
SN Gorodsky (1501_CR39) 2018; 123
VR Khabibulin (1501_CR37) 2007; 48
G Lente (1501_CR1) 2015
R Cervellati (1501_CR19) 2002; 50
K Novakovic (1501_CR38) 2007; 435
References_xml – reference: ČupićŽAnićSTerlecki-BaričevićALjKolar-AnićBray–Liebhafsky reaction. The Influence of some polymers based on poly (4-vynilpyridine)React Kinet Catal Lett199554434910.1007/BF02071179
– reference: IsakovaAMurdochBJNovakovicKFrom small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HIPhys Chem Chem Phys2018209281928810.1039/C7CP07747E1:CAS:528:DC%2BC1cXltlSmsrc%3D29561549
– reference: GorodskySNNew type of oscillatory processes—oxidative carbonylation of alkynes in the homogeneous catalysis by Pd complexes. PhenylacetyleneReac Kinet Mech Cat20181239311210.1007/s11144-017-1300-11:CAS:528:DC%2BC2sXhslyrtb7L
– reference: NovakovicKMukherjeeAWillisMWrightAScottSWrightARThe influence of reaction temperature on the oscillatory behaviour in the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys2009119044904910.1039/b905444h1:CAS:528:DC%2BD1MXht1artbfL19812824
– reference: IsakovaAParkesGEMurdochBJTophamPDNovakovicKCombining polymer-bound catalyst with polymeric substrate for reproducible pH oscillations in palladium-catalysed oxidative carbonylation of alkynesEur Polym J20181617181:CAS:528:DC%2BC1cXitFant7nN10.1016/j.eurpolymj.2018.10.038
– reference: ImbihilRErtlGOscillatory kinetics in heterogeneous catalysisChem Rev19959569773310.1021/cr00035a012
– reference: LarterRUnderstanding complexity in biophysical chemistryJ Phys Chem B200310741542910.1021/jp020856l1:CAS:528:DC%2BD38XpsFCmsb0%3D
– reference: DonlonLNovakovicKOscillatory carbonylation using alkyne-functionalised poly(ethylene glycol)Chem Commun201450155061550810.1039/C4CC01548G1:CAS:528:DC%2BC2cXhtVGgu7rJ
– reference: TamateRMizutani AkimotoAYoshidaRRecent advances in self-oscillating polymer material systemsChem Rec2016161852186710.1002/tcr.2016000091:CAS:528:DC%2BC28Xpt1Grtb4%3D27265869
– reference: GrosjeanCNovakovicKScottSKWhitingAWillisMJWrightARProduct identification and distribution from the oscillatory versus non-oscillatory palladium(II) iodide-catalysed oxidative carbonylation of phenylacetyleneJ Mol Catal A Chem2008284333910.1016/j.molcata.2007.12.0201:CAS:528:DC%2BD1cXjtl2ht7s%3D
– reference: JelićSČupićŽLjKolar-AnićVukojevićVPredictive modeling of the hypothalamic–pituitary–adrenal (HPA) function. Dynamic systems theory approach by stoichiometric network analysis and quenching small amplitude oscillationsInt J Nonlinear Sci Num20091011–1214511472
– reference: ParkerJNovakovicKAutonomous reorganization of the oscillatory phase in the PdI2 catalyzed phenylacetylene carbonylation reactionReac Kinet Mech Cat2016118738510.1007/s11144-016-0979-81:CAS:528:DC%2BC28XisVGht70%3D
– reference: ChristiansenJAThe elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrationsAdv Catal195353113531:CAS:528:DyaG3sXnsVOiug%3D%3D
– reference: AnićSVeselinovićDVukojevićVRadenkovićMElectrochemical source of alternating current based on an oscillating reactionJ Serb Chem Soc199459457461
– reference: BriggsTSRauscherWCAn oscillating iodine clockJ Chem Educ19735049610.1021/ed050p4961:CAS:528:DyaE3sXksFagt7g%3D
– reference: MarsPvan KrevelenDWOxidations carried out by the means of vanadium oxide catalystsSpec Suppl Chem Eng Sci19543415910.1016/S0009-2509(54)80005-41:CAS:528:DyaG28Xks1Wq
– reference: VukojevićVPejićNStanisavljevDAnićSLjKolar-AnićDetermination of Cl-, Br-, I-, malonic acid and quercetin by perturbation of a nonequilibrium stationary state in the Bray–Liebhafsky reactionAnalyst199912414715210.1039/a807608a
– reference: GorodskySNConcentration oscillations in the oxidative carbonylation of non-1-yne in the PdI2–KI–CO–O2–CH3OH and PdI2–KI–CO–O2–phenylacetylene–CH3OH systemsKinet Catal20125349349610.1134/S00231584120400271:CAS:528:DC%2BC38XhtVygu7bE
– reference: BakesDSchreiberovaLSchreiberIHauserMJBMixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction systemChaos200818101510210.1063/1.27798571:CAS:528:DC%2BD1cXkt12iu7c%3D18377083
– reference: BrayWCPeriodic reaction in homogenous solution and its relation to catalysisJ Am Chem Soc1921431262126710.1021/ja01439a0071:CAS:528:DyaB3MXitV2itA%3D%3D
– reference: DelmondeMVFSallumLFPeriniNGonzalezERSchlöglRVarelaHElectrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regimeJ Phys Chem C2016120223652237410.1021/acs.jpcc.6b066921:CAS:528:DC%2BC28XhsVKrt7nO
– reference: ParkerJNovakovicKThe effect of temperature on selectivity in the oscillatory mode of the phenylacetylene oxidative carbonylation reactionChem Phys Chem201718151981198610.1002/cphc.2017003591:CAS:528:DC%2BC2sXhtVantL7L28556572
– reference: LotkaAJUndamped oscillations derived from the law of mass actionJ Am Chem Soc1920421595159910.1021/ja01453a0101:CAS:528:DyaB3cXhs12kuw%3D%3D
– reference: ErtlGReactions at surfaces: from atoms to complexity (nobel lecture)Angew Chem Int Ed2008473524353510.1002/anie.2008004801:CAS:528:DC%2BD1cXmt1Gitr0%3D
– reference: SlinkoMMOscillating reactions in heterogeneous catalysis: What new information can be obtained about reaction mechanisms?Catal Today2010154384510.1016/j.cattod.2010.03.0161:CAS:528:DC%2BC3cXptVaru7o%3D
– reference: ZhabotinskiiAMPeriodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Beolusov’s reactionBiofizika196493063111:CAS:528:DyaF2cXkt1yktbY%3D14206238
– reference: KeilFJProcess intensificationRev Chem Eng20173213520010.1515/revce-2017-0085
– reference: GorodskySNOxidative carbonylation of 2-propyn-1-ol and 2-methyl-3-butyn-2-ol in an oscillatory modeOrg Chem Int201210.1155/2012/819190
– reference: StrizhakPEKhavrusVODetermination of gases (NO, CO, Cl2) using mixed-mode regimes in the Belousov–Zhabotinskii oscillating chemical reactionTalanta20005193594710.1016/S0039-9140(99)00363-X1:CAS:528:DC%2BD3cXitlKjtrY%3D18967925
– reference: YuBychkov VTyuleninYPKorchakVNAptekarELStudy of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometryApp Catal A Gen2006304212910.1016/j.apcata.2006.02.0231:CAS:528:DC%2BD28XjvVGjt70%3D
– reference: NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARThe influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reactionPhys Chem Chem Phys20081074975310.1039/B713906C1:CAS:528:DC%2BD1cXpsFyiuw%3D%3D19791459
– reference: ParkerJNovakovicKThe effect of using a methanol–water solvent mixture on pH oscillations in the palladium-catalyzed phenylacetylene oxidative carbonylation reactionReac Kinet Mech Cat201812311312410.1007/s11144-017-1282-z1:CAS:528:DC%2BC2sXhsFyltbvK
– reference: KhabibulinVRKulikAVOshaninaIVBrukLGTemkinONNosovaVMUstynyukYABel’skiiVKStashAILysenkoKAAntipinMYMechanism of the oxidative carbonylation of terminal alkynes at the ≡C–H bond in solutions of palladium complexesKinet Catal20074822824410.1134/S00231584070200731:CAS:528:DC%2BD2sXksFantbs%3D
– reference: HuGChenPWangWHuLSongJQiuLSongJKinetic determination of pyrogallol by a novel oscillating chemical reaction catalyzed by a tetraazamacrocyclic complexElectrochim Acta2007527996800210.1016/j.electacta.2007.06.0671:CAS:528:DC%2BD2sXpsFShsLc%3D
– reference: NovakovicKGrosjeanCScottSKWhitingAWillisMJWrightARAchieving pH and Qr oscillations in a palladium-catalysed phenylacetylene oxidative carbonylation reaction using an automated reactor systemChem Phys Lett200743514214710.1016/j.cplett.2006.12.0401:CAS:528:DC%2BD2sXpvFSiuw%3D%3D
– reference: ČupićŽMaćešićSNovakovićKAnićSLjKolar-AnićStoichiometric network analysis of a reaction system with conservation constraintsChaos20182808311410.1063/1.50267911:CAS:528:DC%2BC1cXhsFGjsLrJ30180608
– reference: ZhangXWangXLiXWangXDengZLiXJiangCRenYOscillatory behaviour of the H2-SCR over Pt/HYChem Eng J201323226627210.1016/j.cej.2013.07.0941:CAS:528:DC%2BC3sXhsFWrtrjF
– reference: MaćešićSČupićŽNovakovicKParkerJAnićSLjKolar-AnićOscillatory carbonylation of poly(ethylene glycol)methyl ether acetylene. Modelling of reaction mechanism and stoichiometric network stability analysisMATCH Commun Math Comput Chem2019811534
– reference: TorvelaHFeasibility of using oscillatory catalytic oxidation phenomenon for selective carbon monoxide sensingActive Passive Electron Comp19871229130110.1155/1987/27260
– reference: BánságiTTaylorAFRole of differential transport in an oscillatory enzyme reactionJ Phys Chem B2014118236092609710.1021/jp50197951:CAS:528:DC%2BC2cXotVersLw%3D24830687
– reference: LenteGDeterministic kinetics in chemistry and systems biology2015Cham/Heidelberg/New York/Dordrecht/LondonSpringer10.1007/978-3-319-15482-4
– reference: Jiménez-PrietoRSilvaMPérez-BenditoDAnalyte pulse perturbation technique: a tool for analytical determinations in far-from-equillibrium dynamic systemsAnal Chem19956772973410.1021/ac00100a007
– reference: NicolisGPrigogineISelf-organization in nonequilibrium systems1977LondonWiley
– reference: BartoMBrunovskáAGomesVGOptimal periodic control of the input into a heterogeneous catalytic reactorComput Chem Eng199418321922610.1016/0098-1354(94)85010-01:CAS:528:DyaK2cXhs1Ort7k%3D
– reference: IsakovaANovakovicKOscillatory chemical reactions in the quest for rhythmic motion of smart materialsEur Polym J20179543043910.1016/j.eurpolymj.2017.08.0331:CAS:528:DC%2BC2sXhtlOrs7rJ
– reference: GaoJApplication of oscillating chemical reaction to analytical chemistry: recent developmentsPak J Biol Sci2005851251910.3923/pjbs.2005.512.5191:CAS:528:DC%2BD2MXmt1Cht7w%3D
– reference: PejićNSarapNMaksimovićJAnićSLjKolar-AnićPulse perturbation technique for determination of piroxicam in pharmaceuticals using an oscillatory reaction systemCent Eur J Chem201311180188
– reference: ErtlGOscillatory catalytic reactions at single-crystal surfacesAdv Catal1990372132771:CAS:528:DyaK3MXhsFWhs7o%3D
– reference: LázárANoszticziusZFörsterlingHDNagy-UngváraiZChemical waves in modified membranes. I. Developing the techniquePhysica D19958411211910.1016/0167-2789(95)00009-S
– reference: PejićNČupićŽAnićSVukojevićVLjKolar-AnićThe oscillatory Bray–Liebhafsky reaction as a matrix for analyzing enzyme and polymeric catalysts for hydrogen peroxideSci Sinter200133107115
– reference: MalashkevichAVLevABrukGTemkinONNew oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylationJ Phys Chem A19971019825982710.1021/jp972666u1:CAS:528:DyaK1cXhs1alug%3D%3D
– reference: DonlonLParkerJNovakovicKOscillatory carbonylation of phenylacetylene in the absence of externally supplied oxidantReac Kinet Mech Cat2014112111310.1007/s11144-014-0685-31:CAS:528:DC%2BC2cXislKqtr0%3D
– reference: CervellatiRRenzulliCGuerraMCSperoniEEvaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs–Rauscher reaction methodJ Agric Food Chem2002507504750910.1021/jf020578n1:CAS:528:DC%2BD38XovVeqtbc%3D12475261
– reference: IsakovaANovakovicKPulsatile release from a flat self-oscillating chitosan macrogelJ Mater Chem B201865003501010.1039/C8TB00781K
– reference: GutscheaRLangeaRWittWThe effect of process nonlinearities on the performance of a periodically operated isothermal catalytic reactorChem Eng Sci2003585055506810.1016/j.ces.2003.08.0111:CAS:528:DC%2BD3sXosVemt74%3D
– volume: 5
  start-page: 311
  year: 1953
  ident: 1501_CR25
  publication-title: Adv Catal
  doi: 10.1016/S0360-0564(08)60644-6
– volume: 304
  start-page: 21
  year: 2006
  ident: 1501_CR29
  publication-title: App Catal A Gen
  doi: 10.1016/j.apcata.2006.02.023
– volume: 42
  start-page: 1595
  year: 1920
  ident: 1501_CR4
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01453a010
– volume: 84
  start-page: 112
  year: 1995
  ident: 1501_CR10
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00009-S
– volume: 33
  start-page: 107
  year: 2001
  ident: 1501_CR15
  publication-title: Sci Sinter
– volume: 101
  start-page: 9825
  year: 1997
  ident: 1501_CR36
  publication-title: J Phys Chem A
  doi: 10.1021/jp972666u
– volume: 18
  start-page: 219
  issue: 3
  year: 1994
  ident: 1501_CR32
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(94)85010-0
– volume: 28
  start-page: 083114
  year: 2018
  ident: 1501_CR51
  publication-title: Chaos
  doi: 10.1063/1.5026791
– volume: 118
  start-page: 6092
  issue: 23
  year: 2014
  ident: 1501_CR7
  publication-title: J Phys Chem B
  doi: 10.1021/jp5019795
– volume: 10
  start-page: 1451
  issue: 11–12
  year: 2009
  ident: 1501_CR9
  publication-title: Int J Nonlinear Sci Num
  doi: 10.1515/IJNSNS.2009.10.11-12.1451
– volume: 284
  start-page: 33
  year: 2008
  ident: 1501_CR50
  publication-title: J Mol Catal A Chem
  doi: 10.1016/j.molcata.2007.12.020
– volume: 118
  start-page: 73
  year: 2016
  ident: 1501_CR42
  publication-title: Reac Kinet Mech Cat
  doi: 10.1007/s11144-016-0979-8
– volume: 16
  start-page: 17
  year: 2018
  ident: 1501_CR55
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2018.10.038
– volume-title: Deterministic kinetics in chemistry and systems biology
  year: 2015
  ident: 1501_CR1
  doi: 10.1007/978-3-319-15482-4
– volume: 3
  start-page: 41
  year: 1954
  ident: 1501_CR2
  publication-title: Spec Suppl Chem Eng Sci
  doi: 10.1016/S0009-2509(54)80005-4
– volume: 18
  start-page: 015102
  issue: 1
  year: 2008
  ident: 1501_CR6
  publication-title: Chaos
  doi: 10.1063/1.2779857
– volume: 81
  start-page: 5
  issue: 1
  year: 2019
  ident: 1501_CR52
  publication-title: MATCH Commun Math Comput Chem
– volume: 37
  start-page: 213
  year: 1990
  ident: 1501_CR27
  publication-title: Adv Catal
  doi: 10.1016/S0360-0564(08)60366-1
– volume: 43
  start-page: 1262
  year: 1921
  ident: 1501_CR3
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01439a007
– volume: 16
  start-page: 1852
  year: 2016
  ident: 1501_CR11
  publication-title: Chem Rec
  doi: 10.1002/tcr.201600009
– volume: 50
  start-page: 496
  year: 1973
  ident: 1501_CR13
  publication-title: J Chem Educ
  doi: 10.1021/ed050p496
– volume: 20
  start-page: 9281
  year: 2018
  ident: 1501_CR40
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C7CP07747E
– volume: 112
  start-page: 1
  issue: 1
  year: 2014
  ident: 1501_CR45
  publication-title: Reac Kinet Mech Cat
  doi: 10.1007/s11144-014-0685-3
– volume: 8
  start-page: 512
  year: 2005
  ident: 1501_CR20
  publication-title: Pak J Biol Sci
  doi: 10.3923/pjbs.2005.512.519
– volume: 54
  start-page: 43
  year: 1995
  ident: 1501_CR14
  publication-title: React Kinet Catal Lett
  doi: 10.1007/BF02071179
– volume: 50
  start-page: 7504
  year: 2002
  ident: 1501_CR19
  publication-title: J Agric Food Chem
  doi: 10.1021/jf020578n
– volume: 6
  start-page: 5003
  year: 2018
  ident: 1501_CR53
  publication-title: J Mater Chem B
  doi: 10.1039/C8TB00781K
– volume: 18
  start-page: 1981
  issue: 15
  year: 2017
  ident: 1501_CR46
  publication-title: Chem Phys Chem
  doi: 10.1002/cphc.201700359
– volume: 59
  start-page: 457
  year: 1994
  ident: 1501_CR12
  publication-title: J Serb Chem Soc
– volume: 48
  start-page: 228
  year: 2007
  ident: 1501_CR37
  publication-title: Kinet Catal
  doi: 10.1134/S0023158407020073
– volume: 53
  start-page: 493
  year: 2012
  ident: 1501_CR48
  publication-title: Kinet Catal
  doi: 10.1134/S0023158412040027
– volume: 52
  start-page: 7996
  year: 2007
  ident: 1501_CR21
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.06.067
– volume: 95
  start-page: 430
  year: 2017
  ident: 1501_CR54
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2017.08.033
– volume: 10
  start-page: 749
  year: 2008
  ident: 1501_CR49
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/B713906C
– volume: 51
  start-page: 935
  year: 2000
  ident: 1501_CR18
  publication-title: Talanta
  doi: 10.1016/S0039-9140(99)00363-X
– year: 2012
  ident: 1501_CR47
  publication-title: Org Chem Int
  doi: 10.1155/2012/819190
– volume: 32
  start-page: 135
  year: 2017
  ident: 1501_CR34
  publication-title: Rev Chem Eng
  doi: 10.1515/revce-2017-0085
– volume: 120
  start-page: 22365
  year: 2016
  ident: 1501_CR35
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b06692
– volume: 11
  start-page: 9044
  year: 2009
  ident: 1501_CR41
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b905444h
– volume: 435
  start-page: 142
  year: 2007
  ident: 1501_CR38
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2006.12.040
– volume: 123
  start-page: 113
  year: 2018
  ident: 1501_CR43
  publication-title: Reac Kinet Mech Cat
  doi: 10.1007/s11144-017-1282-z
– volume-title: Self-organization in nonequilibrium systems
  year: 1977
  ident: 1501_CR5
– volume: 11
  start-page: 180
  year: 2013
  ident: 1501_CR22
  publication-title: Cent Eur J Chem
– volume: 58
  start-page: 5055
  year: 2003
  ident: 1501_CR33
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2003.08.011
– volume: 50
  start-page: 15506
  year: 2014
  ident: 1501_CR44
  publication-title: Chem Commun
  doi: 10.1039/C4CC01548G
– volume: 95
  start-page: 697
  year: 1995
  ident: 1501_CR28
  publication-title: Chem Rev
  doi: 10.1021/cr00035a012
– volume: 9
  start-page: 306
  year: 1964
  ident: 1501_CR26
  publication-title: Biofizika
– volume: 12
  start-page: 291
  year: 1987
  ident: 1501_CR23
  publication-title: Active Passive Electron Comp
  doi: 10.1155/1987/27260
– volume: 47
  start-page: 3524
  year: 2008
  ident: 1501_CR24
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200800480
– volume: 123
  start-page: 93
  year: 2018
  ident: 1501_CR39
  publication-title: Reac Kinet Mech Cat
  doi: 10.1007/s11144-017-1300-1
– volume: 124
  start-page: 147
  year: 1999
  ident: 1501_CR17
  publication-title: Analyst
  doi: 10.1039/a807608a
– volume: 232
  start-page: 266
  year: 2013
  ident: 1501_CR30
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2013.07.094
– volume: 67
  start-page: 729
  year: 1995
  ident: 1501_CR16
  publication-title: Anal Chem
  doi: 10.1021/ac00100a007
– volume: 154
  start-page: 38
  year: 2010
  ident: 1501_CR31
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2010.03.016
– volume: 107
  start-page: 415
  year: 2003
  ident: 1501_CR8
  publication-title: J Phys Chem B
  doi: 10.1021/jp020856l
SSID ssj0000327859
Score 2.17452
SecondaryResourceType review_article
Snippet The application of alternating current is advantageous in energy transfer over long distances. It is a well-known fact now, but subject of long conflict in the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 577
SubjectTerms Catalysis
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Physical Chemistry
Title Alternating catalytic reactions
URI https://link.springer.com/article/10.1007/s11144-018-1501-2
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoAF8RTlUTIwgSIldpw4Y1o1VCA6EalMke04LFVAJAz8e85ukqoSIDFluVjKxb77vjvfHcCNJl7pK8lcgfYfCUopXE6pdiPth6xAh8aUKU5-WoTzLHhYsmVbx113t927lKS11JtiN4Tu5sYEsh6GHBjt7pAZ6o6bOCNJH1jxKIm4HZLmc2RIiFD6bOZPq2z7o-1kqPUx6QHst-DQSdZ_8xB2dHUEu9NuJtsxXCerNoBXvTo28vKFog4CP1ueUJ9Als6ep3O3HXHgKkpY46L_5YUKVMzQlyL0IUSKgIqglKbJjqAR0qE4QASMflaEoTlfXHpRRA2NKERJT2FQvVX6DJy4UEQi-uKSi0BqZL28jBRVpscZ0SEfgdd9aK7a_t9mDMUq33QuNrrJUTe50U1ORnDbv_K-bn7xl_Bdp728PQf179Ln_5K-gD0EKjaL47NLGDQfn_oKwUAjxzBM0slkYZ73L4-zsd0M3z9nqTk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kHupFfGJ9NQdPSiDZR7I9lmKp2vbUQG_L7mbjpUSx8eC_d3abpBRU8D4J7CQ7833zBLizJCpio3mo0P4jQSlUKCi1YWrjhOfo0LhxzcmzeTLJ2POSL-s-7nVT7d6kJL2l3ja7IXR3FRPIejhyYLS7-4gFhKvjysiwDaxElKTCL0mLBTIkRChtNvOnt-z6o91kqPcx4yM4rMFhMNx8zWPYs-UJdEfNTrZT6A9XdQCvfA185OULRQMEfr49YX0G2fhxMZqE9YqD0FDCqxD9r8gNMwOOvhShDyFaMapYod2QHUVTpEMDhggY_axKEne_hI7SlDoakauCnkOnfCvtBQSD3BCN6EtooZi2yHpFkRpq3IwzYhPRg6g5qDT1_G-3hmIlt5OLnW4k6kY63UjSg_v2kffN8Iu_hB8a7cn6Hqx_l778l3QfupPFbCqnT_OXKzhA0OIzOjG_hk718WlvEBhU-tb_CN_AoKkc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIgEL4inKqxmYQFETO07csSpE5VUxEKmbZTsOSxUqEgb-Pee8qkqAxH6JlIt93_f5fHcAV4Z4ma8VcyXGfxQomXQ5pcaNjB-yFAGNaVuc_DwLp0nwMGfzZs5p0d52b1OSdU2D7dKUl8Nlmg1XhW9I4-3tCVRADPUwxuBNjMa-XdYJGXeHLB4lEa8Gpvkc1RKylS6z-dNb1rFpPTFa4U28B7sNUXTG9Z_dhw2TH8D2pJ3PdgiD8aI5zMvfnOoU5gtNHSSBValCcQRJfPc6mbrNuANXU8JKF7GYpzrQI4a4ijSIECUDKoNM2YY7kkYojUYBsmHEXBmGdq9x5UURtZIilRk9hl7-npsTcEapJgqZGFdcBsqgAuZZpKm2_c6ICXkfvPZDhW56gduRFAux6mJsfSPQN8L6RpA-XHePLOtGGH8Z37TeE82eKH63Pv2X9QC2Xm5j8XQ_ezyDHeQvVXLHZ-fQKz8-zQVyhFJdVuvgG0gDrVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+catalytic+reactions&rft.jtitle=Reaction+kinetics%2C+mechanisms+and+catalysis&rft.au=%C4%8Cupi%C4%87%2C+%C5%BDeljko&rft.au=Ivanovi%C4%87-%C5%A0a%C5%A1i%C4%87%2C+Ana&rft.date=2019-04-15&rft.pub=Springer+International+Publishing&rft.issn=1878-5190&rft.eissn=1878-5204&rft.volume=126&rft.issue=2&rft.spage=577&rft.epage=586&rft_id=info:doi/10.1007%2Fs11144-018-1501-2&rft.externalDocID=10_1007_s11144_018_1501_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-5190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-5190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-5190&client=summon