Fibonacci-run graphs II: Degree sequences

Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary s...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 300; pp. 56 - 71
Main Authors Eğecioğlu, Ömer, Iršič, Vesna
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/j.dam.2021.05.018

Cover

Abstract Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties.
AbstractList Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties.
Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties.
Author Eğecioğlu, Ömer
Iršič, Vesna
Author_xml – sequence: 1
  givenname: Ömer
  orcidid: 0000-0002-6070-761X
  surname: Eğecioğlu
  fullname: Eğecioğlu, Ömer
  email: omer@cs.ucsb.edu
  organization: Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 2
  givenname: Vesna
  orcidid: 0000-0001-5302-5250
  surname: Iršič
  fullname: Iršič, Vesna
  email: vesna.irsic@fmf.uni-lj.si
  organization: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
BookMark eNp9kE1LAzEQhoNUsFV_gLcFTx52ncluNqmepFotFLwoeAvZJFuztNmabAX_vSn15KGnYeB95uOZkJHvvSXkCqFAwPq2K4zaFBQoFsAKQHFCxig4zWvOcUTGKVPnFMXHGZnE2AEApm5Mbuau6b3S2uVh57NVUNvPmC0Wd9mjXQVrs2i_dtZrGy_IaavW0V7-1XPyPn96m73ky9fnxexhmeuSsiEXMAXGoVQ1VbUyjFGNFhtWWVOyihpssNWGtxSqdJPSXCthFG0E1kagnpbn5Powdxv6tDoOsut3waeVkrIqDa8QeUrxQ0qHPsZgW6ndoAbX-yEot5YIcu9FdjJ5kXsvEphMXhKJ_8htcBsVfo4y9wfGpse_nQ0yare3YlywepCmd0foX8EVeps
CitedBy_id crossref_primary_10_1007_s40840_024_01776_3
crossref_primary_10_1016_j_dam_2025_01_020
crossref_primary_10_1016_j_dam_2022_10_007
crossref_primary_10_1016_j_tcs_2022_06_003
crossref_primary_10_1080_00150517_2022_12427440
Cites_doi 10.1016/j.dam.2021.02.025
10.1109/71.205649
10.1007/s40840-020-00981-0
10.1142/S1793557120500576
10.1016/j.disc.2011.03.019
10.1007/s40840-020-00932-9
10.1016/j.dam.2017.04.026
10.26493/1855-3974.1172.bae
10.1007/s10878-011-9433-z
10.1016/j.dam.2016.10.029
10.1080/00029890.1991.11995782
10.1016/j.dam.2018.05.015
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2021.05.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 71
ExternalDocumentID 10_1016_j_dam_2021_05_018
S0166218X21002079
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-80905703a62a6ad552c1e1b54ed3542d1b1fcd7f204016ac7ca8da2b816d81c93
IEDL.DBID AIKHN
ISSN 0166-218X
IngestDate Mon Jun 30 06:39:16 EDT 2025
Tue Jul 01 01:43:12 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Sat Apr 29 23:38:07 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Fibonacci cube
Degree sequence
Generating function
Fibonacci-run graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-80905703a62a6ad552c1e1b54ed3542d1b1fcd7f204016ac7ca8da2b816d81c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5302-5250
0000-0002-6070-761X
PQID 2549054117
PQPubID 2045487
PageCount 16
ParticipantIDs proquest_journals_2549054117
crossref_citationtrail_10_1016_j_dam_2021_05_018
crossref_primary_10_1016_j_dam_2021_05_018
elsevier_sciencedirect_doi_10_1016_j_dam_2021_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete Applied Mathematics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Eğecioğlu (b4) 2021; 10
Mollard (b11) 2017; 219
Klavžar (b8) 2013; 25
Leslie (b10) 1991; 98
Azarija, Klavžar, Rho, Sim (b3) 2018; 14
Alizadeh, Deutsch, Klavžar (b2) 2020; 43
Eğecioğlu, Saygı, Saygi (b6) 2021; 44
Eğecioğlu, Iršič (b5) 2021; 295
Saygı, Eğecioğlu (b14) 2019; 266
Hsu (b7) 1993; 4
Albertson (b1) 1997; 46
Klavžar, Mollard, Petkovšek (b9) 2011; 311
Savitha, Vijayakumar (b12) 2020; 13
Saygı, Eğecioğlu (b13) 2017; 226
Klavžar (10.1016/j.dam.2021.05.018_b9) 2011; 311
Eğecioğlu (10.1016/j.dam.2021.05.018_b6) 2021; 44
Hsu (10.1016/j.dam.2021.05.018_b7) 1993; 4
Eğecioğlu (10.1016/j.dam.2021.05.018_b4) 2021; 10
Saygı (10.1016/j.dam.2021.05.018_b14) 2019; 266
Klavžar (10.1016/j.dam.2021.05.018_b8) 2013; 25
Leslie (10.1016/j.dam.2021.05.018_b10) 1991; 98
Savitha (10.1016/j.dam.2021.05.018_b12) 2020; 13
Albertson (10.1016/j.dam.2021.05.018_b1) 1997; 46
Eğecioğlu (10.1016/j.dam.2021.05.018_b5) 2021; 295
Saygı (10.1016/j.dam.2021.05.018_b13) 2017; 226
Alizadeh (10.1016/j.dam.2021.05.018_b2) 2020; 43
Azarija (10.1016/j.dam.2021.05.018_b3) 2018; 14
Mollard (10.1016/j.dam.2021.05.018_b11) 2017; 219
References_xml – volume: 25
  start-page: 4
  year: 2013
  ident: b8
  article-title: Structure of fibonacci cubes: A survey
  publication-title: J. Comb. Optim.
– volume: 43
  start-page: 4443
  year: 2020
  end-page: 4456
  ident: b2
  article-title: On the irregularity of
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 311
  start-page: 1310
  year: 2011
  end-page: 1322
  ident: b9
  article-title: The degree sequence of Fibonacci and Lucas cubes
  publication-title: Discrete Math.
– volume: 266
  start-page: 191
  year: 2019
  end-page: 199
  ident: b14
  article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes
  publication-title: Discrete Appl. Math.
– volume: 46
  start-page: 219
  year: 1997
  end-page: 225
  ident: b1
  article-title: The irregularity of a graph
  publication-title: Ars Combin.
– volume: 219
  start-page: 219
  year: 2017
  end-page: 221
  ident: b11
  article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes
  publication-title: Discrete Appl. Math.
– volume: 4
  start-page: 3
  year: 1993
  end-page: 12
  ident: b7
  article-title: Fibonacci cubes - new interconnection topology
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 13
  year: 2020
  ident: b12
  article-title: Some diameter notions of Fibonacci cubes
  publication-title: Asian-Eur. J. Math.
– volume: 226
  start-page: 127
  year: 2017
  end-page: 137
  ident: b13
  article-title: -cube enumerator polynomial of Fibonacci cubes
  publication-title: Discrete Appl. Math.
– volume: 14
  start-page: 387
  year: 2018
  end-page: 395
  ident: b3
  article-title: On domination-type invariants of Fibonacci cubes and hypercubes
  publication-title: Ars Math. Contemp.
– volume: 295
  start-page: 70
  year: 2021
  end-page: 84
  ident: b5
  article-title: Fibonacci-run graphs i: basic properties
  publication-title: Discrete Appl. Math.
– volume: 44
  start-page: 753
  year: 2021
  end-page: 765
  ident: b6
  article-title: The irregularity polynomials of Fibonacci and Lucas cubes
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 10
  start-page: 31
  year: 2021
  end-page: 42
  ident: b4
  article-title: Statistics on restricted Fibonacci words
  publication-title: Trans. Comb.
– volume: 98
  start-page: 732
  year: 1991
  end-page: 735
  ident: b10
  article-title: How not to repeatedly differentiate a reciprocal
  publication-title: Amer. Math. Monthly
– volume: 295
  start-page: 70
  year: 2021
  ident: 10.1016/j.dam.2021.05.018_b5
  article-title: Fibonacci-run graphs i: basic properties
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2021.02.025
– volume: 4
  start-page: 3
  year: 1993
  ident: 10.1016/j.dam.2021.05.018_b7
  article-title: Fibonacci cubes - new interconnection topology
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.205649
– volume: 44
  start-page: 753
  issue: 2
  year: 2021
  ident: 10.1016/j.dam.2021.05.018_b6
  article-title: The irregularity polynomials of Fibonacci and Lucas cubes
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-020-00981-0
– volume: 13
  issue: 3
  year: 2020
  ident: 10.1016/j.dam.2021.05.018_b12
  article-title: Some diameter notions of Fibonacci cubes
  publication-title: Asian-Eur. J. Math.
  doi: 10.1142/S1793557120500576
– volume: 10
  start-page: 31
  issue: 1
  year: 2021
  ident: 10.1016/j.dam.2021.05.018_b4
  article-title: Statistics on restricted Fibonacci words
  publication-title: Trans. Comb.
– volume: 311
  start-page: 1310
  issue: 14
  year: 2011
  ident: 10.1016/j.dam.2021.05.018_b9
  article-title: The degree sequence of Fibonacci and Lucas cubes
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2011.03.019
– volume: 43
  start-page: 4443
  issue: 6
  year: 2020
  ident: 10.1016/j.dam.2021.05.018_b2
  article-title: On the irregularity of π-permutation graphs, Fibonacci cubes, and trees
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-020-00932-9
– volume: 226
  start-page: 127
  year: 2017
  ident: 10.1016/j.dam.2021.05.018_b13
  article-title: q-cube enumerator polynomial of Fibonacci cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2017.04.026
– volume: 14
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.dam.2021.05.018_b3
  article-title: On domination-type invariants of Fibonacci cubes and hypercubes
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.1172.bae
– volume: 25
  start-page: 4
  year: 2013
  ident: 10.1016/j.dam.2021.05.018_b8
  article-title: Structure of fibonacci cubes: A survey
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-011-9433-z
– volume: 46
  start-page: 219
  year: 1997
  ident: 10.1016/j.dam.2021.05.018_b1
  article-title: The irregularity of a graph
  publication-title: Ars Combin.
– volume: 219
  start-page: 219
  year: 2017
  ident: 10.1016/j.dam.2021.05.018_b11
  article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.10.029
– volume: 98
  start-page: 732
  issue: 8
  year: 1991
  ident: 10.1016/j.dam.2021.05.018_b10
  article-title: How not to repeatedly differentiate a reciprocal
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1991.11995782
– volume: 266
  start-page: 191
  year: 2019
  ident: 10.1016/j.dam.2021.05.018_b14
  article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2018.05.015
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.3614764
Snippet Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Apexes
Companion stars
Cubes
Degree sequence
Fibonacci cube
Fibonacci numbers
Fibonacci-run graph
Generating function
Graph theory
Graphs
Hypercubes
Sequences
Strings
Vertex sets
Title Fibonacci-run graphs II: Degree sequences
URI https://dx.doi.org/10.1016/j.dam.2021.05.018
https://www.proquest.com/docview/2549054117
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ70cakH4zNWa7MHL5qsBRbYXW9NtWk17UWb9EZYYJMaU5s-rv52oWXrI7EHj0sWsvsB883A8AFwheLY6cyloUx0HFrGR6HkMQmjnOkoTzQhxi0NDIa8N6KPYzYuQac4C-PSKr3t39j0tbX2JS2PZms2mbSerbPCLUGNiVMRRXFahiqJUs4qUG33n3rDbypSTiKtVqy7fG0zWLqlXvybh66pYttznQCmpTupTvBG2TP5i7h-mfA1L3UPYN87lEF7882HUDLTI9gbbNVYF8dw3Z1k1uFWahLOV9NgrVG9CPr9u-De2HDbBNt86hMYdR9eOr3QX5EQqoiwpeWXFDkNLcmJ5FIzRhQ2OGPU6IhRonGGc6XjnNi5irlUsbJ9IkmWYK4TrNLoFCrT96k5gwChXEY2GskyhSg1eSIJ5ZEltkwxqaiqAyr-XyivH-6usXgTRaLYq7CQCQeZQExYyOpws60y24hn7HqZFqCKHyNAWOO-q1qj6ADhp99CuKjX-qIYx-f_a_UCau7JJYZg1oDKcr4yl9b7WGZNKN9-4KYfY591UdHo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGSgD4hSFAhlYQAq1HR8JGypULbRdaKVulmM7UhAKVY-V346doxwSDKxJbCXvxe97z_78GYBLyLnTmYt8GWruW8SHvmQc-0FCdZCEGmPjpgaGI9abkMcpndZAp9oL42iVZewvYnoercsr7dKa7Vmatp9tssIsQE2xUxGFPNoAm4QG3PH6bt7RFw0pJ5DWqGZdPhcZLNiSUvqb-a6jatEzp39p6fapY1Toeoa_wdaPAJ6jUncX7JTppHdXvPEeqJlsH2wP11qsiwNw1U1jm24rlfrzVeblCtULr9-_9e6NLbaNt2ZTH4JJ92Hc6fnlAQm-CjBdWnSJoFPQkgxLJjWlWCGDYkqMDijBGsUoUZon2I5UxKTiynpE4jhETIdIRcERqGdvmTkGHoSJDGwtEscKEmKSUGLCAgtrsaJSEdUEsPp-oUr1cHeIxauoaGIvwppMOJMJSIU1WRNcr5vMCumMvx4mlVHFN_8LG9r_ataqHCDKwbcQrua1mShC_OR_vV6Ard54OBCD_ujpFDTcHUcRQbQF6sv5ypzZPGQZn-f_2QcrjNKz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibonacci-run+graphs+II%3A+Degree+sequences&rft.jtitle=Discrete+Applied+Mathematics&rft.au=E%C4%9Fecio%C4%9Flu%2C+%C3%96mer&rft.au=Ir%C5%A1i%C4%8D%2C+Vesna&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=300&rft.spage=56&rft_id=info:doi/10.1016%2Fj.dam.2021.05.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon