Fibonacci-run graphs II: Degree sequences
Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary s...
Saved in:
Published in | Discrete Applied Mathematics Vol. 300; pp. 56 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0166-218X 1872-6771 |
DOI | 10.1016/j.dam.2021.05.018 |
Cover
Abstract | Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties.
Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties. |
---|---|
AbstractList | Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties. Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s. This class of graphs has been studied extensively and generalized in many different directions. Induced subgraphs of the hypercube on binary strings with restricted runlengths as vertices define Fibonacci-run graphs. These graphs have the same number of vertices as Fibonacci cubes, but fewer edges and different graph theoretical properties. Basic properties of Fibonacci-run graphs are presented in a companion paper, while in this paper we consider the nature of the degree sequences of Fibonacci-run graphs. The generating function we obtain is a refinement of the generating function of the degree sequences, and has a number of corollaries, obtained as specializations. We also obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and discuss its embedding properties. |
Author | Eğecioğlu, Ömer Iršič, Vesna |
Author_xml | – sequence: 1 givenname: Ömer orcidid: 0000-0002-6070-761X surname: Eğecioğlu fullname: Eğecioğlu, Ömer email: omer@cs.ucsb.edu organization: Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 2 givenname: Vesna orcidid: 0000-0001-5302-5250 surname: Iršič fullname: Iršič, Vesna email: vesna.irsic@fmf.uni-lj.si organization: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia |
BookMark | eNp9kE1LAzEQhoNUsFV_gLcFTx52ncluNqmepFotFLwoeAvZJFuztNmabAX_vSn15KGnYeB95uOZkJHvvSXkCqFAwPq2K4zaFBQoFsAKQHFCxig4zWvOcUTGKVPnFMXHGZnE2AEApm5Mbuau6b3S2uVh57NVUNvPmC0Wd9mjXQVrs2i_dtZrGy_IaavW0V7-1XPyPn96m73ky9fnxexhmeuSsiEXMAXGoVQ1VbUyjFGNFhtWWVOyihpssNWGtxSqdJPSXCthFG0E1kagnpbn5Powdxv6tDoOsut3waeVkrIqDa8QeUrxQ0qHPsZgW6ndoAbX-yEot5YIcu9FdjJ5kXsvEphMXhKJ_8htcBsVfo4y9wfGpse_nQ0yare3YlywepCmd0foX8EVeps |
CitedBy_id | crossref_primary_10_1007_s40840_024_01776_3 crossref_primary_10_1016_j_dam_2025_01_020 crossref_primary_10_1016_j_dam_2022_10_007 crossref_primary_10_1016_j_tcs_2022_06_003 crossref_primary_10_1080_00150517_2022_12427440 |
Cites_doi | 10.1016/j.dam.2021.02.025 10.1109/71.205649 10.1007/s40840-020-00981-0 10.1142/S1793557120500576 10.1016/j.disc.2011.03.019 10.1007/s40840-020-00932-9 10.1016/j.dam.2017.04.026 10.26493/1855-3974.1172.bae 10.1007/s10878-011-9433-z 10.1016/j.dam.2016.10.029 10.1080/00029890.1991.11995782 10.1016/j.dam.2018.05.015 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.dam.2021.05.018 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6771 |
EndPage | 71 |
ExternalDocumentID | 10_1016_j_dam_2021_05_018 S0166218X21002079 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-80905703a62a6ad552c1e1b54ed3542d1b1fcd7f204016ac7ca8da2b816d81c93 |
IEDL.DBID | AIKHN |
ISSN | 0166-218X |
IngestDate | Mon Jun 30 06:39:16 EDT 2025 Tue Jul 01 01:43:12 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Sat Apr 29 23:38:07 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fibonacci cube Degree sequence Generating function Fibonacci-run graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-80905703a62a6ad552c1e1b54ed3542d1b1fcd7f204016ac7ca8da2b816d81c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5302-5250 0000-0002-6070-761X |
PQID | 2549054117 |
PQPubID | 2045487 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2549054117 crossref_citationtrail_10_1016_j_dam_2021_05_018 crossref_primary_10_1016_j_dam_2021_05_018 elsevier_sciencedirect_doi_10_1016_j_dam_2021_05_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Eğecioğlu (b4) 2021; 10 Mollard (b11) 2017; 219 Klavžar (b8) 2013; 25 Leslie (b10) 1991; 98 Azarija, Klavžar, Rho, Sim (b3) 2018; 14 Alizadeh, Deutsch, Klavžar (b2) 2020; 43 Eğecioğlu, Saygı, Saygi (b6) 2021; 44 Eğecioğlu, Iršič (b5) 2021; 295 Saygı, Eğecioğlu (b14) 2019; 266 Hsu (b7) 1993; 4 Albertson (b1) 1997; 46 Klavžar, Mollard, Petkovšek (b9) 2011; 311 Savitha, Vijayakumar (b12) 2020; 13 Saygı, Eğecioğlu (b13) 2017; 226 Klavžar (10.1016/j.dam.2021.05.018_b9) 2011; 311 Eğecioğlu (10.1016/j.dam.2021.05.018_b6) 2021; 44 Hsu (10.1016/j.dam.2021.05.018_b7) 1993; 4 Eğecioğlu (10.1016/j.dam.2021.05.018_b4) 2021; 10 Saygı (10.1016/j.dam.2021.05.018_b14) 2019; 266 Klavžar (10.1016/j.dam.2021.05.018_b8) 2013; 25 Leslie (10.1016/j.dam.2021.05.018_b10) 1991; 98 Savitha (10.1016/j.dam.2021.05.018_b12) 2020; 13 Albertson (10.1016/j.dam.2021.05.018_b1) 1997; 46 Eğecioğlu (10.1016/j.dam.2021.05.018_b5) 2021; 295 Saygı (10.1016/j.dam.2021.05.018_b13) 2017; 226 Alizadeh (10.1016/j.dam.2021.05.018_b2) 2020; 43 Azarija (10.1016/j.dam.2021.05.018_b3) 2018; 14 Mollard (10.1016/j.dam.2021.05.018_b11) 2017; 219 |
References_xml | – volume: 25 start-page: 4 year: 2013 ident: b8 article-title: Structure of fibonacci cubes: A survey publication-title: J. Comb. Optim. – volume: 43 start-page: 4443 year: 2020 end-page: 4456 ident: b2 article-title: On the irregularity of publication-title: Bull. Malays. Math. Sci. Soc. – volume: 311 start-page: 1310 year: 2011 end-page: 1322 ident: b9 article-title: The degree sequence of Fibonacci and Lucas cubes publication-title: Discrete Math. – volume: 266 start-page: 191 year: 2019 end-page: 199 ident: b14 article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes publication-title: Discrete Appl. Math. – volume: 46 start-page: 219 year: 1997 end-page: 225 ident: b1 article-title: The irregularity of a graph publication-title: Ars Combin. – volume: 219 start-page: 219 year: 2017 end-page: 221 ident: b11 article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes publication-title: Discrete Appl. Math. – volume: 4 start-page: 3 year: 1993 end-page: 12 ident: b7 article-title: Fibonacci cubes - new interconnection topology publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 13 year: 2020 ident: b12 article-title: Some diameter notions of Fibonacci cubes publication-title: Asian-Eur. J. Math. – volume: 226 start-page: 127 year: 2017 end-page: 137 ident: b13 article-title: -cube enumerator polynomial of Fibonacci cubes publication-title: Discrete Appl. Math. – volume: 14 start-page: 387 year: 2018 end-page: 395 ident: b3 article-title: On domination-type invariants of Fibonacci cubes and hypercubes publication-title: Ars Math. Contemp. – volume: 295 start-page: 70 year: 2021 end-page: 84 ident: b5 article-title: Fibonacci-run graphs i: basic properties publication-title: Discrete Appl. Math. – volume: 44 start-page: 753 year: 2021 end-page: 765 ident: b6 article-title: The irregularity polynomials of Fibonacci and Lucas cubes publication-title: Bull. Malays. Math. Sci. Soc. – volume: 10 start-page: 31 year: 2021 end-page: 42 ident: b4 article-title: Statistics on restricted Fibonacci words publication-title: Trans. Comb. – volume: 98 start-page: 732 year: 1991 end-page: 735 ident: b10 article-title: How not to repeatedly differentiate a reciprocal publication-title: Amer. Math. Monthly – volume: 295 start-page: 70 year: 2021 ident: 10.1016/j.dam.2021.05.018_b5 article-title: Fibonacci-run graphs i: basic properties publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2021.02.025 – volume: 4 start-page: 3 year: 1993 ident: 10.1016/j.dam.2021.05.018_b7 article-title: Fibonacci cubes - new interconnection topology publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.205649 – volume: 44 start-page: 753 issue: 2 year: 2021 ident: 10.1016/j.dam.2021.05.018_b6 article-title: The irregularity polynomials of Fibonacci and Lucas cubes publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-020-00981-0 – volume: 13 issue: 3 year: 2020 ident: 10.1016/j.dam.2021.05.018_b12 article-title: Some diameter notions of Fibonacci cubes publication-title: Asian-Eur. J. Math. doi: 10.1142/S1793557120500576 – volume: 10 start-page: 31 issue: 1 year: 2021 ident: 10.1016/j.dam.2021.05.018_b4 article-title: Statistics on restricted Fibonacci words publication-title: Trans. Comb. – volume: 311 start-page: 1310 issue: 14 year: 2011 ident: 10.1016/j.dam.2021.05.018_b9 article-title: The degree sequence of Fibonacci and Lucas cubes publication-title: Discrete Math. doi: 10.1016/j.disc.2011.03.019 – volume: 43 start-page: 4443 issue: 6 year: 2020 ident: 10.1016/j.dam.2021.05.018_b2 article-title: On the irregularity of π-permutation graphs, Fibonacci cubes, and trees publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-020-00932-9 – volume: 226 start-page: 127 year: 2017 ident: 10.1016/j.dam.2021.05.018_b13 article-title: q-cube enumerator polynomial of Fibonacci cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2017.04.026 – volume: 14 start-page: 387 issue: 2 year: 2018 ident: 10.1016/j.dam.2021.05.018_b3 article-title: On domination-type invariants of Fibonacci cubes and hypercubes publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.1172.bae – volume: 25 start-page: 4 year: 2013 ident: 10.1016/j.dam.2021.05.018_b8 article-title: Structure of fibonacci cubes: A survey publication-title: J. Comb. Optim. doi: 10.1007/s10878-011-9433-z – volume: 46 start-page: 219 year: 1997 ident: 10.1016/j.dam.2021.05.018_b1 article-title: The irregularity of a graph publication-title: Ars Combin. – volume: 219 start-page: 219 year: 2017 ident: 10.1016/j.dam.2021.05.018_b11 article-title: Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2016.10.029 – volume: 98 start-page: 732 issue: 8 year: 1991 ident: 10.1016/j.dam.2021.05.018_b10 article-title: How not to repeatedly differentiate a reciprocal publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1991.11995782 – volume: 266 start-page: 191 year: 2019 ident: 10.1016/j.dam.2021.05.018_b14 article-title: Boundary enumerator polynomial of hypercubes in Fibonacci cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2018.05.015 |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.3614764 |
Snippet | Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting the vertex set to those binary strings which do not contain consecutive 1s.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 56 |
SubjectTerms | Apexes Companion stars Cubes Degree sequence Fibonacci cube Fibonacci numbers Fibonacci-run graph Generating function Graph theory Graphs Hypercubes Sequences Strings Vertex sets |
Title | Fibonacci-run graphs II: Degree sequences |
URI | https://dx.doi.org/10.1016/j.dam.2021.05.018 https://www.proquest.com/docview/2549054117 |
Volume | 300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhEJ70cakH4zNWa7MHL5qsBRbYXW9NtWk17UWb9EZYYJMaU5s-rv52oWXrI7EHj0sWsvsB883A8AFwheLY6cyloUx0HFrGR6HkMQmjnOkoTzQhxi0NDIa8N6KPYzYuQac4C-PSKr3t39j0tbX2JS2PZms2mbSerbPCLUGNiVMRRXFahiqJUs4qUG33n3rDbypSTiKtVqy7fG0zWLqlXvybh66pYttznQCmpTupTvBG2TP5i7h-mfA1L3UPYN87lEF7882HUDLTI9gbbNVYF8dw3Z1k1uFWahLOV9NgrVG9CPr9u-De2HDbBNt86hMYdR9eOr3QX5EQqoiwpeWXFDkNLcmJ5FIzRhQ2OGPU6IhRonGGc6XjnNi5irlUsbJ9IkmWYK4TrNLoFCrT96k5gwChXEY2GskyhSg1eSIJ5ZEltkwxqaiqAyr-XyivH-6usXgTRaLYq7CQCQeZQExYyOpws60y24hn7HqZFqCKHyNAWOO-q1qj6ADhp99CuKjX-qIYx-f_a_UCau7JJYZg1oDKcr4yl9b7WGZNKN9-4KYfY591UdHo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGSgD4hSFAhlYQAq1HR8JGypULbRdaKVulmM7UhAKVY-V346doxwSDKxJbCXvxe97z_78GYBLyLnTmYt8GWruW8SHvmQc-0FCdZCEGmPjpgaGI9abkMcpndZAp9oL42iVZewvYnoercsr7dKa7Vmatp9tssIsQE2xUxGFPNoAm4QG3PH6bt7RFw0pJ5DWqGZdPhcZLNiSUvqb-a6jatEzp39p6fapY1Toeoa_wdaPAJ6jUncX7JTppHdXvPEeqJlsH2wP11qsiwNw1U1jm24rlfrzVeblCtULr9-_9e6NLbaNt2ZTH4JJ92Hc6fnlAQm-CjBdWnSJoFPQkgxLJjWlWCGDYkqMDijBGsUoUZon2I5UxKTiynpE4jhETIdIRcERqGdvmTkGHoSJDGwtEscKEmKSUGLCAgtrsaJSEdUEsPp-oUr1cHeIxauoaGIvwppMOJMJSIU1WRNcr5vMCumMvx4mlVHFN_8LG9r_ataqHCDKwbcQrua1mShC_OR_vV6Ard54OBCD_ujpFDTcHUcRQbQF6sv5ypzZPGQZn-f_2QcrjNKz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibonacci-run+graphs+II%3A+Degree+sequences&rft.jtitle=Discrete+Applied+Mathematics&rft.au=E%C4%9Fecio%C4%9Flu%2C+%C3%96mer&rft.au=Ir%C5%A1i%C4%8D%2C+Vesna&rft.date=2021-09-15&rft.pub=Elsevier+BV&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=300&rft.spage=56&rft_id=info:doi/10.1016%2Fj.dam.2021.05.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |