Techniques to enhance the photoacoustic signal for trace gas sensing: A review
Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acou...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 345; p. 113807 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.10.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2022.113807 |
Cover
Loading…
Abstract | Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed.
[Display omitted] |
---|---|
AbstractList | Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed.
[Display omitted] Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed. |
ArticleNumber | 113807 |
Author | Wu, Jinghua Li, Qian Wang, Fupeng Sun, Jiachen Xue, Qingsheng Zhu, Cunguang Liang, Rui Wang, Qiang Cheng, Yaopeng |
Author_xml | – sequence: 1 givenname: Fupeng surname: Wang fullname: Wang, Fupeng email: wfp@ouc.edu.cn organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 2 givenname: Yaopeng surname: Cheng fullname: Cheng, Yaopeng organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 3 givenname: Qingsheng surname: Xue fullname: Xue, Qingsheng organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 4 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, 130033, China – sequence: 5 givenname: Rui surname: Liang fullname: Liang, Rui organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 6 givenname: Jinghua surname: Wu fullname: Wu, Jinghua organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 7 givenname: Jiachen surname: Sun fullname: Sun, Jiachen organization: School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China – sequence: 8 givenname: Cunguang surname: Zhu fullname: Zhu, Cunguang organization: School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China – sequence: 9 givenname: Qian surname: Li fullname: Li, Qian organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China |
BookMark | eNp9kL1OwzAYRS1UJNrCA7BZYk7wTxzHMFUVf1IFS5kt13EaR8Uutgvi7XEVJoZO33LPp3vPDEycdwaAa4xKjHB9O5TRqZIgQkqMaYP4GZjihtOColpMwBQJUhUVqfgFmMU4IIQo5XwKXtdG985-HkyEyUPjeuW0gak3cN_75JX2h5ishtFundrBzgeYgsqRrYowGhet297BBQzmy5rvS3DeqV00V393Dt4fH9bL52L19vSyXKwKTQlLBe90Q8VGVZXQHdmQVgmNkBaMab1Rdc1aQhRqcNPQSnNWtZiRTtUdqghmWCA6Bzfj333wx-5JDv4QcsEoCaeCi4YIllN8TOngYwymk9omlax3eYLdSYzkUZ4cZJYnj_LkKC-T-B-5D_ZDhZ-TzP3ImDw8ywgyamuyzdYGo5NsvT1B_wKUdYhh |
CitedBy_id | crossref_primary_10_1109_RBME_2024_3481360 crossref_primary_10_1016_j_infrared_2025_105711 crossref_primary_10_3390_photonics10020127 crossref_primary_10_1016_j_infrared_2023_105037 crossref_primary_10_3389_fphy_2025_1547563 crossref_primary_10_3390_photonics10070835 crossref_primary_10_1016_j_infrared_2024_105707 crossref_primary_10_1364_OE_525307 crossref_primary_10_1007_s00340_024_08253_6 crossref_primary_10_1109_JSEN_2024_3381300 crossref_primary_10_1364_OL_534842 crossref_primary_10_1016_j_measurement_2023_112533 crossref_primary_10_1364_OPTCON_483779 crossref_primary_10_3788_AOSOL240446 crossref_primary_10_3390_photonics10040386 crossref_primary_10_1021_acs_analchem_3c01476 crossref_primary_10_1109_JSEN_2024_3366520 crossref_primary_10_1109_JSEN_2023_3246508 crossref_primary_10_3788_gzxb20245308_0830001 crossref_primary_10_1016_j_measurement_2024_116288 crossref_primary_10_1080_05704928_2023_2196729 crossref_primary_10_3390_opt5020015 crossref_primary_10_3788_COL202523_023001 crossref_primary_10_1016_j_measurement_2024_115154 crossref_primary_10_1016_j_sna_2024_116179 crossref_primary_10_1038_s41377_023_01353_6 crossref_primary_10_1016_j_snb_2024_136643 crossref_primary_10_1109_JLT_2023_3262774 crossref_primary_10_1109_TIM_2023_3244222 crossref_primary_10_3390_s23167150 crossref_primary_10_1016_j_sna_2024_115939 crossref_primary_10_1021_acs_analchem_3c00318 crossref_primary_10_1080_00032719_2024_2403020 crossref_primary_10_1016_j_pacs_2023_100559 crossref_primary_10_1109_JSEN_2024_3488816 crossref_primary_10_1016_j_snr_2024_100210 crossref_primary_10_1080_05704928_2024_2359933 crossref_primary_10_3390_s23115107 crossref_primary_10_1016_j_pacs_2024_100644 crossref_primary_10_29026_oea_2024_230230 crossref_primary_10_3390_s24072105 crossref_primary_10_1063_5_0214874 crossref_primary_10_1364_OE_503454 crossref_primary_10_1109_JSEN_2024_3435438 crossref_primary_10_1364_OL_520154 crossref_primary_10_3390_electronics13091786 crossref_primary_10_1109_TIM_2023_3343828 crossref_primary_10_1109_JSEN_2023_3323320 crossref_primary_10_1109_JSEN_2025_3536007 crossref_primary_10_1016_j_measurement_2024_116464 crossref_primary_10_1021_acs_analchem_4c01527 crossref_primary_10_1109_TIM_2023_3328691 |
Cites_doi | 10.1039/C4AN01158A 10.1007/s00340-017-6799-3 10.1063/1.5003121 10.1016/j.snb.2012.08.014 10.1007/s00340-013-5713-x 10.1063/1.1353198 10.1063/1.4930995 10.1016/j.pacs.2022.100330 10.1364/OL.452085 10.1016/j.snb.2018.04.139 10.1021/acs.analchem.0c02772 10.3390/s91209616 10.1016/j.snb.2017.03.009 10.1364/OE.27.007435 10.1063/1.3461061 10.1007/BF01828745 10.1063/1.1464653 10.3390/s16020214 10.1021/acs.analchem.1c04309 10.1007/s00340-012-5250-z 10.1063/1.4987008 10.1016/j.measurement.2018.11.060 10.1364/OL.449822 10.1364/OL.44.002562 10.1364/OL.41.000978 10.1063/1.4974483 10.1364/OE.25.029356 10.1039/C3AN01219K 10.1016/j.optlaseng.2021.106792 10.3390/s140406165 10.1364/OL.39.002479 10.1364/OL.44.001924 10.1364/OL.43.005094 10.1007/s00340-017-6640-z 10.1007/s00340-013-5379-4 10.1016/j.optlastec.2019.105894 10.1364/OE.424387 10.1016/j.microc.2004.07.026 10.1364/OL.35.003709 10.1364/OL.34.001594 10.1007/BF00693973 10.1364/OL.44.003741 10.1364/AO.17.001806 10.1016/j.snb.2018.04.123 10.1364/OL.42.002114 10.1016/S0030-4018(02)01815-1 10.1364/OE.14.001106 10.1016/j.snb.2017.09.039 10.1364/OL.27.001902 10.1364/OL.44.001142 10.1016/j.pacs.2019.100158 10.1038/s41598-018-20087-9 10.1109/LPT.2006.873486 10.1016/0022-4073(88)90118-5 10.1016/j.snb.2015.06.049 10.1016/j.infrared.2020.103386 10.1007/s00340-012-4988-7 10.1063/1.1653222 10.1364/OE.21.010240 10.1080/05704928.2020.1760875 10.3390/fib7020016 10.1016/j.snb.2015.12.096 10.1007/s10765-015-1902-7 10.1016/j.optlastec.2020.106612 10.1063/1.4962810 10.1063/1.4915324 10.1364/OE.25.017541 10.1364/OPEX.13.002453 10.1016/j.optlastec.2019.105751 10.1007/s00340-010-4165-9 10.5194/amt-12-1905-2019 10.1364/OL.420199 10.1007/3-540-36491-9_6 10.1364/OE.20.009187 10.1016/j.sna.2018.02.025 10.1016/j.optcom.2012.07.056 10.1364/AO.42.002119 10.1063/1.4812438 10.1109/JSEN.2019.2910665 10.1007/s00340-010-4072-0 10.1364/OE.27.004271 10.3390/s19061362 10.1364/OL.40.002933 10.1063/5.0047963 10.1364/OL.38.000434 10.3390/s16020251 10.1364/OE.27.014163 10.1109/JMEMS.2014.2327916 10.1364/OE.26.032103 10.1364/OE.460134 10.1063/1.2000341 10.1016/j.snb.2017.03.058 10.1364/OL.41.004955 10.1364/OL.432308 10.1063/1.368001 10.1364/OE.21.001008 10.1016/j.pacs.2020.100216 10.1063/1.4867268 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Oct 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2022 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2022.113807 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2022_113807 S0924424722004423 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-7fc839ba449cf2b2da9c00c955ccba665d22a0818834c754d152fa6f042151903 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Sun Jul 13 03:36:16 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Tue Jul 01 02:24:53 EDT 2025 Fri Feb 23 02:37:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CRDS Resonator PAS EDFL FLI-PAS FBG PZT Photoacoustic spectroscopy Cantilever CEPAS TDLAS ASE Photoacoustic enhancement MDL SNR EC-PAS QEPAS IC-PAS Fiber-optic microphone EDFA Custom tuning fork NDIR WMS RAM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-7fc839ba449cf2b2da9c00c955ccba665d22a0818834c754d152fa6f042151903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2739798295 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2739798295 crossref_citationtrail_10_1016_j_sna_2022_113807 crossref_primary_10_1016_j_sna_2022_113807 elsevier_sciencedirect_doi_10_1016_j_sna_2022_113807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ma, Feng, Qiao, Zhao, Gao, Wang (bib90) 2022; 30 Ma, He, Tong, Yu, Tittel (bib89) 2018; 26 Hirschmann, Lehtinen, Uotila, Ojala, Keiski (bib98) 2013; 111 Miklós, Hess, Bozóki (bib13) 2001; 72 Borri, Patimisco, Sampaolo, Beere, Ritchie, Vitiello, Scamarcio, Spagnolo (bib83) 2013; 103 Werle (bib12) 2011; 102 Debord, Amrani, Vincetti, Gérôme, Benabid (bib51) 2019; 7 Patimisco, Borri, Sampaolo, Beere, Ritchie, Vitiello (bib84) 2014; 139 Sinisalo, Karlsson (bib93) 2014; 48 Karhu, Tomberg, Vieira, Genoud, Hanninen, Vainio, Metsala, Hieta, Bell, Halonen (bib16) 2019; 44 Wu, Sampaolo, Dong, Patimisco, Liu, Zheng, Yin, Ma, Zhang, Yin, Spagnolo, Jia, Tittel (bib58) 2015; 107 Zheng, Dong, Sampaolo, Wu, Patimisco, Yin, Ma, Zhang, Yin, Spagnolo, Jia, Tittel (bib65) 2016; 41 Kinsley, Frey, Coppens, Sanders (bib53) 1982 Spagnolo, Patimisco, Sampaolo, Giglio, Vitiello, Scamarcio, Tittel (bib10) 2016; 9934 Loewenstein (bib4) 1988; 40 Webber, Pushkarsky, Patel (bib22) 2003; 42 Zhang, Chang, Cong, Feng, Wang, Sun (bib48) 2019; 120 Jacek, Aleksander, Arkadiusz, Mid-Infrared (bib37) 2017; 17 Röper, Chen, Hess (bib39) 1987; 43 Yi, Chen, Sun, Liu, Tan, Gao (bib79) 2012; 20 Mordmueller, Schade (bib11) 2017; 123 Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib20) 2017; 247 Spagnolo, Patimisco, Borri, Sampaolo, Scamarcio, Vitiello, Beere, Ritchie (bib9) 2014; 8993 Starovoitov, Kischkat, Semtsiv, Masselink (bib41) 2016; 41 Wang, Wang, Zhang, Wei, Li, Ren (bib38) 2019; 44 Peltola, Vainio, Hieta (bib103) 2013; 21 Ma, Lewicki, Razeghi, Tittel (bib18) 2013; 21 Hu, Zheng, Zheng, Wang, Tittel (bib77) 2019; 44 Zhou, Davide (bib115) 2019; 44 Yi, Chen, Vicet, Cao, Gao, Nguyen-ba, Jahjah, Rouillard, Nähle, Fischer (bib80) 2014; 116 Glauvitz, Coutu, Medvedev, Petkie (bib96) 2015; 24 Hao, Qiang, Wu, Qi, Feng, Zhu, Hong (bib31) 2002; 73 Patimisco, Borri, Sampaolo, Beere, Ritchie, Vitiello, Scamarcio, Spagnolo (bib59) 2014; 13 Chen, Yu, Gong, Guo, Qu (bib109) 2018; 268 Duquesnoy, Aoust, Melkonian, Lévy, Raybaut, Godard (bib60) 2019; 19 Rousseau, Loghmari, Bahriz, Chamassi, Teissier, Baranov, Vicet (bib75) 2019; 27 Ma, Hong, Qiao, Lang, Liu (bib81) 2022; 47 Wei, Zhu, Lin, Tian, Xu, Nong (bib105) 2015; 36 Bozóki, Sneider, Szabó, Miklós, Serényi, Nagy, Fehér (bib40) 1996; 63 Wang, Xue, Chang, Wang, Sun, Luan, Li (bib49) 2021; 134 Guo, Chen, Li, Xu, Zhang, Wang, Li, Ma, Gong, Yu (bib108) 2022; 94 Zhang, Chang, Cong, Feng, Wang, Wang, Sun (bib47) 2019; 19 Patimisco, Scamarcio, Tittel, Spagnolo (bib1) 2014; 14 Patimisco, Sampaolo, Dong, Giglio, Scamarcio, Tittel, Spagnolo (bib85) 2016; 227 Reid, Garside, Shewchun, El-Sherbiny, Ballik (bib5) 1978; 17 Elia, Lugarà, Di Franco, Spagnolo (bib14) 2009; 9 Yi, Chen, Guo, Sun, Liu, Tan, Zhang, Gao (bib61) 2012; 108 Liu, Guo, Yi, Chen, Zhang, Gao (bib73) 2009; 34 Ma, Dang (bib33) 2020; 109 Pourhashemi, Farrell, Cohen, Speck, DenBaars, Nakamura (bib19) 2015; 106 Delgado-Pinar, Zalvidea, Díez, Pérez-Millán, Andrés (bib46) 2006; 14 Ma, He, Zhang, Yu, Zhang, Sun, Tittel (bib28) 2017; 110 Sun, Zifarelli, Wu, Russo, Li, Patimisco, Dong, Spagnolo (bib87) 2020; 92 Chen, Deng, Guo, Luo, Liu, Zhang, Ma, Zhu, Gong, Peng, Yu (bib110) 2020; 123 Song, Oh, Jung, Kim, Cha (bib29) 2005; 80 Cheng, Tang, Zhang, Li, Hu, Zhang, Mao, Xiao (bib104) 2021; 70 Rossi, Buffa, Scotoni, Bassi, Iannotta, Boschetti (bib34) 2005; 87 Cao, Jin, Ho, Ma (bib106) 2013; 38 Laurila, Cattaneo, Koskinen, Kauppinen, Hernberg (bib97) 2005; 13 Lv, Zheng, Liu, Yang, Wu, Lin, Montano, Zhu, Yu, Kan, Chen, Tittel (bib82) 2021; 46 Coutu, Medvedev, Petkie (bib95) 2016; 6 Hayden, Giglio, Sampaolo, Spagnolo, Lendl (bib88) 2022; 25 Gong, Wu, Jiang, Li, Gao, Guo, Ma, Chen, Mei, Peng, Yu (bib56) 2021; 29 Russo, Duchowicz, Mora, Cruz, Andrés (bib45) 2002; 210 Cao, Jin, Ho (bib64) 2012; 174 Wang, Wang, Ren, Patimisco, Sampaolo, Spagnolo (bib43) 2018; 268 Sheng, Iannuzzi (bib114) 2019; 90 Hippler, Mohr, Keen, McNaghten (bib2) 2010; 133 Wu, Dong, Zheng, Liu, Yin, Ma, Zhang, Yin, Jia, Tittel (bib25) 2015; 221 Zhou, Slaman, Iannuzzi (bib112) 2017; 25 Dupriez, Piper, Malinowski, Sahu, Ibsen, Thomsen, Jeong, Hickey, Zervas, Nilsson, Richardson (bib42) 2006; 18 Mikkonen, Amiot, Aalto, Patokoski, Genty, Toivonen (bib99) 2018; 43 Borri, Patimisco, Galli, Mazzotti, Giusfredi, Akikusa, Yamanishi, Scamarcio, De Natale, Spagnolo (bib17) 2014; 104 Fatima, Hausmaninger, Tomberg, Karhu, Vainio, Hieta, Genoud (bib101) 2021; 46 Zheng, Liu, Lin, Liu, Gu, Li, Huang, Wu, Dong, Zhu, Tang, Guan, Lu, Zhong, Fang, Luo, Zhang, Yu, Chen (bib91) 2020; 17 Patimisco, Borri, Galli, Mazzotti, Giusfredi, Akikusa, Yamanishi, Scamarcio, Nataleb, Spagnolo (bib36) 2015; 140 Liu, Chang, Lian, Liu, Wang, Qin (bib70) 2016; 16 Bell (bib6) 1880; 9 J. Uotila, Use of the Optical Cantilever Microphone in Photoacoustic Spectroscopy, TURUN YLIOPISTO, Turku, Finland, 2009. Kosterev, Bakhirkin, Curl, Tittel (bib57) 2002; 27 Peltola, Hieta, Vainio (bib102) 2015; 40 Pan, Dong, Wu, Ma, Zhang, Yin, Xiao, Jia, Tittel (bib30) 2019; 12 Dong, Kosterev, Thomazy, Tittel (bib63) 2010; 100 Yi, Liu, Sun, Zhang, Gao (bib74) 2012; 285 Wang, Chang, Zhang, Qin, Zhu (bib62) 2019; 135 Yin, Dong, Wu, Ma, Zhang, Yin, Xiao, Jia, Tittel (bib23) 2017; 111 Dong, Wu, Zheng, Liu, Liu, Jiang, Zhang, Ma, Ren, Yin, Jia, Tittel (bib69) 2014; 39 Giglio, Sampaolo, Patimisco, Zheng, Wu, Dong, Tittel, Spagnolo (bib68) 2017; 10111 Hinkley (bib3) 1970; 16 Ma, He, Tong, Yu, Tittel (bib27) 2017; 25 Fiedler, Hess (bib54) 1989 Aoust, Levy, Raybaut, Godard, Melkonian, Lefebvre (bib72) 2017; 123 Li, Guo, Zhang, Li, Yang, Chen (bib111) 2022; 149 Gong, Gao, Mei, Chen, Chen, Zhang, Peng, Yu (bib55) 2021; 21 Liang, Qiao, Ma (bib78) 2022; 47 Patimisco, Sampaolo, Zheng, Dong, Tittel, Spagnolo (bib67) 2017; 2 Gong, Chen, Yang, Zhou, Peng, Yu (bib107) 2017; 247 Lu, Ikehara, Zhang, Mihara, Maeda (bib113) 2007 Garca-Valenzuela, Villatoro (bib94) 1998; 84 Ma, Qiao, He, Li, Zhang, Yu, Tittel (bib32) 2019; 27 Rück, Bierl, Matysik (bib76) 2017; 255 Morse, Ingard (bib52) 1986 Giglio, Elefante, Patimisco, Sampaolo, Sgobba, Rossmadl, Mackowiak, Wu, Tittel, Dong, Spagnolo (bib86) 2019; 27 Yang, Chen, Wang (bib7) 2021; 56 Kachanov, Koulikov, Tittel (bib35) 2013; 110 Zheng, Dong, Sampaolo, Patimisco, Ma, Zhang, Yin, Xiao, Spagnolo, Jia, Tittel (bib66) 2016; 109 Chen, Gong, Yu (bib24) 2018; 274 Becker, Olsson, Simpson (bib21) 1999 Cui, Wu, Dong, Chen, Tittel (bib71) 2021; 118 Tomberg, Vainio, Hieta, Halonen (bib100) 2018; 8 Wang, Wang, Chang, Ren (bib15) 2017; 42 Sampaolo, Patimisco, Giglio, Zifarelli, Wu, Dong, Spagnolo (bib8) 2021 M. Pollnau, S.D. Jackson, Mid-Infrared Fiber Lasers, in: I.T. Sorokina, K.L. Vodopyanov (Eds.), Solid-State Mid-Infrared Laser Sources, Springer, Berlin, Heidelberg, 2003, pp. 225–261. Luo, Zhou, Weng, Huang, Xu, Ye, Cai (bib44) 2010; 35 He, Ma, Tong, Yu, Peng, Gao, Tittel (bib26) 2017; 111 Elia (10.1016/j.sna.2022.113807_bib14) 2009; 9 Ma (10.1016/j.sna.2022.113807_bib32) 2019; 27 Gong (10.1016/j.sna.2022.113807_bib107) 2017; 247 Aoust (10.1016/j.sna.2022.113807_bib72) 2017; 123 Sun (10.1016/j.sna.2022.113807_bib87) 2020; 92 Zheng (10.1016/j.sna.2022.113807_bib91) 2020; 17 Patimisco (10.1016/j.sna.2022.113807_bib59) 2014; 13 Liang (10.1016/j.sna.2022.113807_bib78) 2022; 47 Patimisco (10.1016/j.sna.2022.113807_bib85) 2016; 227 Becker (10.1016/j.sna.2022.113807_bib21) 1999 Gong (10.1016/j.sna.2022.113807_bib55) 2021; 21 Ma (10.1016/j.sna.2022.113807_bib18) 2013; 21 Rossi (10.1016/j.sna.2022.113807_bib34) 2005; 87 Wang (10.1016/j.sna.2022.113807_bib62) 2019; 135 Gong (10.1016/j.sna.2022.113807_bib56) 2021; 29 Hirschmann (10.1016/j.sna.2022.113807_bib98) 2013; 111 Yin (10.1016/j.sna.2022.113807_bib20) 2017; 247 Patimisco (10.1016/j.sna.2022.113807_bib67) 2017; 2 Spagnolo (10.1016/j.sna.2022.113807_bib10) 2016; 9934 Guo (10.1016/j.sna.2022.113807_bib108) 2022; 94 Borri (10.1016/j.sna.2022.113807_bib83) 2013; 103 Patimisco (10.1016/j.sna.2022.113807_bib1) 2014; 14 Zheng (10.1016/j.sna.2022.113807_bib66) 2016; 109 Wang (10.1016/j.sna.2022.113807_bib43) 2018; 268 Wang (10.1016/j.sna.2022.113807_bib49) 2021; 134 Cao (10.1016/j.sna.2022.113807_bib106) 2013; 38 Chen (10.1016/j.sna.2022.113807_bib109) 2018; 268 Ma (10.1016/j.sna.2022.113807_bib89) 2018; 26 Pourhashemi (10.1016/j.sna.2022.113807_bib19) 2015; 106 Yi (10.1016/j.sna.2022.113807_bib80) 2014; 116 Borri (10.1016/j.sna.2022.113807_bib17) 2014; 104 Karhu (10.1016/j.sna.2022.113807_bib16) 2019; 44 Spagnolo (10.1016/j.sna.2022.113807_bib9) 2014; 8993 Fiedler (10.1016/j.sna.2022.113807_bib54) 1989 10.1016/j.sna.2022.113807_bib92 Morse (10.1016/j.sna.2022.113807_bib52) 1986 Reid (10.1016/j.sna.2022.113807_bib5) 1978; 17 Giglio (10.1016/j.sna.2022.113807_bib86) 2019; 27 Zhang (10.1016/j.sna.2022.113807_bib48) 2019; 120 Patimisco (10.1016/j.sna.2022.113807_bib84) 2014; 139 Liu (10.1016/j.sna.2022.113807_bib70) 2016; 16 Ma (10.1016/j.sna.2022.113807_bib90) 2022; 30 Werle (10.1016/j.sna.2022.113807_bib12) 2011; 102 Hippler (10.1016/j.sna.2022.113807_bib2) 2010; 133 Peltola (10.1016/j.sna.2022.113807_bib102) 2015; 40 Glauvitz (10.1016/j.sna.2022.113807_bib96) 2015; 24 Yin (10.1016/j.sna.2022.113807_bib23) 2017; 111 Chen (10.1016/j.sna.2022.113807_bib110) 2020; 123 Sinisalo (10.1016/j.sna.2022.113807_bib93) 2014; 48 Mikkonen (10.1016/j.sna.2022.113807_bib99) 2018; 43 Fatima (10.1016/j.sna.2022.113807_bib101) 2021; 46 Rück (10.1016/j.sna.2022.113807_bib76) 2017; 255 Miklós (10.1016/j.sna.2022.113807_bib13) 2001; 72 He (10.1016/j.sna.2022.113807_bib26) 2017; 111 Duquesnoy (10.1016/j.sna.2022.113807_bib60) 2019; 19 Yi (10.1016/j.sna.2022.113807_bib61) 2012; 108 Luo (10.1016/j.sna.2022.113807_bib44) 2010; 35 Zhou (10.1016/j.sna.2022.113807_bib112) 2017; 25 Ma (10.1016/j.sna.2022.113807_bib28) 2017; 110 Starovoitov (10.1016/j.sna.2022.113807_bib41) 2016; 41 Giglio (10.1016/j.sna.2022.113807_bib68) 2017; 10111 Russo (10.1016/j.sna.2022.113807_bib45) 2002; 210 Zhang (10.1016/j.sna.2022.113807_bib47) 2019; 19 Kachanov (10.1016/j.sna.2022.113807_bib35) 2013; 110 Li (10.1016/j.sna.2022.113807_bib111) 2022; 149 Wu (10.1016/j.sna.2022.113807_bib25) 2015; 221 Delgado-Pinar (10.1016/j.sna.2022.113807_bib46) 2006; 14 Wang (10.1016/j.sna.2022.113807_bib38) 2019; 44 Rousseau (10.1016/j.sna.2022.113807_bib75) 2019; 27 Cheng (10.1016/j.sna.2022.113807_bib104) 2021; 70 Loewenstein (10.1016/j.sna.2022.113807_bib4) 1988; 40 Song (10.1016/j.sna.2022.113807_bib29) 2005; 80 Wu (10.1016/j.sna.2022.113807_bib58) 2015; 107 Lv (10.1016/j.sna.2022.113807_bib82) 2021; 46 Ma (10.1016/j.sna.2022.113807_bib81) 2022; 47 Sheng (10.1016/j.sna.2022.113807_bib114) 2019; 90 Peltola (10.1016/j.sna.2022.113807_bib103) 2013; 21 Zheng (10.1016/j.sna.2022.113807_bib65) 2016; 41 Dong (10.1016/j.sna.2022.113807_bib69) 2014; 39 Yi (10.1016/j.sna.2022.113807_bib74) 2012; 285 Hinkley (10.1016/j.sna.2022.113807_bib3) 1970; 16 Yang (10.1016/j.sna.2022.113807_bib7) 2021; 56 Wang (10.1016/j.sna.2022.113807_bib15) 2017; 42 Lu (10.1016/j.sna.2022.113807_bib113) 2007 Chen (10.1016/j.sna.2022.113807_bib24) 2018; 274 Röper (10.1016/j.sna.2022.113807_bib39) 1987; 43 Kosterev (10.1016/j.sna.2022.113807_bib57) 2002; 27 Kinsley (10.1016/j.sna.2022.113807_bib53) 1982 Dong (10.1016/j.sna.2022.113807_bib63) 2010; 100 Hao (10.1016/j.sna.2022.113807_bib31) 2002; 73 Yi (10.1016/j.sna.2022.113807_bib79) 2012; 20 Jacek (10.1016/j.sna.2022.113807_bib37) 2017; 17 Tomberg (10.1016/j.sna.2022.113807_bib100) 2018; 8 Sampaolo (10.1016/j.sna.2022.113807_bib8) 2021 10.1016/j.sna.2022.113807_bib50 Bozóki (10.1016/j.sna.2022.113807_bib40) 1996; 63 Wei (10.1016/j.sna.2022.113807_bib105) 2015; 36 Cui (10.1016/j.sna.2022.113807_bib71) 2021; 118 Zhou (10.1016/j.sna.2022.113807_bib115) 2019; 44 Pan (10.1016/j.sna.2022.113807_bib30) 2019; 12 Patimisco (10.1016/j.sna.2022.113807_bib36) 2015; 140 Hu (10.1016/j.sna.2022.113807_bib77) 2019; 44 Laurila (10.1016/j.sna.2022.113807_bib97) 2005; 13 Coutu (10.1016/j.sna.2022.113807_bib95) 2016; 6 Bell (10.1016/j.sna.2022.113807_bib6) 1880; 9 Hayden (10.1016/j.sna.2022.113807_bib88) 2022; 25 Garca-Valenzuela (10.1016/j.sna.2022.113807_bib94) 1998; 84 Dupriez (10.1016/j.sna.2022.113807_bib42) 2006; 18 Debord (10.1016/j.sna.2022.113807_bib51) 2019; 7 Ma (10.1016/j.sna.2022.113807_bib33) 2020; 109 Mordmueller (10.1016/j.sna.2022.113807_bib11) 2017; 123 Webber (10.1016/j.sna.2022.113807_bib22) 2003; 42 Liu (10.1016/j.sna.2022.113807_bib73) 2009; 34 Ma (10.1016/j.sna.2022.113807_bib27) 2017; 25 Cao (10.1016/j.sna.2022.113807_bib64) 2012; 174 |
References_xml | – volume: 39 start-page: 2479 year: 2014 end-page: 2482 ident: bib69 article-title: Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – year: 1982 ident: bib53 article-title: Fundamentals of Acoustics – volume: 8 start-page: 1848 year: 2018 ident: bib100 article-title: Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy publication-title: Sci. Rep. – volume: 87 year: 2005 ident: bib34 article-title: Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity publication-title: Appl. Phys. Lett. – volume: 111 start-page: 603 year: 2013 end-page: 610 ident: bib98 article-title: Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source publication-title: Appl. Phys. B – volume: 106 year: 2015 ident: bib19 article-title: High-power blue laser diodes with indium tin oxide cladding on semipolar GaN substrates publication-title: Appl. Phys. Lett. – volume: 26 start-page: 32103 year: 2018 end-page: 32110 ident: bib89 article-title: Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection publication-title: Opt. Express – volume: 120 year: 2019 ident: bib48 article-title: Scanned-wavelength intra-cavity QEPAS sensor with injection seeding technique for C2H2 detection publication-title: Opt. Laser Technol. – volume: 210 start-page: 361 year: 2002 end-page: 366 ident: bib45 article-title: High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator publication-title: Opt. Commun. – volume: 104 year: 2014 ident: bib17 article-title: Intracavity quartz-enhanced photoacoustic sensor publication-title: Appl. Phys. Lett. – start-page: 85 year: 1989 end-page: 123 ident: bib54 article-title: Laser Excitation of Acoustic Modes in Cylindrical and Spherical Resonators: Theory and Applications publication-title: Photoacoustic, Photothermal and Photochemical Processes in Gases – volume: 36 start-page: 1116 year: 2015 end-page: 1122 ident: bib105 article-title: All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment publication-title: Int. J. Thermophys. – volume: 109 year: 2016 ident: bib66 article-title: Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone publication-title: Appl. Phys. Lett. – volume: 90 year: 2019 ident: bib114 article-title: A fiber-tip photoacoustic sensor for in situ trace gas detection publication-title: Rev. Sci. Instrum. – volume: 29 start-page: 13600 year: 2021 end-page: 13609 ident: bib56 article-title: All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection publication-title: Opt. Express – volume: 44 start-page: 3741 year: 2019 end-page: 3744 ident: bib115 article-title: Immersion photoacoustic spectrometer (iPAS) for arcing fault detection in power transformers publication-title: Opt. Lett. – volume: 100 start-page: 627 year: 2010 end-page: 635 ident: bib63 article-title: QEPAS spectrophones: design, optimization, and performance publication-title: Appl. Phys. B – volume: 94 start-page: 1151 year: 2022 end-page: 1157 ident: bib108 article-title: High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption publication-title: Anal. Chem. – volume: 19 start-page: 6181 year: 2019 end-page: 6186 ident: bib47 article-title: Pptv-level intra-cavity QEPAS sensor for acetylene detection using a high power Q-switched fiber laser publication-title: IEEE Sens. J. – volume: 84 start-page: 58 year: 1998 end-page: 63 ident: bib94 article-title: Noise in optical measurements of cantilever deflections publication-title: J. Appl. Phys. – volume: 8993 start-page: 309 year: 2014 end-page: 319 ident: bib9 article-title: THz quartz-enhanced photoacoustic sensor employing a quantum cascade laser source publication-title: Quant. Sens. Nanophotonic Devices XI – volume: 17 start-page: 1806 year: 1978 end-page: 1810 ident: bib5 article-title: High sensitivity point monitoring of atmospheric gases employing tunable diode lasers publication-title: Appl. Opt. – volume: 19 start-page: 1362 year: 2019 ident: bib60 article-title: Quartz enhanced photoacoustic spectroscopy based on a custom quartz tuning fork publication-title: Sensors – volume: 44 start-page: 1142 year: 2019 end-page: 1145 ident: bib16 article-title: Broadband photoacoustic spectroscopy of publication-title: Opt. Lett. – volume: 42 start-page: 2119 year: 2003 end-page: 2126 ident: bib22 article-title: Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers publication-title: Appl. Opt. – volume: 21 start-page: 1008 year: 2013 ident: bib18 article-title: QEPAS based ppb-level detection of CO and N publication-title: Opt. Express – volume: 123 start-page: 224 year: 2017 ident: bib11 article-title: U. Willer, QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases publication-title: Appl. Phys. B – volume: 17 year: 2020 ident: bib91 article-title: Frank K. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks publication-title: Photoacoustics – volume: 44 start-page: 1924 year: 2019 end-page: 1927 ident: bib38 article-title: Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking publication-title: Opt. Lett. – reference: M. Pollnau, S.D. Jackson, Mid-Infrared Fiber Lasers, in: I.T. Sorokina, K.L. Vodopyanov (Eds.), Solid-State Mid-Infrared Laser Sources, Springer, Berlin, Heidelberg, 2003, pp. 225–261. – volume: 35 start-page: 3709 year: 2010 end-page: 3711 ident: bib44 article-title: Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser publication-title: Opt. Lett. – volume: 63 start-page: 399 year: 1996 end-page: 401 ident: bib40 article-title: Intracavity photoacoustic gas detection with an external cavity diode laser publication-title: Appl. Phys. B – volume: 25 year: 2022 ident: bib88 article-title: Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv – Level sensitivity using a T-shaped custom tuning fork publication-title: Photoacoustics – volume: 111 year: 2017 ident: bib26 article-title: Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy publication-title: Appl. Phys. Lett. – volume: 9934 start-page: 43 year: 2016 end-page: 50 ident: bib10 article-title: New developments in THz quartz enhanced photoacoustic spectroscopy, Terahertz Emitters publication-title: Receivers, and Applications VII – volume: 134 year: 2021 ident: bib49 article-title: Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection publication-title: Opt. Laser Technol. – volume: 135 start-page: 376 year: 2019 end-page: 384 ident: bib62 article-title: Pivotal techniques evaluation in QEPAS system for engineering applications publication-title: Measurement – volume: 9 start-page: 9616 year: 2009 end-page: 9628 ident: bib14 article-title: Photoacoustic techniques for trace gas sensing based on semiconductor laser sources publication-title: Sensors – volume: 16 start-page: 214 year: 2016 ident: bib70 article-title: Quartz-enhanced photoacoustic spectroscopy with right-angle prism publication-title: Sensors – volume: 27 start-page: 4271 year: 2019 end-page: 4280 ident: bib86 article-title: Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone publication-title: Opt. Express – volume: 40 start-page: 2933 year: 2015 end-page: 2936 ident: bib102 article-title: Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy publication-title: Opt. Lett. – volume: 268 start-page: 512 year: 2018 end-page: 518 ident: bib43 article-title: Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork publication-title: Sens. Actuators B-Chem. – volume: 73 start-page: 2079 year: 2002 ident: bib31 article-title: Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy publication-title: Rev. Sci. Instrum. – volume: 103 year: 2013 ident: bib83 article-title: Terahertz quartz enhanced photo-acoustic sensor publication-title: Appl. Phys. Lett. – volume: 107 year: 2015 ident: bib58 article-title: Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing publication-title: Appl. Phys. Lett. – volume: 24 start-page: 216 year: 2015 end-page: 223 ident: bib96 article-title: Terahertz photoacoustic spectroscopy using a MEMS cantilever sensor publication-title: J. Micro Syst. – volume: 43 start-page: 57 year: 1987 end-page: 59 ident: bib39 article-title: Intracavity photoacoustic resonance spectroscopy of C2H4 publication-title: Appl. Phys. B – volume: 7 start-page: 16 year: 2019 ident: bib51 article-title: Hollow-core fiber technology: the rising of “Gas Photonics publication-title: Fibers – volume: 21 start-page: 10240 year: 2013 end-page: 10250 ident: bib103 article-title: High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator publication-title: Opt. Express – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: bib104 article-title: Simultaneous detection of C₂H₂ and CO based on cantilever-enhanced photoacoustic spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 102 start-page: 313 year: 2011 end-page: 329 ident: bib12 article-title: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence publication-title: Appl. Phys. B – volume: 110 year: 2017 ident: bib28 article-title: Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork publication-title: Appl. Phys. Lett. – volume: 92 start-page: 13922 year: 2020 end-page: 13929 ident: bib87 article-title: Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork publication-title: Anal. Chem. – volume: 46 start-page: 2083 year: 2021 end-page: 2086 ident: bib101 article-title: Radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 111 year: 2017 ident: bib23 article-title: Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell publication-title: Appl. Phys. Lett. – volume: 9 start-page: 404 year: 1880 end-page: 426 ident: bib6 article-title: On the production and reproduction of sound by light publication-title: J. Soc. Telegr. Eng. – volume: 255 start-page: 2462 year: 2017 end-page: 2471 ident: bib76 article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO publication-title: Sens. Actuators B-Chem. – reference: J. Uotila, Use of the Optical Cantilever Microphone in Photoacoustic Spectroscopy, TURUN YLIOPISTO, Turku, Finland, 2009. – volume: 16 start-page: 351 year: 1970 end-page: 354 ident: bib3 article-title: High–resolution infrared spectroscopy with a tunable diode laser publication-title: Appl. Phys. Lett. – volume: 46 start-page: 3917 year: 2021 end-page: 3920 ident: bib82 article-title: Radial-cavity quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 25 start-page: 29356 year: 2017 end-page: 29364 ident: bib27 article-title: Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork publication-title: Opt. Express – volume: 247 start-page: 290 year: 2017 end-page: 295 ident: bib107 article-title: High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection publication-title: Sens. Actuators B-Chem. – volume: 274 start-page: 184 year: 2018 end-page: 188 ident: bib24 article-title: Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection publication-title: Sens. Actuators A-Phys. – volume: 34 start-page: 1594 year: 2009 end-page: 1596 ident: bib73 article-title: Off-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 27 start-page: 1902 year: 2002 end-page: 1904 ident: bib57 article-title: Quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 174 start-page: 24 year: 2012 end-page: 30 ident: bib64 article-title: Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy publication-title: Sens. Actuators B-Chem. – volume: 118 year: 2021 ident: bib71 article-title: Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell publication-title: Appl. Phys. Lett. – volume: 13 start-page: 2079 year: 2014 end-page: 2087 ident: bib59 article-title: A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser publication-title: Analyst – volume: 116 start-page: 423 year: 2014 end-page: 428 ident: bib80 article-title: T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode publication-title: Appl. Phys. B – volume: 221 start-page: 666 year: 2015 end-page: 672 ident: bib25 article-title: Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser publication-title: Sens. Actuators B-Chem. – volume: 41 start-page: 4955 year: 2016 end-page: 4958 ident: bib41 article-title: Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 μm publication-title: Opt. Lett. – volume: 43 start-page: 5094 year: 2018 end-page: 5097 ident: bib99 article-title: Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using supercontinuum publication-title: Opt. Lett. – volume: 110 start-page: 47 year: 2013 end-page: 56 ident: bib35 article-title: Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser publication-title: Appl. Phys. B – volume: 285 start-page: 5306 year: 2012 end-page: 5312 ident: bib74 article-title: Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor publication-title: Opt. Commun. – volume: 42 start-page: 2114 year: 2017 end-page: 2117 ident: bib15 article-title: Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing publication-title: Opt. Lett. – year: 1986 ident: bib52 article-title: Theoretical Acoustics – volume: 227 start-page: 539 year: 2016 end-page: 546 ident: bib85 article-title: Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing publication-title: Sens. Actuators B-Chem. – volume: 10111 year: 2017 ident: bib68 article-title: Single-tube on beam quartz-enhanced photoacoustic spectrophones exploiting a custom quartz tuning fork operating in the overtone mode publication-title: Quant. Sens. Nano Electron. Photonics XIV – volume: 6 start-page: 251 year: 2016 ident: bib95 article-title: Improved sensitivity MEMS cantilever sensor for terahertz photoacoustic spectroscopy publication-title: Sensors – volume: 41 start-page: 978 year: 2016 end-page: 981 ident: bib65 article-title: Single-tube on-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 20 start-page: 9187 year: 2012 end-page: 9196 ident: bib79 article-title: T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor publication-title: Opt. Express – volume: 40 start-page: 249 year: 1988 end-page: 256 ident: bib4 article-title: Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 27 start-page: 7435 year: 2019 end-page: 7446 ident: bib75 article-title: Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator publication-title: Opt. Express – volume: 17 year: 2017 ident: bib37 article-title: Trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy publication-title: Sensors – volume: 13 start-page: 2453 year: 2005 end-page: 2458 ident: bib97 article-title: Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection publication-title: Opt. Express – volume: 14 start-page: 6165 year: 2014 end-page: 6206 ident: bib1 article-title: Quartz-enhanced photoacoustic spectroscopy: a review publication-title: Sensors – volume: 47 start-page: 601 year: 2022 end-page: 604 ident: bib81 article-title: H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – start-page: 68001 year: 2007 ident: bib113 article-title: Mechanical quality factor of microcantilevers for mass sensing applications publication-title: Int. Soc. Opt. Photonics – volume: 30 start-page: 18836 year: 2022 end-page: 18844 ident: bib90 article-title: Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing publication-title: Opt. Express – volume: 27 start-page: 14163 year: 2019 end-page: 14172 ident: bib32 article-title: Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser publication-title: Opt. Express – volume: 21 year: 2021 ident: bib55 article-title: Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser publication-title: Photoacoustics – volume: 47 start-page: 1295 year: 2022 end-page: 1298 ident: bib78 article-title: Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode publication-title: Opt. Lett. – year: 1999 ident: bib21 article-title: Erbium-doped fiber amplifiers: fundamentals and technology publication-title: CA – volume: 140 start-page: 736 year: 2015 end-page: 743 ident: bib36 article-title: High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor publication-title: Analyst – volume: 108 start-page: 361 year: 2012 end-page: 367 ident: bib61 article-title: An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy publication-title: Appl. Phys. B – volume: 123 start-page: 63 year: 2017 ident: bib72 article-title: Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor publication-title: Appl. Phys. B – volume: 56 start-page: 143 year: 2021 end-page: 170 ident: bib7 article-title: A review of all-optical photoacoustic spectroscopy as a gas sensing method publication-title: Appl. Spectrosc. Rev. – year: 2021 ident: bib8 article-title: Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review publication-title: Anal. Chim. Acta – volume: 44 start-page: 2562 year: 2019 end-page: 2565 ident: bib77 article-title: Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. – volume: 25 start-page: 17541 year: 2017 end-page: 17548 ident: bib112 article-title: Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor publication-title: Opt. Express – volume: 109 year: 2020 ident: bib33 article-title: Corner cube prism-enhanced photoacoustic spectroscopy based gas sensing publication-title: Infrared Phys. Technol. – volume: 38 start-page: 434 year: 2013 end-page: 436 ident: bib106 article-title: Miniature fiber-tip photoacoustic spectrometer for trace gas detection publication-title: Opt. Lett. – volume: 133 year: 2010 ident: bib2 article-title: Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy publication-title: J. Chem. Phys. – volume: 48 start-page: 30 year: 2014 end-page: 34 ident: bib93 article-title: OPO-based photoacoustic spectroscopy speeds up gas analysis publication-title: Photonics Spectra – volume: 247 start-page: 329 year: 2017 end-page: 335 ident: bib20 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser publication-title: Sens. Actuators B-Chem. – volume: 139 start-page: 2079 year: 2014 end-page: 2087 ident: bib84 article-title: Gaetano Scamarcio, V. Spagnolo, A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser publication-title: Analyst – volume: 80 start-page: 113 year: 2005 end-page: 119 ident: bib29 article-title: Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 μm publication-title: Microchem. J. – volume: 12 start-page: 1905 year: 2019 end-page: 1911 ident: bib30 article-title: Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser publication-title: Atmos. Meas. Tech. – volume: 123 year: 2020 ident: bib110 article-title: Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer publication-title: Opt. Laser Technol. – volume: 268 start-page: 205 year: 2018 end-page: 209 ident: bib109 article-title: Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy publication-title: Sens. Actuators B – volume: 72 start-page: 1937 year: 2001 end-page: 1955 ident: bib13 article-title: Application of acoustic resonators in photoacoustic trace gas analysis and metrology publication-title: Rev. Sci. Instrum. – volume: 149 year: 2022 ident: bib111 article-title: Miniature single-fiber photoacoustic sensor for methane gas leakage detection publication-title: Opt. Lasers Eng. – volume: 14 start-page: 1106 year: 2006 end-page: 1112 ident: bib46 article-title: Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating publication-title: Opt. Express – volume: 18 start-page: 1013 year: 2006 end-page: 1015 ident: bib42 article-title: High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm publication-title: IEEE Photonics Technol. Lett. – volume: 2 start-page: 169 year: 2017 end-page: 187 ident: bib67 article-title: Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review publication-title: Adv. Phys. – volume: 140 start-page: 736 year: 2015 ident: 10.1016/j.sna.2022.113807_bib36 article-title: High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor publication-title: Analyst doi: 10.1039/C4AN01158A – volume: 123 start-page: 224 year: 2017 ident: 10.1016/j.sna.2022.113807_bib11 article-title: U. Willer, QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases publication-title: Appl. Phys. B doi: 10.1007/s00340-017-6799-3 – volume: 111 year: 2017 ident: 10.1016/j.sna.2022.113807_bib26 article-title: Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.5003121 – volume: 174 start-page: 24 year: 2012 ident: 10.1016/j.sna.2022.113807_bib64 article-title: Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2012.08.014 – volume: 116 start-page: 423 year: 2014 ident: 10.1016/j.sna.2022.113807_bib80 article-title: T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode publication-title: Appl. Phys. B doi: 10.1007/s00340-013-5713-x – start-page: 85 year: 1989 ident: 10.1016/j.sna.2022.113807_bib54 article-title: Laser Excitation of Acoustic Modes in Cylindrical and Spherical Resonators: Theory and Applications – volume: 72 start-page: 1937 year: 2001 ident: 10.1016/j.sna.2022.113807_bib13 article-title: Application of acoustic resonators in photoacoustic trace gas analysis and metrology publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1353198 – volume: 107 year: 2015 ident: 10.1016/j.sna.2022.113807_bib58 article-title: Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing publication-title: Appl. Phys. Lett. doi: 10.1063/1.4930995 – volume: 25 year: 2022 ident: 10.1016/j.sna.2022.113807_bib88 article-title: Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv – Level sensitivity using a T-shaped custom tuning fork publication-title: Photoacoustics doi: 10.1016/j.pacs.2022.100330 – volume: 47 start-page: 1295 year: 2022 ident: 10.1016/j.sna.2022.113807_bib78 article-title: Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode publication-title: Opt. Lett. doi: 10.1364/OL.452085 – volume: 268 start-page: 512 year: 2018 ident: 10.1016/j.sna.2022.113807_bib43 article-title: Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2018.04.139 – volume: 92 start-page: 13922 year: 2020 ident: 10.1016/j.sna.2022.113807_bib87 article-title: Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02772 – volume: 9 start-page: 9616 issue: 12 year: 2009 ident: 10.1016/j.sna.2022.113807_bib14 article-title: Photoacoustic techniques for trace gas sensing based on semiconductor laser sources publication-title: Sensors doi: 10.3390/s91209616 – volume: 247 start-page: 290 year: 2017 ident: 10.1016/j.sna.2022.113807_bib107 article-title: High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2017.03.009 – volume: 27 start-page: 7435 year: 2019 ident: 10.1016/j.sna.2022.113807_bib75 article-title: Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator publication-title: Opt. Express doi: 10.1364/OE.27.007435 – volume: 133 year: 2010 ident: 10.1016/j.sna.2022.113807_bib2 article-title: Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy publication-title: J. Chem. Phys. doi: 10.1063/1.3461061 – volume: 63 start-page: 399 year: 1996 ident: 10.1016/j.sna.2022.113807_bib40 article-title: Intracavity photoacoustic gas detection with an external cavity diode laser publication-title: Appl. Phys. B doi: 10.1007/BF01828745 – volume: 73 start-page: 2079 year: 2002 ident: 10.1016/j.sna.2022.113807_bib31 article-title: Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1464653 – volume: 16 start-page: 214 year: 2016 ident: 10.1016/j.sna.2022.113807_bib70 article-title: Quartz-enhanced photoacoustic spectroscopy with right-angle prism publication-title: Sensors doi: 10.3390/s16020214 – volume: 94 start-page: 1151 year: 2022 ident: 10.1016/j.sna.2022.113807_bib108 article-title: High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c04309 – ident: 10.1016/j.sna.2022.113807_bib92 – volume: 110 start-page: 47 year: 2013 ident: 10.1016/j.sna.2022.113807_bib35 article-title: Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser publication-title: Appl. Phys. B doi: 10.1007/s00340-012-5250-z – volume: 111 year: 2017 ident: 10.1016/j.sna.2022.113807_bib23 article-title: Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.4987008 – volume: 135 start-page: 376 year: 2019 ident: 10.1016/j.sna.2022.113807_bib62 article-title: Pivotal techniques evaluation in QEPAS system for engineering applications publication-title: Measurement doi: 10.1016/j.measurement.2018.11.060 – volume: 47 start-page: 601 year: 2022 ident: 10.1016/j.sna.2022.113807_bib81 article-title: H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.449822 – year: 2021 ident: 10.1016/j.sna.2022.113807_bib8 article-title: Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review publication-title: Anal. Chim. Acta – volume: 44 start-page: 2562 year: 2019 ident: 10.1016/j.sna.2022.113807_bib77 article-title: Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.44.002562 – year: 1986 ident: 10.1016/j.sna.2022.113807_bib52 – volume: 41 start-page: 978 year: 2016 ident: 10.1016/j.sna.2022.113807_bib65 article-title: Single-tube on-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.41.000978 – volume: 110 year: 2017 ident: 10.1016/j.sna.2022.113807_bib28 article-title: Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork publication-title: Appl. Phys. Lett. doi: 10.1063/1.4974483 – volume: 25 start-page: 29356 year: 2017 ident: 10.1016/j.sna.2022.113807_bib27 article-title: Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork publication-title: Opt. Express doi: 10.1364/OE.25.029356 – volume: 139 start-page: 2079 year: 2014 ident: 10.1016/j.sna.2022.113807_bib84 article-title: Gaetano Scamarcio, V. Spagnolo, A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser publication-title: Analyst doi: 10.1039/C3AN01219K – volume: 149 year: 2022 ident: 10.1016/j.sna.2022.113807_bib111 article-title: Miniature single-fiber photoacoustic sensor for methane gas leakage detection publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2021.106792 – volume: 14 start-page: 6165 year: 2014 ident: 10.1016/j.sna.2022.113807_bib1 article-title: Quartz-enhanced photoacoustic spectroscopy: a review publication-title: Sensors doi: 10.3390/s140406165 – volume: 39 start-page: 2479 year: 2014 ident: 10.1016/j.sna.2022.113807_bib69 article-title: Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.39.002479 – volume: 44 start-page: 1924 issue: 8 year: 2019 ident: 10.1016/j.sna.2022.113807_bib38 article-title: Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking publication-title: Opt. Lett. doi: 10.1364/OL.44.001924 – volume: 43 start-page: 5094 year: 2018 ident: 10.1016/j.sna.2022.113807_bib99 article-title: Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using supercontinuum publication-title: Opt. Lett. doi: 10.1364/OL.43.005094 – volume: 123 start-page: 63 year: 2017 ident: 10.1016/j.sna.2022.113807_bib72 article-title: Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor publication-title: Appl. Phys. B doi: 10.1007/s00340-017-6640-z – volume: 111 start-page: 603 year: 2013 ident: 10.1016/j.sna.2022.113807_bib98 article-title: Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source publication-title: Appl. Phys. B doi: 10.1007/s00340-013-5379-4 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.sna.2022.113807_bib104 article-title: Simultaneous detection of C₂H₂ and CO based on cantilever-enhanced photoacoustic spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 123 year: 2020 ident: 10.1016/j.sna.2022.113807_bib110 article-title: Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105894 – volume: 29 start-page: 13600 year: 2021 ident: 10.1016/j.sna.2022.113807_bib56 article-title: All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection publication-title: Opt. Express doi: 10.1364/OE.424387 – volume: 80 start-page: 113 year: 2005 ident: 10.1016/j.sna.2022.113807_bib29 article-title: Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 μm publication-title: Microchem. J. doi: 10.1016/j.microc.2004.07.026 – volume: 35 start-page: 3709 year: 2010 ident: 10.1016/j.sna.2022.113807_bib44 article-title: Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser publication-title: Opt. Lett. doi: 10.1364/OL.35.003709 – volume: 48 start-page: 30 year: 2014 ident: 10.1016/j.sna.2022.113807_bib93 article-title: OPO-based photoacoustic spectroscopy speeds up gas analysis publication-title: Photonics Spectra – volume: 34 start-page: 1594 year: 2009 ident: 10.1016/j.sna.2022.113807_bib73 article-title: Off-beam quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.34.001594 – volume: 43 start-page: 57 year: 1987 ident: 10.1016/j.sna.2022.113807_bib39 article-title: Intracavity photoacoustic resonance spectroscopy of C2H4 publication-title: Appl. Phys. B doi: 10.1007/BF00693973 – volume: 44 start-page: 3741 issue: 15 year: 2019 ident: 10.1016/j.sna.2022.113807_bib115 article-title: Immersion photoacoustic spectrometer (iPAS) for arcing fault detection in power transformers publication-title: Opt. Lett. doi: 10.1364/OL.44.003741 – volume: 17 start-page: 1806 year: 1978 ident: 10.1016/j.sna.2022.113807_bib5 article-title: High sensitivity point monitoring of atmospheric gases employing tunable diode lasers publication-title: Appl. Opt. doi: 10.1364/AO.17.001806 – volume: 268 start-page: 205 year: 2018 ident: 10.1016/j.sna.2022.113807_bib109 article-title: Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.04.123 – volume: 42 start-page: 2114 year: 2017 ident: 10.1016/j.sna.2022.113807_bib15 article-title: Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing publication-title: Opt. Lett. doi: 10.1364/OL.42.002114 – volume: 210 start-page: 361 year: 2002 ident: 10.1016/j.sna.2022.113807_bib45 article-title: High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator publication-title: Opt. Commun. doi: 10.1016/S0030-4018(02)01815-1 – volume: 14 start-page: 1106 year: 2006 ident: 10.1016/j.sna.2022.113807_bib46 article-title: Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating publication-title: Opt. Express doi: 10.1364/OE.14.001106 – volume: 255 start-page: 2462 year: 2017 ident: 10.1016/j.sna.2022.113807_bib76 article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2017.09.039 – volume: 27 start-page: 1902 year: 2002 ident: 10.1016/j.sna.2022.113807_bib57 article-title: Quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.27.001902 – volume: 44 start-page: 1142 year: 2019 ident: 10.1016/j.sna.2022.113807_bib16 article-title: Broadband photoacoustic spectroscopy of 14CH4 with a high-power mid-infrared optical frequency comb publication-title: Opt. Lett. doi: 10.1364/OL.44.001142 – volume: 2 start-page: 169 year: 2017 ident: 10.1016/j.sna.2022.113807_bib67 article-title: Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review publication-title: Adv. Phys. – volume: 17 year: 2020 ident: 10.1016/j.sna.2022.113807_bib91 article-title: Frank K. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks publication-title: Photoacoustics doi: 10.1016/j.pacs.2019.100158 – volume: 8 start-page: 1848 year: 2018 ident: 10.1016/j.sna.2022.113807_bib100 article-title: Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy publication-title: Sci. Rep. doi: 10.1038/s41598-018-20087-9 – volume: 18 start-page: 1013 year: 2006 ident: 10.1016/j.sna.2022.113807_bib42 article-title: High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2006.873486 – volume: 40 start-page: 249 year: 1988 ident: 10.1016/j.sna.2022.113807_bib4 article-title: Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/0022-4073(88)90118-5 – volume: 221 start-page: 666 year: 2015 ident: 10.1016/j.sna.2022.113807_bib25 article-title: Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2015.06.049 – year: 1999 ident: 10.1016/j.sna.2022.113807_bib21 article-title: Erbium-doped fiber amplifiers: fundamentals and technology – volume: 109 year: 2020 ident: 10.1016/j.sna.2022.113807_bib33 article-title: Corner cube prism-enhanced photoacoustic spectroscopy based gas sensing publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103386 – volume: 108 start-page: 361 year: 2012 ident: 10.1016/j.sna.2022.113807_bib61 article-title: An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy publication-title: Appl. Phys. B doi: 10.1007/s00340-012-4988-7 – volume: 16 start-page: 351 year: 1970 ident: 10.1016/j.sna.2022.113807_bib3 article-title: High–resolution infrared spectroscopy with a tunable diode laser publication-title: Appl. Phys. Lett. doi: 10.1063/1.1653222 – volume: 21 start-page: 10240 issue: 8 year: 2013 ident: 10.1016/j.sna.2022.113807_bib103 article-title: High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator publication-title: Opt. Express doi: 10.1364/OE.21.010240 – volume: 56 start-page: 143 year: 2021 ident: 10.1016/j.sna.2022.113807_bib7 article-title: A review of all-optical photoacoustic spectroscopy as a gas sensing method publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2020.1760875 – volume: 7 start-page: 16 year: 2019 ident: 10.1016/j.sna.2022.113807_bib51 article-title: Hollow-core fiber technology: the rising of “Gas Photonics publication-title: Fibers doi: 10.3390/fib7020016 – volume: 227 start-page: 539 year: 2016 ident: 10.1016/j.sna.2022.113807_bib85 article-title: Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2015.12.096 – volume: 36 start-page: 1116 year: 2015 ident: 10.1016/j.sna.2022.113807_bib105 article-title: All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment publication-title: Int. J. Thermophys. doi: 10.1007/s10765-015-1902-7 – volume: 17 issue: 3 year: 2017 ident: 10.1016/j.sna.2022.113807_bib37 article-title: Trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy publication-title: Sensors – volume: 134 year: 2021 ident: 10.1016/j.sna.2022.113807_bib49 article-title: Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106612 – volume: 109 year: 2016 ident: 10.1016/j.sna.2022.113807_bib66 article-title: Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone publication-title: Appl. Phys. Lett. doi: 10.1063/1.4962810 – volume: 106 year: 2015 ident: 10.1016/j.sna.2022.113807_bib19 article-title: High-power blue laser diodes with indium tin oxide cladding on semipolar GaN substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4915324 – year: 1982 ident: 10.1016/j.sna.2022.113807_bib53 – volume: 25 start-page: 17541 year: 2017 ident: 10.1016/j.sna.2022.113807_bib112 article-title: Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor publication-title: Opt. Express doi: 10.1364/OE.25.017541 – volume: 13 start-page: 2453 year: 2005 ident: 10.1016/j.sna.2022.113807_bib97 article-title: Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection publication-title: Opt. Express doi: 10.1364/OPEX.13.002453 – volume: 90 issue: 2 year: 2019 ident: 10.1016/j.sna.2022.113807_bib114 article-title: A fiber-tip photoacoustic sensor for in situ trace gas detection publication-title: Rev. Sci. Instrum. – volume: 120 year: 2019 ident: 10.1016/j.sna.2022.113807_bib48 article-title: Scanned-wavelength intra-cavity QEPAS sensor with injection seeding technique for C2H2 detection publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105751 – volume: 102 start-page: 313 year: 2011 ident: 10.1016/j.sna.2022.113807_bib12 article-title: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence publication-title: Appl. Phys. B doi: 10.1007/s00340-010-4165-9 – volume: 12 start-page: 1905 year: 2019 ident: 10.1016/j.sna.2022.113807_bib30 article-title: Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-1905-2019 – volume: 46 start-page: 2083 year: 2021 ident: 10.1016/j.sna.2022.113807_bib101 article-title: Radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.420199 – ident: 10.1016/j.sna.2022.113807_bib50 doi: 10.1007/3-540-36491-9_6 – volume: 20 start-page: 9187 year: 2012 ident: 10.1016/j.sna.2022.113807_bib79 article-title: T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor publication-title: Opt. Express doi: 10.1364/OE.20.009187 – volume: 13 start-page: 2079 year: 2014 ident: 10.1016/j.sna.2022.113807_bib59 article-title: A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser publication-title: Analyst doi: 10.1039/C3AN01219K – volume: 274 start-page: 184 year: 2018 ident: 10.1016/j.sna.2022.113807_bib24 article-title: Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection publication-title: Sens. Actuators A-Phys. doi: 10.1016/j.sna.2018.02.025 – volume: 285 start-page: 5306 year: 2012 ident: 10.1016/j.sna.2022.113807_bib74 article-title: Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.07.056 – volume: 42 start-page: 2119 year: 2003 ident: 10.1016/j.sna.2022.113807_bib22 article-title: Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers publication-title: Appl. Opt. doi: 10.1364/AO.42.002119 – volume: 103 year: 2013 ident: 10.1016/j.sna.2022.113807_bib83 article-title: Terahertz quartz enhanced photo-acoustic sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4812438 – volume: 9934 start-page: 43 year: 2016 ident: 10.1016/j.sna.2022.113807_bib10 article-title: New developments in THz quartz enhanced photoacoustic spectroscopy, Terahertz Emitters – volume: 19 start-page: 6181 year: 2019 ident: 10.1016/j.sna.2022.113807_bib47 article-title: Pptv-level intra-cavity QEPAS sensor for acetylene detection using a high power Q-switched fiber laser publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2910665 – volume: 9 start-page: 404 issue: 34 year: 1880 ident: 10.1016/j.sna.2022.113807_bib6 article-title: On the production and reproduction of sound by light publication-title: J. Soc. Telegr. Eng. – volume: 100 start-page: 627 year: 2010 ident: 10.1016/j.sna.2022.113807_bib63 article-title: QEPAS spectrophones: design, optimization, and performance publication-title: Appl. Phys. B doi: 10.1007/s00340-010-4072-0 – volume: 27 start-page: 4271 year: 2019 ident: 10.1016/j.sna.2022.113807_bib86 article-title: Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone publication-title: Opt. Express doi: 10.1364/OE.27.004271 – volume: 10111 year: 2017 ident: 10.1016/j.sna.2022.113807_bib68 article-title: Single-tube on beam quartz-enhanced photoacoustic spectrophones exploiting a custom quartz tuning fork operating in the overtone mode publication-title: Quant. Sens. Nano Electron. Photonics XIV – volume: 19 start-page: 1362 year: 2019 ident: 10.1016/j.sna.2022.113807_bib60 article-title: Quartz enhanced photoacoustic spectroscopy based on a custom quartz tuning fork publication-title: Sensors doi: 10.3390/s19061362 – volume: 40 start-page: 2933 issue: 13 year: 2015 ident: 10.1016/j.sna.2022.113807_bib102 article-title: Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.40.002933 – start-page: 68001 year: 2007 ident: 10.1016/j.sna.2022.113807_bib113 article-title: Mechanical quality factor of microcantilevers for mass sensing applications publication-title: Int. Soc. Opt. Photonics – volume: 118 year: 2021 ident: 10.1016/j.sna.2022.113807_bib71 article-title: Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell publication-title: Appl. Phys. Lett. doi: 10.1063/5.0047963 – volume: 38 start-page: 434 year: 2013 ident: 10.1016/j.sna.2022.113807_bib106 article-title: Miniature fiber-tip photoacoustic spectrometer for trace gas detection publication-title: Opt. Lett. doi: 10.1364/OL.38.000434 – volume: 6 start-page: 251 year: 2016 ident: 10.1016/j.sna.2022.113807_bib95 article-title: Improved sensitivity MEMS cantilever sensor for terahertz photoacoustic spectroscopy publication-title: Sensors doi: 10.3390/s16020251 – volume: 8993 start-page: 309 year: 2014 ident: 10.1016/j.sna.2022.113807_bib9 article-title: THz quartz-enhanced photoacoustic sensor employing a quantum cascade laser source – volume: 27 start-page: 14163 year: 2019 ident: 10.1016/j.sna.2022.113807_bib32 article-title: Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser publication-title: Opt. Express doi: 10.1364/OE.27.014163 – volume: 24 start-page: 216 year: 2015 ident: 10.1016/j.sna.2022.113807_bib96 article-title: Terahertz photoacoustic spectroscopy using a MEMS cantilever sensor publication-title: J. Micro Syst. doi: 10.1109/JMEMS.2014.2327916 – volume: 26 start-page: 32103 issue: 24 year: 2018 ident: 10.1016/j.sna.2022.113807_bib89 article-title: Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection publication-title: Opt. Express doi: 10.1364/OE.26.032103 – volume: 30 start-page: 18836 issue: 17 year: 2022 ident: 10.1016/j.sna.2022.113807_bib90 article-title: Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing publication-title: Opt. Express doi: 10.1364/OE.460134 – volume: 87 year: 2005 ident: 10.1016/j.sna.2022.113807_bib34 article-title: Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity publication-title: Appl. Phys. Lett. doi: 10.1063/1.2000341 – volume: 247 start-page: 329 year: 2017 ident: 10.1016/j.sna.2022.113807_bib20 article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2017.03.058 – volume: 41 start-page: 4955 year: 2016 ident: 10.1016/j.sna.2022.113807_bib41 article-title: Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 μm publication-title: Opt. Lett. doi: 10.1364/OL.41.004955 – volume: 46 start-page: 3917 year: 2021 ident: 10.1016/j.sna.2022.113807_bib82 article-title: Radial-cavity quartz-enhanced photoacoustic spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.432308 – volume: 84 start-page: 58 year: 1998 ident: 10.1016/j.sna.2022.113807_bib94 article-title: Noise in optical measurements of cantilever deflections publication-title: J. Appl. Phys. doi: 10.1063/1.368001 – volume: 21 start-page: 1008 issue: 1 year: 2013 ident: 10.1016/j.sna.2022.113807_bib18 article-title: QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL publication-title: Opt. Express doi: 10.1364/OE.21.001008 – volume: 21 year: 2021 ident: 10.1016/j.sna.2022.113807_bib55 article-title: Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser publication-title: Photoacoustics doi: 10.1016/j.pacs.2020.100216 – volume: 104 year: 2014 ident: 10.1016/j.sna.2022.113807_bib17 article-title: Intracavity quartz-enhanced photoacoustic sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4867268 |
SSID | ssj0003377 |
Score | 2.579021 |
SecondaryResourceType | review_article |
Snippet | Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113807 |
SubjectTerms | Acoustic absorption Acoustic waves Cantilever Custom tuning fork EDFA Fiber optics Fiber-optic microphone Gas detectors Gas sensors Optical communication Photoacoustic enhancement Photoacoustic spectroscopy Resonator Surface acoustic waves Trace gases Transducers |
Title | Techniques to enhance the photoacoustic signal for trace gas sensing: A review |
URI | https://dx.doi.org/10.1016/j.sna.2022.113807 https://www.proquest.com/docview/2739798295 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWz8sCEFBr8Ss1WVVQFRBeKxGY5jkOLUFKRsPLbucuDl1AHxkRnK7qz777In78j5FT4REuvRXChvQ8EINrAqjQKIu-YjxVPZEX5v5uo8YO4eZSPHTJs78IgrbLJ_XVOr7J186bXeLO3mM979yH8OgiGYod4KslQ8VOICFf5-fsXzYPzqvsiGgdo3Z5sVhyvIkPpIcaws0kfO8r-XZt-Zemq9Iw2yUaDGemg_qwt0vHZNln_piS4QybTVou1oGVOfTbDaFJAd3Qxy8sc8l7VtosiXwPmAqhKy1cLJk-2oAWy2LOnSzqg9VWWXfIwupoOx0HTKiFwnMkyiFIHSCe2QmiXspglVrswdFpK52KrlEwYs6he1-fCRVIkULZTCApsWSj5OuR7ZCXLM79PqAKAcYGHmzrFnt_cqjgRKvY25VGi--qAhK2TjGt0xLGdxYtpCWPPBvxq0K-m9usBOfscsqhFNJYZi9bz5sdKMJDklw07bqNkmm1YGMBmOtJ9puXh_2Y9Imv4VLP3jslK-frmTwCFlHG3WmZdsjq4vh1PPgCwodla |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcVrALoiwPHzitFDX4lZpbhbYqr14oUm-W4zhQhNKqCf-fmTzQ7mrFYa-JbUVje-aL_Pn7AM5lyIwKRkYXJoRIIqKNnM6TKAmeh1SLTNWU__upnjzKm7mab8BVdxeGaJVt7m9yep2t2yeDNpqD1WIxeIjx10FyEjukU0kuNmGL1KlUD7ZG17eT6UdCFqI2YKT2EXXoDjdrmldZkPoQ52RuMiRT2X-Xp78SdV19xrvwtYWNbNR82R5shOIb7PwmJvgdprNOjrVk1ZKF4pkmlCHAY6vnZbXE1Fc7dzGibOBYiFZZtXbY5MmVrCQie_F0yUasuc2yD4_jX7OrSdS6JURecFVFSe4R7KROSuNznvLMGR_H3ijlfeq0VhnnjgTshkL6RMkMK3eO84K7Fqu-icUB9IplEQ6BacQYF3S-aXKy_RZOp5nUaXC5SDIz1H2IuyBZ30qJk6PFq-04Yy8W42oprraJax9-fnRZNToanzWWXeTtH4vBYp7_rNtxN0u23YmlRXhmEjPkRh3936hn8GUyu7-zd9fT2x-wTW8aMt8x9Kr1WzhBUFKlp-2iewc3J9wL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techniques+to+enhance+the+photoacoustic+signal+for+trace+gas+sensing%3A+A+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Wang%2C+Fupeng&rft.au=Cheng%2C+Yaopeng&rft.au=Xue%2C+Qingsheng&rft.au=Wang%2C+Qiang&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=345&rft_id=info:doi/10.1016%2Fj.sna.2022.113807&rft.externalDocID=S0924424722004423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |