Techniques to enhance the photoacoustic signal for trace gas sensing: A review

Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acou...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 345; p. 113807
Main Authors Wang, Fupeng, Cheng, Yaopeng, Xue, Qingsheng, Wang, Qiang, Liang, Rui, Wu, Jinghua, Sun, Jiachen, Zhu, Cunguang, Li, Qian
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.10.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2022.113807

Cover

Loading…
Abstract Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed. [Display omitted]
AbstractList Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed. [Display omitted]
Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and discusses most of the recent techniques for photoacoustic enhancement throughout the overall process from laser-molecule interaction to acoustic wave detection. Considering the theoretical principle and system composition of PAS gas sensor, we classify photoacoustic enhancing techniques into three aspects. The first one is to enhance the photoacoustic excitation by building up the laser power in terms of the positive proportional relation between the optical power and photoacoustic signal. The second one is to amplify the acoustic strength with various kinds of resonators after the photoacoustic generation. The third approach to further improve the photoacoustic detection is to develop more efficient acoustic transducers, for example, custom tuning fork, cantilever and fiber-optic microphone. Finally, the advantages and limitations of these different techniques are analyzed.
ArticleNumber 113807
Author Wu, Jinghua
Li, Qian
Wang, Fupeng
Sun, Jiachen
Xue, Qingsheng
Zhu, Cunguang
Liang, Rui
Wang, Qiang
Cheng, Yaopeng
Author_xml – sequence: 1
  givenname: Fupeng
  surname: Wang
  fullname: Wang, Fupeng
  email: wfp@ouc.edu.cn
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Yaopeng
  surname: Cheng
  fullname: Cheng, Yaopeng
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Qingsheng
  surname: Xue
  fullname: Xue, Qingsheng
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 4
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, 130033, China
– sequence: 5
  givenname: Rui
  surname: Liang
  fullname: Liang, Rui
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 6
  givenname: Jinghua
  surname: Wu
  fullname: Wu, Jinghua
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 7
  givenname: Jiachen
  surname: Sun
  fullname: Sun, Jiachen
  organization: School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
– sequence: 8
  givenname: Cunguang
  surname: Zhu
  fullname: Zhu, Cunguang
  organization: School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
– sequence: 9
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
BookMark eNp9kL1OwzAYRS1UJNrCA7BZYk7wTxzHMFUVf1IFS5kt13EaR8Uutgvi7XEVJoZO33LPp3vPDEycdwaAa4xKjHB9O5TRqZIgQkqMaYP4GZjihtOColpMwBQJUhUVqfgFmMU4IIQo5XwKXtdG985-HkyEyUPjeuW0gak3cN_75JX2h5ishtFundrBzgeYgsqRrYowGhet297BBQzmy5rvS3DeqV00V393Dt4fH9bL52L19vSyXKwKTQlLBe90Q8VGVZXQHdmQVgmNkBaMab1Rdc1aQhRqcNPQSnNWtZiRTtUdqghmWCA6Bzfj333wx-5JDv4QcsEoCaeCi4YIllN8TOngYwymk9omlax3eYLdSYzkUZ4cZJYnj_LkKC-T-B-5D_ZDhZ-TzP3ImDw8ywgyamuyzdYGo5NsvT1B_wKUdYhh
CitedBy_id crossref_primary_10_1109_RBME_2024_3481360
crossref_primary_10_1016_j_infrared_2025_105711
crossref_primary_10_3390_photonics10020127
crossref_primary_10_1016_j_infrared_2023_105037
crossref_primary_10_3389_fphy_2025_1547563
crossref_primary_10_3390_photonics10070835
crossref_primary_10_1016_j_infrared_2024_105707
crossref_primary_10_1364_OE_525307
crossref_primary_10_1007_s00340_024_08253_6
crossref_primary_10_1109_JSEN_2024_3381300
crossref_primary_10_1364_OL_534842
crossref_primary_10_1016_j_measurement_2023_112533
crossref_primary_10_1364_OPTCON_483779
crossref_primary_10_3788_AOSOL240446
crossref_primary_10_3390_photonics10040386
crossref_primary_10_1021_acs_analchem_3c01476
crossref_primary_10_1109_JSEN_2024_3366520
crossref_primary_10_1109_JSEN_2023_3246508
crossref_primary_10_3788_gzxb20245308_0830001
crossref_primary_10_1016_j_measurement_2024_116288
crossref_primary_10_1080_05704928_2023_2196729
crossref_primary_10_3390_opt5020015
crossref_primary_10_3788_COL202523_023001
crossref_primary_10_1016_j_measurement_2024_115154
crossref_primary_10_1016_j_sna_2024_116179
crossref_primary_10_1038_s41377_023_01353_6
crossref_primary_10_1016_j_snb_2024_136643
crossref_primary_10_1109_JLT_2023_3262774
crossref_primary_10_1109_TIM_2023_3244222
crossref_primary_10_3390_s23167150
crossref_primary_10_1016_j_sna_2024_115939
crossref_primary_10_1021_acs_analchem_3c00318
crossref_primary_10_1080_00032719_2024_2403020
crossref_primary_10_1016_j_pacs_2023_100559
crossref_primary_10_1109_JSEN_2024_3488816
crossref_primary_10_1016_j_snr_2024_100210
crossref_primary_10_1080_05704928_2024_2359933
crossref_primary_10_3390_s23115107
crossref_primary_10_1016_j_pacs_2024_100644
crossref_primary_10_29026_oea_2024_230230
crossref_primary_10_3390_s24072105
crossref_primary_10_1063_5_0214874
crossref_primary_10_1364_OE_503454
crossref_primary_10_1109_JSEN_2024_3435438
crossref_primary_10_1364_OL_520154
crossref_primary_10_3390_electronics13091786
crossref_primary_10_1109_TIM_2023_3343828
crossref_primary_10_1109_JSEN_2023_3323320
crossref_primary_10_1109_JSEN_2025_3536007
crossref_primary_10_1016_j_measurement_2024_116464
crossref_primary_10_1021_acs_analchem_4c01527
crossref_primary_10_1109_TIM_2023_3328691
Cites_doi 10.1039/C4AN01158A
10.1007/s00340-017-6799-3
10.1063/1.5003121
10.1016/j.snb.2012.08.014
10.1007/s00340-013-5713-x
10.1063/1.1353198
10.1063/1.4930995
10.1016/j.pacs.2022.100330
10.1364/OL.452085
10.1016/j.snb.2018.04.139
10.1021/acs.analchem.0c02772
10.3390/s91209616
10.1016/j.snb.2017.03.009
10.1364/OE.27.007435
10.1063/1.3461061
10.1007/BF01828745
10.1063/1.1464653
10.3390/s16020214
10.1021/acs.analchem.1c04309
10.1007/s00340-012-5250-z
10.1063/1.4987008
10.1016/j.measurement.2018.11.060
10.1364/OL.449822
10.1364/OL.44.002562
10.1364/OL.41.000978
10.1063/1.4974483
10.1364/OE.25.029356
10.1039/C3AN01219K
10.1016/j.optlaseng.2021.106792
10.3390/s140406165
10.1364/OL.39.002479
10.1364/OL.44.001924
10.1364/OL.43.005094
10.1007/s00340-017-6640-z
10.1007/s00340-013-5379-4
10.1016/j.optlastec.2019.105894
10.1364/OE.424387
10.1016/j.microc.2004.07.026
10.1364/OL.35.003709
10.1364/OL.34.001594
10.1007/BF00693973
10.1364/OL.44.003741
10.1364/AO.17.001806
10.1016/j.snb.2018.04.123
10.1364/OL.42.002114
10.1016/S0030-4018(02)01815-1
10.1364/OE.14.001106
10.1016/j.snb.2017.09.039
10.1364/OL.27.001902
10.1364/OL.44.001142
10.1016/j.pacs.2019.100158
10.1038/s41598-018-20087-9
10.1109/LPT.2006.873486
10.1016/0022-4073(88)90118-5
10.1016/j.snb.2015.06.049
10.1016/j.infrared.2020.103386
10.1007/s00340-012-4988-7
10.1063/1.1653222
10.1364/OE.21.010240
10.1080/05704928.2020.1760875
10.3390/fib7020016
10.1016/j.snb.2015.12.096
10.1007/s10765-015-1902-7
10.1016/j.optlastec.2020.106612
10.1063/1.4962810
10.1063/1.4915324
10.1364/OE.25.017541
10.1364/OPEX.13.002453
10.1016/j.optlastec.2019.105751
10.1007/s00340-010-4165-9
10.5194/amt-12-1905-2019
10.1364/OL.420199
10.1007/3-540-36491-9_6
10.1364/OE.20.009187
10.1016/j.sna.2018.02.025
10.1016/j.optcom.2012.07.056
10.1364/AO.42.002119
10.1063/1.4812438
10.1109/JSEN.2019.2910665
10.1007/s00340-010-4072-0
10.1364/OE.27.004271
10.3390/s19061362
10.1364/OL.40.002933
10.1063/5.0047963
10.1364/OL.38.000434
10.3390/s16020251
10.1364/OE.27.014163
10.1109/JMEMS.2014.2327916
10.1364/OE.26.032103
10.1364/OE.460134
10.1063/1.2000341
10.1016/j.snb.2017.03.058
10.1364/OL.41.004955
10.1364/OL.432308
10.1063/1.368001
10.1364/OE.21.001008
10.1016/j.pacs.2020.100216
10.1063/1.4867268
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2022
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2022.113807
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2022_113807
S0924424722004423
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-7fc839ba449cf2b2da9c00c955ccba665d22a0818834c754d152fa6f042151903
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Sun Jul 13 03:36:16 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Tue Jul 01 02:24:53 EDT 2025
Fri Feb 23 02:37:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CRDS
Resonator
PAS
EDFL
FLI-PAS
FBG
PZT
Photoacoustic spectroscopy
Cantilever
CEPAS
TDLAS
ASE
Photoacoustic enhancement
MDL
SNR
EC-PAS
QEPAS
IC-PAS
Fiber-optic microphone
EDFA
Custom tuning fork
NDIR
WMS
RAM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-7fc839ba449cf2b2da9c00c955ccba665d22a0818834c754d152fa6f042151903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2739798295
PQPubID 2045401
ParticipantIDs proquest_journals_2739798295
crossref_citationtrail_10_1016_j_sna_2022_113807
crossref_primary_10_1016_j_sna_2022_113807
elsevier_sciencedirect_doi_10_1016_j_sna_2022_113807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ma, Feng, Qiao, Zhao, Gao, Wang (bib90) 2022; 30
Ma, He, Tong, Yu, Tittel (bib89) 2018; 26
Hirschmann, Lehtinen, Uotila, Ojala, Keiski (bib98) 2013; 111
Miklós, Hess, Bozóki (bib13) 2001; 72
Borri, Patimisco, Sampaolo, Beere, Ritchie, Vitiello, Scamarcio, Spagnolo (bib83) 2013; 103
Werle (bib12) 2011; 102
Debord, Amrani, Vincetti, Gérôme, Benabid (bib51) 2019; 7
Patimisco, Borri, Sampaolo, Beere, Ritchie, Vitiello (bib84) 2014; 139
Sinisalo, Karlsson (bib93) 2014; 48
Karhu, Tomberg, Vieira, Genoud, Hanninen, Vainio, Metsala, Hieta, Bell, Halonen (bib16) 2019; 44
Wu, Sampaolo, Dong, Patimisco, Liu, Zheng, Yin, Ma, Zhang, Yin, Spagnolo, Jia, Tittel (bib58) 2015; 107
Zheng, Dong, Sampaolo, Wu, Patimisco, Yin, Ma, Zhang, Yin, Spagnolo, Jia, Tittel (bib65) 2016; 41
Kinsley, Frey, Coppens, Sanders (bib53) 1982
Spagnolo, Patimisco, Sampaolo, Giglio, Vitiello, Scamarcio, Tittel (bib10) 2016; 9934
Loewenstein (bib4) 1988; 40
Webber, Pushkarsky, Patel (bib22) 2003; 42
Zhang, Chang, Cong, Feng, Wang, Sun (bib48) 2019; 120
Jacek, Aleksander, Arkadiusz, Mid-Infrared (bib37) 2017; 17
Röper, Chen, Hess (bib39) 1987; 43
Yi, Chen, Sun, Liu, Tan, Gao (bib79) 2012; 20
Mordmueller, Schade (bib11) 2017; 123
Yin, Dong, Wu, Zheng, Ma, Zhang, Yin, Jia, Tittel (bib20) 2017; 247
Spagnolo, Patimisco, Borri, Sampaolo, Scamarcio, Vitiello, Beere, Ritchie (bib9) 2014; 8993
Starovoitov, Kischkat, Semtsiv, Masselink (bib41) 2016; 41
Wang, Wang, Zhang, Wei, Li, Ren (bib38) 2019; 44
Peltola, Vainio, Hieta (bib103) 2013; 21
Ma, Lewicki, Razeghi, Tittel (bib18) 2013; 21
Hu, Zheng, Zheng, Wang, Tittel (bib77) 2019; 44
Zhou, Davide (bib115) 2019; 44
Yi, Chen, Vicet, Cao, Gao, Nguyen-ba, Jahjah, Rouillard, Nähle, Fischer (bib80) 2014; 116
Glauvitz, Coutu, Medvedev, Petkie (bib96) 2015; 24
Hao, Qiang, Wu, Qi, Feng, Zhu, Hong (bib31) 2002; 73
Patimisco, Borri, Sampaolo, Beere, Ritchie, Vitiello, Scamarcio, Spagnolo (bib59) 2014; 13
Chen, Yu, Gong, Guo, Qu (bib109) 2018; 268
Duquesnoy, Aoust, Melkonian, Lévy, Raybaut, Godard (bib60) 2019; 19
Rousseau, Loghmari, Bahriz, Chamassi, Teissier, Baranov, Vicet (bib75) 2019; 27
Ma, Hong, Qiao, Lang, Liu (bib81) 2022; 47
Wei, Zhu, Lin, Tian, Xu, Nong (bib105) 2015; 36
Bozóki, Sneider, Szabó, Miklós, Serényi, Nagy, Fehér (bib40) 1996; 63
Wang, Xue, Chang, Wang, Sun, Luan, Li (bib49) 2021; 134
Guo, Chen, Li, Xu, Zhang, Wang, Li, Ma, Gong, Yu (bib108) 2022; 94
Zhang, Chang, Cong, Feng, Wang, Wang, Sun (bib47) 2019; 19
Patimisco, Scamarcio, Tittel, Spagnolo (bib1) 2014; 14
Patimisco, Sampaolo, Dong, Giglio, Scamarcio, Tittel, Spagnolo (bib85) 2016; 227
Reid, Garside, Shewchun, El-Sherbiny, Ballik (bib5) 1978; 17
Elia, Lugarà, Di Franco, Spagnolo (bib14) 2009; 9
Yi, Chen, Guo, Sun, Liu, Tan, Zhang, Gao (bib61) 2012; 108
Liu, Guo, Yi, Chen, Zhang, Gao (bib73) 2009; 34
Ma, Dang (bib33) 2020; 109
Pourhashemi, Farrell, Cohen, Speck, DenBaars, Nakamura (bib19) 2015; 106
Delgado-Pinar, Zalvidea, Díez, Pérez-Millán, Andrés (bib46) 2006; 14
Ma, He, Zhang, Yu, Zhang, Sun, Tittel (bib28) 2017; 110
Sun, Zifarelli, Wu, Russo, Li, Patimisco, Dong, Spagnolo (bib87) 2020; 92
Chen, Deng, Guo, Luo, Liu, Zhang, Ma, Zhu, Gong, Peng, Yu (bib110) 2020; 123
Song, Oh, Jung, Kim, Cha (bib29) 2005; 80
Cheng, Tang, Zhang, Li, Hu, Zhang, Mao, Xiao (bib104) 2021; 70
Rossi, Buffa, Scotoni, Bassi, Iannotta, Boschetti (bib34) 2005; 87
Cao, Jin, Ho, Ma (bib106) 2013; 38
Laurila, Cattaneo, Koskinen, Kauppinen, Hernberg (bib97) 2005; 13
Lv, Zheng, Liu, Yang, Wu, Lin, Montano, Zhu, Yu, Kan, Chen, Tittel (bib82) 2021; 46
Coutu, Medvedev, Petkie (bib95) 2016; 6
Hayden, Giglio, Sampaolo, Spagnolo, Lendl (bib88) 2022; 25
Gong, Wu, Jiang, Li, Gao, Guo, Ma, Chen, Mei, Peng, Yu (bib56) 2021; 29
Russo, Duchowicz, Mora, Cruz, Andrés (bib45) 2002; 210
Cao, Jin, Ho (bib64) 2012; 174
Wang, Wang, Ren, Patimisco, Sampaolo, Spagnolo (bib43) 2018; 268
Sheng, Iannuzzi (bib114) 2019; 90
Hippler, Mohr, Keen, McNaghten (bib2) 2010; 133
Wu, Dong, Zheng, Liu, Yin, Ma, Zhang, Yin, Jia, Tittel (bib25) 2015; 221
Zhou, Slaman, Iannuzzi (bib112) 2017; 25
Dupriez, Piper, Malinowski, Sahu, Ibsen, Thomsen, Jeong, Hickey, Zervas, Nilsson, Richardson (bib42) 2006; 18
Mikkonen, Amiot, Aalto, Patokoski, Genty, Toivonen (bib99) 2018; 43
Borri, Patimisco, Galli, Mazzotti, Giusfredi, Akikusa, Yamanishi, Scamarcio, De Natale, Spagnolo (bib17) 2014; 104
Fatima, Hausmaninger, Tomberg, Karhu, Vainio, Hieta, Genoud (bib101) 2021; 46
Zheng, Liu, Lin, Liu, Gu, Li, Huang, Wu, Dong, Zhu, Tang, Guan, Lu, Zhong, Fang, Luo, Zhang, Yu, Chen (bib91) 2020; 17
Patimisco, Borri, Galli, Mazzotti, Giusfredi, Akikusa, Yamanishi, Scamarcio, Nataleb, Spagnolo (bib36) 2015; 140
Liu, Chang, Lian, Liu, Wang, Qin (bib70) 2016; 16
Bell (bib6) 1880; 9
J. Uotila, Use of the Optical Cantilever Microphone in Photoacoustic Spectroscopy, TURUN YLIOPISTO, Turku, Finland, 2009.
Kosterev, Bakhirkin, Curl, Tittel (bib57) 2002; 27
Peltola, Hieta, Vainio (bib102) 2015; 40
Pan, Dong, Wu, Ma, Zhang, Yin, Xiao, Jia, Tittel (bib30) 2019; 12
Dong, Kosterev, Thomazy, Tittel (bib63) 2010; 100
Yi, Liu, Sun, Zhang, Gao (bib74) 2012; 285
Wang, Chang, Zhang, Qin, Zhu (bib62) 2019; 135
Yin, Dong, Wu, Ma, Zhang, Yin, Xiao, Jia, Tittel (bib23) 2017; 111
Dong, Wu, Zheng, Liu, Liu, Jiang, Zhang, Ma, Ren, Yin, Jia, Tittel (bib69) 2014; 39
Giglio, Sampaolo, Patimisco, Zheng, Wu, Dong, Tittel, Spagnolo (bib68) 2017; 10111
Hinkley (bib3) 1970; 16
Ma, He, Tong, Yu, Tittel (bib27) 2017; 25
Fiedler, Hess (bib54) 1989
Aoust, Levy, Raybaut, Godard, Melkonian, Lefebvre (bib72) 2017; 123
Li, Guo, Zhang, Li, Yang, Chen (bib111) 2022; 149
Gong, Gao, Mei, Chen, Chen, Zhang, Peng, Yu (bib55) 2021; 21
Liang, Qiao, Ma (bib78) 2022; 47
Patimisco, Sampaolo, Zheng, Dong, Tittel, Spagnolo (bib67) 2017; 2
Gong, Chen, Yang, Zhou, Peng, Yu (bib107) 2017; 247
Lu, Ikehara, Zhang, Mihara, Maeda (bib113) 2007
Garca-Valenzuela, Villatoro (bib94) 1998; 84
Ma, Qiao, He, Li, Zhang, Yu, Tittel (bib32) 2019; 27
Rück, Bierl, Matysik (bib76) 2017; 255
Morse, Ingard (bib52) 1986
Giglio, Elefante, Patimisco, Sampaolo, Sgobba, Rossmadl, Mackowiak, Wu, Tittel, Dong, Spagnolo (bib86) 2019; 27
Yang, Chen, Wang (bib7) 2021; 56
Kachanov, Koulikov, Tittel (bib35) 2013; 110
Zheng, Dong, Sampaolo, Patimisco, Ma, Zhang, Yin, Xiao, Spagnolo, Jia, Tittel (bib66) 2016; 109
Chen, Gong, Yu (bib24) 2018; 274
Becker, Olsson, Simpson (bib21) 1999
Cui, Wu, Dong, Chen, Tittel (bib71) 2021; 118
Tomberg, Vainio, Hieta, Halonen (bib100) 2018; 8
Wang, Wang, Chang, Ren (bib15) 2017; 42
Sampaolo, Patimisco, Giglio, Zifarelli, Wu, Dong, Spagnolo (bib8) 2021
M. Pollnau, S.D. Jackson, Mid-Infrared Fiber Lasers, in: I.T. Sorokina, K.L. Vodopyanov (Eds.), Solid-State Mid-Infrared Laser Sources, Springer, Berlin, Heidelberg, 2003, pp. 225–261.
Luo, Zhou, Weng, Huang, Xu, Ye, Cai (bib44) 2010; 35
He, Ma, Tong, Yu, Peng, Gao, Tittel (bib26) 2017; 111
Elia (10.1016/j.sna.2022.113807_bib14) 2009; 9
Ma (10.1016/j.sna.2022.113807_bib32) 2019; 27
Gong (10.1016/j.sna.2022.113807_bib107) 2017; 247
Aoust (10.1016/j.sna.2022.113807_bib72) 2017; 123
Sun (10.1016/j.sna.2022.113807_bib87) 2020; 92
Zheng (10.1016/j.sna.2022.113807_bib91) 2020; 17
Patimisco (10.1016/j.sna.2022.113807_bib59) 2014; 13
Liang (10.1016/j.sna.2022.113807_bib78) 2022; 47
Patimisco (10.1016/j.sna.2022.113807_bib85) 2016; 227
Becker (10.1016/j.sna.2022.113807_bib21) 1999
Gong (10.1016/j.sna.2022.113807_bib55) 2021; 21
Ma (10.1016/j.sna.2022.113807_bib18) 2013; 21
Rossi (10.1016/j.sna.2022.113807_bib34) 2005; 87
Wang (10.1016/j.sna.2022.113807_bib62) 2019; 135
Gong (10.1016/j.sna.2022.113807_bib56) 2021; 29
Hirschmann (10.1016/j.sna.2022.113807_bib98) 2013; 111
Yin (10.1016/j.sna.2022.113807_bib20) 2017; 247
Patimisco (10.1016/j.sna.2022.113807_bib67) 2017; 2
Spagnolo (10.1016/j.sna.2022.113807_bib10) 2016; 9934
Guo (10.1016/j.sna.2022.113807_bib108) 2022; 94
Borri (10.1016/j.sna.2022.113807_bib83) 2013; 103
Patimisco (10.1016/j.sna.2022.113807_bib1) 2014; 14
Zheng (10.1016/j.sna.2022.113807_bib66) 2016; 109
Wang (10.1016/j.sna.2022.113807_bib43) 2018; 268
Wang (10.1016/j.sna.2022.113807_bib49) 2021; 134
Cao (10.1016/j.sna.2022.113807_bib106) 2013; 38
Chen (10.1016/j.sna.2022.113807_bib109) 2018; 268
Ma (10.1016/j.sna.2022.113807_bib89) 2018; 26
Pourhashemi (10.1016/j.sna.2022.113807_bib19) 2015; 106
Yi (10.1016/j.sna.2022.113807_bib80) 2014; 116
Borri (10.1016/j.sna.2022.113807_bib17) 2014; 104
Karhu (10.1016/j.sna.2022.113807_bib16) 2019; 44
Spagnolo (10.1016/j.sna.2022.113807_bib9) 2014; 8993
Fiedler (10.1016/j.sna.2022.113807_bib54) 1989
10.1016/j.sna.2022.113807_bib92
Morse (10.1016/j.sna.2022.113807_bib52) 1986
Reid (10.1016/j.sna.2022.113807_bib5) 1978; 17
Giglio (10.1016/j.sna.2022.113807_bib86) 2019; 27
Zhang (10.1016/j.sna.2022.113807_bib48) 2019; 120
Patimisco (10.1016/j.sna.2022.113807_bib84) 2014; 139
Liu (10.1016/j.sna.2022.113807_bib70) 2016; 16
Ma (10.1016/j.sna.2022.113807_bib90) 2022; 30
Werle (10.1016/j.sna.2022.113807_bib12) 2011; 102
Hippler (10.1016/j.sna.2022.113807_bib2) 2010; 133
Peltola (10.1016/j.sna.2022.113807_bib102) 2015; 40
Glauvitz (10.1016/j.sna.2022.113807_bib96) 2015; 24
Yin (10.1016/j.sna.2022.113807_bib23) 2017; 111
Chen (10.1016/j.sna.2022.113807_bib110) 2020; 123
Sinisalo (10.1016/j.sna.2022.113807_bib93) 2014; 48
Mikkonen (10.1016/j.sna.2022.113807_bib99) 2018; 43
Fatima (10.1016/j.sna.2022.113807_bib101) 2021; 46
Rück (10.1016/j.sna.2022.113807_bib76) 2017; 255
Miklós (10.1016/j.sna.2022.113807_bib13) 2001; 72
He (10.1016/j.sna.2022.113807_bib26) 2017; 111
Duquesnoy (10.1016/j.sna.2022.113807_bib60) 2019; 19
Yi (10.1016/j.sna.2022.113807_bib61) 2012; 108
Luo (10.1016/j.sna.2022.113807_bib44) 2010; 35
Zhou (10.1016/j.sna.2022.113807_bib112) 2017; 25
Ma (10.1016/j.sna.2022.113807_bib28) 2017; 110
Starovoitov (10.1016/j.sna.2022.113807_bib41) 2016; 41
Giglio (10.1016/j.sna.2022.113807_bib68) 2017; 10111
Russo (10.1016/j.sna.2022.113807_bib45) 2002; 210
Zhang (10.1016/j.sna.2022.113807_bib47) 2019; 19
Kachanov (10.1016/j.sna.2022.113807_bib35) 2013; 110
Li (10.1016/j.sna.2022.113807_bib111) 2022; 149
Wu (10.1016/j.sna.2022.113807_bib25) 2015; 221
Delgado-Pinar (10.1016/j.sna.2022.113807_bib46) 2006; 14
Wang (10.1016/j.sna.2022.113807_bib38) 2019; 44
Rousseau (10.1016/j.sna.2022.113807_bib75) 2019; 27
Cheng (10.1016/j.sna.2022.113807_bib104) 2021; 70
Loewenstein (10.1016/j.sna.2022.113807_bib4) 1988; 40
Song (10.1016/j.sna.2022.113807_bib29) 2005; 80
Wu (10.1016/j.sna.2022.113807_bib58) 2015; 107
Lv (10.1016/j.sna.2022.113807_bib82) 2021; 46
Ma (10.1016/j.sna.2022.113807_bib81) 2022; 47
Sheng (10.1016/j.sna.2022.113807_bib114) 2019; 90
Peltola (10.1016/j.sna.2022.113807_bib103) 2013; 21
Zheng (10.1016/j.sna.2022.113807_bib65) 2016; 41
Dong (10.1016/j.sna.2022.113807_bib69) 2014; 39
Yi (10.1016/j.sna.2022.113807_bib74) 2012; 285
Hinkley (10.1016/j.sna.2022.113807_bib3) 1970; 16
Yang (10.1016/j.sna.2022.113807_bib7) 2021; 56
Wang (10.1016/j.sna.2022.113807_bib15) 2017; 42
Lu (10.1016/j.sna.2022.113807_bib113) 2007
Chen (10.1016/j.sna.2022.113807_bib24) 2018; 274
Röper (10.1016/j.sna.2022.113807_bib39) 1987; 43
Kosterev (10.1016/j.sna.2022.113807_bib57) 2002; 27
Kinsley (10.1016/j.sna.2022.113807_bib53) 1982
Dong (10.1016/j.sna.2022.113807_bib63) 2010; 100
Hao (10.1016/j.sna.2022.113807_bib31) 2002; 73
Yi (10.1016/j.sna.2022.113807_bib79) 2012; 20
Jacek (10.1016/j.sna.2022.113807_bib37) 2017; 17
Tomberg (10.1016/j.sna.2022.113807_bib100) 2018; 8
Sampaolo (10.1016/j.sna.2022.113807_bib8) 2021
10.1016/j.sna.2022.113807_bib50
Bozóki (10.1016/j.sna.2022.113807_bib40) 1996; 63
Wei (10.1016/j.sna.2022.113807_bib105) 2015; 36
Cui (10.1016/j.sna.2022.113807_bib71) 2021; 118
Zhou (10.1016/j.sna.2022.113807_bib115) 2019; 44
Pan (10.1016/j.sna.2022.113807_bib30) 2019; 12
Patimisco (10.1016/j.sna.2022.113807_bib36) 2015; 140
Hu (10.1016/j.sna.2022.113807_bib77) 2019; 44
Laurila (10.1016/j.sna.2022.113807_bib97) 2005; 13
Coutu (10.1016/j.sna.2022.113807_bib95) 2016; 6
Bell (10.1016/j.sna.2022.113807_bib6) 1880; 9
Hayden (10.1016/j.sna.2022.113807_bib88) 2022; 25
Garca-Valenzuela (10.1016/j.sna.2022.113807_bib94) 1998; 84
Dupriez (10.1016/j.sna.2022.113807_bib42) 2006; 18
Debord (10.1016/j.sna.2022.113807_bib51) 2019; 7
Ma (10.1016/j.sna.2022.113807_bib33) 2020; 109
Mordmueller (10.1016/j.sna.2022.113807_bib11) 2017; 123
Webber (10.1016/j.sna.2022.113807_bib22) 2003; 42
Liu (10.1016/j.sna.2022.113807_bib73) 2009; 34
Ma (10.1016/j.sna.2022.113807_bib27) 2017; 25
Cao (10.1016/j.sna.2022.113807_bib64) 2012; 174
References_xml – volume: 39
  start-page: 2479
  year: 2014
  end-page: 2482
  ident: bib69
  article-title: Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– year: 1982
  ident: bib53
  article-title: Fundamentals of Acoustics
– volume: 8
  start-page: 1848
  year: 2018
  ident: bib100
  article-title: Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy
  publication-title: Sci. Rep.
– volume: 87
  year: 2005
  ident: bib34
  article-title: Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity
  publication-title: Appl. Phys. Lett.
– volume: 111
  start-page: 603
  year: 2013
  end-page: 610
  ident: bib98
  article-title: Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source
  publication-title: Appl. Phys. B
– volume: 106
  year: 2015
  ident: bib19
  article-title: High-power blue laser diodes with indium tin oxide cladding on semipolar GaN substrates
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 32103
  year: 2018
  end-page: 32110
  ident: bib89
  article-title: Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection
  publication-title: Opt. Express
– volume: 120
  year: 2019
  ident: bib48
  article-title: Scanned-wavelength intra-cavity QEPAS sensor with injection seeding technique for C2H2 detection
  publication-title: Opt. Laser Technol.
– volume: 210
  start-page: 361
  year: 2002
  end-page: 366
  ident: bib45
  article-title: High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator
  publication-title: Opt. Commun.
– volume: 104
  year: 2014
  ident: bib17
  article-title: Intracavity quartz-enhanced photoacoustic sensor
  publication-title: Appl. Phys. Lett.
– start-page: 85
  year: 1989
  end-page: 123
  ident: bib54
  article-title: Laser Excitation of Acoustic Modes in Cylindrical and Spherical Resonators: Theory and Applications
  publication-title: Photoacoustic, Photothermal and Photochemical Processes in Gases
– volume: 36
  start-page: 1116
  year: 2015
  end-page: 1122
  ident: bib105
  article-title: All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment
  publication-title: Int. J. Thermophys.
– volume: 109
  year: 2016
  ident: bib66
  article-title: Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone
  publication-title: Appl. Phys. Lett.
– volume: 90
  year: 2019
  ident: bib114
  article-title: A fiber-tip photoacoustic sensor for in situ trace gas detection
  publication-title: Rev. Sci. Instrum.
– volume: 29
  start-page: 13600
  year: 2021
  end-page: 13609
  ident: bib56
  article-title: All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection
  publication-title: Opt. Express
– volume: 44
  start-page: 3741
  year: 2019
  end-page: 3744
  ident: bib115
  article-title: Immersion photoacoustic spectrometer (iPAS) for arcing fault detection in power transformers
  publication-title: Opt. Lett.
– volume: 100
  start-page: 627
  year: 2010
  end-page: 635
  ident: bib63
  article-title: QEPAS spectrophones: design, optimization, and performance
  publication-title: Appl. Phys. B
– volume: 94
  start-page: 1151
  year: 2022
  end-page: 1157
  ident: bib108
  article-title: High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption
  publication-title: Anal. Chem.
– volume: 19
  start-page: 6181
  year: 2019
  end-page: 6186
  ident: bib47
  article-title: Pptv-level intra-cavity QEPAS sensor for acetylene detection using a high power Q-switched fiber laser
  publication-title: IEEE Sens. J.
– volume: 84
  start-page: 58
  year: 1998
  end-page: 63
  ident: bib94
  article-title: Noise in optical measurements of cantilever deflections
  publication-title: J. Appl. Phys.
– volume: 8993
  start-page: 309
  year: 2014
  end-page: 319
  ident: bib9
  article-title: THz quartz-enhanced photoacoustic sensor employing a quantum cascade laser source
  publication-title: Quant. Sens. Nanophotonic Devices XI
– volume: 17
  start-page: 1806
  year: 1978
  end-page: 1810
  ident: bib5
  article-title: High sensitivity point monitoring of atmospheric gases employing tunable diode lasers
  publication-title: Appl. Opt.
– volume: 19
  start-page: 1362
  year: 2019
  ident: bib60
  article-title: Quartz enhanced photoacoustic spectroscopy based on a custom quartz tuning fork
  publication-title: Sensors
– volume: 44
  start-page: 1142
  year: 2019
  end-page: 1145
  ident: bib16
  article-title: Broadband photoacoustic spectroscopy of
  publication-title: Opt. Lett.
– volume: 42
  start-page: 2119
  year: 2003
  end-page: 2126
  ident: bib22
  article-title: Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers
  publication-title: Appl. Opt.
– volume: 21
  start-page: 1008
  year: 2013
  ident: bib18
  article-title: QEPAS based ppb-level detection of CO and N
  publication-title: Opt. Express
– volume: 123
  start-page: 224
  year: 2017
  ident: bib11
  article-title: U. Willer, QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases
  publication-title: Appl. Phys. B
– volume: 17
  year: 2020
  ident: bib91
  article-title: Frank K. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks
  publication-title: Photoacoustics
– volume: 44
  start-page: 1924
  year: 2019
  end-page: 1927
  ident: bib38
  article-title: Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking
  publication-title: Opt. Lett.
– reference: M. Pollnau, S.D. Jackson, Mid-Infrared Fiber Lasers, in: I.T. Sorokina, K.L. Vodopyanov (Eds.), Solid-State Mid-Infrared Laser Sources, Springer, Berlin, Heidelberg, 2003, pp. 225–261.
– volume: 35
  start-page: 3709
  year: 2010
  end-page: 3711
  ident: bib44
  article-title: Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser
  publication-title: Opt. Lett.
– volume: 63
  start-page: 399
  year: 1996
  end-page: 401
  ident: bib40
  article-title: Intracavity photoacoustic gas detection with an external cavity diode laser
  publication-title: Appl. Phys. B
– volume: 25
  year: 2022
  ident: bib88
  article-title: Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv – Level sensitivity using a T-shaped custom tuning fork
  publication-title: Photoacoustics
– volume: 111
  year: 2017
  ident: bib26
  article-title: Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy
  publication-title: Appl. Phys. Lett.
– volume: 9934
  start-page: 43
  year: 2016
  end-page: 50
  ident: bib10
  article-title: New developments in THz quartz enhanced photoacoustic spectroscopy, Terahertz Emitters
  publication-title: Receivers, and Applications VII
– volume: 134
  year: 2021
  ident: bib49
  article-title: Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection
  publication-title: Opt. Laser Technol.
– volume: 135
  start-page: 376
  year: 2019
  end-page: 384
  ident: bib62
  article-title: Pivotal techniques evaluation in QEPAS system for engineering applications
  publication-title: Measurement
– volume: 9
  start-page: 9616
  year: 2009
  end-page: 9628
  ident: bib14
  article-title: Photoacoustic techniques for trace gas sensing based on semiconductor laser sources
  publication-title: Sensors
– volume: 16
  start-page: 214
  year: 2016
  ident: bib70
  article-title: Quartz-enhanced photoacoustic spectroscopy with right-angle prism
  publication-title: Sensors
– volume: 27
  start-page: 4271
  year: 2019
  end-page: 4280
  ident: bib86
  article-title: Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone
  publication-title: Opt. Express
– volume: 40
  start-page: 2933
  year: 2015
  end-page: 2936
  ident: bib102
  article-title: Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 268
  start-page: 512
  year: 2018
  end-page: 518
  ident: bib43
  article-title: Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork
  publication-title: Sens. Actuators B-Chem.
– volume: 73
  start-page: 2079
  year: 2002
  ident: bib31
  article-title: Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy
  publication-title: Rev. Sci. Instrum.
– volume: 103
  year: 2013
  ident: bib83
  article-title: Terahertz quartz enhanced photo-acoustic sensor
  publication-title: Appl. Phys. Lett.
– volume: 107
  year: 2015
  ident: bib58
  article-title: Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 216
  year: 2015
  end-page: 223
  ident: bib96
  article-title: Terahertz photoacoustic spectroscopy using a MEMS cantilever sensor
  publication-title: J. Micro Syst.
– volume: 43
  start-page: 57
  year: 1987
  end-page: 59
  ident: bib39
  article-title: Intracavity photoacoustic resonance spectroscopy of C2H4
  publication-title: Appl. Phys. B
– volume: 7
  start-page: 16
  year: 2019
  ident: bib51
  article-title: Hollow-core fiber technology: the rising of “Gas Photonics
  publication-title: Fibers
– volume: 21
  start-page: 10240
  year: 2013
  end-page: 10250
  ident: bib103
  article-title: High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator
  publication-title: Opt. Express
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib104
  article-title: Simultaneous detection of C₂H₂ and CO based on cantilever-enhanced photoacoustic spectroscopy
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 102
  start-page: 313
  year: 2011
  end-page: 329
  ident: bib12
  article-title: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence
  publication-title: Appl. Phys. B
– volume: 110
  year: 2017
  ident: bib28
  article-title: Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 13922
  year: 2020
  end-page: 13929
  ident: bib87
  article-title: Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork
  publication-title: Anal. Chem.
– volume: 46
  start-page: 2083
  year: 2021
  end-page: 2086
  ident: bib101
  article-title: Radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 111
  year: 2017
  ident: bib23
  article-title: Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 404
  year: 1880
  end-page: 426
  ident: bib6
  article-title: On the production and reproduction of sound by light
  publication-title: J. Soc. Telegr. Eng.
– volume: 255
  start-page: 2462
  year: 2017
  end-page: 2471
  ident: bib76
  article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO
  publication-title: Sens. Actuators B-Chem.
– reference: J. Uotila, Use of the Optical Cantilever Microphone in Photoacoustic Spectroscopy, TURUN YLIOPISTO, Turku, Finland, 2009.
– volume: 16
  start-page: 351
  year: 1970
  end-page: 354
  ident: bib3
  article-title: High–resolution infrared spectroscopy with a tunable diode laser
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 3917
  year: 2021
  end-page: 3920
  ident: bib82
  article-title: Radial-cavity quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 25
  start-page: 29356
  year: 2017
  end-page: 29364
  ident: bib27
  article-title: Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork
  publication-title: Opt. Express
– volume: 247
  start-page: 290
  year: 2017
  end-page: 295
  ident: bib107
  article-title: High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection
  publication-title: Sens. Actuators B-Chem.
– volume: 274
  start-page: 184
  year: 2018
  end-page: 188
  ident: bib24
  article-title: Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection
  publication-title: Sens. Actuators A-Phys.
– volume: 34
  start-page: 1594
  year: 2009
  end-page: 1596
  ident: bib73
  article-title: Off-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 27
  start-page: 1902
  year: 2002
  end-page: 1904
  ident: bib57
  article-title: Quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 174
  start-page: 24
  year: 2012
  end-page: 30
  ident: bib64
  article-title: Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy
  publication-title: Sens. Actuators B-Chem.
– volume: 118
  year: 2021
  ident: bib71
  article-title: Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 2079
  year: 2014
  end-page: 2087
  ident: bib59
  article-title: A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser
  publication-title: Analyst
– volume: 116
  start-page: 423
  year: 2014
  end-page: 428
  ident: bib80
  article-title: T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode
  publication-title: Appl. Phys. B
– volume: 221
  start-page: 666
  year: 2015
  end-page: 672
  ident: bib25
  article-title: Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser
  publication-title: Sens. Actuators B-Chem.
– volume: 41
  start-page: 4955
  year: 2016
  end-page: 4958
  ident: bib41
  article-title: Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 μm
  publication-title: Opt. Lett.
– volume: 43
  start-page: 5094
  year: 2018
  end-page: 5097
  ident: bib99
  article-title: Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using supercontinuum
  publication-title: Opt. Lett.
– volume: 110
  start-page: 47
  year: 2013
  end-page: 56
  ident: bib35
  article-title: Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser
  publication-title: Appl. Phys. B
– volume: 285
  start-page: 5306
  year: 2012
  end-page: 5312
  ident: bib74
  article-title: Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Opt. Commun.
– volume: 42
  start-page: 2114
  year: 2017
  end-page: 2117
  ident: bib15
  article-title: Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing
  publication-title: Opt. Lett.
– year: 1986
  ident: bib52
  article-title: Theoretical Acoustics
– volume: 227
  start-page: 539
  year: 2016
  end-page: 546
  ident: bib85
  article-title: Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing
  publication-title: Sens. Actuators B-Chem.
– volume: 10111
  year: 2017
  ident: bib68
  article-title: Single-tube on beam quartz-enhanced photoacoustic spectrophones exploiting a custom quartz tuning fork operating in the overtone mode
  publication-title: Quant. Sens. Nano Electron. Photonics XIV
– volume: 6
  start-page: 251
  year: 2016
  ident: bib95
  article-title: Improved sensitivity MEMS cantilever sensor for terahertz photoacoustic spectroscopy
  publication-title: Sensors
– volume: 41
  start-page: 978
  year: 2016
  end-page: 981
  ident: bib65
  article-title: Single-tube on-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 20
  start-page: 9187
  year: 2012
  end-page: 9196
  ident: bib79
  article-title: T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Opt. Express
– volume: 40
  start-page: 249
  year: 1988
  end-page: 256
  ident: bib4
  article-title: Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 27
  start-page: 7435
  year: 2019
  end-page: 7446
  ident: bib75
  article-title: Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator
  publication-title: Opt. Express
– volume: 17
  year: 2017
  ident: bib37
  article-title: Trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy
  publication-title: Sensors
– volume: 13
  start-page: 2453
  year: 2005
  end-page: 2458
  ident: bib97
  article-title: Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection
  publication-title: Opt. Express
– volume: 14
  start-page: 6165
  year: 2014
  end-page: 6206
  ident: bib1
  article-title: Quartz-enhanced photoacoustic spectroscopy: a review
  publication-title: Sensors
– volume: 47
  start-page: 601
  year: 2022
  end-page: 604
  ident: bib81
  article-title: H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– start-page: 68001
  year: 2007
  ident: bib113
  article-title: Mechanical quality factor of microcantilevers for mass sensing applications
  publication-title: Int. Soc. Opt. Photonics
– volume: 30
  start-page: 18836
  year: 2022
  end-page: 18844
  ident: bib90
  article-title: Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing
  publication-title: Opt. Express
– volume: 27
  start-page: 14163
  year: 2019
  end-page: 14172
  ident: bib32
  article-title: Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser
  publication-title: Opt. Express
– volume: 21
  year: 2021
  ident: bib55
  article-title: Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser
  publication-title: Photoacoustics
– volume: 47
  start-page: 1295
  year: 2022
  end-page: 1298
  ident: bib78
  article-title: Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode
  publication-title: Opt. Lett.
– year: 1999
  ident: bib21
  article-title: Erbium-doped fiber amplifiers: fundamentals and technology
  publication-title: CA
– volume: 140
  start-page: 736
  year: 2015
  end-page: 743
  ident: bib36
  article-title: High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor
  publication-title: Analyst
– volume: 108
  start-page: 361
  year: 2012
  end-page: 367
  ident: bib61
  article-title: An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Appl. Phys. B
– volume: 123
  start-page: 63
  year: 2017
  ident: bib72
  article-title: Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Appl. Phys. B
– volume: 56
  start-page: 143
  year: 2021
  end-page: 170
  ident: bib7
  article-title: A review of all-optical photoacoustic spectroscopy as a gas sensing method
  publication-title: Appl. Spectrosc. Rev.
– year: 2021
  ident: bib8
  article-title: Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review
  publication-title: Anal. Chim. Acta
– volume: 44
  start-page: 2562
  year: 2019
  end-page: 2565
  ident: bib77
  article-title: Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
– volume: 25
  start-page: 17541
  year: 2017
  end-page: 17548
  ident: bib112
  article-title: Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor
  publication-title: Opt. Express
– volume: 109
  year: 2020
  ident: bib33
  article-title: Corner cube prism-enhanced photoacoustic spectroscopy based gas sensing
  publication-title: Infrared Phys. Technol.
– volume: 38
  start-page: 434
  year: 2013
  end-page: 436
  ident: bib106
  article-title: Miniature fiber-tip photoacoustic spectrometer for trace gas detection
  publication-title: Opt. Lett.
– volume: 133
  year: 2010
  ident: bib2
  article-title: Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy
  publication-title: J. Chem. Phys.
– volume: 48
  start-page: 30
  year: 2014
  end-page: 34
  ident: bib93
  article-title: OPO-based photoacoustic spectroscopy speeds up gas analysis
  publication-title: Photonics Spectra
– volume: 247
  start-page: 329
  year: 2017
  end-page: 335
  ident: bib20
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser
  publication-title: Sens. Actuators B-Chem.
– volume: 139
  start-page: 2079
  year: 2014
  end-page: 2087
  ident: bib84
  article-title: Gaetano Scamarcio, V. Spagnolo, A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser
  publication-title: Analyst
– volume: 80
  start-page: 113
  year: 2005
  end-page: 119
  ident: bib29
  article-title: Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 μm
  publication-title: Microchem. J.
– volume: 12
  start-page: 1905
  year: 2019
  end-page: 1911
  ident: bib30
  article-title: Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser
  publication-title: Atmos. Meas. Tech.
– volume: 123
  year: 2020
  ident: bib110
  article-title: Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer
  publication-title: Opt. Laser Technol.
– volume: 268
  start-page: 205
  year: 2018
  end-page: 209
  ident: bib109
  article-title: Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy
  publication-title: Sens. Actuators B
– volume: 72
  start-page: 1937
  year: 2001
  end-page: 1955
  ident: bib13
  article-title: Application of acoustic resonators in photoacoustic trace gas analysis and metrology
  publication-title: Rev. Sci. Instrum.
– volume: 149
  year: 2022
  ident: bib111
  article-title: Miniature single-fiber photoacoustic sensor for methane gas leakage detection
  publication-title: Opt. Lasers Eng.
– volume: 14
  start-page: 1106
  year: 2006
  end-page: 1112
  ident: bib46
  article-title: Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating
  publication-title: Opt. Express
– volume: 18
  start-page: 1013
  year: 2006
  end-page: 1015
  ident: bib42
  article-title: High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm
  publication-title: IEEE Photonics Technol. Lett.
– volume: 2
  start-page: 169
  year: 2017
  end-page: 187
  ident: bib67
  article-title: Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review
  publication-title: Adv. Phys.
– volume: 140
  start-page: 736
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib36
  article-title: High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor
  publication-title: Analyst
  doi: 10.1039/C4AN01158A
– volume: 123
  start-page: 224
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib11
  article-title: U. Willer, QEPAS with electrical co-excitation for photoacoustic measurements in fluctuating background gases
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-017-6799-3
– volume: 111
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib26
  article-title: Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5003121
– volume: 174
  start-page: 24
  year: 2012
  ident: 10.1016/j.sna.2022.113807_bib64
  article-title: Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2012.08.014
– volume: 116
  start-page: 423
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib80
  article-title: T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-013-5713-x
– start-page: 85
  year: 1989
  ident: 10.1016/j.sna.2022.113807_bib54
  article-title: Laser Excitation of Acoustic Modes in Cylindrical and Spherical Resonators: Theory and Applications
– volume: 72
  start-page: 1937
  year: 2001
  ident: 10.1016/j.sna.2022.113807_bib13
  article-title: Application of acoustic resonators in photoacoustic trace gas analysis and metrology
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1353198
– volume: 107
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib58
  article-title: Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4930995
– volume: 25
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib88
  article-title: Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv – Level sensitivity using a T-shaped custom tuning fork
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2022.100330
– volume: 47
  start-page: 1295
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib78
  article-title: Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode
  publication-title: Opt. Lett.
  doi: 10.1364/OL.452085
– volume: 268
  start-page: 512
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib43
  article-title: Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2018.04.139
– volume: 92
  start-page: 13922
  year: 2020
  ident: 10.1016/j.sna.2022.113807_bib87
  article-title: Mid-infrared quartz-enhanced photoacoustic sensor for ppb-level CO detection in a SF6 gas matrix exploiting a T-grooved quartz tuning fork
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02772
– volume: 9
  start-page: 9616
  issue: 12
  year: 2009
  ident: 10.1016/j.sna.2022.113807_bib14
  article-title: Photoacoustic techniques for trace gas sensing based on semiconductor laser sources
  publication-title: Sensors
  doi: 10.3390/s91209616
– volume: 247
  start-page: 290
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib107
  article-title: High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.03.009
– volume: 27
  start-page: 7435
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib75
  article-title: Off-beam QEPAS sensor using an 11-μm DFB-QCL with an optimized acoustic resonator
  publication-title: Opt. Express
  doi: 10.1364/OE.27.007435
– volume: 133
  year: 2010
  ident: 10.1016/j.sna.2022.113807_bib2
  article-title: Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3461061
– volume: 63
  start-page: 399
  year: 1996
  ident: 10.1016/j.sna.2022.113807_bib40
  article-title: Intracavity photoacoustic gas detection with an external cavity diode laser
  publication-title: Appl. Phys. B
  doi: 10.1007/BF01828745
– volume: 73
  start-page: 2079
  year: 2002
  ident: 10.1016/j.sna.2022.113807_bib31
  article-title: Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1464653
– volume: 16
  start-page: 214
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib70
  article-title: Quartz-enhanced photoacoustic spectroscopy with right-angle prism
  publication-title: Sensors
  doi: 10.3390/s16020214
– volume: 94
  start-page: 1151
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib108
  article-title: High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c04309
– ident: 10.1016/j.sna.2022.113807_bib92
– volume: 110
  start-page: 47
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib35
  article-title: Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-012-5250-z
– volume: 111
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib23
  article-title: Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4987008
– volume: 135
  start-page: 376
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib62
  article-title: Pivotal techniques evaluation in QEPAS system for engineering applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.060
– volume: 47
  start-page: 601
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib81
  article-title: H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.449822
– year: 2021
  ident: 10.1016/j.sna.2022.113807_bib8
  article-title: Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: a review
  publication-title: Anal. Chim. Acta
– volume: 44
  start-page: 2562
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib77
  article-title: Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.002562
– year: 1986
  ident: 10.1016/j.sna.2022.113807_bib52
– volume: 41
  start-page: 978
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib65
  article-title: Single-tube on-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.000978
– volume: 110
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib28
  article-title: Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4974483
– volume: 25
  start-page: 29356
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib27
  article-title: Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork
  publication-title: Opt. Express
  doi: 10.1364/OE.25.029356
– volume: 139
  start-page: 2079
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib84
  article-title: Gaetano Scamarcio, V. Spagnolo, A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser
  publication-title: Analyst
  doi: 10.1039/C3AN01219K
– volume: 149
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib111
  article-title: Miniature single-fiber photoacoustic sensor for methane gas leakage detection
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2021.106792
– volume: 14
  start-page: 6165
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib1
  article-title: Quartz-enhanced photoacoustic spectroscopy: a review
  publication-title: Sensors
  doi: 10.3390/s140406165
– volume: 39
  start-page: 2479
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib69
  article-title: Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.002479
– volume: 44
  start-page: 1924
  issue: 8
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib38
  article-title: Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.001924
– volume: 43
  start-page: 5094
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib99
  article-title: Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using supercontinuum
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.005094
– volume: 123
  start-page: 63
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib72
  article-title: Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-017-6640-z
– volume: 111
  start-page: 603
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib98
  article-title: Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-013-5379-4
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib104
  article-title: Simultaneous detection of C₂H₂ and CO based on cantilever-enhanced photoacoustic spectroscopy
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 123
  year: 2020
  ident: 10.1016/j.sna.2022.113807_bib110
  article-title: Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105894
– volume: 29
  start-page: 13600
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib56
  article-title: All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection
  publication-title: Opt. Express
  doi: 10.1364/OE.424387
– volume: 80
  start-page: 113
  year: 2005
  ident: 10.1016/j.sna.2022.113807_bib29
  article-title: Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 μm
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2004.07.026
– volume: 35
  start-page: 3709
  year: 2010
  ident: 10.1016/j.sna.2022.113807_bib44
  article-title: Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.003709
– volume: 48
  start-page: 30
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib93
  article-title: OPO-based photoacoustic spectroscopy speeds up gas analysis
  publication-title: Photonics Spectra
– volume: 34
  start-page: 1594
  year: 2009
  ident: 10.1016/j.sna.2022.113807_bib73
  article-title: Off-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001594
– volume: 43
  start-page: 57
  year: 1987
  ident: 10.1016/j.sna.2022.113807_bib39
  article-title: Intracavity photoacoustic resonance spectroscopy of C2H4
  publication-title: Appl. Phys. B
  doi: 10.1007/BF00693973
– volume: 44
  start-page: 3741
  issue: 15
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib115
  article-title: Immersion photoacoustic spectrometer (iPAS) for arcing fault detection in power transformers
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.003741
– volume: 17
  start-page: 1806
  year: 1978
  ident: 10.1016/j.sna.2022.113807_bib5
  article-title: High sensitivity point monitoring of atmospheric gases employing tunable diode lasers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.17.001806
– volume: 268
  start-page: 205
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib109
  article-title: Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.04.123
– volume: 42
  start-page: 2114
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib15
  article-title: Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002114
– volume: 210
  start-page: 361
  year: 2002
  ident: 10.1016/j.sna.2022.113807_bib45
  article-title: High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(02)01815-1
– volume: 14
  start-page: 1106
  year: 2006
  ident: 10.1016/j.sna.2022.113807_bib46
  article-title: Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating
  publication-title: Opt. Express
  doi: 10.1364/OE.14.001106
– volume: 255
  start-page: 2462
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib76
  article-title: NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.09.039
– volume: 27
  start-page: 1902
  year: 2002
  ident: 10.1016/j.sna.2022.113807_bib57
  article-title: Quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001902
– volume: 44
  start-page: 1142
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib16
  article-title: Broadband photoacoustic spectroscopy of 14CH4 with a high-power mid-infrared optical frequency comb
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.001142
– volume: 2
  start-page: 169
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib67
  article-title: Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review
  publication-title: Adv. Phys.
– volume: 17
  year: 2020
  ident: 10.1016/j.sna.2022.113807_bib91
  article-title: Frank K. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2019.100158
– volume: 8
  start-page: 1848
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib100
  article-title: Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20087-9
– volume: 18
  start-page: 1013
  year: 2006
  ident: 10.1016/j.sna.2022.113807_bib42
  article-title: High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2006.873486
– volume: 40
  start-page: 249
  year: 1988
  ident: 10.1016/j.sna.2022.113807_bib4
  article-title: Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/0022-4073(88)90118-5
– volume: 221
  start-page: 666
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib25
  article-title: Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582nm DFB laser
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.06.049
– year: 1999
  ident: 10.1016/j.sna.2022.113807_bib21
  article-title: Erbium-doped fiber amplifiers: fundamentals and technology
– volume: 109
  year: 2020
  ident: 10.1016/j.sna.2022.113807_bib33
  article-title: Corner cube prism-enhanced photoacoustic spectroscopy based gas sensing
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103386
– volume: 108
  start-page: 361
  year: 2012
  ident: 10.1016/j.sna.2022.113807_bib61
  article-title: An acoustic model for microresonator in on-beam quartz-enhanced photoacoustic spectroscopy
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-012-4988-7
– volume: 16
  start-page: 351
  year: 1970
  ident: 10.1016/j.sna.2022.113807_bib3
  article-title: High–resolution infrared spectroscopy with a tunable diode laser
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1653222
– volume: 21
  start-page: 10240
  issue: 8
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib103
  article-title: High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator
  publication-title: Opt. Express
  doi: 10.1364/OE.21.010240
– volume: 56
  start-page: 143
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib7
  article-title: A review of all-optical photoacoustic spectroscopy as a gas sensing method
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2020.1760875
– volume: 7
  start-page: 16
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib51
  article-title: Hollow-core fiber technology: the rising of “Gas Photonics
  publication-title: Fibers
  doi: 10.3390/fib7020016
– volume: 227
  start-page: 539
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib85
  article-title: Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.12.096
– volume: 36
  start-page: 1116
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib105
  article-title: All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-015-1902-7
– volume: 17
  issue: 3
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib37
  article-title: Trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy
  publication-title: Sensors
– volume: 134
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib49
  article-title: Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106612
– volume: 109
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib66
  article-title: Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4962810
– volume: 106
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib19
  article-title: High-power blue laser diodes with indium tin oxide cladding on semipolar GaN substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4915324
– year: 1982
  ident: 10.1016/j.sna.2022.113807_bib53
– volume: 25
  start-page: 17541
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib112
  article-title: Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor
  publication-title: Opt. Express
  doi: 10.1364/OE.25.017541
– volume: 13
  start-page: 2453
  year: 2005
  ident: 10.1016/j.sna.2022.113807_bib97
  article-title: Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.002453
– volume: 90
  issue: 2
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib114
  article-title: A fiber-tip photoacoustic sensor for in situ trace gas detection
  publication-title: Rev. Sci. Instrum.
– volume: 120
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib48
  article-title: Scanned-wavelength intra-cavity QEPAS sensor with injection seeding technique for C2H2 detection
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105751
– volume: 102
  start-page: 313
  year: 2011
  ident: 10.1016/j.sna.2022.113807_bib12
  article-title: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-010-4165-9
– volume: 12
  start-page: 1905
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib30
  article-title: Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-1905-2019
– volume: 46
  start-page: 2083
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib101
  article-title: Radiocarbon dioxide detection using cantilever-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.420199
– ident: 10.1016/j.sna.2022.113807_bib50
  doi: 10.1007/3-540-36491-9_6
– volume: 20
  start-page: 9187
  year: 2012
  ident: 10.1016/j.sna.2022.113807_bib79
  article-title: T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Opt. Express
  doi: 10.1364/OE.20.009187
– volume: 13
  start-page: 2079
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib59
  article-title: A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser
  publication-title: Analyst
  doi: 10.1039/C3AN01219K
– volume: 274
  start-page: 184
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib24
  article-title: Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection
  publication-title: Sens. Actuators A-Phys.
  doi: 10.1016/j.sna.2018.02.025
– volume: 285
  start-page: 5306
  year: 2012
  ident: 10.1016/j.sna.2022.113807_bib74
  article-title: Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy sensor
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2012.07.056
– volume: 42
  start-page: 2119
  year: 2003
  ident: 10.1016/j.sna.2022.113807_bib22
  article-title: Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.42.002119
– volume: 103
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib83
  article-title: Terahertz quartz enhanced photo-acoustic sensor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812438
– volume: 9934
  start-page: 43
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib10
  article-title: New developments in THz quartz enhanced photoacoustic spectroscopy, Terahertz Emitters
– volume: 19
  start-page: 6181
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib47
  article-title: Pptv-level intra-cavity QEPAS sensor for acetylene detection using a high power Q-switched fiber laser
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2910665
– volume: 9
  start-page: 404
  issue: 34
  year: 1880
  ident: 10.1016/j.sna.2022.113807_bib6
  article-title: On the production and reproduction of sound by light
  publication-title: J. Soc. Telegr. Eng.
– volume: 100
  start-page: 627
  year: 2010
  ident: 10.1016/j.sna.2022.113807_bib63
  article-title: QEPAS spectrophones: design, optimization, and performance
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-010-4072-0
– volume: 27
  start-page: 4271
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib86
  article-title: Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone
  publication-title: Opt. Express
  doi: 10.1364/OE.27.004271
– volume: 10111
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib68
  article-title: Single-tube on beam quartz-enhanced photoacoustic spectrophones exploiting a custom quartz tuning fork operating in the overtone mode
  publication-title: Quant. Sens. Nano Electron. Photonics XIV
– volume: 19
  start-page: 1362
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib60
  article-title: Quartz enhanced photoacoustic spectroscopy based on a custom quartz tuning fork
  publication-title: Sensors
  doi: 10.3390/s19061362
– volume: 40
  start-page: 2933
  issue: 13
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib102
  article-title: Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002933
– start-page: 68001
  year: 2007
  ident: 10.1016/j.sna.2022.113807_bib113
  article-title: Mechanical quality factor of microcantilevers for mass sensing applications
  publication-title: Int. Soc. Opt. Photonics
– volume: 118
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib71
  article-title: Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0047963
– volume: 38
  start-page: 434
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib106
  article-title: Miniature fiber-tip photoacoustic spectrometer for trace gas detection
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.000434
– volume: 6
  start-page: 251
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib95
  article-title: Improved sensitivity MEMS cantilever sensor for terahertz photoacoustic spectroscopy
  publication-title: Sensors
  doi: 10.3390/s16020251
– volume: 8993
  start-page: 309
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib9
  article-title: THz quartz-enhanced photoacoustic sensor employing a quantum cascade laser source
– volume: 27
  start-page: 14163
  year: 2019
  ident: 10.1016/j.sna.2022.113807_bib32
  article-title: Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser
  publication-title: Opt. Express
  doi: 10.1364/OE.27.014163
– volume: 24
  start-page: 216
  year: 2015
  ident: 10.1016/j.sna.2022.113807_bib96
  article-title: Terahertz photoacoustic spectroscopy using a MEMS cantilever sensor
  publication-title: J. Micro Syst.
  doi: 10.1109/JMEMS.2014.2327916
– volume: 26
  start-page: 32103
  issue: 24
  year: 2018
  ident: 10.1016/j.sna.2022.113807_bib89
  article-title: Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection
  publication-title: Opt. Express
  doi: 10.1364/OE.26.032103
– volume: 30
  start-page: 18836
  issue: 17
  year: 2022
  ident: 10.1016/j.sna.2022.113807_bib90
  article-title: Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing
  publication-title: Opt. Express
  doi: 10.1364/OE.460134
– volume: 87
  year: 2005
  ident: 10.1016/j.sna.2022.113807_bib34
  article-title: Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2000341
– volume: 247
  start-page: 329
  year: 2017
  ident: 10.1016/j.sna.2022.113807_bib20
  article-title: Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.03.058
– volume: 41
  start-page: 4955
  year: 2016
  ident: 10.1016/j.sna.2022.113807_bib41
  article-title: Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 μm
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.004955
– volume: 46
  start-page: 3917
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib82
  article-title: Radial-cavity quartz-enhanced photoacoustic spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.432308
– volume: 84
  start-page: 58
  year: 1998
  ident: 10.1016/j.sna.2022.113807_bib94
  article-title: Noise in optical measurements of cantilever deflections
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368001
– volume: 21
  start-page: 1008
  issue: 1
  year: 2013
  ident: 10.1016/j.sna.2022.113807_bib18
  article-title: QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
  publication-title: Opt. Express
  doi: 10.1364/OE.21.001008
– volume: 21
  year: 2021
  ident: 10.1016/j.sna.2022.113807_bib55
  article-title: Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2020.100216
– volume: 104
  year: 2014
  ident: 10.1016/j.sna.2022.113807_bib17
  article-title: Intracavity quartz-enhanced photoacoustic sensor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4867268
SSID ssj0003377
Score 2.579021
SecondaryResourceType review_article
Snippet Photoacoustic spectroscopy (PAS), which relies on the detection of absorption-induced acoustic waves, is widely used for gas sensing. This paper summarizes and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113807
SubjectTerms Acoustic absorption
Acoustic waves
Cantilever
Custom tuning fork
EDFA
Fiber optics
Fiber-optic microphone
Gas detectors
Gas sensors
Optical communication
Photoacoustic enhancement
Photoacoustic spectroscopy
Resonator
Surface acoustic waves
Trace gases
Transducers
Title Techniques to enhance the photoacoustic signal for trace gas sensing: A review
URI https://dx.doi.org/10.1016/j.sna.2022.113807
https://www.proquest.com/docview/2739798295
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWz8sCEFBr8Ss1WVVQFRBeKxGY5jkOLUFKRsPLbucuDl1AHxkRnK7qz777In78j5FT4REuvRXChvQ8EINrAqjQKIu-YjxVPZEX5v5uo8YO4eZSPHTJs78IgrbLJ_XVOr7J186bXeLO3mM979yH8OgiGYod4KslQ8VOICFf5-fsXzYPzqvsiGgdo3Z5sVhyvIkPpIcaws0kfO8r-XZt-Zemq9Iw2yUaDGemg_qwt0vHZNln_piS4QybTVou1oGVOfTbDaFJAd3Qxy8sc8l7VtosiXwPmAqhKy1cLJk-2oAWy2LOnSzqg9VWWXfIwupoOx0HTKiFwnMkyiFIHSCe2QmiXspglVrswdFpK52KrlEwYs6he1-fCRVIkULZTCApsWSj5OuR7ZCXLM79PqAKAcYGHmzrFnt_cqjgRKvY25VGi--qAhK2TjGt0xLGdxYtpCWPPBvxq0K-m9usBOfscsqhFNJYZi9bz5sdKMJDklw07bqNkmm1YGMBmOtJ9puXh_2Y9Imv4VLP3jslK-frmTwCFlHG3WmZdsjq4vh1PPgCwodla
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcVrALoiwPHzitFDX4lZpbhbYqr14oUm-W4zhQhNKqCf-fmTzQ7mrFYa-JbUVje-aL_Pn7AM5lyIwKRkYXJoRIIqKNnM6TKAmeh1SLTNWU__upnjzKm7mab8BVdxeGaJVt7m9yep2t2yeDNpqD1WIxeIjx10FyEjukU0kuNmGL1KlUD7ZG17eT6UdCFqI2YKT2EXXoDjdrmldZkPoQ52RuMiRT2X-Xp78SdV19xrvwtYWNbNR82R5shOIb7PwmJvgdprNOjrVk1ZKF4pkmlCHAY6vnZbXE1Fc7dzGibOBYiFZZtXbY5MmVrCQie_F0yUasuc2yD4_jX7OrSdS6JURecFVFSe4R7KROSuNznvLMGR_H3ijlfeq0VhnnjgTshkL6RMkMK3eO84K7Fqu-icUB9IplEQ6BacQYF3S-aXKy_RZOp5nUaXC5SDIz1H2IuyBZ30qJk6PFq-04Yy8W42oprraJax9-fnRZNToanzWWXeTtH4vBYp7_rNtxN0u23YmlRXhmEjPkRh3936hn8GUyu7-zd9fT2x-wTW8aMt8x9Kr1WzhBUFKlp-2iewc3J9wL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techniques+to+enhance+the+photoacoustic+signal+for+trace+gas+sensing%3A+A+review&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Wang%2C+Fupeng&rft.au=Cheng%2C+Yaopeng&rft.au=Xue%2C+Qingsheng&rft.au=Wang%2C+Qiang&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=345&rft_id=info:doi/10.1016%2Fj.sna.2022.113807&rft.externalDocID=S0924424722004423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon