Deep generative model for therapeutic targets using transcriptomic disease-associated data—USP7 case study

Abstract The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focuse...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 4
Main Authors Pereira, Tiago, Abbasi, Maryam, Oliveira, Rita I, Guedes, Romina A, Salvador, Jorge A R, Arrais, Joel P
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 18.07.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease.
AbstractList Abstract The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease.
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease.
Author Oliveira, Rita I
Abbasi, Maryam
Arrais, Joel P
Guedes, Romina A
Salvador, Jorge A R
Pereira, Tiago
Author_xml – sequence: 1
  givenname: Tiago
  surname: Pereira
  fullname: Pereira, Tiago
  email: top@dei.uc.pt
– sequence: 2
  givenname: Maryam
  surname: Abbasi
  fullname: Abbasi, Maryam
– sequence: 3
  givenname: Rita I
  surname: Oliveira
  fullname: Oliveira, Rita I
– sequence: 4
  givenname: Romina A
  surname: Guedes
  fullname: Guedes, Romina A
– sequence: 5
  givenname: Jorge A R
  surname: Salvador
  fullname: Salvador, Jorge A R
– sequence: 6
  givenname: Joel P
  surname: Arrais
  fullname: Arrais, Joel P
BookMark eNp90M1KAzEQB_AgFWyrJ18gIIgga_OxSXaP4jcUFLTnJZudrSnbzZpkhd58CJ_QJ3FLe_LgaYaZH8Pwn6BR61pA6JSSK0pyPittOStLbZgiB2hMU6WSlIh0tO2lSkQq-RGahLAihBGV0TFqbgE6vIQWvI72E_DaVdDg2nkc34dZB320BkftlxAD7oNtlzh63QbjbRfdelhWNoAOkOgQnLE6QoUrHfXP1_fi9UVhM-xwiH21OUaHtW4CnOzrFC3u795uHpP588PTzfU8MZyJmCgtgIEwQqVKMqUJSJ4ZYiAFnnGolS5zEDmVnFGASsiSSsUkrShNRZ1mfIoudnc77z56CLFY22CgaXQLrg8Fk5kgnBO6pWd_6Mr1vh2-G1Sei5yTjA7qcqeMdyF4qIvO27X2m4KSYpt8MSRf7JMf9PlOu777F_4Cg0eHnw
CitedBy_id crossref_primary_10_1021_acs_jcim_2c01301
crossref_primary_10_1093_bib_bbad368
crossref_primary_10_2174_0929867330666230403100008
crossref_primary_10_3389_fchem_2022_1005727
crossref_primary_10_1021_acs_jcim_3c00355
crossref_primary_10_1080_14728222_2023_2266571
Cites_doi 10.1038/sj.cdd.4401910
10.1561/2200000056
10.1162/neco.1997.9.8.1735
10.1038/s41467-019-13807-w
10.1021/acsomega.0c01149
10.1038/s41467-020-17844-8
10.1126/science.aat2663
10.1080/15384101.2017.1288326
10.1126/science.1132939
10.3389/fphar.2020.00733
10.1158/1535-7163.MCT-14-0778
10.1080/13543784.2017.1353077
10.1158/2159-8290.CD-16-0611
10.1016/j.drudis.2017.08.010
10.1093/bioinformatics/btn186
10.1038/sj.onc.1207371
10.1021/acscentsci.7b00572
10.1007/s10458-022-09552-y
10.1093/bib/bbab391
10.1186/s13058-020-01296-5
10.1109/CBMS52027.2021.00067
10.1007/s10549-021-06367-5
10.1021/acs.molpharmaceut.7b00346
10.1016/j.isci.2021.102269
10.1016/j.engappai.2020.103915
10.1155/2019/8427042
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac270
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef

Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbac270
10.1093/bib/bbac270
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
7QO
7SC
8FD
ABEJV
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-7a5e2e5c5747627a0e638c0ce4e383ef7ab9e5916321eed56b167261d1145f483
IEDL.DBID TOX
ISSN 1467-5463
IngestDate Fri Oct 25 06:53:23 EDT 2024
Mon Nov 04 11:06:41 EST 2024
Fri Aug 23 00:54:34 EDT 2024
Wed Aug 28 03:17:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
cancer
drug design
transcriptome
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-7a5e2e5c5747627a0e638c0ce4e383ef7ab9e5916321eed56b167261d1145f483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2699593081
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2685033018
proquest_journals_2699593081
crossref_primary_10_1093_bib_bbac270
oup_primary_10_1093_bib_bbac270
PublicationCentury 2000
PublicationDate 2022-07-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-18
  day: 18
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Levine (2022071906185192700_ref21) 2006; 13
Hochreiter (2022071906185192700_ref16) 1997; 9
Dong (2022071906185192700_ref9) 2022; 23
Yu (2022071906185192700_ref6) 2021; 22
Cui (2022071906185192700_ref7) 2020; 11
Zhang (2022071906185192700_ref35) 2017; 22
Wang (2022071906185192700_ref33) 2019; 10
Ohta (2022071906185192700_ref25) 2004; 23
Schech (2022071906185192700_ref30) 2015; 14
Gómez-Bombarelli (2022071906185192700_ref14) 2018; 4
Goldstein (2022071906185192700_ref13) 2021; 190
Ertl (2022071906185192700_ref10) 2009; 1
Hayes (2022071906185192700_ref15)
Kadurin (2022071906185192700_ref18) 2017; 14
Gallo (2022071906185192700_ref11) 2017; 16
Born (2022071906185192700_ref2) 2021; 24
Cao (2022071906185192700_ref4) 2008; 24
Méndez-Lucio (2022071906185192700_ref22) 2020; 11
Tkatchenko (2022071906185192700_ref31) 2020; 11
Santos (2022071906185192700_ref29) 2021
Pereira (2022071906185192700_ref27) 2021; 13
Gaulton (2022071906185192700_ref12); 45
Olivecrona (2022071906185192700_ref26) 2017; 9
Trapani (2022071906185192700_ref32) 2017; 26
Richard Bickerton (2022071906185192700_ref1) 2012; 4
Joo (2022071906185192700_ref17) 2020; 5
Yin (2022071906185192700_ref34) 2020; 22
Brown (2022071906185192700_ref3) 2017; 7
Nagarajan (2022071906185192700_ref23) 2019; 2019
Chen (2022071906185192700_ref5) 2017; 8
Kingma (2022071906185192700_ref19) 2019; 12
Dong (2022071906185192700_ref8) 2014; 26
Lamb (2022071906185192700_ref20) 2006; 313
Nguyen (2022071906185192700_ref24) 2020; 96
Sanchez-Lengeling (2022071906185192700_ref28) 2018; 361
References_xml – volume: 13
  year: 2006
  ident: 2022071906185192700_ref21
  article-title: The p53 pathway: what questions remain to be explored?
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401910
  contributor:
    fullname: Levine
– volume: 8
  year: 2017
  ident: 2022071906185192700_ref5
  article-title: Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets
  publication-title: Nat Commun
  contributor:
    fullname: Chen
– volume: 12
  year: 2019
  ident: 2022071906185192700_ref19
  article-title: An introduction to variational autoencoders
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000056
  contributor:
    fullname: Kingma
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 2022071906185192700_ref16
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
  contributor:
    fullname: Hochreiter
– volume: 45
  start-page: 2017
  ident: 2022071906185192700_ref12
  article-title: The chembl database in 2017
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Gaulton
– volume: 11
  year: 2020
  ident: 2022071906185192700_ref22
  article-title: De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13807-w
  contributor:
    fullname: Méndez-Lucio
– volume: 5
  year: 2020
  ident: 2022071906185192700_ref17
  article-title: Generative model for proposing drug candidates satisfying anticancer properties using a conditional variational autoencoder
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01149
  contributor:
    fullname: Joo
– volume: 1
  year: 2009
  ident: 2022071906185192700_ref10
  article-title: Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions
  publication-title: J Chem
  contributor:
    fullname: Ertl
– volume: 11
  year: 2020
  ident: 2022071906185192700_ref31
  article-title: Machine learning for chemical discovery
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17844-8
  contributor:
    fullname: Tkatchenko
– volume: 361
  start-page: 360
  issue: 6400
  year: 2018
  ident: 2022071906185192700_ref28
  article-title: Inverse molecular design using machine learning: generative models for matter engineering
  publication-title: Science
  doi: 10.1126/science.aat2663
  contributor:
    fullname: Sanchez-Lengeling
– volume: 16
  year: 2017
  ident: 2022071906185192700_ref11
  article-title: The importance of regulatory ubiquitination in cancer and metastasis
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2017.1288326
  contributor:
    fullname: Gallo
– volume: 313
  start-page: 1929
  issue: 5795
  year: 2006
  ident: 2022071906185192700_ref20
  article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease
  publication-title: Science
  doi: 10.1126/science.1132939
  contributor:
    fullname: Lamb
– volume: 9
  year: 2017
  ident: 2022071906185192700_ref26
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J Chem
  contributor:
    fullname: Olivecrona
– volume: 11
  year: 2020
  ident: 2022071906185192700_ref7
  article-title: Discovering anti-cancer drugs via computational methods
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.00733
  contributor:
    fullname: Cui
– volume: 26
  year: 2014
  ident: 2022071906185192700_ref8
  article-title: Antitumor effects of artesunate on human breast carcinoma mcf-7 cells and igf-ir expression in nude mice xenografts
  publication-title: Chin J Cancer Res
  contributor:
    fullname: Dong
– volume: 14
  year: 2015
  ident: 2022071906185192700_ref30
  article-title: Histone deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-14-0778
  contributor:
    fullname: Schech
– volume: 26
  year: 2017
  ident: 2022071906185192700_ref32
  article-title: Entinostat for the treatment of breast cancer
  publication-title: Expert Opin Investig Drugs
  doi: 10.1080/13543784.2017.1353077
  contributor:
    fullname: Trapani
– volume: 7
  year: 2017
  ident: 2022071906185192700_ref3
  article-title: Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0611
  contributor:
    fullname: Brown
– volume: 22
  year: 2017
  ident: 2022071906185192700_ref35
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2017.08.010
  contributor:
    fullname: Zhang
– volume: 22
  issue: 6
  year: 2021
  ident: 2022071906185192700_ref6
  article-title: Molecular design in drug discovery: a comprehensive review of deep generative models
  publication-title: Brief Bioinform
  contributor:
    fullname: Yu
– volume: 4
  year: 2012
  ident: 2022071906185192700_ref1
  article-title: Quantifying the chemical beauty of drugs
  publication-title: Nat Chem
  contributor:
    fullname: Richard Bickerton
– volume: 13
  year: 2021
  ident: 2022071906185192700_ref27
  article-title: Diversity oriented deep reinforcement learning for targeted molecule generation
  publication-title: J Chem
  contributor:
    fullname: Pereira
– volume: 24
  year: 2008
  ident: 2022071906185192700_ref4
  article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn186
  contributor:
    fullname: Cao
– volume: 23
  year: 2004
  ident: 2022071906185192700_ref25
  article-title: Ubiquitin and breast cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207371
  contributor:
    fullname: Ohta
– volume: 10
  year: 2019
  ident: 2022071906185192700_ref33
  article-title: Usp7: novel drug target in cancer therapy
  publication-title: Front Pharmacol
  contributor:
    fullname: Wang
– volume: 4
  year: 2018
  ident: 2022071906185192700_ref14
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Central Sci
  doi: 10.1021/acscentsci.7b00572
  contributor:
    fullname: Gómez-Bombarelli
– volume-title: Auton Agent Multi Agent Syst
  ident: 2022071906185192700_ref15
  article-title: A practical guide to multi-objective reinforcement learning and planning
  doi: 10.1007/s10458-022-09552-y
  contributor:
    fullname: Hayes
– volume: 23
  issue: 1
  year: 2022
  ident: 2022071906185192700_ref9
  article-title: Deep learning in retrosynthesis planning: datasets, models and tools
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab391
  contributor:
    fullname: Dong
– volume: 22
  issue: 1
  year: 2020
  ident: 2022071906185192700_ref34
  article-title: Triple-negative breast cancer molecular subtyping and treatment progress
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-020-01296-5
  contributor:
    fullname: Yin
– start-page: 172
  volume-title: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS)
  year: 2021
  ident: 2022071906185192700_ref29
  doi: 10.1109/CBMS52027.2021.00067
  contributor:
    fullname: Santos
– volume: 190
  start-page: 265
  issue: 2
  year: 2021
  ident: 2022071906185192700_ref13
  article-title: A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (frida)
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-021-06367-5
  contributor:
    fullname: Goldstein
– volume: 14
  year: 2017
  ident: 2022071906185192700_ref18
  article-title: Drugan: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.7b00346
  contributor:
    fullname: Kadurin
– volume: 24
  year: 2021
  ident: 2022071906185192700_ref2
  article-title: Paccmannrl: de novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102269
  contributor:
    fullname: Born
– volume: 96
  year: 2020
  ident: 2022071906185192700_ref24
  article-title: A multi-objective deep reinforcement learning framework
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2020.103915
  contributor:
    fullname: Nguyen
– volume: 2019
  year: 2019
  ident: 2022071906185192700_ref23
  article-title: Application of computational biology and artificial intelligence technologies in cancer precision drug discovery
  publication-title: Biomed Res Int
  doi: 10.1155/2019/8427042
  contributor:
    fullname: Nagarajan
SSID ssj0020781
Score 2.4196577
Snippet Abstract The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational...
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Publisher
SubjectTerms Case studies
Computer applications
Context
Deep learning
Drug development
Gene expression
Therapeutic targets
Transcriptomics
Title Deep generative model for therapeutic targets using transcriptomic disease-associated data—USP7 case study
URI https://www.proquest.com/docview/2699593081
https://search.proquest.com/docview/2685033018
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF6kIngRf7Fa6wq9hia72WxybK2lCP6ALfQWNptJEaQtNj148yF8Qp_EmSQtVkTPuyEwMzszHzPzDWMtCBWxjnkOBndwfFS6EykLaMvWBEkQalGUYu7ug8HIvx2rcdUgu_ilhB_JdvKctJPEWKEJmhMhGprt8GG8xlXEV1MOEWmH2N2rMbwf324Eno1htpX3LUJKf5_tVbkg75TKO2BbMD1kO-V2yLcj9tIDmPNJwQtNTokXW2s4Zpn829QUL3u5F5w62Cc8p9hTeAIaN-ZV_cUxlRYg5dQT-vn-MXp61NziGS8YZo_ZqH8zvB441XIEx0qhckcbBQKUVYgHAqGNC_iSrGvBBwSdkGmTRKAw-ZPCwziogsQLNMKlFAGQyvxQnrDadDaFU8ZtahCnIE4LVeobPHOljTIZulkW-QFEddZaSS6elxwYcVm7ljEKOK4EXGeXKNW_bzRWEo-rp7KIRUCUZxJTkzq7Wh-jkVPlwkxhtqQ7IZVbXS88-_cn52xX0IgCkV-GDVbLX5dwgYlDnjTZdqfb6_abhfl8AfHOwpo
link.rule.ids 315,783,787,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+generative+model+for+therapeutic+targets+using+transcriptomic+disease-associated+data%E2%80%94USP7+case+study&rft.jtitle=Briefings+in+bioinformatics&rft.au=Pereira%2C+Tiago&rft.au=Abbasi%2C+Maryam&rft.au=Oliveira%2C+Rita+I&rft.au=Guedes%2C+Romina+A&rft.date=2022-07-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbac270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon