Deep generative model for therapeutic targets using transcriptomic disease-associated data—USP7 case study
Abstract The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focuse...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
18.07.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease. |
---|---|
AbstractList | Abstract
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease. The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease. |
Author | Oliveira, Rita I Abbasi, Maryam Arrais, Joel P Guedes, Romina A Salvador, Jorge A R Pereira, Tiago |
Author_xml | – sequence: 1 givenname: Tiago surname: Pereira fullname: Pereira, Tiago email: top@dei.uc.pt – sequence: 2 givenname: Maryam surname: Abbasi fullname: Abbasi, Maryam – sequence: 3 givenname: Rita I surname: Oliveira fullname: Oliveira, Rita I – sequence: 4 givenname: Romina A surname: Guedes fullname: Guedes, Romina A – sequence: 5 givenname: Jorge A R surname: Salvador fullname: Salvador, Jorge A R – sequence: 6 givenname: Joel P surname: Arrais fullname: Arrais, Joel P |
BookMark | eNp90M1KAzEQB_AgFWyrJ18gIIgga_OxSXaP4jcUFLTnJZudrSnbzZpkhd58CJ_QJ3FLe_LgaYaZH8Pwn6BR61pA6JSSK0pyPittOStLbZgiB2hMU6WSlIh0tO2lSkQq-RGahLAihBGV0TFqbgE6vIQWvI72E_DaVdDg2nkc34dZB320BkftlxAD7oNtlzh63QbjbRfdelhWNoAOkOgQnLE6QoUrHfXP1_fi9UVhM-xwiH21OUaHtW4CnOzrFC3u795uHpP588PTzfU8MZyJmCgtgIEwQqVKMqUJSJ4ZYiAFnnGolS5zEDmVnFGASsiSSsUkrShNRZ1mfIoudnc77z56CLFY22CgaXQLrg8Fk5kgnBO6pWd_6Mr1vh2-G1Sei5yTjA7qcqeMdyF4qIvO27X2m4KSYpt8MSRf7JMf9PlOu777F_4Cg0eHnw |
CitedBy_id | crossref_primary_10_1021_acs_jcim_2c01301 crossref_primary_10_1093_bib_bbad368 crossref_primary_10_2174_0929867330666230403100008 crossref_primary_10_3389_fchem_2022_1005727 crossref_primary_10_1021_acs_jcim_3c00355 crossref_primary_10_1080_14728222_2023_2266571 |
Cites_doi | 10.1038/sj.cdd.4401910 10.1561/2200000056 10.1162/neco.1997.9.8.1735 10.1038/s41467-019-13807-w 10.1021/acsomega.0c01149 10.1038/s41467-020-17844-8 10.1126/science.aat2663 10.1080/15384101.2017.1288326 10.1126/science.1132939 10.3389/fphar.2020.00733 10.1158/1535-7163.MCT-14-0778 10.1080/13543784.2017.1353077 10.1158/2159-8290.CD-16-0611 10.1016/j.drudis.2017.08.010 10.1093/bioinformatics/btn186 10.1038/sj.onc.1207371 10.1021/acscentsci.7b00572 10.1007/s10458-022-09552-y 10.1093/bib/bbab391 10.1186/s13058-020-01296-5 10.1109/CBMS52027.2021.00067 10.1007/s10549-021-06367-5 10.1021/acs.molpharmaceut.7b00346 10.1016/j.isci.2021.102269 10.1016/j.engappai.2020.103915 10.1155/2019/8427042 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbac270 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbac270 10.1093/bib/bbac270 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX CITATION 7QO 7SC 8FD ABEJV FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-7a5e2e5c5747627a0e638c0ce4e383ef7ab9e5916321eed56b167261d1145f483 |
IEDL.DBID | TOX |
ISSN | 1467-5463 |
IngestDate | Fri Oct 25 06:53:23 EDT 2024 Mon Nov 04 11:06:41 EST 2024 Fri Aug 23 00:54:34 EDT 2024 Wed Aug 28 03:17:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning cancer drug design transcriptome |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-7a5e2e5c5747627a0e638c0ce4e383ef7ab9e5916321eed56b167261d1145f483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2699593081 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2685033018 proquest_journals_2699593081 crossref_primary_10_1093_bib_bbac270 oup_primary_10_1093_bib_bbac270 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-18 |
PublicationDateYYYYMMDD | 2022-07-18 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Levine (2022071906185192700_ref21) 2006; 13 Hochreiter (2022071906185192700_ref16) 1997; 9 Dong (2022071906185192700_ref9) 2022; 23 Yu (2022071906185192700_ref6) 2021; 22 Cui (2022071906185192700_ref7) 2020; 11 Zhang (2022071906185192700_ref35) 2017; 22 Wang (2022071906185192700_ref33) 2019; 10 Ohta (2022071906185192700_ref25) 2004; 23 Schech (2022071906185192700_ref30) 2015; 14 Gómez-Bombarelli (2022071906185192700_ref14) 2018; 4 Goldstein (2022071906185192700_ref13) 2021; 190 Ertl (2022071906185192700_ref10) 2009; 1 Hayes (2022071906185192700_ref15) Kadurin (2022071906185192700_ref18) 2017; 14 Gallo (2022071906185192700_ref11) 2017; 16 Born (2022071906185192700_ref2) 2021; 24 Cao (2022071906185192700_ref4) 2008; 24 Méndez-Lucio (2022071906185192700_ref22) 2020; 11 Tkatchenko (2022071906185192700_ref31) 2020; 11 Santos (2022071906185192700_ref29) 2021 Pereira (2022071906185192700_ref27) 2021; 13 Gaulton (2022071906185192700_ref12); 45 Olivecrona (2022071906185192700_ref26) 2017; 9 Trapani (2022071906185192700_ref32) 2017; 26 Richard Bickerton (2022071906185192700_ref1) 2012; 4 Joo (2022071906185192700_ref17) 2020; 5 Yin (2022071906185192700_ref34) 2020; 22 Brown (2022071906185192700_ref3) 2017; 7 Nagarajan (2022071906185192700_ref23) 2019; 2019 Chen (2022071906185192700_ref5) 2017; 8 Kingma (2022071906185192700_ref19) 2019; 12 Dong (2022071906185192700_ref8) 2014; 26 Lamb (2022071906185192700_ref20) 2006; 313 Nguyen (2022071906185192700_ref24) 2020; 96 Sanchez-Lengeling (2022071906185192700_ref28) 2018; 361 |
References_xml | – volume: 13 year: 2006 ident: 2022071906185192700_ref21 article-title: The p53 pathway: what questions remain to be explored? publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401910 contributor: fullname: Levine – volume: 8 year: 2017 ident: 2022071906185192700_ref5 article-title: Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets publication-title: Nat Commun contributor: fullname: Chen – volume: 12 year: 2019 ident: 2022071906185192700_ref19 article-title: An introduction to variational autoencoders publication-title: Found Trends Mach Learn doi: 10.1561/2200000056 contributor: fullname: Kingma – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 2022071906185192700_ref16 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 contributor: fullname: Hochreiter – volume: 45 start-page: 2017 ident: 2022071906185192700_ref12 article-title: The chembl database in 2017 publication-title: Nucleic Acids Res contributor: fullname: Gaulton – volume: 11 year: 2020 ident: 2022071906185192700_ref22 article-title: De novo generation of hit-like molecules from gene expression signatures using artificial intelligence publication-title: Nat Commun doi: 10.1038/s41467-019-13807-w contributor: fullname: Méndez-Lucio – volume: 5 year: 2020 ident: 2022071906185192700_ref17 article-title: Generative model for proposing drug candidates satisfying anticancer properties using a conditional variational autoencoder publication-title: ACS Omega doi: 10.1021/acsomega.0c01149 contributor: fullname: Joo – volume: 1 year: 2009 ident: 2022071906185192700_ref10 article-title: Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions publication-title: J Chem contributor: fullname: Ertl – volume: 11 year: 2020 ident: 2022071906185192700_ref31 article-title: Machine learning for chemical discovery publication-title: Nat Commun doi: 10.1038/s41467-020-17844-8 contributor: fullname: Tkatchenko – volume: 361 start-page: 360 issue: 6400 year: 2018 ident: 2022071906185192700_ref28 article-title: Inverse molecular design using machine learning: generative models for matter engineering publication-title: Science doi: 10.1126/science.aat2663 contributor: fullname: Sanchez-Lengeling – volume: 16 year: 2017 ident: 2022071906185192700_ref11 article-title: The importance of regulatory ubiquitination in cancer and metastasis publication-title: Cell Cycle doi: 10.1080/15384101.2017.1288326 contributor: fullname: Gallo – volume: 313 start-page: 1929 issue: 5795 year: 2006 ident: 2022071906185192700_ref20 article-title: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease publication-title: Science doi: 10.1126/science.1132939 contributor: fullname: Lamb – volume: 9 year: 2017 ident: 2022071906185192700_ref26 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J Chem contributor: fullname: Olivecrona – volume: 11 year: 2020 ident: 2022071906185192700_ref7 article-title: Discovering anti-cancer drugs via computational methods publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00733 contributor: fullname: Cui – volume: 26 year: 2014 ident: 2022071906185192700_ref8 article-title: Antitumor effects of artesunate on human breast carcinoma mcf-7 cells and igf-ir expression in nude mice xenografts publication-title: Chin J Cancer Res contributor: fullname: Dong – volume: 14 year: 2015 ident: 2022071906185192700_ref30 article-title: Histone deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-14-0778 contributor: fullname: Schech – volume: 26 year: 2017 ident: 2022071906185192700_ref32 article-title: Entinostat for the treatment of breast cancer publication-title: Expert Opin Investig Drugs doi: 10.1080/13543784.2017.1353077 contributor: fullname: Trapani – volume: 7 year: 2017 ident: 2022071906185192700_ref3 article-title: Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0611 contributor: fullname: Brown – volume: 22 year: 2017 ident: 2022071906185192700_ref35 article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2017.08.010 contributor: fullname: Zhang – volume: 22 issue: 6 year: 2021 ident: 2022071906185192700_ref6 article-title: Molecular design in drug discovery: a comprehensive review of deep generative models publication-title: Brief Bioinform contributor: fullname: Yu – volume: 4 year: 2012 ident: 2022071906185192700_ref1 article-title: Quantifying the chemical beauty of drugs publication-title: Nat Chem contributor: fullname: Richard Bickerton – volume: 13 year: 2021 ident: 2022071906185192700_ref27 article-title: Diversity oriented deep reinforcement learning for targeted molecule generation publication-title: J Chem contributor: fullname: Pereira – volume: 24 year: 2008 ident: 2022071906185192700_ref4 article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn186 contributor: fullname: Cao – volume: 23 year: 2004 ident: 2022071906185192700_ref25 article-title: Ubiquitin and breast cancer publication-title: Oncogene doi: 10.1038/sj.onc.1207371 contributor: fullname: Ohta – volume: 10 year: 2019 ident: 2022071906185192700_ref33 article-title: Usp7: novel drug target in cancer therapy publication-title: Front Pharmacol contributor: fullname: Wang – volume: 4 year: 2018 ident: 2022071906185192700_ref14 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Central Sci doi: 10.1021/acscentsci.7b00572 contributor: fullname: Gómez-Bombarelli – volume-title: Auton Agent Multi Agent Syst ident: 2022071906185192700_ref15 article-title: A practical guide to multi-objective reinforcement learning and planning doi: 10.1007/s10458-022-09552-y contributor: fullname: Hayes – volume: 23 issue: 1 year: 2022 ident: 2022071906185192700_ref9 article-title: Deep learning in retrosynthesis planning: datasets, models and tools publication-title: Brief Bioinform doi: 10.1093/bib/bbab391 contributor: fullname: Dong – volume: 22 issue: 1 year: 2020 ident: 2022071906185192700_ref34 article-title: Triple-negative breast cancer molecular subtyping and treatment progress publication-title: Breast Cancer Res doi: 10.1186/s13058-020-01296-5 contributor: fullname: Yin – start-page: 172 volume-title: 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS) year: 2021 ident: 2022071906185192700_ref29 doi: 10.1109/CBMS52027.2021.00067 contributor: fullname: Santos – volume: 190 start-page: 265 issue: 2 year: 2021 ident: 2022071906185192700_ref13 article-title: A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (frida) publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-021-06367-5 contributor: fullname: Goldstein – volume: 14 year: 2017 ident: 2022071906185192700_ref18 article-title: Drugan: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b00346 contributor: fullname: Kadurin – volume: 24 year: 2021 ident: 2022071906185192700_ref2 article-title: Paccmannrl: de novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning publication-title: iScience doi: 10.1016/j.isci.2021.102269 contributor: fullname: Born – volume: 96 year: 2020 ident: 2022071906185192700_ref24 article-title: A multi-objective deep reinforcement learning framework publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2020.103915 contributor: fullname: Nguyen – volume: 2019 year: 2019 ident: 2022071906185192700_ref23 article-title: Application of computational biology and artificial intelligence technologies in cancer precision drug discovery publication-title: Biomed Res Int doi: 10.1155/2019/8427042 contributor: fullname: Nagarajan |
SSID | ssj0020781 |
Score | 2.4196577 |
Snippet | Abstract
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational... The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Publisher |
SubjectTerms | Case studies Computer applications Context Deep learning Drug development Gene expression Therapeutic targets Transcriptomics |
Title | Deep generative model for therapeutic targets using transcriptomic disease-associated data—USP7 case study |
URI | https://www.proquest.com/docview/2699593081 https://search.proquest.com/docview/2685033018 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF6kIngRf7Fa6wq9hia72WxybK2lCP6ALfQWNptJEaQtNj148yF8Qp_EmSQtVkTPuyEwMzszHzPzDWMtCBWxjnkOBndwfFS6EykLaMvWBEkQalGUYu7ug8HIvx2rcdUgu_ilhB_JdvKctJPEWKEJmhMhGprt8GG8xlXEV1MOEWmH2N2rMbwf324Eno1htpX3LUJKf5_tVbkg75TKO2BbMD1kO-V2yLcj9tIDmPNJwQtNTokXW2s4Zpn829QUL3u5F5w62Cc8p9hTeAIaN-ZV_cUxlRYg5dQT-vn-MXp61NziGS8YZo_ZqH8zvB441XIEx0qhckcbBQKUVYgHAqGNC_iSrGvBBwSdkGmTRKAw-ZPCwziogsQLNMKlFAGQyvxQnrDadDaFU8ZtahCnIE4LVeobPHOljTIZulkW-QFEddZaSS6elxwYcVm7ljEKOK4EXGeXKNW_bzRWEo-rp7KIRUCUZxJTkzq7Wh-jkVPlwkxhtqQ7IZVbXS88-_cn52xX0IgCkV-GDVbLX5dwgYlDnjTZdqfb6_abhfl8AfHOwpo |
link.rule.ids | 315,783,787,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+generative+model+for+therapeutic+targets+using+transcriptomic+disease-associated+data%E2%80%94USP7+case+study&rft.jtitle=Briefings+in+bioinformatics&rft.au=Pereira%2C+Tiago&rft.au=Abbasi%2C+Maryam&rft.au=Oliveira%2C+Rita+I&rft.au=Guedes%2C+Romina+A&rft.date=2022-07-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbac270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |