Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance
An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated devi...
Saved in:
Published in | Transactions on electrical and electronic materials Vol. 21; no. 1; pp. 74 - 82 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
01.02.2020
한국전기전자재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-7607 2092-7592 |
DOI | 10.1007/s42341-019-00154-2 |
Cover
Abstract | An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field effect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressive improvement in the numerical simulations of minimum threshold voltage (V
T
) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10
−4
A/µm and 6.92 × 10
−13
A/µm respectively with I
ON
/I
OFF
current ratio in order of 10
8
to 10
9
. |
---|---|
AbstractList | An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field effect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressive improvement in the numerical simulations of minimum threshold voltage (V
T
) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10
−4
A/µm and 6.92 × 10
−13
A/µm respectively with I
ON
/I
OFF
current ratio in order of 10
8
to 10
9
. An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field eff ect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressiveimprovement in the numerical simulations of minimum threshold voltage (V T ) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10 −4 A/μm and 6.92 × 10 −13 A/μm respectively with I ON /I OFF current ratio in order of 10 8 to 10 9 . KCI Citation Count: 3 |
Author | Badgujjar, Soniya Raj, Balwinder Wadhwa, Girish Singh, Shailendra |
Author_xml | – sequence: 1 givenname: Soniya surname: Badgujjar fullname: Badgujjar, Soniya organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar – sequence: 2 givenname: Girish orcidid: 0000-0002-8031-3036 surname: Wadhwa fullname: Wadhwa, Girish email: girishw.17.phd@nitj.ac.in organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar – sequence: 3 givenname: Shailendra surname: Singh fullname: Singh, Shailendra organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar – sequence: 4 givenname: Balwinder surname: Raj fullname: Raj, Balwinder organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002558266$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kD1PwzAQhi1UJErpH2DyyhDwR-zEY9UPWqkSCAKr5Th2MU0dZKdD_z2mYWJgON2d9D6n03MNRr7zBoBbjO4xQsVDzAnNcYawyBDCLM_IBRgTJEhWMEFGYIwJEVnBUXEFpjG6GlHBeIrzMZALE93OQ-UbOPOqPUUXYWfh4qha-Nodgzbw3YTe6bRXR-9NC1fOtA1cWmt0D6ugfGL6LkCbau12H_DZhDQflNfmBlxa1UYz_e0T8LZaVvN1tn163Mxn20xTwvr0aG6oMYbUuSaCN1yxBnGRl4XVilurakYt5k0pyqZElBaiUE1OqeV5UZea0Qm4G-76YOVeO9kpd-67Tu6DnL1UG8lLRjjjKVsOWR26GIOxUrte9a7zfVCulRjJH69y8CqTKHn2KklCyR_0K7iDCqf_ITpAMYX9zgT5mcQm2fE_6hv2k4xD |
CitedBy_id | crossref_primary_10_1007_s00339_020_04156_3 crossref_primary_10_1007_s42341_020_00205_z crossref_primary_10_1007_s12633_022_01726_3 crossref_primary_10_1088_2631_8695_acff3a crossref_primary_10_3762_bjnano_15_59 crossref_primary_10_1007_s12633_021_01244_8 crossref_primary_10_1080_03772063_2024_2370962 crossref_primary_10_1007_s12633_022_02027_5 crossref_primary_10_1007_s12633_020_00505_2 crossref_primary_10_1016_j_jmrt_2023_01_048 crossref_primary_10_1007_s12633_020_00547_6 crossref_primary_10_1007_s12633_020_00718_5 crossref_primary_10_1007_s10825_020_01496_4 crossref_primary_10_1149_2162_8777_aca2da crossref_primary_10_1007_s12633_021_01163_8 crossref_primary_10_1007_s11664_024_10927_y crossref_primary_10_1007_s12633_021_01009_3 crossref_primary_10_1016_j_rinp_2021_104796 crossref_primary_10_1007_s10854_022_08666_z crossref_primary_10_1007_s12633_021_01211_3 crossref_primary_10_1007_s12633_022_01921_2 crossref_primary_10_1007_s12633_022_01923_0 crossref_primary_10_1007_s12633_022_01880_8 crossref_primary_10_1007_s42341_023_00449_5 crossref_primary_10_1007_s11664_024_11130_9 crossref_primary_10_1016_j_spmi_2021_106992 crossref_primary_10_1007_s12633_021_01576_5 crossref_primary_10_1007_s42341_020_00222_y crossref_primary_10_1007_s12633_022_01971_6 crossref_primary_10_1007_s42341_024_00541_4 crossref_primary_10_1007_s12633_020_00634_8 crossref_primary_10_1007_s12633_022_01835_z crossref_primary_10_1007_s00542_024_05677_0 crossref_primary_10_1007_s42341_020_00243_7 crossref_primary_10_1016_j_mejo_2021_105125 |
Cites_doi | 10.1109/TED.2009.2030831 10.1515/aot-2015-0036 10.1109/TED.2005.846318 10.1109/TED.2011.2175228 10.1145/957717.957757 10.1049/mnl.2015.0526 10.1109/LED.2007.892366 10.1109/TED.2016.2539209 10.1109/16.19942 10.1088/1674-4926/37/9/094003 10.1109/16.19963 10.1109/TNANO.2015.2501829 10.1109/TED.2018.2831688 10.1109/TED.2003.821575 10.1016/0003-9861(63)90175-9 10.1063/1.3567021 10.1007/s11664-019-07412-2 10.1109/T-ED.1976.18468 10.1109/TED.2017.2669365 10.1103/PhysRevB.3.1215 |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical and Electronic Material Engineers 2019 |
Copyright_xml | – notice: The Korean Institute of Electrical and Electronic Material Engineers 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42341-019-00154-2 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2092-7592 |
EndPage | 82 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6852656 10_1007_s42341_019_00154_2 |
GroupedDBID | -EM .UV 0R~ 406 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADRFC ADURQ ADYFF AEFQL AEMSY AESKC AGDGC AGJBK AGMZJ AGQEE AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AXYYD BGNMA DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE HZB IKXTQ IWAJR J-C JDI JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RNS ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ACYCR |
ID | FETCH-LOGICAL-c325t-754e3eee2b4c296d6a5d069487fca6ffab53f16d898d8033797ad433f647b8c53 |
ISSN | 1229-7607 |
IngestDate | Sun Mar 09 07:54:14 EDT 2025 Tue Jul 01 04:25:01 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Fri Feb 21 02:31:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Band-2-band tunneling (B2BT) Dual source vertical tunnel FET (DSV-TFET) Low power (LP) Subthreshold slope (SS) Work function (WF) Average subthreshold slope (AVSS) |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-754e3eee2b4c296d6a5d069487fca6ffab53f16d898d8033797ad433f647b8c53 |
ORCID | 0000-0002-8031-3036 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6852656 crossref_citationtrail_10_1007_s42341_019_00154_2 crossref_primary_10_1007_s42341_019_00154_2 springer_journals_10_1007_s42341_019_00154_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200200 2020-02-00 2020-02 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200200 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Transactions on electrical and electronic materials |
PublicationTitleAbbrev | Trans. Electr. Electron. Mater |
PublicationYear | 2020 |
Publisher | The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 한국전기전자재료학회 |
Publisher_xml | – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) – name: 한국전기전자재료학회 |
References | LeeHParkJ-DShinCIEEE Trans. Electron Devices201663182710.1109/TED.2016.2539209 ChoiWYParkB-GLeeJ-DLiuT-JKIEEE Electron Device Lett.2007284310.1109/LED.2007.892366 MooreGEProc. IEEE20061133 NigamKKondekarPSharmaDMicro Nano Lett.2016113191:CAS:528:DC%2BC1cXotVWnurs%3D10.1049/mnl.2015.0526 ChenFIlatikhamenehHTanYKlimeckGRahmanRIEEE Trans. Electron Devices20186530651:CAS:528:DC%2BC1MXhslOhsbc%3D10.1109/TED.2018.2831688 KhatamiYBanerjeeKIEEE Trans. Electron Devices20095627521:CAS:528:DC%2BD1MXhsVehtLnE10.1109/TED.2009.2030831 K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Digest. International Electron Devices Meeting, IEEE 7509297 (2002) KahngDIEEE Trans. Electron Devices19762365510.1109/T-ED.1976.18468 KwonDWKimHWJangHKParkELeeJKimWKimSLeeJ-HParkB-GIEEE Trans. Electron Devices201764179910.1109/TED.2017.2669365 FordACYeungCWChuangSAppl. Phys. Lett.20119811310510.1063/1.3567021 S. Singh, B. Raj, in First International Conference on Secure Cyber Computing and Communication, 192 (2018) VeeraraghavanSFossumJerry GIEEE Trans. Electron Devices19893652210.1109/16.19963 BhuwalkaKKSchulzeJEiseleIIEEE Trans. Electron Devices2005529091:CAS:528:DC%2BD2MXksVyktrg%3D10.1109/TED.2005.846318 BorkarSACM Queue200312610.1145/957717.957757 C. Bulucea, F.-C. Wang, P. Chaparala, U.S. Patent No. 6, 548, 842 (2003) NeisserMWurmSAdv. Opt. Technol.20154235 SinghSRajBJ. Electron. Mater.20194862531:CAS:528:DC%2BC1MXhtlersbfI10.1007/s11664-019-07412-2 HoefflingerBInt. Roadmap Semicond.20162143 KaoK-HVerhulstAVandenbergheWGSoreeBGrosesenekenGMeyerKMIEEE Trans. Electron Devices2012592921:CAS:528:DC%2BC38XjsVCls7Y%3D10.1109/TED.2011.2175228 GirishWBalwinderRJ. Electron. Mater.2018474883 LangNDKohnWPhys. Rev. B19713121510.1103/PhysRevB.3.1215 D. Kahng, U.S. Patent No. 3,102,230 (1963) WangP-YTsuiB-YIEEE Trans. Nanotechnol.201615741:CAS:528:DC%2BC28XhtFOrtbrO10.1109/TNANO.2015.2501829 JiangZYiqiZCongLPingWYuqiLJ. Semicond.20163709400310.1088/1674-4926/37/9/094003 BhuwalkaKKSedlmaierSLudsteckAKTolksdorfCSchulzeJIgnazEIEEE Trans. Electron Devices2004512791:CAS:528:DC%2BD2cXhvVKgsr0%3D10.1109/TED.2003.821575 YoungKKonradIEEE Trans. Electron Devices19893639910.1109/16.19942 Y Khatami (154_CR10) 2009; 56 AC Ford (154_CR22) 2011; 98 S Borkar (154_CR4) 2003; 1 P-Y Wang (154_CR13) 2016; 15 H Lee (154_CR25) 2016; 63 S Veeraraghavan (154_CR5) 1989; 36 KK Bhuwalka (154_CR16) 2005; 52 KK Bhuwalka (154_CR17) 2004; 51 S Singh (154_CR21) 2019; 48 Z Jiang (154_CR11) 2016; 37 WY Choi (154_CR8) 2007; 28 W Girish (154_CR20) 2018; 47 K Young (154_CR7) 1989; 36 154_CR23 ND Lang (154_CR19) 1971; 3 GE Moore (154_CR3) 2006; 11 DW Kwon (154_CR26) 2017; 64 154_CR9 M Neisser (154_CR15) 2015; 4 154_CR6 D Kahng (154_CR2) 1976; 23 K Nigam (154_CR18) 2016; 11 154_CR1 K-H Kao (154_CR12) 2012; 59 B Hoefflinger (154_CR14) 2016; 2 F Chen (154_CR24) 2018; 65 |
References_xml | – reference: YoungKKonradIEEE Trans. Electron Devices19893639910.1109/16.19942 – reference: BhuwalkaKKSedlmaierSLudsteckAKTolksdorfCSchulzeJIgnazEIEEE Trans. Electron Devices2004512791:CAS:528:DC%2BD2cXhvVKgsr0%3D10.1109/TED.2003.821575 – reference: S. Singh, B. Raj, in First International Conference on Secure Cyber Computing and Communication, 192 (2018) – reference: NigamKKondekarPSharmaDMicro Nano Lett.2016113191:CAS:528:DC%2BC1cXotVWnurs%3D10.1049/mnl.2015.0526 – reference: GirishWBalwinderRJ. Electron. Mater.2018474883 – reference: LeeHParkJ-DShinCIEEE Trans. Electron Devices201663182710.1109/TED.2016.2539209 – reference: JiangZYiqiZCongLPingWYuqiLJ. Semicond.20163709400310.1088/1674-4926/37/9/094003 – reference: C. Bulucea, F.-C. Wang, P. Chaparala, U.S. Patent No. 6, 548, 842 (2003) – reference: KahngDIEEE Trans. Electron Devices19762365510.1109/T-ED.1976.18468 – reference: WangP-YTsuiB-YIEEE Trans. Nanotechnol.201615741:CAS:528:DC%2BC28XhtFOrtbrO10.1109/TNANO.2015.2501829 – reference: KwonDWKimHWJangHKParkELeeJKimWKimSLeeJ-HParkB-GIEEE Trans. Electron Devices201764179910.1109/TED.2017.2669365 – reference: KaoK-HVerhulstAVandenbergheWGSoreeBGrosesenekenGMeyerKMIEEE Trans. Electron Devices2012592921:CAS:528:DC%2BC38XjsVCls7Y%3D10.1109/TED.2011.2175228 – reference: K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Digest. International Electron Devices Meeting, IEEE 7509297 (2002) – reference: KhatamiYBanerjeeKIEEE Trans. Electron Devices20095627521:CAS:528:DC%2BD1MXhsVehtLnE10.1109/TED.2009.2030831 – reference: ChoiWYParkB-GLeeJ-DLiuT-JKIEEE Electron Device Lett.2007284310.1109/LED.2007.892366 – reference: SinghSRajBJ. Electron. Mater.20194862531:CAS:528:DC%2BC1MXhtlersbfI10.1007/s11664-019-07412-2 – reference: ChenFIlatikhamenehHTanYKlimeckGRahmanRIEEE Trans. Electron Devices20186530651:CAS:528:DC%2BC1MXhslOhsbc%3D10.1109/TED.2018.2831688 – reference: VeeraraghavanSFossumJerry GIEEE Trans. Electron Devices19893652210.1109/16.19963 – reference: HoefflingerBInt. Roadmap Semicond.20162143 – reference: FordACYeungCWChuangSAppl. Phys. Lett.20119811310510.1063/1.3567021 – reference: MooreGEProc. IEEE20061133 – reference: NeisserMWurmSAdv. Opt. Technol.20154235 – reference: D. Kahng, U.S. Patent No. 3,102,230 (1963) – reference: BhuwalkaKKSchulzeJEiseleIIEEE Trans. Electron Devices2005529091:CAS:528:DC%2BD2MXksVyktrg%3D10.1109/TED.2005.846318 – reference: BorkarSACM Queue200312610.1145/957717.957757 – reference: LangNDKohnWPhys. Rev. B19713121510.1103/PhysRevB.3.1215 – ident: 154_CR6 – volume: 56 start-page: 2752 year: 2009 ident: 154_CR10 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2009.2030831 – volume: 4 start-page: 235 year: 2015 ident: 154_CR15 publication-title: Adv. Opt. Technol. doi: 10.1515/aot-2015-0036 – volume: 52 start-page: 909 year: 2005 ident: 154_CR16 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2005.846318 – volume: 59 start-page: 292 year: 2012 ident: 154_CR12 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2175228 – volume: 1 start-page: 26 year: 2003 ident: 154_CR4 publication-title: ACM Queue doi: 10.1145/957717.957757 – volume: 11 start-page: 319 year: 2016 ident: 154_CR18 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2015.0526 – volume: 28 start-page: 43 year: 2007 ident: 154_CR8 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.892366 – ident: 154_CR23 – volume: 63 start-page: 1827 year: 2016 ident: 154_CR25 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2539209 – volume: 11 start-page: 33 year: 2006 ident: 154_CR3 publication-title: Proc. IEEE – volume: 36 start-page: 399 year: 1989 ident: 154_CR7 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.19942 – volume: 37 start-page: 094003 year: 2016 ident: 154_CR11 publication-title: J. Semicond. doi: 10.1088/1674-4926/37/9/094003 – volume: 36 start-page: 522 year: 1989 ident: 154_CR5 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.19963 – volume: 15 start-page: 74 year: 2016 ident: 154_CR13 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2015.2501829 – volume: 65 start-page: 3065 year: 2018 ident: 154_CR24 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2831688 – volume: 51 start-page: 279 year: 2004 ident: 154_CR17 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2003.821575 – volume: 2 start-page: 143 year: 2016 ident: 154_CR14 publication-title: Int. Roadmap Semicond. – ident: 154_CR9 – ident: 154_CR1 doi: 10.1016/0003-9861(63)90175-9 – volume: 98 start-page: 113105 year: 2011 ident: 154_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3567021 – volume: 48 start-page: 6253 year: 2019 ident: 154_CR21 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07412-2 – volume: 23 start-page: 655 year: 1976 ident: 154_CR2 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1976.18468 – volume: 47 start-page: 4883 year: 2018 ident: 154_CR20 publication-title: J. Electron. Mater. – volume: 64 start-page: 1799 year: 2017 ident: 154_CR26 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2669365 – volume: 3 start-page: 1215 year: 1971 ident: 154_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.3.1215 |
SSID | ssib039560196 ssj0000314789 |
Score | 2.3794184 |
Snippet | An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | Chemistry and Materials Science Electronics and Microelectronics Instrumentation Materials Science Optical and Electronic Materials Regular Paper 전기공학 |
Title | Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance |
URI | https://link.springer.com/article/10.1007/s42341-019-00154-2 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002558266 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions on Electrical and Electronic Materials, 2020, 21(1), , pp.74-82 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCe4ED4inKSxbiFrbK2l4_ji0lFCR6ICnqzdqH3TatNmibqGr_Fn-Qsb2vkFJRLpvI2rW8mS8z4_E3Mwi9Z3nKiVU8EspkEWPURjLPeGRzYY0Cm0uYS3D-dsD3D9nXo-RoMPjVYy0tF9l2fn1jXsn_SBXGQK4uS_YOkm0nhQH4DvKFK0gYrv8k4z1Pv_Dx_35xkT2XEjLxUfnhD8-bdkn4S8doGY4dY21Y1yz2hsrXCfFsQ8f5cJT4JpOg77hOu77i_oAhtM9pSw30uumACxzevQuSFsfL2SwwuSdwz1VnCtLi5NK7r59PXav7Nt4DBtXHeyYnKaitsqjaR76ns3BOcn7pKj1W_bAF7FFHLQUkaFpCVCR4aHm7bfwYGSlw9xO1op5JvAbDoGtDd5_GapMb7UGggFyAz8hc1ERF3mesEy5Xim__YRRbqmJb1tnPoWEO7efQYPc3iRCOG7C5M97dPWjUGHVbzriuYugdAhoz4Zsxti9dp2_5JM61xa24SPfKyq6d0nvnZ_oIPax3LXgnQPAxGpjyCXrQq2X5FOkARgxowA0Y8dxiB0YcwIgbMOIARuzBiAMYcQdGDADEDoy4B8Zn6HD8afpxP6q7d0Q5JckC5MgMNcaQjOVE8YKnSeGyrKWwoB-sTbOE2pgXUslCjigVSqQFo9RyJjKZJ_Q52ijnpXmBsOSGg0-hKBPgQMepVNzIVCYZgyel5Vsobn4wndel7V2HlXP9d-ltoWH7zM9Q2OXWu9-BHPRZfqpdPXb3eTzXZ5WGXecXzaVrMgHL-NCISdda4uKWOV_eaQWv0P3ub_QabSyqpXkD_vAie1vj7zdWm65I |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Analysis+of+Dual+Source+Vertical+Tunnel+Field+Effect+Transistor+for+High+Performance&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Badgujjar%2C+Soniya&rft.au=Wadhwa%2C+Girish&rft.au=Singh%2C+Shailendra&rft.au=Raj%2C+Balwinder&rft.date=2020-02-01&rft.issn=1229-7607&rft.eissn=2092-7592&rft.volume=21&rft.issue=1&rft.spage=74&rft.epage=82&rft_id=info:doi/10.1007%2Fs42341-019-00154-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42341_019_00154_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon |