Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance

An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated devi...

Full description

Saved in:
Bibliographic Details
Published inTransactions on electrical and electronic materials Vol. 21; no. 1; pp. 74 - 82
Main Authors Badgujjar, Soniya, Wadhwa, Girish, Singh, Shailendra, Raj, Balwinder
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 01.02.2020
한국전기전자재료학회
Subjects
Online AccessGet full text
ISSN1229-7607
2092-7592
DOI10.1007/s42341-019-00154-2

Cover

Abstract An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field effect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressive improvement in the numerical simulations of minimum threshold voltage (V T ) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10 −4  A/µm and 6.92 × 10 −13  A/µm respectively with I ON /I OFF current ratio in order of 10 8 to 10 9 .
AbstractList An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field effect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressive improvement in the numerical simulations of minimum threshold voltage (V T ) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10 −4  A/µm and 6.92 × 10 −13  A/µm respectively with I ON /I OFF current ratio in order of 10 8 to 10 9 .
An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field eff ect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressiveimprovement in the numerical simulations of minimum threshold voltage (V T ) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10 −4 A/μm and 6.92 × 10 −13 A/μm respectively with I ON /I OFF current ratio in order of 10 8 to 10 9 . KCI Citation Count: 3
Author Badgujjar, Soniya
Raj, Balwinder
Wadhwa, Girish
Singh, Shailendra
Author_xml – sequence: 1
  givenname: Soniya
  surname: Badgujjar
  fullname: Badgujjar, Soniya
  organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar
– sequence: 2
  givenname: Girish
  orcidid: 0000-0002-8031-3036
  surname: Wadhwa
  fullname: Wadhwa, Girish
  email: girishw.17.phd@nitj.ac.in
  organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar
– sequence: 3
  givenname: Shailendra
  surname: Singh
  fullname: Singh, Shailendra
  organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar
– sequence: 4
  givenname: Balwinder
  surname: Raj
  fullname: Raj, Balwinder
  organization: Nano Electronics Research Lab, Department of Electronics and Communication Engineering, NIT Jalandhar
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002558266$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kD1PwzAQhi1UJErpH2DyyhDwR-zEY9UPWqkSCAKr5Th2MU0dZKdD_z2mYWJgON2d9D6n03MNRr7zBoBbjO4xQsVDzAnNcYawyBDCLM_IBRgTJEhWMEFGYIwJEVnBUXEFpjG6GlHBeIrzMZALE93OQ-UbOPOqPUUXYWfh4qha-Nodgzbw3YTe6bRXR-9NC1fOtA1cWmt0D6ugfGL6LkCbau12H_DZhDQflNfmBlxa1UYz_e0T8LZaVvN1tn163Mxn20xTwvr0aG6oMYbUuSaCN1yxBnGRl4XVilurakYt5k0pyqZElBaiUE1OqeV5UZea0Qm4G-76YOVeO9kpd-67Tu6DnL1UG8lLRjjjKVsOWR26GIOxUrte9a7zfVCulRjJH69y8CqTKHn2KklCyR_0K7iDCqf_ITpAMYX9zgT5mcQm2fE_6hv2k4xD
CitedBy_id crossref_primary_10_1007_s00339_020_04156_3
crossref_primary_10_1007_s42341_020_00205_z
crossref_primary_10_1007_s12633_022_01726_3
crossref_primary_10_1088_2631_8695_acff3a
crossref_primary_10_3762_bjnano_15_59
crossref_primary_10_1007_s12633_021_01244_8
crossref_primary_10_1080_03772063_2024_2370962
crossref_primary_10_1007_s12633_022_02027_5
crossref_primary_10_1007_s12633_020_00505_2
crossref_primary_10_1016_j_jmrt_2023_01_048
crossref_primary_10_1007_s12633_020_00547_6
crossref_primary_10_1007_s12633_020_00718_5
crossref_primary_10_1007_s10825_020_01496_4
crossref_primary_10_1149_2162_8777_aca2da
crossref_primary_10_1007_s12633_021_01163_8
crossref_primary_10_1007_s11664_024_10927_y
crossref_primary_10_1007_s12633_021_01009_3
crossref_primary_10_1016_j_rinp_2021_104796
crossref_primary_10_1007_s10854_022_08666_z
crossref_primary_10_1007_s12633_021_01211_3
crossref_primary_10_1007_s12633_022_01921_2
crossref_primary_10_1007_s12633_022_01923_0
crossref_primary_10_1007_s12633_022_01880_8
crossref_primary_10_1007_s42341_023_00449_5
crossref_primary_10_1007_s11664_024_11130_9
crossref_primary_10_1016_j_spmi_2021_106992
crossref_primary_10_1007_s12633_021_01576_5
crossref_primary_10_1007_s42341_020_00222_y
crossref_primary_10_1007_s12633_022_01971_6
crossref_primary_10_1007_s42341_024_00541_4
crossref_primary_10_1007_s12633_020_00634_8
crossref_primary_10_1007_s12633_022_01835_z
crossref_primary_10_1007_s00542_024_05677_0
crossref_primary_10_1007_s42341_020_00243_7
crossref_primary_10_1016_j_mejo_2021_105125
Cites_doi 10.1109/TED.2009.2030831
10.1515/aot-2015-0036
10.1109/TED.2005.846318
10.1109/TED.2011.2175228
10.1145/957717.957757
10.1049/mnl.2015.0526
10.1109/LED.2007.892366
10.1109/TED.2016.2539209
10.1109/16.19942
10.1088/1674-4926/37/9/094003
10.1109/16.19963
10.1109/TNANO.2015.2501829
10.1109/TED.2018.2831688
10.1109/TED.2003.821575
10.1016/0003-9861(63)90175-9
10.1063/1.3567021
10.1007/s11664-019-07412-2
10.1109/T-ED.1976.18468
10.1109/TED.2017.2669365
10.1103/PhysRevB.3.1215
ContentType Journal Article
Copyright The Korean Institute of Electrical and Electronic Material Engineers 2019
Copyright_xml – notice: The Korean Institute of Electrical and Electronic Material Engineers 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42341-019-00154-2
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2092-7592
EndPage 82
ExternalDocumentID oai_kci_go_kr_ARTI_6852656
10_1007_s42341_019_00154_2
GroupedDBID -EM
.UV
0R~
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADRFC
ADURQ
ADYFF
AEFQL
AEMSY
AESKC
AGDGC
AGJBK
AGMZJ
AGQEE
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AXYYD
BGNMA
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
HZB
IKXTQ
IWAJR
J-C
JDI
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RNS
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c325t-754e3eee2b4c296d6a5d069487fca6ffab53f16d898d8033797ad433f647b8c53
ISSN 1229-7607
IngestDate Sun Mar 09 07:54:14 EDT 2025
Tue Jul 01 04:25:01 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Fri Feb 21 02:31:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Band-2-band tunneling (B2BT)
Dual source vertical tunnel FET (DSV-TFET)
Low power (LP)
Subthreshold slope (SS)
Work function (WF)
Average subthreshold slope (AVSS)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-754e3eee2b4c296d6a5d069487fca6ffab53f16d898d8033797ad433f647b8c53
ORCID 0000-0002-8031-3036
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6852656
crossref_citationtrail_10_1007_s42341_019_00154_2
crossref_primary_10_1007_s42341_019_00154_2
springer_journals_10_1007_s42341_019_00154_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200200
2020-02-00
2020-02
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 2
  year: 2020
  text: 20200200
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Transactions on electrical and electronic materials
PublicationTitleAbbrev Trans. Electr. Electron. Mater
PublicationYear 2020
Publisher The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
한국전기전자재료학회
Publisher_xml – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
– name: 한국전기전자재료학회
References LeeHParkJ-DShinCIEEE Trans. Electron Devices201663182710.1109/TED.2016.2539209
ChoiWYParkB-GLeeJ-DLiuT-JKIEEE Electron Device Lett.2007284310.1109/LED.2007.892366
MooreGEProc. IEEE20061133
NigamKKondekarPSharmaDMicro Nano Lett.2016113191:CAS:528:DC%2BC1cXotVWnurs%3D10.1049/mnl.2015.0526
ChenFIlatikhamenehHTanYKlimeckGRahmanRIEEE Trans. Electron Devices20186530651:CAS:528:DC%2BC1MXhslOhsbc%3D10.1109/TED.2018.2831688
KhatamiYBanerjeeKIEEE Trans. Electron Devices20095627521:CAS:528:DC%2BD1MXhsVehtLnE10.1109/TED.2009.2030831
K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Digest. International Electron Devices Meeting, IEEE 7509297 (2002)
KahngDIEEE Trans. Electron Devices19762365510.1109/T-ED.1976.18468
KwonDWKimHWJangHKParkELeeJKimWKimSLeeJ-HParkB-GIEEE Trans. Electron Devices201764179910.1109/TED.2017.2669365
FordACYeungCWChuangSAppl. Phys. Lett.20119811310510.1063/1.3567021
S. Singh, B. Raj, in First International Conference on Secure Cyber Computing and Communication, 192 (2018)
VeeraraghavanSFossumJerry GIEEE Trans. Electron Devices19893652210.1109/16.19963
BhuwalkaKKSchulzeJEiseleIIEEE Trans. Electron Devices2005529091:CAS:528:DC%2BD2MXksVyktrg%3D10.1109/TED.2005.846318
BorkarSACM Queue200312610.1145/957717.957757
C. Bulucea, F.-C. Wang, P. Chaparala, U.S. Patent No. 6, 548, 842 (2003)
NeisserMWurmSAdv. Opt. Technol.20154235
SinghSRajBJ. Electron. Mater.20194862531:CAS:528:DC%2BC1MXhtlersbfI10.1007/s11664-019-07412-2
HoefflingerBInt. Roadmap Semicond.20162143
KaoK-HVerhulstAVandenbergheWGSoreeBGrosesenekenGMeyerKMIEEE Trans. Electron Devices2012592921:CAS:528:DC%2BC38XjsVCls7Y%3D10.1109/TED.2011.2175228
GirishWBalwinderRJ. Electron. Mater.2018474883
LangNDKohnWPhys. Rev. B19713121510.1103/PhysRevB.3.1215
D. Kahng, U.S. Patent No. 3,102,230 (1963)
WangP-YTsuiB-YIEEE Trans. Nanotechnol.201615741:CAS:528:DC%2BC28XhtFOrtbrO10.1109/TNANO.2015.2501829
JiangZYiqiZCongLPingWYuqiLJ. Semicond.20163709400310.1088/1674-4926/37/9/094003
BhuwalkaKKSedlmaierSLudsteckAKTolksdorfCSchulzeJIgnazEIEEE Trans. Electron Devices2004512791:CAS:528:DC%2BD2cXhvVKgsr0%3D10.1109/TED.2003.821575
YoungKKonradIEEE Trans. Electron Devices19893639910.1109/16.19942
Y Khatami (154_CR10) 2009; 56
AC Ford (154_CR22) 2011; 98
S Borkar (154_CR4) 2003; 1
P-Y Wang (154_CR13) 2016; 15
H Lee (154_CR25) 2016; 63
S Veeraraghavan (154_CR5) 1989; 36
KK Bhuwalka (154_CR16) 2005; 52
KK Bhuwalka (154_CR17) 2004; 51
S Singh (154_CR21) 2019; 48
Z Jiang (154_CR11) 2016; 37
WY Choi (154_CR8) 2007; 28
W Girish (154_CR20) 2018; 47
K Young (154_CR7) 1989; 36
154_CR23
ND Lang (154_CR19) 1971; 3
GE Moore (154_CR3) 2006; 11
DW Kwon (154_CR26) 2017; 64
154_CR9
M Neisser (154_CR15) 2015; 4
154_CR6
D Kahng (154_CR2) 1976; 23
K Nigam (154_CR18) 2016; 11
154_CR1
K-H Kao (154_CR12) 2012; 59
B Hoefflinger (154_CR14) 2016; 2
F Chen (154_CR24) 2018; 65
References_xml – reference: YoungKKonradIEEE Trans. Electron Devices19893639910.1109/16.19942
– reference: BhuwalkaKKSedlmaierSLudsteckAKTolksdorfCSchulzeJIgnazEIEEE Trans. Electron Devices2004512791:CAS:528:DC%2BD2cXhvVKgsr0%3D10.1109/TED.2003.821575
– reference: S. Singh, B. Raj, in First International Conference on Secure Cyber Computing and Communication, 192 (2018)
– reference: NigamKKondekarPSharmaDMicro Nano Lett.2016113191:CAS:528:DC%2BC1cXotVWnurs%3D10.1049/mnl.2015.0526
– reference: GirishWBalwinderRJ. Electron. Mater.2018474883
– reference: LeeHParkJ-DShinCIEEE Trans. Electron Devices201663182710.1109/TED.2016.2539209
– reference: JiangZYiqiZCongLPingWYuqiLJ. Semicond.20163709400310.1088/1674-4926/37/9/094003
– reference: C. Bulucea, F.-C. Wang, P. Chaparala, U.S. Patent No. 6, 548, 842 (2003)
– reference: KahngDIEEE Trans. Electron Devices19762365510.1109/T-ED.1976.18468
– reference: WangP-YTsuiB-YIEEE Trans. Nanotechnol.201615741:CAS:528:DC%2BC28XhtFOrtbrO10.1109/TNANO.2015.2501829
– reference: KwonDWKimHWJangHKParkELeeJKimWKimSLeeJ-HParkB-GIEEE Trans. Electron Devices201764179910.1109/TED.2017.2669365
– reference: KaoK-HVerhulstAVandenbergheWGSoreeBGrosesenekenGMeyerKMIEEE Trans. Electron Devices2012592921:CAS:528:DC%2BC38XjsVCls7Y%3D10.1109/TED.2011.2175228
– reference: K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Digest. International Electron Devices Meeting, IEEE 7509297 (2002)
– reference: KhatamiYBanerjeeKIEEE Trans. Electron Devices20095627521:CAS:528:DC%2BD1MXhsVehtLnE10.1109/TED.2009.2030831
– reference: ChoiWYParkB-GLeeJ-DLiuT-JKIEEE Electron Device Lett.2007284310.1109/LED.2007.892366
– reference: SinghSRajBJ. Electron. Mater.20194862531:CAS:528:DC%2BC1MXhtlersbfI10.1007/s11664-019-07412-2
– reference: ChenFIlatikhamenehHTanYKlimeckGRahmanRIEEE Trans. Electron Devices20186530651:CAS:528:DC%2BC1MXhslOhsbc%3D10.1109/TED.2018.2831688
– reference: VeeraraghavanSFossumJerry GIEEE Trans. Electron Devices19893652210.1109/16.19963
– reference: HoefflingerBInt. Roadmap Semicond.20162143
– reference: FordACYeungCWChuangSAppl. Phys. Lett.20119811310510.1063/1.3567021
– reference: MooreGEProc. IEEE20061133
– reference: NeisserMWurmSAdv. Opt. Technol.20154235
– reference: D. Kahng, U.S. Patent No. 3,102,230 (1963)
– reference: BhuwalkaKKSchulzeJEiseleIIEEE Trans. Electron Devices2005529091:CAS:528:DC%2BD2MXksVyktrg%3D10.1109/TED.2005.846318
– reference: BorkarSACM Queue200312610.1145/957717.957757
– reference: LangNDKohnWPhys. Rev. B19713121510.1103/PhysRevB.3.1215
– ident: 154_CR6
– volume: 56
  start-page: 2752
  year: 2009
  ident: 154_CR10
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2030831
– volume: 4
  start-page: 235
  year: 2015
  ident: 154_CR15
  publication-title: Adv. Opt. Technol.
  doi: 10.1515/aot-2015-0036
– volume: 52
  start-page: 909
  year: 2005
  ident: 154_CR16
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2005.846318
– volume: 59
  start-page: 292
  year: 2012
  ident: 154_CR12
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2011.2175228
– volume: 1
  start-page: 26
  year: 2003
  ident: 154_CR4
  publication-title: ACM Queue
  doi: 10.1145/957717.957757
– volume: 11
  start-page: 319
  year: 2016
  ident: 154_CR18
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2015.0526
– volume: 28
  start-page: 43
  year: 2007
  ident: 154_CR8
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.892366
– ident: 154_CR23
– volume: 63
  start-page: 1827
  year: 2016
  ident: 154_CR25
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2539209
– volume: 11
  start-page: 33
  year: 2006
  ident: 154_CR3
  publication-title: Proc. IEEE
– volume: 36
  start-page: 399
  year: 1989
  ident: 154_CR7
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.19942
– volume: 37
  start-page: 094003
  year: 2016
  ident: 154_CR11
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/37/9/094003
– volume: 36
  start-page: 522
  year: 1989
  ident: 154_CR5
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.19963
– volume: 15
  start-page: 74
  year: 2016
  ident: 154_CR13
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2015.2501829
– volume: 65
  start-page: 3065
  year: 2018
  ident: 154_CR24
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2831688
– volume: 51
  start-page: 279
  year: 2004
  ident: 154_CR17
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2003.821575
– volume: 2
  start-page: 143
  year: 2016
  ident: 154_CR14
  publication-title: Int. Roadmap Semicond.
– ident: 154_CR9
– ident: 154_CR1
  doi: 10.1016/0003-9861(63)90175-9
– volume: 98
  start-page: 113105
  year: 2011
  ident: 154_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3567021
– volume: 48
  start-page: 6253
  year: 2019
  ident: 154_CR21
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07412-2
– volume: 23
  start-page: 655
  year: 1976
  ident: 154_CR2
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1976.18468
– volume: 47
  start-page: 4883
  year: 2018
  ident: 154_CR20
  publication-title: J. Electron. Mater.
– volume: 64
  start-page: 1799
  year: 2017
  ident: 154_CR26
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2669365
– volume: 3
  start-page: 1215
  year: 1971
  ident: 154_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.3.1215
SSID ssib039560196
ssj0000314789
Score 2.3794184
Snippet An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Chemistry and Materials Science
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Regular Paper
전기공학
Title Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance
URI https://link.springer.com/article/10.1007/s42341-019-00154-2
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002558266
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions on Electrical and Electronic Materials, 2020, 21(1), , pp.74-82
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCe4ED4inKSxbiFrbK2l4_ji0lFCR6ICnqzdqH3TatNmibqGr_Fn-Qsb2vkFJRLpvI2rW8mS8z4_E3Mwi9Z3nKiVU8EspkEWPURjLPeGRzYY0Cm0uYS3D-dsD3D9nXo-RoMPjVYy0tF9l2fn1jXsn_SBXGQK4uS_YOkm0nhQH4DvKFK0gYrv8k4z1Pv_Dx_35xkT2XEjLxUfnhD8-bdkn4S8doGY4dY21Y1yz2hsrXCfFsQ8f5cJT4JpOg77hOu77i_oAhtM9pSw30uumACxzevQuSFsfL2SwwuSdwz1VnCtLi5NK7r59PXav7Nt4DBtXHeyYnKaitsqjaR76ns3BOcn7pKj1W_bAF7FFHLQUkaFpCVCR4aHm7bfwYGSlw9xO1op5JvAbDoGtDd5_GapMb7UGggFyAz8hc1ERF3mesEy5Xim__YRRbqmJb1tnPoWEO7efQYPc3iRCOG7C5M97dPWjUGHVbzriuYugdAhoz4Zsxti9dp2_5JM61xa24SPfKyq6d0nvnZ_oIPax3LXgnQPAxGpjyCXrQq2X5FOkARgxowA0Y8dxiB0YcwIgbMOIARuzBiAMYcQdGDADEDoy4B8Zn6HD8afpxP6q7d0Q5JckC5MgMNcaQjOVE8YKnSeGyrKWwoB-sTbOE2pgXUslCjigVSqQFo9RyJjKZJ_Q52ijnpXmBsOSGg0-hKBPgQMepVNzIVCYZgyel5Vsobn4wndel7V2HlXP9d-ltoWH7zM9Q2OXWu9-BHPRZfqpdPXb3eTzXZ5WGXecXzaVrMgHL-NCISdda4uKWOV_eaQWv0P3ub_QabSyqpXkD_vAie1vj7zdWm65I
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Analysis+of+Dual+Source+Vertical+Tunnel+Field+Effect+Transistor+for+High+Performance&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Badgujjar%2C+Soniya&rft.au=Wadhwa%2C+Girish&rft.au=Singh%2C+Shailendra&rft.au=Raj%2C+Balwinder&rft.date=2020-02-01&rft.issn=1229-7607&rft.eissn=2092-7592&rft.volume=21&rft.issue=1&rft.spage=74&rft.epage=82&rft_id=info:doi/10.1007%2Fs42341-019-00154-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42341_019_00154_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon