Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor

[Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 317; p. 128204
Main Authors Duan, Zaihua, Zhao, Qiuni, Wang, Si, Huang, Qi, Yuan, Zhen, Zhang, Yajie, Jiang, Yadong, Tai, Huiling
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.08.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of 0–91.5% RH.•The HNTs humidity senor has an obvious response to very low RH of 7.2%. Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs.
AbstractList Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs.
[Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of 0–91.5% RH.•The HNTs humidity senor has an obvious response to very low RH of 7.2%. Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs.
ArticleNumber 128204
Author Huang, Qi
Yuan, Zhen
Jiang, Yadong
Zhao, Qiuni
Wang, Si
Duan, Zaihua
Zhang, Yajie
Tai, Huiling
Author_xml – sequence: 1
  givenname: Zaihua
  orcidid: 0000-0003-3517-1734
  surname: Duan
  fullname: Duan, Zaihua
– sequence: 2
  givenname: Qiuni
  surname: Zhao
  fullname: Zhao, Qiuni
– sequence: 3
  givenname: Si
  surname: Wang
  fullname: Wang, Si
– sequence: 4
  givenname: Qi
  surname: Huang
  fullname: Huang, Qi
– sequence: 5
  givenname: Zhen
  surname: Yuan
  fullname: Yuan, Zhen
– sequence: 6
  givenname: Yajie
  surname: Zhang
  fullname: Zhang, Yajie
– sequence: 7
  givenname: Yadong
  surname: Jiang
  fullname: Jiang, Yadong
– sequence: 8
  givenname: Huiling
  orcidid: 0000-0001-5966-3843
  surname: Tai
  fullname: Tai, Huiling
  email: taitai1980@uestc.edu.cn
BookMark eNp9kE1v1DAQhq2qSGwLP4CbJa5k648kTuCEqkKRKri0Z2vsjLteJfZiO0X773FZTj30NDPS-8xongtyHmJAQj5wtuWM91f7bQ5mK5iosxgEa8_Ihg9KNpIpdU42bBRd0zLWvSUXOe8ZY63s2YastzDP8Zh9QRogxLIazJ_pTyhrgvkTxfDkUwwLhgJz45LHMM1HCmGic_zT2JjLP26BgsnDnKmLie784645YKr9AsEi3a2Ln3w50owhx_SOvHE1i-__10vy8O3m_vq2ufv1_cf117vGStGVpkcwo3S2kyBEKy3vRsucHFU3OKeEgb4X1hg0A_DOgeLKWNkLMzrrZIeTvCQfT3sPKf5eMRe9j2sK9aQWbdv2SgyM15Q6pWyKOSd02voCxcdQEvhZc6afHeu9ro71s2N9clxJ_oI8JL9AOr7KfDkxWB9_8ph0ttWqxckntEVP0b9C_wVTw5mk
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01315
crossref_primary_10_1016_j_nanoso_2024_101157
crossref_primary_10_1109_JSEN_2023_3293475
crossref_primary_10_1016_j_cej_2023_145304
crossref_primary_10_1021_acsami_3c07913
crossref_primary_10_1021_acsnano_4c04372
crossref_primary_10_1016_j_rechem_2024_101444
crossref_primary_10_3390_chemosensors11010039
crossref_primary_10_3390_nano12142498
crossref_primary_10_1016_j_mseb_2023_117066
crossref_primary_10_3390_coatings12030377
crossref_primary_10_1039_D3TB03054G
crossref_primary_10_1016_j_snb_2022_132455
crossref_primary_10_1016_j_surfin_2024_105383
crossref_primary_10_1039_D3TA06283J
crossref_primary_10_1016_j_snb_2023_133701
crossref_primary_10_1016_j_snb_2023_135204
crossref_primary_10_1039_D1TA02828F
crossref_primary_10_3390_chemosensors11080423
crossref_primary_10_1021_acsami_0c06435
crossref_primary_10_1016_j_clay_2021_106333
crossref_primary_10_1016_j_snb_2021_130158
crossref_primary_10_1016_j_snb_2024_135325
crossref_primary_10_1007_s10924_022_02537_8
crossref_primary_10_1039_D0MA00389A
crossref_primary_10_1039_D3NR05684H
crossref_primary_10_3390_electronics12102276
crossref_primary_10_1016_j_nwnano_2024_100061
crossref_primary_10_1016_j_sna_2022_113662
crossref_primary_10_1016_j_snb_2023_133396
crossref_primary_10_1007_s12598_021_01913_y
crossref_primary_10_1016_j_jhazmat_2022_128821
crossref_primary_10_1039_D3TC03224H
crossref_primary_10_1007_s12274_022_4917_y
crossref_primary_10_1016_j_ceramint_2022_03_200
crossref_primary_10_1016_j_matdes_2023_112438
crossref_primary_10_35848_1882_0786_ac8d48
crossref_primary_10_1021_acsanm_3c03964
crossref_primary_10_1016_j_snb_2023_134082
crossref_primary_10_3390_s23198261
crossref_primary_10_1039_D1TC03135J
crossref_primary_10_1088_2058_8585_ac8f58
crossref_primary_10_3390_s23177587
crossref_primary_10_1016_j_snb_2020_129209
crossref_primary_10_1021_acsaelm_4c01230
crossref_primary_10_1002_star_202400080
crossref_primary_10_1016_j_ajps_2023_100873
crossref_primary_10_1109_TED_2021_3105376
crossref_primary_10_3390_polym15234554
crossref_primary_10_3390_chemosensors10080327
crossref_primary_10_1016_j_snb_2022_132441
crossref_primary_10_1016_j_snb_2023_135267
crossref_primary_10_1016_j_snb_2024_135585
crossref_primary_10_1021_acsami_2c05863
crossref_primary_10_1016_j_eurpolymj_2025_113731
crossref_primary_10_1039_D3CC02537C
crossref_primary_10_1016_j_measurement_2023_112468
crossref_primary_10_1016_j_mseb_2023_117001
crossref_primary_10_1021_acsaelm_4c02131
crossref_primary_10_1016_j_jmrt_2022_12_157
crossref_primary_10_1016_j_jmst_2021_12_059
crossref_primary_10_1002_sstr_202400287
crossref_primary_10_1039_D4TA05042H
crossref_primary_10_1016_j_snb_2021_130219
crossref_primary_10_1109_JSEN_2022_3155787
crossref_primary_10_1016_j_snb_2024_136392
crossref_primary_10_1016_j_mtchem_2022_100786
crossref_primary_10_1021_acsomega_1c04242
crossref_primary_10_1021_acsanm_4c01816
crossref_primary_10_1039_D4TC04901B
crossref_primary_10_3390_gels10010050
crossref_primary_10_1016_j_ceramint_2024_08_169
crossref_primary_10_1016_j_jclepro_2021_129938
crossref_primary_10_1002_celc_202101567
crossref_primary_10_1088_2058_8585_ace8a6
crossref_primary_10_1007_s10854_024_12280_6
crossref_primary_10_1016_j_carbpol_2024_122059
crossref_primary_10_1039_D1RA07510A
crossref_primary_10_3390_nano13091473
crossref_primary_10_1016_j_snb_2022_132302
crossref_primary_10_3390_s21103423
crossref_primary_10_1007_s12274_023_6276_8
crossref_primary_10_1016_j_matlet_2022_133123
crossref_primary_10_1016_j_nanoen_2023_108745
crossref_primary_10_3390_nano13020256
crossref_primary_10_1002_ppsc_202400072
crossref_primary_10_1016_j_snb_2021_130584
crossref_primary_10_3390_chemosensors11080457
crossref_primary_10_1016_j_sna_2022_113573
crossref_primary_10_1016_j_mseb_2024_117549
crossref_primary_10_1016_j_snb_2025_137426
crossref_primary_10_1039_D3SD00067B
crossref_primary_10_3390_ma15082932
crossref_primary_10_1002_smll_202501122
crossref_primary_10_1039_D1TC04180K
crossref_primary_10_1007_s12598_020_01524_z
crossref_primary_10_3390_s23041977
crossref_primary_10_1021_acsomega_2c04313
crossref_primary_10_1016_j_memsci_2024_123417
crossref_primary_10_1002_adsu_202100370
crossref_primary_10_1016_j_snb_2021_129884
crossref_primary_10_1016_j_flatc_2021_100333
crossref_primary_10_1016_j_clay_2024_107348
crossref_primary_10_1016_j_est_2024_111146
crossref_primary_10_1002_admi_202101498
crossref_primary_10_1557_s43579_023_00367_w
crossref_primary_10_1016_j_cej_2022_136910
crossref_primary_10_1021_acsomega_1c06525
crossref_primary_10_1016_j_ceramint_2023_11_244
crossref_primary_10_1016_j_ceramint_2024_08_224
crossref_primary_10_1016_j_tsf_2023_140035
crossref_primary_10_1021_acs_nanolett_3c02071
crossref_primary_10_1016_j_clay_2023_107193
crossref_primary_10_1021_acssensors_4c00866
crossref_primary_10_1038_s44172_025_00342_4
crossref_primary_10_1039_D1TA02433G
crossref_primary_10_1007_s10854_022_08144_6
crossref_primary_10_1016_j_matchemphys_2023_127800
crossref_primary_10_3390_chemosensors10120522
crossref_primary_10_1016_j_mne_2023_100185
crossref_primary_10_1016_j_apmt_2022_101525
crossref_primary_10_1016_j_mtcomm_2023_106106
crossref_primary_10_2139_ssrn_4136045
crossref_primary_10_1021_acsanm_1c03861
crossref_primary_10_3390_coatings13101677
crossref_primary_10_1021_acsaelm_4c00863
crossref_primary_10_1016_j_ceramint_2024_04_202
crossref_primary_10_3390_s23156784
crossref_primary_10_1007_s12598_021_01846_6
crossref_primary_10_1016_j_sna_2021_112918
crossref_primary_10_1016_j_snb_2020_128790
crossref_primary_10_3390_nano13131895
crossref_primary_10_1016_j_susmat_2023_e00766
crossref_primary_10_1016_j_snb_2022_132369
crossref_primary_10_1016_j_clay_2021_106303
crossref_primary_10_1016_j_microc_2023_108934
crossref_primary_10_1016_j_sna_2021_112911
crossref_primary_10_1016_j_snb_2023_134445
crossref_primary_10_1016_j_snb_2021_130763
crossref_primary_10_1016_j_snb_2023_135136
crossref_primary_10_1021_acsanm_1c01165
crossref_primary_10_1016_j_jhazmat_2022_128836
crossref_primary_10_1016_j_ijbiomac_2023_126466
crossref_primary_10_1016_j_nxnano_2023_100007
crossref_primary_10_1021_acs_cgd_2c00632
crossref_primary_10_1016_j_mssp_2022_107048
crossref_primary_10_1002_smll_202306463
crossref_primary_10_1039_D3MA00691C
crossref_primary_10_1039_D3TC00016H
crossref_primary_10_1016_j_apsusc_2022_155001
crossref_primary_10_1016_j_apsusc_2020_147816
crossref_primary_10_1016_j_apsusc_2023_159280
crossref_primary_10_1016_j_memsci_2025_124008
crossref_primary_10_1016_j_cej_2024_154443
crossref_primary_10_1016_j_microc_2024_110364
crossref_primary_10_1007_s41779_024_01003_z
crossref_primary_10_1016_j_est_2023_109400
crossref_primary_10_1016_j_snb_2024_135429
crossref_primary_10_3390_nano13061110
crossref_primary_10_1088_1361_6528_ace44d
crossref_primary_10_1088_2058_8585_ac310b
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1021_acsomega_3c01663
crossref_primary_10_3390_s22010293
crossref_primary_10_1016_j_mseb_2020_114861
crossref_primary_10_1021_acsami_3c03461
crossref_primary_10_1021_acssuschemeng_1c01527
crossref_primary_10_1007_s12598_020_01645_5
crossref_primary_10_1016_j_ceramint_2024_06_256
crossref_primary_10_1016_j_snb_2020_129149
crossref_primary_10_1109_JSEN_2022_3179146
crossref_primary_10_1088_1361_665X_abe87d
crossref_primary_10_1109_JSEN_2021_3131196
crossref_primary_10_1007_s10854_022_09667_8
crossref_primary_10_3390_coatings13091520
crossref_primary_10_1021_acsomega_3c00448
crossref_primary_10_1016_j_mtchem_2024_101907
crossref_primary_10_1016_j_snb_2020_129140
crossref_primary_10_1002_cnma_202100394
crossref_primary_10_1109_JIOT_2024_3361009
crossref_primary_10_1016_j_apsadv_2023_100516
crossref_primary_10_1016_j_sbsr_2023_100575
crossref_primary_10_1109_JSEN_2021_3109446
crossref_primary_10_1021_acsnano_4c10432
crossref_primary_10_1016_j_jallcom_2023_172782
crossref_primary_10_1016_j_snb_2021_130782
crossref_primary_10_1109_JSEN_2024_3373030
crossref_primary_10_1109_LED_2023_3337821
Cites_doi 10.1021/acs.chemmater.8b01587
10.1016/j.snb.2019.01.123
10.1016/j.snb.2018.09.080
10.1039/C0JM02753G
10.1149/1.2096565
10.1016/j.catcom.2010.09.030
10.1016/0250-6874(83)85012-4
10.1016/j.snb.2018.03.052
10.1016/j.snb.2019.02.089
10.1021/jp3080223
10.1016/j.jallcom.2018.01.361
10.1021/nn800259q
10.1039/C5TA09281G
10.1351/pac198557040603
10.1021/acsami.6b08071
10.1021/am4022973
10.1016/j.snb.2018.12.056
10.1016/j.micromeso.2014.12.031
10.1016/j.snb.2018.10.058
10.1039/C5TC01171J
10.1016/j.snb.2011.11.074
10.1016/j.snb.2018.01.176
10.1016/0250-6874(85)87002-5
10.1016/j.cej.2017.04.131
10.1002/adma.201702076
10.1021/acsami.9b05709
10.1016/j.snb.2016.09.179
10.1016/j.snb.2015.10.012
10.1016/j.jhazmat.2016.01.081
10.1016/j.apsusc.2008.02.106
10.1021/nn404889b
10.3390/polym11060987
10.1016/j.snb.2019.03.070
10.1016/j.snb.2016.01.015
10.1021/acsami.6b09074
10.1016/j.snb.2019.126973
10.1016/j.snb.2015.12.027
10.1002/adma.201502341
10.1088/2053-1591/aaa1d9
10.1002/anie.201804656
10.1016/j.snb.2017.11.169
10.1111/jace.13994
10.1166/sl.2005.045
10.1016/j.jallcom.2016.11.129
10.1016/S0925-4005(97)80264-X
10.1016/j.snb.2016.11.104
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 15, 2020
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2020.128204
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2020_128204
S0925400520305499
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c325t-6eab93fc53a2243c159c0f39758ff72ba662cbbeb8a15fa717bc362b9fcf35ed3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 02:49:38 EDT 2025
Tue Jul 01 01:27:41 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Fri Feb 23 02:47:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Halloysite nanotubes
Large response
Humidity sensors
Fast response speed
Wide humidity detection range
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-6eab93fc53a2243c159c0f39758ff72ba662cbbeb8a15fa717bc362b9fcf35ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5966-3843
0000-0003-3517-1734
PQID 2444672801
PQPubID 2047454
ParticipantIDs proquest_journals_2444672801
crossref_citationtrail_10_1016_j_snb_2020_128204
crossref_primary_10_1016_j_snb_2020_128204
elsevier_sciencedirect_doi_10_1016_j_snb_2020_128204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Chen, Lu (bib0015) 2005; 3
Geng, He, Su, Dang, Gu, Tian (bib0230) 2016; 226
Chao, Liu, Wang, Zhang, Zhang, Zhang, Xiang, Chen (bib0185) 2013; 5
Zou, Zhang, Duan, Tong, Peng, Zheng (bib0115) 2018; 5
Zeng, Ye, He, Yang, Ma, Shi, Feng (bib0170) 2017; 323
Han, Kim, Li, Meyyappan (bib0055) 2012; 116
Choi, Yu, Jang, Kim, Kim, Jeong, Kim (bib0020) 2018; 14
Yu, Zhang, Chen, Lin (bib0135) 2019; 287
Cheng, Tian, Xie, Xiao, Lei (bib0130) 2011; 21
Shimizu, Arai, Seiyama (bib0005) 1985; 7
Seiyama, Yamazoe, Arai (bib0030) 1983; 4
Zhao, Li, Yu (bib0220) 2017; 29
Zhuang, Li, Qi, Zhao, Na (bib0235) 2017; 242
Yang, Chen, Leng, Huang, Wang, Tian (bib0150) 2017; 7
Yang, Zhang, Liu, Yuan, Dong (bib0210) 2015; 3
Tian, Wang, Tian, Zhou, Yang, Komarneni (bib0190) 2016; 309
Zhai, Zhang, Liu, Xie, Zhang, Liu (bib0200) 2010; 12
Sing (bib0215) 1985; 57
Chou, Lee, Liu, Du (bib0105) 2016; 99
Zhang, Sun, Chen, Liu, Dong, Guo, Ruan (bib0095) 2017; 695
Li, Haidry, Dong, Sun, Fatima, Xie, Yao (bib0035) 2018; 742
Wang, Feng, Sun, Segre, Stetter (bib0040) 1997; 40
Shevate, Haque, Akhtar, Villalobos, Wu, Peinemann (bib0050) 2018; 57
Dai, Feng, Li, Zhang, Li (bib0075) 2019; 283
Zhao, Zhang, Qi, Dai, Liu, Fei, Lu (bib0085) 2018; 266
Zhao, Zhang, Qi, Dai, Liu, Fei (bib0225) 2017; 248
Yang, Wu, Shen, Zhou, Li, He, Liu (bib0205) 2016; 8
Zhang, Duan, Zou, Ma (bib0065) 2018; 261
Wu, Zhang, Ju, Yan, Huang, Tan (bib0160) 2019; 11
Kang, Park, Yun, Choi, Lee, Yook (bib0045) 2019; 282
Zhang, Fu, Yang, Qi, Zeng, Zhang, Ge, Zou (bib0125) 2008; 254
Zhang, Zong, Wu (bib0140) 2019; 287
Jiang, Zhao, Dai, Kuang, Fei, Zhang (bib0245) 2016; 8
Blank, Eksperiandova, Belikov (bib0025) 2016; 228
Duan, Jiang, Yan, Wang, Yuan, Zhao, Sun, Xie, Du, Tai (bib0175) 2019; 11
Hebbar, Isloor, Ananda, Ismail (bib0165) 2016; 4
Zhang, Geng, He, Tu, Ma, Duan, Zhang (bib0240) 2019; 280
Borini, White, Wei, Astley, Haque, Spigone, Harris, Kivioja, Ryhanen (bib0060) 2013; 7
Li, Tian, Su, Wang, Wang, Zhang (bib0070) 2019; 299
Lin, Li, Yang (bib0110) 2012; 161
Shimizu, Shimabukuro, Arai (bib0010) 1989; 136
Wang, Pan, Huang, Ren, Li, Li (bib0120) 2011; 22
Duan, Xu, Li, Zhang, Zou (bib0090) 2018; 258
He, Xiao, Shi, Liang, Lu, Chen, Wang, Theato, Kuo, Chen (bib0080) 2018; 30
Zhao, Yuan, Duan, Jiang, Li, Li, Li, Tai (bib0180) 2019; 289
Narimani, Nayeri, Kolahdouz, Ebrahimi (bib0100) 2016; 224
Lvov, Wang, Zhang, Fakhrullin (bib0145) 2016; 28
Lvov, Shchukin, Mohwald, Price (bib0155) 2008; 2
Tian, Wang, Wang, Komarneni, Yang (bib0195) 2015; 207
Zhang (10.1016/j.snb.2020.128204_bib0125) 2008; 254
Lin (10.1016/j.snb.2020.128204_bib0110) 2012; 161
Han (10.1016/j.snb.2020.128204_bib0055) 2012; 116
Tian (10.1016/j.snb.2020.128204_bib0195) 2015; 207
Lvov (10.1016/j.snb.2020.128204_bib0145) 2016; 28
Zou (10.1016/j.snb.2020.128204_bib0115) 2018; 5
Cheng (10.1016/j.snb.2020.128204_bib0130) 2011; 21
Li (10.1016/j.snb.2020.128204_bib0070) 2019; 299
Yu (10.1016/j.snb.2020.128204_bib0135) 2019; 287
Zeng (10.1016/j.snb.2020.128204_bib0170) 2017; 323
Wu (10.1016/j.snb.2020.128204_bib0160) 2019; 11
Seiyama (10.1016/j.snb.2020.128204_bib0030) 1983; 4
Zhang (10.1016/j.snb.2020.128204_bib0095) 2017; 695
He (10.1016/j.snb.2020.128204_bib0080) 2018; 30
Zhao (10.1016/j.snb.2020.128204_bib0225) 2017; 248
Shevate (10.1016/j.snb.2020.128204_bib0050) 2018; 57
Hebbar (10.1016/j.snb.2020.128204_bib0165) 2016; 4
Wang (10.1016/j.snb.2020.128204_bib0120) 2011; 22
Chao (10.1016/j.snb.2020.128204_bib0185) 2013; 5
Blank (10.1016/j.snb.2020.128204_bib0025) 2016; 228
Shimizu (10.1016/j.snb.2020.128204_bib0010) 1989; 136
Chou (10.1016/j.snb.2020.128204_bib0105) 2016; 99
Duan (10.1016/j.snb.2020.128204_bib0175) 2019; 11
Choi (10.1016/j.snb.2020.128204_bib0020) 2018; 14
Yang (10.1016/j.snb.2020.128204_bib0150) 2017; 7
Yang (10.1016/j.snb.2020.128204_bib0205) 2016; 8
Zhang (10.1016/j.snb.2020.128204_bib0240) 2019; 280
Chen (10.1016/j.snb.2020.128204_bib0015) 2005; 3
Zhao (10.1016/j.snb.2020.128204_bib0085) 2018; 266
Zhao (10.1016/j.snb.2020.128204_bib0220) 2017; 29
Zhang (10.1016/j.snb.2020.128204_bib0140) 2019; 287
Li (10.1016/j.snb.2020.128204_bib0035) 2018; 742
Wang (10.1016/j.snb.2020.128204_bib0040) 1997; 40
Tian (10.1016/j.snb.2020.128204_bib0190) 2016; 309
Zhuang (10.1016/j.snb.2020.128204_bib0235) 2017; 242
Geng (10.1016/j.snb.2020.128204_bib0230) 2016; 226
Borini (10.1016/j.snb.2020.128204_bib0060) 2013; 7
Zhao (10.1016/j.snb.2020.128204_bib0180) 2019; 289
Zhai (10.1016/j.snb.2020.128204_bib0200) 2010; 12
Jiang (10.1016/j.snb.2020.128204_bib0245) 2016; 8
Kang (10.1016/j.snb.2020.128204_bib0045) 2019; 282
Lvov (10.1016/j.snb.2020.128204_bib0155) 2008; 2
Sing (10.1016/j.snb.2020.128204_bib0215) 1985; 57
Zhang (10.1016/j.snb.2020.128204_bib0065) 2018; 261
Dai (10.1016/j.snb.2020.128204_bib0075) 2019; 283
Yang (10.1016/j.snb.2020.128204_bib0210) 2015; 3
Duan (10.1016/j.snb.2020.128204_bib0090) 2018; 258
Narimani (10.1016/j.snb.2020.128204_bib0100) 2016; 224
Shimizu (10.1016/j.snb.2020.128204_bib0005) 1985; 7
References_xml – volume: 282
  start-page: 145
  year: 2019
  end-page: 151
  ident: bib0045
  article-title: A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film
  publication-title: Sens. Actuators B Chem.
– volume: 57
  start-page: 11218
  year: 2018
  end-page: 11222
  ident: bib0050
  article-title: Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing
  publication-title: Angew. Chem. Int. Ed.
– volume: 309
  start-page: 151
  year: 2016
  end-page: 156
  ident: bib0190
  article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe
  publication-title: J. Hazard. Mater.
– volume: 30
  start-page: 4343
  year: 2018
  end-page: 4354
  ident: bib0080
  article-title: High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction
  publication-title: Chem. Mater.
– volume: 3
  start-page: 6701
  year: 2015
  end-page: 6708
  ident: bib0210
  article-title: Controllable assembly of SnO
  publication-title: J. Mater. Chem. C Mater. Opt. Electron. Dev.
– volume: 21
  start-page: 1907
  year: 2011
  end-page: 1912
  ident: bib0130
  article-title: Highly sensitive humidity sensor based on amorphous Al
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 987
  year: 2019
  ident: bib0160
  article-title: Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications
  publication-title: Polymers
– volume: 29
  year: 2017
  ident: bib0220
  article-title: Highly sensitive MoS2 humidity sensors array for noncontact sensation
  publication-title: Adv. Mater.
– volume: 289
  start-page: 182
  year: 2019
  end-page: 185
  ident: bib0180
  article-title: An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 11166
  year: 2013
  end-page: 11173
  ident: bib0060
  article-title: Ultrafast graphene oxide humidity sensors
  publication-title: ACS Nano
– volume: 258
  start-page: 527
  year: 2018
  end-page: 534
  ident: bib0090
  article-title: Super-fast response humidity sensor based on La0.7Sr0.3MnO
  publication-title: Sens. Actuators B Chem.
– volume: 7
  start-page: 11
  year: 1985
  end-page: 22
  ident: bib0005
  article-title: Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors
  publication-title: Sens. Actuators B Chem.
– volume: 28
  start-page: 1227
  year: 2016
  end-page: 1250
  ident: bib0145
  article-title: Halloysite clay nanotubes for loading and sustained release of functional compounds
  publication-title: Adv. Mater.
– volume: 161
  start-page: 967
  year: 2012
  end-page: 972
  ident: bib0110
  article-title: Polyaniline nanofiber humidity sensor prepared by electrospinning
  publication-title: Sens. Actuators B Chem.
– volume: 2
  start-page: 814
  year: 2008
  end-page: 820
  ident: bib0155
  article-title: Halloysite clay nanotubes for controlled release of protective agents
  publication-title: ACS Nano
– volume: 22
  year: 2011
  ident: bib0120
  article-title: Resistive and capacitive response of nitrogen-doped TiO
  publication-title: Nanotechnology
– volume: 280
  start-page: 46
  year: 2019
  end-page: 53
  ident: bib0240
  article-title: Humidity sensing performance of mesoporous CoO(OH) synthesized via one-pot hydrothermal method
  publication-title: Sens. Actuators B Chem.
– volume: 248
  start-page: 803
  year: 2017
  end-page: 811
  ident: bib0225
  article-title: Organic-inorganic hybrid materials based on mesoporous silica derivatives for humidity sensing
  publication-title: Sens. Actuators B Chem.
– volume: 742
  start-page: 814
  year: 2018
  end-page: 821
  ident: bib0035
  article-title: Facile synthesis of nitrogen doped ordered mesoporous TiO
  publication-title: J. Alloys. Compd.
– volume: 226
  start-page: 471
  year: 2016
  end-page: 477
  ident: bib0230
  article-title: Remarkable humidity-responsive sensor based on poly(
  publication-title: Sens. Actuators B Chem.
– volume: 99
  start-page: 531
  year: 2016
  end-page: 535
  ident: bib0105
  article-title: Effect of microstructure of ZnO nanorod film on humidity sensing
  publication-title: J. Am. Ceram. Soc.
– volume: 228
  start-page: 416
  year: 2016
  end-page: 442
  ident: bib0025
  article-title: Recent trends of ceramic humidity sensors development: a review
  publication-title: Sens. Actuators B Chem.
– volume: 242
  start-page: 801
  year: 2017
  end-page: 809
  ident: bib0235
  article-title: Novel polymeric humidity sensors based on sulfonated poly (ether ether ketone)s: influence of sulfonation degree on sensing properties
  publication-title: Sens. Actuators B Chem.
– volume: 5
  year: 2018
  ident: bib0115
  article-title: Humidity sensing properties of LnFeO3 nanofibers synthesized by electrospinning (Ln= Sm, Nd, La)
  publication-title: Mater. Res. Express
– volume: 261
  start-page: 345
  year: 2018
  end-page: 353
  ident: bib0065
  article-title: Drawn a facile sensor: a fast response humidity sensor based on pencil-trace
  publication-title: Sens. Actuators B Chem.
– volume: 224
  start-page: 338
  year: 2016
  end-page: 343
  ident: bib0100
  article-title: Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods
  publication-title: Sens. Actuators B Chem.
– volume: 3
  start-page: 274
  year: 2005
  end-page: 295
  ident: bib0015
  article-title: Humidity sensors: a review of materials and mechanisms
  publication-title: Sens. Lett.
– volume: 40
  start-page: 211
  year: 1997
  end-page: 216
  ident: bib0040
  article-title: Comparison of conductometric humidity-sensing polymers
  publication-title: Sens. Actuators B Chem.
– volume: 11
  start-page: 21840
  year: 2019
  end-page: 21849
  ident: bib0175
  article-title: Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 299
  start-page: 126973
  year: 2019
  ident: bib0070
  article-title: High sensitivity portable capacitive humidity sensor based on In
  publication-title: Sens. Actuators B Chem.
– volume: 287
  start-page: 398
  year: 2019
  end-page: 407
  ident: bib0140
  article-title: Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility
  publication-title: Sens. Actuators B Chem.
– volume: 14
  year: 2018
  ident: bib0020
  article-title: Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor
  publication-title: Small
– volume: 695
  start-page: 520
  year: 2017
  end-page: 525
  ident: bib0095
  article-title: High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles
  publication-title: J. Alloys. Compd.
– volume: 7
  start-page: 1215
  year: 2017
  ident: bib0150
  article-title: Recent advances on surface modification of halloysite nanotubes for multifunctional applications
  publication-title: Appl. Sci. Basel (Basel)
– volume: 207
  start-page: 46
  year: 2015
  end-page: 52
  ident: bib0195
  article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(VI)
  publication-title: Microporous Mesoporous Mater.
– volume: 287
  start-page: 526
  year: 2019
  end-page: 534
  ident: bib0135
  article-title: Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle
  publication-title: Sens. Actuators B Chem.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  ident: bib0215
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl. Chem.
– volume: 4
  start-page: 85
  year: 1983
  end-page: 96
  ident: bib0030
  article-title: Ceramic humidity sensors
  publication-title: Sens. Actuators B Chem.
– volume: 136
  start-page: 3868
  year: 1989
  end-page: 3871
  ident: bib0010
  article-title: The sensing mechanism in a semiconducting humidity sensor with Pt electrodes
  publication-title: J. Electrochem. Soc.
– volume: 283
  start-page: 786
  year: 2019
  end-page: 792
  ident: bib0075
  article-title: Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 259
  year: 2010
  end-page: 263
  ident: bib0200
  article-title: Immobilization of enzyme biocatalyst on natural halloysite nanotubes
  publication-title: Catal. Commun.
– volume: 116
  start-page: 22094
  year: 2012
  end-page: 22097
  ident: bib0055
  article-title: Carbon nanotube based humidity sensor on cellulose paper
  publication-title: J. Phys. Chem. C
– volume: 266
  start-page: 131
  year: 2018
  end-page: 138
  ident: bib0085
  article-title: Humidity sensor based on solution processible microporous silica nanoparticles
  publication-title: Sens. Actuators B Chem.
– volume: 323
  start-page: 572
  year: 2017
  end-page: 583
  ident: bib0170
  article-title: Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 10559
  year: 2013
  end-page: 10564
  ident: bib0185
  article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 26578
  year: 2016
  end-page: 26590
  ident: bib0205
  article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 764
  year: 2016
  end-page: 774
  ident: bib0165
  article-title: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 254
  start-page: 5545
  year: 2008
  end-page: 5547
  ident: bib0125
  article-title: Synthesis and characterization of TiO
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 25529
  year: 2016
  end-page: 25534
  ident: bib0245
  article-title: Excellent humidity sensor based on LiCl loaded hierarchically porous polymeric microspheres
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 4343
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0080
  article-title: High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01587
– volume: 287
  start-page: 398
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0140
  article-title: Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.01.123
– volume: 282
  start-page: 145
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0045
  article-title: A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.09.080
– volume: 21
  start-page: 1907
  year: 2011
  ident: 10.1016/j.snb.2020.128204_bib0130
  article-title: Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02753G
– volume: 7
  start-page: 1215
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0150
  article-title: Recent advances on surface modification of halloysite nanotubes for multifunctional applications
  publication-title: Appl. Sci. Basel (Basel)
– volume: 136
  start-page: 3868
  year: 1989
  ident: 10.1016/j.snb.2020.128204_bib0010
  article-title: The sensing mechanism in a semiconducting humidity sensor with Pt electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2096565
– volume: 12
  start-page: 259
  year: 2010
  ident: 10.1016/j.snb.2020.128204_bib0200
  article-title: Immobilization of enzyme biocatalyst on natural halloysite nanotubes
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2010.09.030
– volume: 4
  start-page: 85
  year: 1983
  ident: 10.1016/j.snb.2020.128204_bib0030
  article-title: Ceramic humidity sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/0250-6874(83)85012-4
– volume: 266
  start-page: 131
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0085
  article-title: Humidity sensor based on solution processible microporous silica nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.03.052
– volume: 287
  start-page: 526
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0135
  article-title: Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.02.089
– volume: 116
  start-page: 22094
  year: 2012
  ident: 10.1016/j.snb.2020.128204_bib0055
  article-title: Carbon nanotube based humidity sensor on cellulose paper
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3080223
– volume: 742
  start-page: 814
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0035
  article-title: Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2018.01.361
– volume: 2
  start-page: 814
  year: 2008
  ident: 10.1016/j.snb.2020.128204_bib0155
  article-title: Halloysite clay nanotubes for controlled release of protective agents
  publication-title: ACS Nano
  doi: 10.1021/nn800259q
– volume: 4
  start-page: 764
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0165
  article-title: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C5TA09281G
– volume: 57
  start-page: 603
  year: 1985
  ident: 10.1016/j.snb.2020.128204_bib0215
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 8
  start-page: 25529
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0245
  article-title: Excellent humidity sensor based on LiCl loaded hierarchically porous polymeric microspheres
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08071
– volume: 5
  start-page: 10559
  year: 2013
  ident: 10.1016/j.snb.2020.128204_bib0185
  article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4022973
– volume: 283
  start-page: 786
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0075
  article-title: Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.12.056
– volume: 207
  start-page: 46
  year: 2015
  ident: 10.1016/j.snb.2020.128204_bib0195
  article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(VI)
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.12.031
– volume: 280
  start-page: 46
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0240
  article-title: Humidity sensing performance of mesoporous CoO(OH) synthesized via one-pot hydrothermal method
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.10.058
– volume: 3
  start-page: 6701
  year: 2015
  ident: 10.1016/j.snb.2020.128204_bib0210
  article-title: Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications
  publication-title: J. Mater. Chem. C Mater. Opt. Electron. Dev.
  doi: 10.1039/C5TC01171J
– volume: 161
  start-page: 967
  year: 2012
  ident: 10.1016/j.snb.2020.128204_bib0110
  article-title: Polyaniline nanofiber humidity sensor prepared by electrospinning
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.11.074
– volume: 22
  year: 2011
  ident: 10.1016/j.snb.2020.128204_bib0120
  article-title: Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor
  publication-title: Nanotechnology
– volume: 261
  start-page: 345
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0065
  article-title: Drawn a facile sensor: a fast response humidity sensor based on pencil-trace
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.01.176
– volume: 7
  start-page: 11
  year: 1985
  ident: 10.1016/j.snb.2020.128204_bib0005
  article-title: Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/0250-6874(85)87002-5
– volume: 323
  start-page: 572
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0170
  article-title: Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.131
– volume: 29
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0220
  article-title: Highly sensitive MoS2 humidity sensors array for noncontact sensation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702076
– volume: 11
  start-page: 21840
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0175
  article-title: Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05709
– volume: 242
  start-page: 801
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0235
  article-title: Novel polymeric humidity sensors based on sulfonated poly (ether ether ketone)s: influence of sulfonation degree on sensing properties
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.09.179
– volume: 224
  start-page: 338
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0100
  article-title: Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.10.012
– volume: 309
  start-page: 151
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0190
  article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.01.081
– volume: 254
  start-page: 5545
  year: 2008
  ident: 10.1016/j.snb.2020.128204_bib0125
  article-title: Synthesis and characterization of TiO2 nanotubes for humidity sensing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.02.106
– volume: 7
  start-page: 11166
  year: 2013
  ident: 10.1016/j.snb.2020.128204_bib0060
  article-title: Ultrafast graphene oxide humidity sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404889b
– volume: 11
  start-page: 987
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0160
  article-title: Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications
  publication-title: Polymers
  doi: 10.3390/polym11060987
– volume: 289
  start-page: 182
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0180
  article-title: An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.03.070
– volume: 228
  start-page: 416
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0025
  article-title: Recent trends of ceramic humidity sensors development: a review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.01.015
– volume: 8
  start-page: 26578
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0205
  article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09074
– volume: 299
  start-page: 126973
  year: 2019
  ident: 10.1016/j.snb.2020.128204_bib0070
  article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.126973
– volume: 226
  start-page: 471
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0230
  article-title: Remarkable humidity-responsive sensor based on poly(N,N-diethylaminoethyl methacrylate)-b-polystyrene block copolymers
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.12.027
– volume: 28
  start-page: 1227
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0145
  article-title: Halloysite clay nanotubes for loading and sustained release of functional compounds
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502341
– volume: 14
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0020
  article-title: Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor
  publication-title: Small
– volume: 5
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0115
  article-title: Humidity sensing properties of LnFeO3 nanofibers synthesized by electrospinning (Ln= Sm, Nd, La)
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaa1d9
– volume: 57
  start-page: 11218
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0050
  article-title: Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804656
– volume: 258
  start-page: 527
  year: 2018
  ident: 10.1016/j.snb.2020.128204_bib0090
  article-title: Super-fast response humidity sensor based on La0.7Sr0.3MnO3 nanocrystals prepared by PVP-assisted sol-gel method
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.11.169
– volume: 99
  start-page: 531
  year: 2016
  ident: 10.1016/j.snb.2020.128204_bib0105
  article-title: Effect of microstructure of ZnO nanorod film on humidity sensing
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13994
– volume: 3
  start-page: 274
  year: 2005
  ident: 10.1016/j.snb.2020.128204_bib0015
  article-title: Humidity sensors: a review of materials and mechanisms
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2005.045
– volume: 695
  start-page: 520
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0095
  article-title: High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2016.11.129
– volume: 40
  start-page: 211
  year: 1997
  ident: 10.1016/j.snb.2020.128204_bib0040
  article-title: Comparison of conductometric humidity-sensing polymers
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(97)80264-X
– volume: 248
  start-page: 803
  year: 2017
  ident: 10.1016/j.snb.2020.128204_bib0225
  article-title: Organic-inorganic hybrid materials based on mesoporous silica derivatives for humidity sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.11.104
SSID ssj0004360
Score 2.6571162
Snippet [Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders...
Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128204
SubjectTerms Electronic devices
Fast response speed
Halloysite nanotubes
Humidity
Humidity sensors
Large response
Low cost
Nanomaterials
Nanotubes
Raw materials
Reagents
Relative humidity
Response time
Room temperature
Sensors
Synthesis
Wide humidity detection range
Title Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
URI https://dx.doi.org/10.1016/j.snb.2020.128204
https://www.proquest.com/docview/2444672801
Volume 317
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWjVB6YEKYhttOWraqoCogugNTNsl1bFJWkalKhLvx27vLgJcHAmMiOovPlvu_iu8-EnDjPI-21YdjFyIT3hnVCHzHAykB76QR32O98N4wGj-JmJEc10qt6YbCssoz9RUzPo3V5p1laszmbTJr3QQeSm7yOA3wWiDt2sIsWevn522eZh-B5pzAOZji62tnMa7zS2ECKGKLGAiCh-A2bfkTpHHr6m2Sj5Iy0W7zWFqm5eJusf1ES3CGLAW6gL3ErmMY6TrKFceklHepcVuOMfuln01PmUdx4PF1SHY_pNHllNkmzfB7w18IlKZBZilrGbPbZWkCfFi-TMfB2mkL2m8x3yWP_6qE3YOWJCszyUGYsctp0uLeSa4BuboHL2MADJZFt71uh0VEUWmOcaesL6TWkesYCwpmOt55LN-Z7ZCVOYrdPaCCtbyGFMKjIHwhjI9HikK444bgQ_oAElS2VLeXG8dSLqarqyp4VmF-h-VVh_gNy-jFlVmht_DVYVAukvjmMAiz4a1q9WkxVfq2pAooDeBECWB_-76lHZA2v8F_zhayTlWy-cMdAVjLTyL2xQVa717eD4Tu-L-sH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1tdw-UQwWUis_iA6cKa0NsZ9neECrKdmEvBYmbZXttddGSrDZZIf49M_koUKkcek3sKBpP5r2JZ54Bjn0QiQnGcupi5DIEy4dxSDhiZWSC8lJ46ne-niTprfx5p-46cNH2wlBZZRP765heRevmSr-xZn8xm_V_RUNMbqo6DvRZJO4foEfqVKoLvfPROJ28tEeKqlmYxnOa0G5uVmVeRWYxS4xJZgHBUP4Lnv4K1BX6XG7Ap4Y2svP6zTah47MtWH8lJvgZVintoT_RbjDLTJaXK-uL72xiKmWNE_aqpc3MeSB94-n8iZlsyub5I3d5UVbzkMLWXsmQzzKSM-aLl-4C9nv1MJsidWcFJsD5chtuL3_cXKS8OVSBOxGrkife2KEITgmD6C0c0hkXBWQl6iyEQWxNksTOWm_PzKkKBrM96xDk7DC4IJSfii_QzfLM7wCLlAsDYhGWRPkjaV0iBwIzFi-9kDLsQtTaUrtGcZwOvpjrtrTsXqP5NZlf1-bfhW9_pixquY33Bst2gfQbn9EIB-9NO2gXUzcfbKGR5SBkxIjXe__31CNYS2-ur_TVaDLeh490h349n6oD6JbLlT9E7lLar41vPgPNtu24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halloysite+nanotubes%3A+Natural%2C+environmental-friendly+and+low-cost+nanomaterials+for+high-performance+humidity+sensor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Duan%2C+Zaihua&rft.au=Zhao%2C+Qiuni&rft.au=Wang%2C+Si&rft.au=Huang%2C+Qi&rft.date=2020-08-15&rft.issn=0925-4005&rft.volume=317&rft.spage=128204&rft_id=info:doi/10.1016%2Fj.snb.2020.128204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2020_128204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon