Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor
[Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 317; p. 128204 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.08.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of 0–91.5% RH.•The HNTs humidity senor has an obvious response to very low RH of 7.2%.
Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs. |
---|---|
AbstractList | Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs. [Display omitted] •The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders of magnitude.•The response time of the HNTs humidity senor is only about 0.7 s.•The HNTs humidity senor has wide humidity detection range of 0–91.5% RH.•The HNTs humidity senor has an obvious response to very low RH of 7.2%. Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been improved greatly. However, the synthesis of nanomaterials usually involves complex processes, expensive raw materials and even toxic reagents. Herein, the natural nanomaterials of halloysite nanotubes (HNTs) are deliberately selected for the fabrication of high-performance humidity sensor. Characterization results show that the HNTs have good hydrophilicity, hollow tubular nanostructure and large specific surface area, which contribute to humidity sensing performance of the humidity sensor. Further, the humidity sensor based on HNTs is fabricated and its humidity sensing properties are tested at the room temperature (25 °C). The results show that the impedance variation of the HNTs humidity sensor is five orders of magnitude within the humidity range from 0% to 91.5% relative humidity (RH) at the optimum working frequency (100 Hz), and its response time is only about 0.7 s. Notably, the HNTs humidity sensor exhibits wide humidity detection range of 0–91.5% RH, very low RH (7.2%) response characteristic and good linear responses at 0–28.8% and 28.8–91.5% RH. This work provides a simple, low-cost and environmental-friendly strategy for fabricating high-performance humidity sensor by exploring the natural nanomaterials like HNTs. |
ArticleNumber | 128204 |
Author | Huang, Qi Yuan, Zhen Jiang, Yadong Zhao, Qiuni Wang, Si Duan, Zaihua Zhang, Yajie Tai, Huiling |
Author_xml | – sequence: 1 givenname: Zaihua orcidid: 0000-0003-3517-1734 surname: Duan fullname: Duan, Zaihua – sequence: 2 givenname: Qiuni surname: Zhao fullname: Zhao, Qiuni – sequence: 3 givenname: Si surname: Wang fullname: Wang, Si – sequence: 4 givenname: Qi surname: Huang fullname: Huang, Qi – sequence: 5 givenname: Zhen surname: Yuan fullname: Yuan, Zhen – sequence: 6 givenname: Yajie surname: Zhang fullname: Zhang, Yajie – sequence: 7 givenname: Yadong surname: Jiang fullname: Jiang, Yadong – sequence: 8 givenname: Huiling orcidid: 0000-0001-5966-3843 surname: Tai fullname: Tai, Huiling email: taitai1980@uestc.edu.cn |
BookMark | eNp9kE1v1DAQhq2qSGwLP4CbJa5k648kTuCEqkKRKri0Z2vsjLteJfZiO0X773FZTj30NDPS-8xongtyHmJAQj5wtuWM91f7bQ5mK5iosxgEa8_Ihg9KNpIpdU42bBRd0zLWvSUXOe8ZY63s2YastzDP8Zh9QRogxLIazJ_pTyhrgvkTxfDkUwwLhgJz45LHMM1HCmGic_zT2JjLP26BgsnDnKmLie784645YKr9AsEi3a2Ln3w50owhx_SOvHE1i-__10vy8O3m_vq2ufv1_cf117vGStGVpkcwo3S2kyBEKy3vRsucHFU3OKeEgb4X1hg0A_DOgeLKWNkLMzrrZIeTvCQfT3sPKf5eMRe9j2sK9aQWbdv2SgyM15Q6pWyKOSd02voCxcdQEvhZc6afHeu9ro71s2N9clxJ_oI8JL9AOr7KfDkxWB9_8ph0ttWqxckntEVP0b9C_wVTw5mk |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c01315 crossref_primary_10_1016_j_nanoso_2024_101157 crossref_primary_10_1109_JSEN_2023_3293475 crossref_primary_10_1016_j_cej_2023_145304 crossref_primary_10_1021_acsami_3c07913 crossref_primary_10_1021_acsnano_4c04372 crossref_primary_10_1016_j_rechem_2024_101444 crossref_primary_10_3390_chemosensors11010039 crossref_primary_10_3390_nano12142498 crossref_primary_10_1016_j_mseb_2023_117066 crossref_primary_10_3390_coatings12030377 crossref_primary_10_1039_D3TB03054G crossref_primary_10_1016_j_snb_2022_132455 crossref_primary_10_1016_j_surfin_2024_105383 crossref_primary_10_1039_D3TA06283J crossref_primary_10_1016_j_snb_2023_133701 crossref_primary_10_1016_j_snb_2023_135204 crossref_primary_10_1039_D1TA02828F crossref_primary_10_3390_chemosensors11080423 crossref_primary_10_1021_acsami_0c06435 crossref_primary_10_1016_j_clay_2021_106333 crossref_primary_10_1016_j_snb_2021_130158 crossref_primary_10_1016_j_snb_2024_135325 crossref_primary_10_1007_s10924_022_02537_8 crossref_primary_10_1039_D0MA00389A crossref_primary_10_1039_D3NR05684H crossref_primary_10_3390_electronics12102276 crossref_primary_10_1016_j_nwnano_2024_100061 crossref_primary_10_1016_j_sna_2022_113662 crossref_primary_10_1016_j_snb_2023_133396 crossref_primary_10_1007_s12598_021_01913_y crossref_primary_10_1016_j_jhazmat_2022_128821 crossref_primary_10_1039_D3TC03224H crossref_primary_10_1007_s12274_022_4917_y crossref_primary_10_1016_j_ceramint_2022_03_200 crossref_primary_10_1016_j_matdes_2023_112438 crossref_primary_10_35848_1882_0786_ac8d48 crossref_primary_10_1021_acsanm_3c03964 crossref_primary_10_1016_j_snb_2023_134082 crossref_primary_10_3390_s23198261 crossref_primary_10_1039_D1TC03135J crossref_primary_10_1088_2058_8585_ac8f58 crossref_primary_10_3390_s23177587 crossref_primary_10_1016_j_snb_2020_129209 crossref_primary_10_1021_acsaelm_4c01230 crossref_primary_10_1002_star_202400080 crossref_primary_10_1016_j_ajps_2023_100873 crossref_primary_10_1109_TED_2021_3105376 crossref_primary_10_3390_polym15234554 crossref_primary_10_3390_chemosensors10080327 crossref_primary_10_1016_j_snb_2022_132441 crossref_primary_10_1016_j_snb_2023_135267 crossref_primary_10_1016_j_snb_2024_135585 crossref_primary_10_1021_acsami_2c05863 crossref_primary_10_1016_j_eurpolymj_2025_113731 crossref_primary_10_1039_D3CC02537C crossref_primary_10_1016_j_measurement_2023_112468 crossref_primary_10_1016_j_mseb_2023_117001 crossref_primary_10_1021_acsaelm_4c02131 crossref_primary_10_1016_j_jmrt_2022_12_157 crossref_primary_10_1016_j_jmst_2021_12_059 crossref_primary_10_1002_sstr_202400287 crossref_primary_10_1039_D4TA05042H crossref_primary_10_1016_j_snb_2021_130219 crossref_primary_10_1109_JSEN_2022_3155787 crossref_primary_10_1016_j_snb_2024_136392 crossref_primary_10_1016_j_mtchem_2022_100786 crossref_primary_10_1021_acsomega_1c04242 crossref_primary_10_1021_acsanm_4c01816 crossref_primary_10_1039_D4TC04901B crossref_primary_10_3390_gels10010050 crossref_primary_10_1016_j_ceramint_2024_08_169 crossref_primary_10_1016_j_jclepro_2021_129938 crossref_primary_10_1002_celc_202101567 crossref_primary_10_1088_2058_8585_ace8a6 crossref_primary_10_1007_s10854_024_12280_6 crossref_primary_10_1016_j_carbpol_2024_122059 crossref_primary_10_1039_D1RA07510A crossref_primary_10_3390_nano13091473 crossref_primary_10_1016_j_snb_2022_132302 crossref_primary_10_3390_s21103423 crossref_primary_10_1007_s12274_023_6276_8 crossref_primary_10_1016_j_matlet_2022_133123 crossref_primary_10_1016_j_nanoen_2023_108745 crossref_primary_10_3390_nano13020256 crossref_primary_10_1002_ppsc_202400072 crossref_primary_10_1016_j_snb_2021_130584 crossref_primary_10_3390_chemosensors11080457 crossref_primary_10_1016_j_sna_2022_113573 crossref_primary_10_1016_j_mseb_2024_117549 crossref_primary_10_1016_j_snb_2025_137426 crossref_primary_10_1039_D3SD00067B crossref_primary_10_3390_ma15082932 crossref_primary_10_1002_smll_202501122 crossref_primary_10_1039_D1TC04180K crossref_primary_10_1007_s12598_020_01524_z crossref_primary_10_3390_s23041977 crossref_primary_10_1021_acsomega_2c04313 crossref_primary_10_1016_j_memsci_2024_123417 crossref_primary_10_1002_adsu_202100370 crossref_primary_10_1016_j_snb_2021_129884 crossref_primary_10_1016_j_flatc_2021_100333 crossref_primary_10_1016_j_clay_2024_107348 crossref_primary_10_1016_j_est_2024_111146 crossref_primary_10_1002_admi_202101498 crossref_primary_10_1557_s43579_023_00367_w crossref_primary_10_1016_j_cej_2022_136910 crossref_primary_10_1021_acsomega_1c06525 crossref_primary_10_1016_j_ceramint_2023_11_244 crossref_primary_10_1016_j_ceramint_2024_08_224 crossref_primary_10_1016_j_tsf_2023_140035 crossref_primary_10_1021_acs_nanolett_3c02071 crossref_primary_10_1016_j_clay_2023_107193 crossref_primary_10_1021_acssensors_4c00866 crossref_primary_10_1038_s44172_025_00342_4 crossref_primary_10_1039_D1TA02433G crossref_primary_10_1007_s10854_022_08144_6 crossref_primary_10_1016_j_matchemphys_2023_127800 crossref_primary_10_3390_chemosensors10120522 crossref_primary_10_1016_j_mne_2023_100185 crossref_primary_10_1016_j_apmt_2022_101525 crossref_primary_10_1016_j_mtcomm_2023_106106 crossref_primary_10_2139_ssrn_4136045 crossref_primary_10_1021_acsanm_1c03861 crossref_primary_10_3390_coatings13101677 crossref_primary_10_1021_acsaelm_4c00863 crossref_primary_10_1016_j_ceramint_2024_04_202 crossref_primary_10_3390_s23156784 crossref_primary_10_1007_s12598_021_01846_6 crossref_primary_10_1016_j_sna_2021_112918 crossref_primary_10_1016_j_snb_2020_128790 crossref_primary_10_3390_nano13131895 crossref_primary_10_1016_j_susmat_2023_e00766 crossref_primary_10_1016_j_snb_2022_132369 crossref_primary_10_1016_j_clay_2021_106303 crossref_primary_10_1016_j_microc_2023_108934 crossref_primary_10_1016_j_sna_2021_112911 crossref_primary_10_1016_j_snb_2023_134445 crossref_primary_10_1016_j_snb_2021_130763 crossref_primary_10_1016_j_snb_2023_135136 crossref_primary_10_1021_acsanm_1c01165 crossref_primary_10_1016_j_jhazmat_2022_128836 crossref_primary_10_1016_j_ijbiomac_2023_126466 crossref_primary_10_1016_j_nxnano_2023_100007 crossref_primary_10_1021_acs_cgd_2c00632 crossref_primary_10_1016_j_mssp_2022_107048 crossref_primary_10_1002_smll_202306463 crossref_primary_10_1039_D3MA00691C crossref_primary_10_1039_D3TC00016H crossref_primary_10_1016_j_apsusc_2022_155001 crossref_primary_10_1016_j_apsusc_2020_147816 crossref_primary_10_1016_j_apsusc_2023_159280 crossref_primary_10_1016_j_memsci_2025_124008 crossref_primary_10_1016_j_cej_2024_154443 crossref_primary_10_1016_j_microc_2024_110364 crossref_primary_10_1007_s41779_024_01003_z crossref_primary_10_1016_j_est_2023_109400 crossref_primary_10_1016_j_snb_2024_135429 crossref_primary_10_3390_nano13061110 crossref_primary_10_1088_1361_6528_ace44d crossref_primary_10_1088_2058_8585_ac310b crossref_primary_10_1016_j_snb_2023_135230 crossref_primary_10_1021_acsomega_3c01663 crossref_primary_10_3390_s22010293 crossref_primary_10_1016_j_mseb_2020_114861 crossref_primary_10_1021_acsami_3c03461 crossref_primary_10_1021_acssuschemeng_1c01527 crossref_primary_10_1007_s12598_020_01645_5 crossref_primary_10_1016_j_ceramint_2024_06_256 crossref_primary_10_1016_j_snb_2020_129149 crossref_primary_10_1109_JSEN_2022_3179146 crossref_primary_10_1088_1361_665X_abe87d crossref_primary_10_1109_JSEN_2021_3131196 crossref_primary_10_1007_s10854_022_09667_8 crossref_primary_10_3390_coatings13091520 crossref_primary_10_1021_acsomega_3c00448 crossref_primary_10_1016_j_mtchem_2024_101907 crossref_primary_10_1016_j_snb_2020_129140 crossref_primary_10_1002_cnma_202100394 crossref_primary_10_1109_JIOT_2024_3361009 crossref_primary_10_1016_j_apsadv_2023_100516 crossref_primary_10_1016_j_sbsr_2023_100575 crossref_primary_10_1109_JSEN_2021_3109446 crossref_primary_10_1021_acsnano_4c10432 crossref_primary_10_1016_j_jallcom_2023_172782 crossref_primary_10_1016_j_snb_2021_130782 crossref_primary_10_1109_JSEN_2024_3373030 crossref_primary_10_1109_LED_2023_3337821 |
Cites_doi | 10.1021/acs.chemmater.8b01587 10.1016/j.snb.2019.01.123 10.1016/j.snb.2018.09.080 10.1039/C0JM02753G 10.1149/1.2096565 10.1016/j.catcom.2010.09.030 10.1016/0250-6874(83)85012-4 10.1016/j.snb.2018.03.052 10.1016/j.snb.2019.02.089 10.1021/jp3080223 10.1016/j.jallcom.2018.01.361 10.1021/nn800259q 10.1039/C5TA09281G 10.1351/pac198557040603 10.1021/acsami.6b08071 10.1021/am4022973 10.1016/j.snb.2018.12.056 10.1016/j.micromeso.2014.12.031 10.1016/j.snb.2018.10.058 10.1039/C5TC01171J 10.1016/j.snb.2011.11.074 10.1016/j.snb.2018.01.176 10.1016/0250-6874(85)87002-5 10.1016/j.cej.2017.04.131 10.1002/adma.201702076 10.1021/acsami.9b05709 10.1016/j.snb.2016.09.179 10.1016/j.snb.2015.10.012 10.1016/j.jhazmat.2016.01.081 10.1016/j.apsusc.2008.02.106 10.1021/nn404889b 10.3390/polym11060987 10.1016/j.snb.2019.03.070 10.1016/j.snb.2016.01.015 10.1021/acsami.6b09074 10.1016/j.snb.2019.126973 10.1016/j.snb.2015.12.027 10.1002/adma.201502341 10.1088/2053-1591/aaa1d9 10.1002/anie.201804656 10.1016/j.snb.2017.11.169 10.1111/jace.13994 10.1166/sl.2005.045 10.1016/j.jallcom.2016.11.129 10.1016/S0925-4005(97)80264-X 10.1016/j.snb.2016.11.104 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 15, 2020 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2020.128204 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2020_128204 S0925400520305499 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c325t-6eab93fc53a2243c159c0f39758ff72ba662cbbeb8a15fa717bc362b9fcf35ed3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 02:49:38 EDT 2025 Tue Jul 01 01:27:41 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Fri Feb 23 02:47:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Halloysite nanotubes Large response Humidity sensors Fast response speed Wide humidity detection range |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-6eab93fc53a2243c159c0f39758ff72ba662cbbeb8a15fa717bc362b9fcf35ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5966-3843 0000-0003-3517-1734 |
PQID | 2444672801 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2444672801 crossref_citationtrail_10_1016_j_snb_2020_128204 crossref_primary_10_1016_j_snb_2020_128204 elsevier_sciencedirect_doi_10_1016_j_snb_2020_128204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-15 |
PublicationDateYYYYMMDD | 2020-08-15 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Chen, Lu (bib0015) 2005; 3 Geng, He, Su, Dang, Gu, Tian (bib0230) 2016; 226 Chao, Liu, Wang, Zhang, Zhang, Zhang, Xiang, Chen (bib0185) 2013; 5 Zou, Zhang, Duan, Tong, Peng, Zheng (bib0115) 2018; 5 Zeng, Ye, He, Yang, Ma, Shi, Feng (bib0170) 2017; 323 Han, Kim, Li, Meyyappan (bib0055) 2012; 116 Choi, Yu, Jang, Kim, Kim, Jeong, Kim (bib0020) 2018; 14 Yu, Zhang, Chen, Lin (bib0135) 2019; 287 Cheng, Tian, Xie, Xiao, Lei (bib0130) 2011; 21 Shimizu, Arai, Seiyama (bib0005) 1985; 7 Seiyama, Yamazoe, Arai (bib0030) 1983; 4 Zhao, Li, Yu (bib0220) 2017; 29 Zhuang, Li, Qi, Zhao, Na (bib0235) 2017; 242 Yang, Chen, Leng, Huang, Wang, Tian (bib0150) 2017; 7 Yang, Zhang, Liu, Yuan, Dong (bib0210) 2015; 3 Tian, Wang, Tian, Zhou, Yang, Komarneni (bib0190) 2016; 309 Zhai, Zhang, Liu, Xie, Zhang, Liu (bib0200) 2010; 12 Sing (bib0215) 1985; 57 Chou, Lee, Liu, Du (bib0105) 2016; 99 Zhang, Sun, Chen, Liu, Dong, Guo, Ruan (bib0095) 2017; 695 Li, Haidry, Dong, Sun, Fatima, Xie, Yao (bib0035) 2018; 742 Wang, Feng, Sun, Segre, Stetter (bib0040) 1997; 40 Shevate, Haque, Akhtar, Villalobos, Wu, Peinemann (bib0050) 2018; 57 Dai, Feng, Li, Zhang, Li (bib0075) 2019; 283 Zhao, Zhang, Qi, Dai, Liu, Fei, Lu (bib0085) 2018; 266 Zhao, Zhang, Qi, Dai, Liu, Fei (bib0225) 2017; 248 Yang, Wu, Shen, Zhou, Li, He, Liu (bib0205) 2016; 8 Zhang, Duan, Zou, Ma (bib0065) 2018; 261 Wu, Zhang, Ju, Yan, Huang, Tan (bib0160) 2019; 11 Kang, Park, Yun, Choi, Lee, Yook (bib0045) 2019; 282 Zhang, Fu, Yang, Qi, Zeng, Zhang, Ge, Zou (bib0125) 2008; 254 Zhang, Zong, Wu (bib0140) 2019; 287 Jiang, Zhao, Dai, Kuang, Fei, Zhang (bib0245) 2016; 8 Blank, Eksperiandova, Belikov (bib0025) 2016; 228 Duan, Jiang, Yan, Wang, Yuan, Zhao, Sun, Xie, Du, Tai (bib0175) 2019; 11 Hebbar, Isloor, Ananda, Ismail (bib0165) 2016; 4 Zhang, Geng, He, Tu, Ma, Duan, Zhang (bib0240) 2019; 280 Borini, White, Wei, Astley, Haque, Spigone, Harris, Kivioja, Ryhanen (bib0060) 2013; 7 Li, Tian, Su, Wang, Wang, Zhang (bib0070) 2019; 299 Lin, Li, Yang (bib0110) 2012; 161 Shimizu, Shimabukuro, Arai (bib0010) 1989; 136 Wang, Pan, Huang, Ren, Li, Li (bib0120) 2011; 22 Duan, Xu, Li, Zhang, Zou (bib0090) 2018; 258 He, Xiao, Shi, Liang, Lu, Chen, Wang, Theato, Kuo, Chen (bib0080) 2018; 30 Zhao, Yuan, Duan, Jiang, Li, Li, Li, Tai (bib0180) 2019; 289 Narimani, Nayeri, Kolahdouz, Ebrahimi (bib0100) 2016; 224 Lvov, Wang, Zhang, Fakhrullin (bib0145) 2016; 28 Lvov, Shchukin, Mohwald, Price (bib0155) 2008; 2 Tian, Wang, Wang, Komarneni, Yang (bib0195) 2015; 207 Zhang (10.1016/j.snb.2020.128204_bib0125) 2008; 254 Lin (10.1016/j.snb.2020.128204_bib0110) 2012; 161 Han (10.1016/j.snb.2020.128204_bib0055) 2012; 116 Tian (10.1016/j.snb.2020.128204_bib0195) 2015; 207 Lvov (10.1016/j.snb.2020.128204_bib0145) 2016; 28 Zou (10.1016/j.snb.2020.128204_bib0115) 2018; 5 Cheng (10.1016/j.snb.2020.128204_bib0130) 2011; 21 Li (10.1016/j.snb.2020.128204_bib0070) 2019; 299 Yu (10.1016/j.snb.2020.128204_bib0135) 2019; 287 Zeng (10.1016/j.snb.2020.128204_bib0170) 2017; 323 Wu (10.1016/j.snb.2020.128204_bib0160) 2019; 11 Seiyama (10.1016/j.snb.2020.128204_bib0030) 1983; 4 Zhang (10.1016/j.snb.2020.128204_bib0095) 2017; 695 He (10.1016/j.snb.2020.128204_bib0080) 2018; 30 Zhao (10.1016/j.snb.2020.128204_bib0225) 2017; 248 Shevate (10.1016/j.snb.2020.128204_bib0050) 2018; 57 Hebbar (10.1016/j.snb.2020.128204_bib0165) 2016; 4 Wang (10.1016/j.snb.2020.128204_bib0120) 2011; 22 Chao (10.1016/j.snb.2020.128204_bib0185) 2013; 5 Blank (10.1016/j.snb.2020.128204_bib0025) 2016; 228 Shimizu (10.1016/j.snb.2020.128204_bib0010) 1989; 136 Chou (10.1016/j.snb.2020.128204_bib0105) 2016; 99 Duan (10.1016/j.snb.2020.128204_bib0175) 2019; 11 Choi (10.1016/j.snb.2020.128204_bib0020) 2018; 14 Yang (10.1016/j.snb.2020.128204_bib0150) 2017; 7 Yang (10.1016/j.snb.2020.128204_bib0205) 2016; 8 Zhang (10.1016/j.snb.2020.128204_bib0240) 2019; 280 Chen (10.1016/j.snb.2020.128204_bib0015) 2005; 3 Zhao (10.1016/j.snb.2020.128204_bib0085) 2018; 266 Zhao (10.1016/j.snb.2020.128204_bib0220) 2017; 29 Zhang (10.1016/j.snb.2020.128204_bib0140) 2019; 287 Li (10.1016/j.snb.2020.128204_bib0035) 2018; 742 Wang (10.1016/j.snb.2020.128204_bib0040) 1997; 40 Tian (10.1016/j.snb.2020.128204_bib0190) 2016; 309 Zhuang (10.1016/j.snb.2020.128204_bib0235) 2017; 242 Geng (10.1016/j.snb.2020.128204_bib0230) 2016; 226 Borini (10.1016/j.snb.2020.128204_bib0060) 2013; 7 Zhao (10.1016/j.snb.2020.128204_bib0180) 2019; 289 Zhai (10.1016/j.snb.2020.128204_bib0200) 2010; 12 Jiang (10.1016/j.snb.2020.128204_bib0245) 2016; 8 Kang (10.1016/j.snb.2020.128204_bib0045) 2019; 282 Lvov (10.1016/j.snb.2020.128204_bib0155) 2008; 2 Sing (10.1016/j.snb.2020.128204_bib0215) 1985; 57 Zhang (10.1016/j.snb.2020.128204_bib0065) 2018; 261 Dai (10.1016/j.snb.2020.128204_bib0075) 2019; 283 Yang (10.1016/j.snb.2020.128204_bib0210) 2015; 3 Duan (10.1016/j.snb.2020.128204_bib0090) 2018; 258 Narimani (10.1016/j.snb.2020.128204_bib0100) 2016; 224 Shimizu (10.1016/j.snb.2020.128204_bib0005) 1985; 7 |
References_xml | – volume: 282 start-page: 145 year: 2019 end-page: 151 ident: bib0045 article-title: A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film publication-title: Sens. Actuators B Chem. – volume: 57 start-page: 11218 year: 2018 end-page: 11222 ident: bib0050 article-title: Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing publication-title: Angew. Chem. Int. Ed. – volume: 309 start-page: 151 year: 2016 end-page: 156 ident: bib0190 article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe publication-title: J. Hazard. Mater. – volume: 30 start-page: 4343 year: 2018 end-page: 4354 ident: bib0080 article-title: High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction publication-title: Chem. Mater. – volume: 3 start-page: 6701 year: 2015 end-page: 6708 ident: bib0210 article-title: Controllable assembly of SnO publication-title: J. Mater. Chem. C Mater. Opt. Electron. Dev. – volume: 21 start-page: 1907 year: 2011 end-page: 1912 ident: bib0130 article-title: Highly sensitive humidity sensor based on amorphous Al publication-title: J. Mater. Chem. – volume: 11 start-page: 987 year: 2019 ident: bib0160 article-title: Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications publication-title: Polymers – volume: 29 year: 2017 ident: bib0220 article-title: Highly sensitive MoS2 humidity sensors array for noncontact sensation publication-title: Adv. Mater. – volume: 289 start-page: 182 year: 2019 end-page: 185 ident: bib0180 article-title: An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 11166 year: 2013 end-page: 11173 ident: bib0060 article-title: Ultrafast graphene oxide humidity sensors publication-title: ACS Nano – volume: 258 start-page: 527 year: 2018 end-page: 534 ident: bib0090 article-title: Super-fast response humidity sensor based on La0.7Sr0.3MnO publication-title: Sens. Actuators B Chem. – volume: 7 start-page: 11 year: 1985 end-page: 22 ident: bib0005 article-title: Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors publication-title: Sens. Actuators B Chem. – volume: 28 start-page: 1227 year: 2016 end-page: 1250 ident: bib0145 article-title: Halloysite clay nanotubes for loading and sustained release of functional compounds publication-title: Adv. Mater. – volume: 161 start-page: 967 year: 2012 end-page: 972 ident: bib0110 article-title: Polyaniline nanofiber humidity sensor prepared by electrospinning publication-title: Sens. Actuators B Chem. – volume: 2 start-page: 814 year: 2008 end-page: 820 ident: bib0155 article-title: Halloysite clay nanotubes for controlled release of protective agents publication-title: ACS Nano – volume: 22 year: 2011 ident: bib0120 article-title: Resistive and capacitive response of nitrogen-doped TiO publication-title: Nanotechnology – volume: 280 start-page: 46 year: 2019 end-page: 53 ident: bib0240 article-title: Humidity sensing performance of mesoporous CoO(OH) synthesized via one-pot hydrothermal method publication-title: Sens. Actuators B Chem. – volume: 248 start-page: 803 year: 2017 end-page: 811 ident: bib0225 article-title: Organic-inorganic hybrid materials based on mesoporous silica derivatives for humidity sensing publication-title: Sens. Actuators B Chem. – volume: 742 start-page: 814 year: 2018 end-page: 821 ident: bib0035 article-title: Facile synthesis of nitrogen doped ordered mesoporous TiO publication-title: J. Alloys. Compd. – volume: 226 start-page: 471 year: 2016 end-page: 477 ident: bib0230 article-title: Remarkable humidity-responsive sensor based on poly( publication-title: Sens. Actuators B Chem. – volume: 99 start-page: 531 year: 2016 end-page: 535 ident: bib0105 article-title: Effect of microstructure of ZnO nanorod film on humidity sensing publication-title: J. Am. Ceram. Soc. – volume: 228 start-page: 416 year: 2016 end-page: 442 ident: bib0025 article-title: Recent trends of ceramic humidity sensors development: a review publication-title: Sens. Actuators B Chem. – volume: 242 start-page: 801 year: 2017 end-page: 809 ident: bib0235 article-title: Novel polymeric humidity sensors based on sulfonated poly (ether ether ketone)s: influence of sulfonation degree on sensing properties publication-title: Sens. Actuators B Chem. – volume: 5 year: 2018 ident: bib0115 article-title: Humidity sensing properties of LnFeO3 nanofibers synthesized by electrospinning (Ln= Sm, Nd, La) publication-title: Mater. Res. Express – volume: 261 start-page: 345 year: 2018 end-page: 353 ident: bib0065 article-title: Drawn a facile sensor: a fast response humidity sensor based on pencil-trace publication-title: Sens. Actuators B Chem. – volume: 224 start-page: 338 year: 2016 end-page: 343 ident: bib0100 article-title: Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods publication-title: Sens. Actuators B Chem. – volume: 3 start-page: 274 year: 2005 end-page: 295 ident: bib0015 article-title: Humidity sensors: a review of materials and mechanisms publication-title: Sens. Lett. – volume: 40 start-page: 211 year: 1997 end-page: 216 ident: bib0040 article-title: Comparison of conductometric humidity-sensing polymers publication-title: Sens. Actuators B Chem. – volume: 11 start-page: 21840 year: 2019 end-page: 21849 ident: bib0175 article-title: Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications publication-title: ACS Appl. Mater. Interfaces – volume: 299 start-page: 126973 year: 2019 ident: bib0070 article-title: High sensitivity portable capacitive humidity sensor based on In publication-title: Sens. Actuators B Chem. – volume: 287 start-page: 398 year: 2019 end-page: 407 ident: bib0140 article-title: Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility publication-title: Sens. Actuators B Chem. – volume: 14 year: 2018 ident: bib0020 article-title: Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor publication-title: Small – volume: 695 start-page: 520 year: 2017 end-page: 525 ident: bib0095 article-title: High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles publication-title: J. Alloys. Compd. – volume: 7 start-page: 1215 year: 2017 ident: bib0150 article-title: Recent advances on surface modification of halloysite nanotubes for multifunctional applications publication-title: Appl. Sci. Basel (Basel) – volume: 207 start-page: 46 year: 2015 end-page: 52 ident: bib0195 article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(VI) publication-title: Microporous Mesoporous Mater. – volume: 287 start-page: 526 year: 2019 end-page: 534 ident: bib0135 article-title: Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle publication-title: Sens. Actuators B Chem. – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: bib0215 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl. Chem. – volume: 4 start-page: 85 year: 1983 end-page: 96 ident: bib0030 article-title: Ceramic humidity sensors publication-title: Sens. Actuators B Chem. – volume: 136 start-page: 3868 year: 1989 end-page: 3871 ident: bib0010 article-title: The sensing mechanism in a semiconducting humidity sensor with Pt electrodes publication-title: J. Electrochem. Soc. – volume: 283 start-page: 786 year: 2019 end-page: 792 ident: bib0075 article-title: Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 259 year: 2010 end-page: 263 ident: bib0200 article-title: Immobilization of enzyme biocatalyst on natural halloysite nanotubes publication-title: Catal. Commun. – volume: 116 start-page: 22094 year: 2012 end-page: 22097 ident: bib0055 article-title: Carbon nanotube based humidity sensor on cellulose paper publication-title: J. Phys. Chem. C – volume: 266 start-page: 131 year: 2018 end-page: 138 ident: bib0085 article-title: Humidity sensor based on solution processible microporous silica nanoparticles publication-title: Sens. Actuators B Chem. – volume: 323 start-page: 572 year: 2017 end-page: 583 ident: bib0170 article-title: Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater publication-title: Chem. Eng. J. – volume: 5 start-page: 10559 year: 2013 end-page: 10564 ident: bib0185 article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 26578 year: 2016 end-page: 26590 ident: bib0205 article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 764 year: 2016 end-page: 774 ident: bib0165 article-title: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 254 start-page: 5545 year: 2008 end-page: 5547 ident: bib0125 article-title: Synthesis and characterization of TiO publication-title: Appl. Surf. Sci. – volume: 8 start-page: 25529 year: 2016 end-page: 25534 ident: bib0245 article-title: Excellent humidity sensor based on LiCl loaded hierarchically porous polymeric microspheres publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 4343 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0080 article-title: High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01587 – volume: 287 start-page: 398 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0140 article-title: Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.123 – volume: 282 start-page: 145 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0045 article-title: A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.09.080 – volume: 21 start-page: 1907 year: 2011 ident: 10.1016/j.snb.2020.128204_bib0130 article-title: Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes publication-title: J. Mater. Chem. doi: 10.1039/C0JM02753G – volume: 7 start-page: 1215 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0150 article-title: Recent advances on surface modification of halloysite nanotubes for multifunctional applications publication-title: Appl. Sci. Basel (Basel) – volume: 136 start-page: 3868 year: 1989 ident: 10.1016/j.snb.2020.128204_bib0010 article-title: The sensing mechanism in a semiconducting humidity sensor with Pt electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2096565 – volume: 12 start-page: 259 year: 2010 ident: 10.1016/j.snb.2020.128204_bib0200 article-title: Immobilization of enzyme biocatalyst on natural halloysite nanotubes publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.09.030 – volume: 4 start-page: 85 year: 1983 ident: 10.1016/j.snb.2020.128204_bib0030 article-title: Ceramic humidity sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/0250-6874(83)85012-4 – volume: 266 start-page: 131 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0085 article-title: Humidity sensor based on solution processible microporous silica nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.03.052 – volume: 287 start-page: 526 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0135 article-title: Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.02.089 – volume: 116 start-page: 22094 year: 2012 ident: 10.1016/j.snb.2020.128204_bib0055 article-title: Carbon nanotube based humidity sensor on cellulose paper publication-title: J. Phys. Chem. C doi: 10.1021/jp3080223 – volume: 742 start-page: 814 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0035 article-title: Facile synthesis of nitrogen doped ordered mesoporous TiO2 with improved humidity sensing properties publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2018.01.361 – volume: 2 start-page: 814 year: 2008 ident: 10.1016/j.snb.2020.128204_bib0155 article-title: Halloysite clay nanotubes for controlled release of protective agents publication-title: ACS Nano doi: 10.1021/nn800259q – volume: 4 start-page: 764 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0165 article-title: Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C5TA09281G – volume: 57 start-page: 603 year: 1985 ident: 10.1016/j.snb.2020.128204_bib0215 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 8 start-page: 25529 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0245 article-title: Excellent humidity sensor based on LiCl loaded hierarchically porous polymeric microspheres publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08071 – volume: 5 start-page: 10559 year: 2013 ident: 10.1016/j.snb.2020.128204_bib0185 article-title: Surface modification of halloysite nanotubes with dopamine for enzyme immobilization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4022973 – volume: 283 start-page: 786 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0075 article-title: Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.12.056 – volume: 207 start-page: 46 year: 2015 ident: 10.1016/j.snb.2020.128204_bib0195 article-title: Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(VI) publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.12.031 – volume: 280 start-page: 46 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0240 article-title: Humidity sensing performance of mesoporous CoO(OH) synthesized via one-pot hydrothermal method publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.10.058 – volume: 3 start-page: 6701 year: 2015 ident: 10.1016/j.snb.2020.128204_bib0210 article-title: Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications publication-title: J. Mater. Chem. C Mater. Opt. Electron. Dev. doi: 10.1039/C5TC01171J – volume: 161 start-page: 967 year: 2012 ident: 10.1016/j.snb.2020.128204_bib0110 article-title: Polyaniline nanofiber humidity sensor prepared by electrospinning publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.11.074 – volume: 22 year: 2011 ident: 10.1016/j.snb.2020.128204_bib0120 article-title: Resistive and capacitive response of nitrogen-doped TiO2 nanotubes film humidity sensor publication-title: Nanotechnology – volume: 261 start-page: 345 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0065 article-title: Drawn a facile sensor: a fast response humidity sensor based on pencil-trace publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.01.176 – volume: 7 start-page: 11 year: 1985 ident: 10.1016/j.snb.2020.128204_bib0005 article-title: Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/0250-6874(85)87002-5 – volume: 323 start-page: 572 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0170 article-title: Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.131 – volume: 29 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0220 article-title: Highly sensitive MoS2 humidity sensors array for noncontact sensation publication-title: Adv. Mater. doi: 10.1002/adma.201702076 – volume: 11 start-page: 21840 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0175 article-title: Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05709 – volume: 242 start-page: 801 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0235 article-title: Novel polymeric humidity sensors based on sulfonated poly (ether ether ketone)s: influence of sulfonation degree on sensing properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.09.179 – volume: 224 start-page: 338 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0100 article-title: Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.10.012 – volume: 309 start-page: 151 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0190 article-title: Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.01.081 – volume: 254 start-page: 5545 year: 2008 ident: 10.1016/j.snb.2020.128204_bib0125 article-title: Synthesis and characterization of TiO2 nanotubes for humidity sensing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.02.106 – volume: 7 start-page: 11166 year: 2013 ident: 10.1016/j.snb.2020.128204_bib0060 article-title: Ultrafast graphene oxide humidity sensors publication-title: ACS Nano doi: 10.1021/nn404889b – volume: 11 start-page: 987 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0160 article-title: Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications publication-title: Polymers doi: 10.3390/polym11060987 – volume: 289 start-page: 182 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0180 article-title: An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.03.070 – volume: 228 start-page: 416 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0025 article-title: Recent trends of ceramic humidity sensors development: a review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.01.015 – volume: 8 start-page: 26578 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0205 article-title: Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09074 – volume: 299 start-page: 126973 year: 2019 ident: 10.1016/j.snb.2020.128204_bib0070 article-title: High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.126973 – volume: 226 start-page: 471 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0230 article-title: Remarkable humidity-responsive sensor based on poly(N,N-diethylaminoethyl methacrylate)-b-polystyrene block copolymers publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.12.027 – volume: 28 start-page: 1227 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0145 article-title: Halloysite clay nanotubes for loading and sustained release of functional compounds publication-title: Adv. Mater. doi: 10.1002/adma.201502341 – volume: 14 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0020 article-title: Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor publication-title: Small – volume: 5 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0115 article-title: Humidity sensing properties of LnFeO3 nanofibers synthesized by electrospinning (Ln= Sm, Nd, La) publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaa1d9 – volume: 57 start-page: 11218 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0050 article-title: Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804656 – volume: 258 start-page: 527 year: 2018 ident: 10.1016/j.snb.2020.128204_bib0090 article-title: Super-fast response humidity sensor based on La0.7Sr0.3MnO3 nanocrystals prepared by PVP-assisted sol-gel method publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.11.169 – volume: 99 start-page: 531 year: 2016 ident: 10.1016/j.snb.2020.128204_bib0105 article-title: Effect of microstructure of ZnO nanorod film on humidity sensing publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13994 – volume: 3 start-page: 274 year: 2005 ident: 10.1016/j.snb.2020.128204_bib0015 article-title: Humidity sensors: a review of materials and mechanisms publication-title: Sens. Lett. doi: 10.1166/sl.2005.045 – volume: 695 start-page: 520 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0095 article-title: High performance humidity sensor based on metal organic framework MIL-101(Cr) nanoparticles publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2016.11.129 – volume: 40 start-page: 211 year: 1997 ident: 10.1016/j.snb.2020.128204_bib0040 article-title: Comparison of conductometric humidity-sensing polymers publication-title: Sens. Actuators B Chem. doi: 10.1016/S0925-4005(97)80264-X – volume: 248 start-page: 803 year: 2017 ident: 10.1016/j.snb.2020.128204_bib0225 article-title: Organic-inorganic hybrid materials based on mesoporous silica derivatives for humidity sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.11.104 |
SSID | ssj0004360 |
Score | 2.6571162 |
Snippet | [Display omitted]
•The humidity sensor based on halloysite nanotubes (HNTs) is firstly fabricated.•The HNTs humidity sensor has a large response of five orders... Benefiting from the development of nanomaterials synthesis technology, the performance of many electronic devices, including humidity sensors, has been... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128204 |
SubjectTerms | Electronic devices Fast response speed Halloysite nanotubes Humidity Humidity sensors Large response Low cost Nanomaterials Nanotubes Raw materials Reagents Relative humidity Response time Room temperature Sensors Synthesis Wide humidity detection range |
Title | Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor |
URI | https://dx.doi.org/10.1016/j.snb.2020.128204 https://www.proquest.com/docview/2444672801 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWjVB6YEKYhttOWraqoCogugNTNsl1bFJWkalKhLvx27vLgJcHAmMiOovPlvu_iu8-EnDjPI-21YdjFyIT3hnVCHzHAykB76QR32O98N4wGj-JmJEc10qt6YbCssoz9RUzPo3V5p1laszmbTJr3QQeSm7yOA3wWiDt2sIsWevn522eZh-B5pzAOZji62tnMa7zS2ECKGKLGAiCh-A2bfkTpHHr6m2Sj5Iy0W7zWFqm5eJusf1ES3CGLAW6gL3ErmMY6TrKFceklHepcVuOMfuln01PmUdx4PF1SHY_pNHllNkmzfB7w18IlKZBZilrGbPbZWkCfFi-TMfB2mkL2m8x3yWP_6qE3YOWJCszyUGYsctp0uLeSa4BuboHL2MADJZFt71uh0VEUWmOcaesL6TWkesYCwpmOt55LN-Z7ZCVOYrdPaCCtbyGFMKjIHwhjI9HikK444bgQ_oAElS2VLeXG8dSLqarqyp4VmF-h-VVh_gNy-jFlVmht_DVYVAukvjmMAiz4a1q9WkxVfq2pAooDeBECWB_-76lHZA2v8F_zhayTlWy-cMdAVjLTyL2xQVa717eD4Tu-L-sH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1tdw-UQwWUis_iA6cKa0NsZ9neECrKdmEvBYmbZXttddGSrDZZIf49M_koUKkcek3sKBpP5r2JZ54Bjn0QiQnGcupi5DIEy4dxSDhiZWSC8lJ46ne-niTprfx5p-46cNH2wlBZZRP765heRevmSr-xZn8xm_V_RUNMbqo6DvRZJO4foEfqVKoLvfPROJ28tEeKqlmYxnOa0G5uVmVeRWYxS4xJZgHBUP4Lnv4K1BX6XG7Ap4Y2svP6zTah47MtWH8lJvgZVintoT_RbjDLTJaXK-uL72xiKmWNE_aqpc3MeSB94-n8iZlsyub5I3d5UVbzkMLWXsmQzzKSM-aLl-4C9nv1MJsidWcFJsD5chtuL3_cXKS8OVSBOxGrkife2KEITgmD6C0c0hkXBWQl6iyEQWxNksTOWm_PzKkKBrM96xDk7DC4IJSfii_QzfLM7wCLlAsDYhGWRPkjaV0iBwIzFi-9kDLsQtTaUrtGcZwOvpjrtrTsXqP5NZlf1-bfhW9_pixquY33Bst2gfQbn9EIB-9NO2gXUzcfbKGR5SBkxIjXe__31CNYS2-ur_TVaDLeh490h349n6oD6JbLlT9E7lLar41vPgPNtu24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Halloysite+nanotubes%3A+Natural%2C+environmental-friendly+and+low-cost+nanomaterials+for+high-performance+humidity+sensor&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Duan%2C+Zaihua&rft.au=Zhao%2C+Qiuni&rft.au=Wang%2C+Si&rft.au=Huang%2C+Qi&rft.date=2020-08-15&rft.issn=0925-4005&rft.volume=317&rft.spage=128204&rft_id=info:doi/10.1016%2Fj.snb.2020.128204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2020_128204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |