Sensing temperature with Tb-Eu-based luminescent thermometer: A novel approach to increase the sensitivity
To obtain ratiometric temperature sensor with high sensitivity we have synthesized three rows of bimetallic Tb-Eu hydroxybenzoates, whose sensitivity was expected to exceed the theoretical limit due to the presence of the temperature-dependent OH-quenching. Single crystals of two new bimetallic comp...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 345; p. 113787 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.10.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2022.113787 |
Cover
Loading…
Abstract | To obtain ratiometric temperature sensor with high sensitivity we have synthesized three rows of bimetallic Tb-Eu hydroxybenzoates, whose sensitivity was expected to exceed the theoretical limit due to the presence of the temperature-dependent OH-quenching. Single crystals of two new bimetallic complexes were obtained, and their crystal structures were determined. Despite europium complexes with the selected ligands do not emit light, bimetallic Tb-Eu complexes with 3- and 4-hydroxybenzoates demonstrate europium luminescence with the quantum yield up to 77 %. Selected 3- and 4-hydroxybenzoates demonstrated temperature-dependent luminescence in the range of 25–100 °C. For 3-hydroxybenzoate of Tb-Eu, thermometer sensitivity reached 4 %/°C at 100 °C, which exceeds the expected limit of 3.3 %/°C at this temperature and is the highest reported value at this temperature. Temperature resolution is about 3 °C.
[Display omitted]
•Bimetallic Tb-Eu hydroxybenzoate formation increases europium luminescence efficiency from 0 % to up to 77 %.•Tb-Eu 3- and 4-hydroxybenzoates demonstrate temperature-dependent luminescence in the range of 25–100 °C.•The sensitivity reached 4 %/°C at 100 °C, which exceeds the theoretical limit.•Temperature resolution is about 3 °C. |
---|---|
AbstractList | To obtain ratiometric temperature sensor with high sensitivity we have synthesized three rows of bimetallic Tb-Eu hydroxybenzoates, whose sensitivity was expected to exceed the theoretical limit due to the presence of the temperature-dependent OH-quenching. Single crystals of two new bimetallic complexes were obtained, and their crystal structures were determined. Despite europium complexes with the selected ligands do not emit light, bimetallic Tb-Eu complexes with 3- and 4-hydroxybenzoates demonstrate europium luminescence with the quantum yield up to 77 %. Selected 3- and 4-hydroxybenzoates demonstrated temperature-dependent luminescence in the range of 25–100 °C. For 3-hydroxybenzoate of Tb-Eu, thermometer sensitivity reached 4 %/°C at 100 °C, which exceeds the expected limit of 3.3 %/°C at this temperature and is the highest reported value at this temperature. Temperature resolution is about 3 °C.
[Display omitted]
•Bimetallic Tb-Eu hydroxybenzoate formation increases europium luminescence efficiency from 0 % to up to 77 %.•Tb-Eu 3- and 4-hydroxybenzoates demonstrate temperature-dependent luminescence in the range of 25–100 °C.•The sensitivity reached 4 %/°C at 100 °C, which exceeds the theoretical limit.•Temperature resolution is about 3 °C. To obtain ratiometric temperature sensor with high sensitivity we have synthesized three rows of bimetallic Tb-Eu hydroxybenzoates, whose sensitivity was expected to exceed the theoretical limit due to the presence of the temperature-dependent OH-quenching. Single crystals of two new bimetallic complexes were obtained, and their crystal structures were determined. Despite europium complexes with the selected ligands do not emit light, bimetallic Tb-Eu complexes with 3- and 4-hydroxybenzoates demonstrate europium luminescence with the quantum yield up to 77 %. Selected 3- and 4-hydroxybenzoates demonstrated temperature-dependent luminescence in the range of 25–100 °C. For 3-hydroxybenzoate of Tb-Eu, thermometer sensitivity reached 4 %/°C at 100 °C, which exceeds the expected limit of 3.3 %/°C at this temperature and is the highest reported value at this temperature. Temperature resolution is about 3 °C. |
ArticleNumber | 113787 |
Author | Goloveshkin, Alexander S. Gordeeva, Elena O. Yu. Kozhevnikova, Vladislava Utochnikova, Valentina V. Tcelykh, Liubov O. Latipov, Egor V. |
Author_xml | – sequence: 1 givenname: Liubov O. surname: Tcelykh fullname: Tcelykh, Liubov O. email: lyuba.tselih@mail.ru organization: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991 Moscow, Russian Federation – sequence: 2 givenname: Vladislava surname: Yu. Kozhevnikova fullname: Yu. Kozhevnikova, Vladislava organization: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991 Moscow, Russian Federation – sequence: 3 givenname: Alexander S. surname: Goloveshkin fullname: Goloveshkin, Alexander S. organization: A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, Moscow 119334, Russian Federation – sequence: 4 givenname: Egor V. surname: Latipov fullname: Latipov, Egor V. organization: Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninskiy Prospekt, 32 A, 119334 Moscow, Russian Federation – sequence: 5 givenname: Elena O. surname: Gordeeva fullname: Gordeeva, Elena O. organization: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991 Moscow, Russian Federation – sequence: 6 givenname: Valentina V. surname: Utochnikova fullname: Utochnikova, Valentina V. email: valentina.utochnikova@gmail.com, valentina@inorg.chem.msu.ru organization: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991 Moscow, Russian Federation |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CzxJzir8YJTFVVPqRKDJTZcpwLddTYxXaK-u9JVSYGplve5727Z4JGzjtA6JaSGSU0v29n0ekZI4zNKOWykBdoTAvJM07ycoTGpGQiE0zIKzSJsSWEcC7lGLXv4KJ1nzhBt4egUx8Af9u0xZsqW_VZpSPUeNd31kE04BJOWwid7yBBeMAL7PwBdljv98Frs8XJY-tMgAE7JXE81Sd7sOl4jS4bvYtw8zun6ONptVm-ZOu359flYp0ZzuYpy40socx1XhlZ86qaF4QYqjktCdNUlEI0QpCiqWVNa5jPG24qyUzFG84JYYJP0d25dzjpq4eYVOv74IaVikleylIWrBhS8pwywccYoFHGJp2sdylou1OUqJNY1apBrDqJVWexA0n_kPtgOx2O_zKPZwaGxw8WgorGgjNQ2wAmqdrbf-gfu36TwA |
CitedBy_id | crossref_primary_10_1016_j_mencom_2024_10_012 crossref_primary_10_3390_inorganics10120233 crossref_primary_10_1021_acs_chemmater_4c01851 crossref_primary_10_1134_S1062873824710365 crossref_primary_10_1016_j_sna_2024_115969 crossref_primary_10_1016_j_optmat_2024_116050 crossref_primary_10_1016_j_optmat_2023_114793 crossref_primary_10_3390_molecules30051121 crossref_primary_10_1002_asia_202401882 crossref_primary_10_1021_acs_inorgchem_4c03253 crossref_primary_10_3390_photonics10101171 crossref_primary_10_1021_acsami_4c06466 crossref_primary_10_1016_j_jssc_2024_124990 crossref_primary_10_1021_acs_cgd_4c00682 crossref_primary_10_1007_s12273_023_0993_5 crossref_primary_10_1016_j_jallcom_2024_176466 crossref_primary_10_1016_j_jre_2024_06_002 crossref_primary_10_3390_polym15061344 |
Cites_doi | 10.1039/C5CC00718F 10.1016/j.cattod.2010.01.039 10.1039/D0DT02238A 10.1039/D0CP04909C 10.1016/j.wear.2015.02.040 10.1016/j.jlumin.2019.05.035 10.1016/j.jphotochem.2010.09.021 10.1063/1.93766 10.1016/j.poly.2016.05.047 10.1039/tf9393500074 10.1088/1361-6463/ab236e 10.1016/j.cattod.2013.06.009 10.1039/C7NR08349A 10.1107/S0021889808042726 10.1002/ejic.201801561 10.1109/MIAS.2016.2600739 10.1016/j.cej.2020.124506 10.1098/rspa.1938.0137 10.3390/inorganics10070094 10.1016/j.jlumin.2021.118400 10.1021/acs.inorgchem.0c01543 10.1007/s10858-008-9256-0 10.1107/S0021889802019878 10.1021/acs.jpcc.5b10302 10.1002/chem.201600860 10.1063/5.0014825 10.1021/acs.chemmater.8b03675 10.1146/annurev.biophys.093008.131321 10.1016/B978-0-08-102029-6.00009-9 10.1039/D0DT00310G 10.1002/adom.201801239 10.1021/acsami.8b18184 10.1016/bs.hpcre.2016.03.005 10.1107/S0108767307043930 10.1039/C6TC05203G 10.1016/j.jlumin.2018.05.002 10.1088/0957-4484/20/11/115703 10.1016/j.biomaterials.2011.10.039 10.1039/D0NR09115D 10.1039/c0nj01010c 10.1002/slct.201600618 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Oct 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2022 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2022.113787 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2022_113787 S0924424722004228 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-6c79e96a6bc7d3bb5800c1a31902a14944f4408fd7d1de55f3cb72cb3f3300243 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Sun Jul 13 05:40:35 EDT 2025 Tue Jul 01 02:24:53 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Fri Feb 23 02:37:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Luminescence thermometryelevated temperature hydroxobenzoates bimetallic complexeslanthanides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-6c79e96a6bc7d3bb5800c1a31902a14944f4408fd7d1de55f3cb72cb3f3300243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2739797828 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2739797828 crossref_citationtrail_10_1016_j_sna_2022_113787 crossref_primary_10_1016_j_sna_2022_113787 elsevier_sciencedirect_doi_10_1016_j_sna_2022_113787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liu, Yi, Zhang, Zhu, Zhu, Wang (bib23) 2013; 216 Coelho (bib47) 2003; 36 N.F. Mott, On the Absorption of Light by Crystals. Proc R Soc A Math Phys Eng Sci., 167 (1938) 384–91. https://doi.org/10.1098/rspa.1938.0137. Zhao, Yue, Jiang, Cui, Zhang, Yang, Qian (bib36) 2017; 5 Jin, Liu, Wu, Wang, Gu (bib24) 2010; 153 Baral, Rafiei Miandashti, Richardson (bib17) 2018; 10 Khudoleeva, Tcelykh, Kovalenko, Kalyakina, Goloveshkin, Lepnev, Utochnikova (bib1) 2018; 201 Xiang, Xia, Liu, Wang, Jiang, Li, Zhou, Ma, Wang, Zhang (bib11) 2021; 13 Kolodner, Tyson (bib18) 1983; 42 Hardell, Hernandez, Mozgovoy, Pelcastre, Courbon, Prakash (bib25) 2015; 331 Otting (bib45) 2008; 42 Sarlioglu, Morris, Han, Li (bib26) 2017; 23 S. Pfaff, H. Karlsson, F.A. Nada, E. Lundgren and J. Zetterberg, Temperature characterization of an operando flow reactor for heterogeneous catalysis. J Phys D Appl Phys., 52 (2019) 324003. https://iopscience.iop.org/article/10.1088/1361–6463/ab236e. Cui, Zhu, Chen, Qian (bib7) 2015; 51 Suo, Zhao, Zhang, Wu, Guo (bib10) 2018; 10 Zhuravlev, Tsaryuk, Vologzhanina, Gawryszewska, Kudryashova, Klemenkova (bib41) 2016; 1 Vialtsev, Dalinger, Latipov, Lepnev, Kushnir, Vatsadze, Utochnikova (bib13) 2020; 22 Bruker, TOPAS 4.2 User Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2009. Galyametdinov, Krupin, KnyazevTemperature-Sensitive (bib31) 2022; 10 Rocha, Brites, Carlos (bib35) 2016; 22 Suo, Zhao, Zhang, Guo (bib3) 2020; 389 Saidi, Samson, Aigouy, Volz, Peter, Bergaud, Mortier (bib5) 2009; 20 Brites, Millán, Carlos (bib15) 2016; 49 Otting (bib44) 2010; 39 Hilder, Lezhnina, Cole, Forsyth, Junk, Kynast (bib46) 2011; 217 I.K. van Ravenhorst, R.G. Geitenbeek, Ad M. J. van der Eerden, J. Tijn van Omme, H. Hugo Peréz Garza, F. Meirer, A. Meijerink, and B. Marc Weckhuysen, In Situ Local Temperature Mapping in Microscopy Nano-Reactors with Luminescence Thermometry. ChemCatChem https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900985. Allison, Gates, Beshears, Gillies (bib20) 2003; 684 Xiang, Liu, Xia, Jiang, Zhou, Li, Jin, Ma, Wang, Zhang (bib9) 2020; 59 Popelensky, Utochnikova (bib34) 2020; 49 Zhao, Yue, Zhang, Jiang, Qian (bib28) 2018; 57 Brites, Lima, Silva, Millán, Amaral, Palacio, Carlos (bib16) 2011; 35 Dramićanin (bib2) 2020; 128 Hanlu Zhang, Wei Wang, Caofeng Pan (bib12) 2015; 119 Dolomanov, Bourhis, Gildea, Howard, Puschmann (bib49) 2009; 42 Xing, Bu, Zhang, Zheng, Li, Chen, He, Zhou, Peng, Hua, Shi (bib6) 2012; 33 M. Dramićanin. Chapter 9 - Applications of Luminescence Thermometry in Engineering. In: Luminescence Thermometry Methods, Materials, and Applications, (2018) 215–233. https://doi.org/10.1016/B978–0-08–102029-6.00009–9. Seitz (bib33) 1939; 35 Utochnikova, Kuzmina (bib39) 2016; 42 Mara, Artizzu, Laforce, Vincze, Van Hecke, Van Deun, Kaczmarek (bib38) 2019; 213 Kovalenko, Rublev, Tcelykh, Goloveshkin, Lepnev, Burlov, Vashchenko, Marciniak, Magerramov, Shikhaliyev, Vatsadze, Utochnikova (bib27) 2019; 31 Geitenbeek, Nieuwelink, Jacobs, Salzmann, Goetze, Meijerink, Weckhuysen (bib21) 2018; 8 Zhu, Feng, Yang, Ng (bib42) 2010; 66 Behrsing, Deacon, Luu, Junk, Skelton, White (bib43) 2016; 120 Brites, Balabhadra, Carlos (bib8) 2019; 7 Sheldrick (bib50) 2008; 64 Shang, Han, Hao, Chen, Zhu, Wang, Yang (bib29) 2019; 11 Utochnikova, Kalyakina, Solodukhin, Aslandukov (bib40) 2019; 2019 Khalid, Kontis (bib30) 2008; 8 Vialtsev, Tcelykh, Kozlov, Latipov, Yu. Bobrovsky, Utochnikova (bib14) 2021; 239 Feng, Shang, Zhang, Liu, Wang, Chen, Wang, Li (bib37) 2020; 49 10.1016/j.sna.2022.113787_bib19 Behrsing (10.1016/j.sna.2022.113787_bib43) 2016; 120 Liu (10.1016/j.sna.2022.113787_bib23) 2013; 216 Cui (10.1016/j.sna.2022.113787_bib7) 2015; 51 Brites (10.1016/j.sna.2022.113787_bib8) 2019; 7 10.1016/j.sna.2022.113787_bib4 Jin (10.1016/j.sna.2022.113787_bib24) 2010; 153 Allison (10.1016/j.sna.2022.113787_bib20) 2003; 684 Zhao (10.1016/j.sna.2022.113787_bib28) 2018; 57 Shang (10.1016/j.sna.2022.113787_bib29) 2019; 11 Vialtsev (10.1016/j.sna.2022.113787_bib13) 2020; 22 Otting (10.1016/j.sna.2022.113787_bib45) 2008; 42 Xiang (10.1016/j.sna.2022.113787_bib11) 2021; 13 Zhao (10.1016/j.sna.2022.113787_bib36) 2017; 5 Zhuravlev (10.1016/j.sna.2022.113787_bib41) 2016; 1 Xiang (10.1016/j.sna.2022.113787_bib9) 2020; 59 10.1016/j.sna.2022.113787_bib48 Seitz (10.1016/j.sna.2022.113787_bib33) 1939; 35 Sheldrick (10.1016/j.sna.2022.113787_bib50) 2008; 64 Geitenbeek (10.1016/j.sna.2022.113787_bib21) 2018; 8 Kovalenko (10.1016/j.sna.2022.113787_bib27) 2019; 31 Khudoleeva (10.1016/j.sna.2022.113787_bib1) 2018; 201 Hardell (10.1016/j.sna.2022.113787_bib25) 2015; 331 Coelho (10.1016/j.sna.2022.113787_bib47) 2003; 36 Suo (10.1016/j.sna.2022.113787_bib3) 2020; 389 Utochnikova (10.1016/j.sna.2022.113787_bib39) 2016; 42 Hanlu Zhang (10.1016/j.sna.2022.113787_bib12) 2015; 119 Khalid (10.1016/j.sna.2022.113787_bib30) 2008; 8 Baral (10.1016/j.sna.2022.113787_bib17) 2018; 10 Suo (10.1016/j.sna.2022.113787_bib10) 2018; 10 Otting (10.1016/j.sna.2022.113787_bib44) 2010; 39 10.1016/j.sna.2022.113787_bib32 Feng (10.1016/j.sna.2022.113787_bib37) 2020; 49 Brites (10.1016/j.sna.2022.113787_bib15) 2016; 49 Xing (10.1016/j.sna.2022.113787_bib6) 2012; 33 Rocha (10.1016/j.sna.2022.113787_bib35) 2016; 22 Dolomanov (10.1016/j.sna.2022.113787_bib49) 2009; 42 Brites (10.1016/j.sna.2022.113787_bib16) 2011; 35 Utochnikova (10.1016/j.sna.2022.113787_bib40) 2019; 2019 Dramićanin (10.1016/j.sna.2022.113787_bib2) 2020; 128 Popelensky (10.1016/j.sna.2022.113787_bib34) 2020; 49 Hilder (10.1016/j.sna.2022.113787_bib46) 2011; 217 Kolodner (10.1016/j.sna.2022.113787_bib18) 1983; 42 Zhu (10.1016/j.sna.2022.113787_bib42) 2010; 66 10.1016/j.sna.2022.113787_bib22 Galyametdinov (10.1016/j.sna.2022.113787_bib31) 2022; 10 Sarlioglu (10.1016/j.sna.2022.113787_bib26) 2017; 23 Vialtsev (10.1016/j.sna.2022.113787_bib14) 2021; 239 Mara (10.1016/j.sna.2022.113787_bib38) 2019; 213 Saidi (10.1016/j.sna.2022.113787_bib5) 2009; 20 |
References_xml | – volume: 51 start-page: 7420 year: 2015 end-page: 7431 ident: bib7 article-title: Metal–organic frameworks for luminescence thermometry publication-title: Chem. Commun. – volume: 11 start-page: 42455 year: 2019 end-page: 42461 ident: bib29 publication-title: Dual-Mode Upconversion Nanoprobe Enables Broad-Range Thermom. Cryog. Room Temp. – volume: 42 start-page: 679 year: 2016 end-page: 694 ident: bib39 article-title: Photoluminescence of Lanthanide Aromatic Carboxylates publication-title: Russ J Coord Chem – volume: 216 start-page: 76 year: 2013 end-page: 81 ident: bib23 article-title: Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures publication-title: Catal. Today – volume: 22 start-page: 25450 year: 2020 end-page: 25454 ident: bib13 article-title: New approach to increase the sensitivity of Tb–Eu-based luminescent thermometer publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 941 year: 2018 end-page: 948 ident: bib17 article-title: Near-field thermal imaging of optically excited gold nanostructures: Scaling principles for collective heating with heat dissipation into the surrounding medium publication-title: Nanoscale – volume: 217 start-page: 76 year: 2011 end-page: 86 ident: bib46 article-title: Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: Part 2. Polar substituted benzoates publication-title: J. Photochem. Photobio. A Chem. – volume: 42 start-page: 339 year: 2009 end-page: 341 ident: bib49 article-title: OLEX2: A complete structure solution, refinement and analysis program publication-title: J. Appl. Crystallogr. – volume: 2019 start-page: 2320 year: 2019 end-page: 2332 ident: bib40 article-title: On the structural features of substituted lanthanide benzoates publication-title: Eur. J. Inorg. Chem. – volume: 39 start-page: 387 year: 2010 end-page: 405 ident: bib44 article-title: Protein NMR using paramagnetic ions publication-title: Annu Rev. Biophys. – volume: 201 start-page: 500 year: 2018 end-page: 508 ident: bib1 article-title: Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: does sensitivity depend on the ligand publication-title: J. Lumin – volume: 389 year: 2020 ident: bib3 article-title: Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions publication-title: Chem. Eng. J. – reference: I.K. van Ravenhorst, R.G. Geitenbeek, Ad M. J. van der Eerden, J. Tijn van Omme, H. Hugo Peréz Garza, F. Meirer, A. Meijerink, and B. Marc Weckhuysen, In Situ Local Temperature Mapping in Microscopy Nano-Reactors with Luminescence Thermometry. ChemCatChem https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.201900985. – volume: 49 start-page: 339 year: 2016 end-page: 427 ident: bib15 article-title: Lanthanides in Luminescent Thermometry publication-title: Handb. Phys. Chem. Rare Earths – reference: Bruker, TOPAS 4.2 User Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2009. – volume: 128 year: 2020 ident: bib2 article-title: Trends in luminescence thermometry publication-title: J. Appl. Phys. – volume: 10 start-page: 94 year: 2022 ident: bib31 article-title: Chameleon luminescent films based on PMMA doped with europium(III) and terbium(III) anisometric complexes publication-title: Inorganics – volume: 59 start-page: 11054 year: 2020 end-page: 11060 ident: bib9 article-title: Deep-tissue temperature sensing realized in BaY2O4:Yb3+/Er3+with ultrahigh sensitivity and extremely intense red upconversion luminescence publication-title: Inorg. Chem. – volume: 684 start-page: 1033 year: 2003 end-page: 1038 ident: bib20 article-title: Phosphor thermometry at ORNL – volume: 331 start-page: 223 year: 2015 end-page: 229 ident: bib25 article-title: Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures publication-title: Wear, 330– – reference: M. Dramićanin. Chapter 9 - Applications of Luminescence Thermometry in Engineering. In: Luminescence Thermometry Methods, Materials, and Applications, (2018) 215–233. https://doi.org/10.1016/B978–0-08–102029-6.00009–9. – volume: 49 start-page: 4741 year: 2020 end-page: 4750 ident: bib37 article-title: Multi-functional lanthanide-CPs based on tricarboxylphenyl terpyridyl ligand as ratiometric luminescent thermometer and highly sensitive ion sensor with turn on/off effect publication-title: Dalt Trans. – volume: 1 start-page: 3428 year: 2016 end-page: 3437 ident: bib41 article-title: Crystal structures of new lanthanide hydroxybenzoates and different roles of LMCT state in the excitation energy transfer to Eu3+ Ions publication-title: ChemistrySelect – volume: 153 start-page: 84 year: 2010 end-page: 89 ident: bib24 article-title: Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst publication-title: Catal. Today – volume: 42 start-page: 1 year: 2008 end-page: 9 ident: bib45 article-title: Prospects for lanthanides in structural biology by NMR publication-title: J. Biomol. Nmr. – volume: 8 start-page: 5673 year: 2008 end-page: 5744 ident: bib30 article-title: Thermographic phosphors for high temperature measurements: principles publication-title: Curr. State Art. Recent Appl. – volume: 49 start-page: 12156 year: 2020 end-page: 12160 ident: bib34 article-title: How does the ligand affect the sensitivity of the luminescent thermometers based on Tb-Eu complexes publication-title: Dalt Trans. – volume: 23 start-page: 14 year: 2017 end-page: 25 ident: bib26 article-title: Driving toward accessibility: of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles publication-title: IEEE Ind. Appl. Mag. – volume: 22 start-page: 14782 year: 2016 end-page: 14795 ident: bib35 article-title: Lanthanide organic framework luminescent thermometers publication-title: Chem. - A Eur. J. – reference: N.F. Mott, On the Absorption of Light by Crystals. Proc R Soc A Math Phys Eng Sci., 167 (1938) 384–91. https://doi.org/10.1098/rspa.1938.0137. – volume: 7 start-page: 1 year: 2019 end-page: 30 ident: bib8 article-title: Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry publication-title: Adv. Opt. Mater.. – volume: 31 start-page: 759 year: 2019 end-page: 773 ident: bib27 article-title: Lanthanide complexes with 2-(Tosylamino)-benzylidene- N-(aryloyl)hydrazones: universal luminescent materials publication-title: Chem. Mater. – reference: S. Pfaff, H. Karlsson, F.A. Nada, E. Lundgren and J. Zetterberg, Temperature characterization of an operando flow reactor for heterogeneous catalysis. J Phys D Appl Phys., 52 (2019) 324003. https://iopscience.iop.org/article/10.1088/1361–6463/ab236e. – volume: 10 start-page: 39912 year: 2018 end-page: 39920 ident: bib10 article-title: Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 12596 year: 2018 end-page: 12602 ident: bib28 publication-title: Cryog. Lumin. Tb / Eu-MOF Thermometer Based a Fluor. -Modif. Tetracarboxylate Ligand – volume: 120 start-page: 69 year: 2016 end-page: 81 ident: bib43 article-title: Structural diversity of lanthanoid salicylate hydrates publication-title: Polyhedron – volume: 20 year: 2009 ident: bib5 article-title: Scanning thermal imaging by near-field publication-title: Nanotechnology – volume: 5 start-page: 1607 year: 2017 end-page: 1613 ident: bib36 article-title: Ratiometric dual-emitting MOF⊃dye thermometers with a tunable operating range and sensitivity publication-title: J. Mater. Chem. C. – volume: 36 start-page: 86 year: 2003 end-page: 95 ident: bib47 article-title: Research papers Indexing of powder diffraction patterns by iterative use of singular value decomposition research papers publication-title: J. Appl. Cryst. – volume: 66 start-page: 54 year: 2010 end-page: 55 ident: bib42 article-title: Bis(μ-4-hydroxybenzoato-κ2 O:O′)bis-[triaquabis(4- hydroxybenzoato)-κO;κ2 O,O′-terbium(III)] deca-hydrate publication-title: Acta Cryst. – volume: 33 start-page: 1079 year: 2012 end-page: 1089 ident: bib6 article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging publication-title: Biomaterials – volume: 13 start-page: 7161 year: 2021 end-page: 7168 ident: bib11 article-title: Upconversion nanoparticles modified by Cu2S for photothermal therapy along with real-time optical thermometry publication-title: Nanoscale – volume: 239 year: 2021 ident: bib14 article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry publication-title: J. Lumin. – volume: 42 start-page: 117 year: 1983 end-page: 119 ident: bib18 article-title: Remote thermal imaging with 0.7-μm spatial resolution using temperature-dependent fluorescent thin flims publication-title: Appl. Phys. Lett. – volume: 8 start-page: 2397 year: 2018 end-page: 2401 ident: bib21 article-title: In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions – volume: 119 start-page: 28136 year: 2015 end-page: 28142 ident: bib12 article-title: and infrared-laser-induced upconversion in er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing publication-title: J. Phys. Chem. C. – volume: 35 start-page: 74 year: 1939 end-page: 85 ident: bib33 article-title: An interpretation of crystal luminescence publication-title: Trans. Faraday Soc. – volume: 35 start-page: 1177 year: 2011 end-page: 1183 ident: bib16 article-title: Lanthanide-based luminescent molecular thermometers publication-title: N. J. Chem. – volume: 213 start-page: 343 year: 2019 end-page: 355 ident: bib38 article-title: Novel tetrakis lanthanide β-diketonate complexes: Structural study, luminescence properties and temperature sensing publication-title: J. Lumin. – volume: 64 start-page: 112 year: 2008 end-page: 122 ident: bib50 article-title: A short history of SHELX publication-title: Acta Crystallogr. Sect. A Found. Crystallogr. – volume: 51 start-page: 7420 year: 2015 ident: 10.1016/j.sna.2022.113787_bib7 article-title: Metal–organic frameworks for luminescence thermometry publication-title: Chem. Commun. doi: 10.1039/C5CC00718F – volume: 153 start-page: 84 year: 2010 ident: 10.1016/j.sna.2022.113787_bib24 article-title: Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst publication-title: Catal. Today doi: 10.1016/j.cattod.2010.01.039 – volume: 49 start-page: 12156 year: 2020 ident: 10.1016/j.sna.2022.113787_bib34 article-title: How does the ligand affect the sensitivity of the luminescent thermometers based on Tb-Eu complexes publication-title: Dalt Trans. doi: 10.1039/D0DT02238A – volume: 22 start-page: 25450 year: 2020 ident: 10.1016/j.sna.2022.113787_bib13 article-title: New approach to increase the sensitivity of Tb–Eu-based luminescent thermometer publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04909C – volume: 331 start-page: 223 year: 2015 ident: 10.1016/j.sna.2022.113787_bib25 article-title: Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures publication-title: Wear, 330– doi: 10.1016/j.wear.2015.02.040 – volume: 213 start-page: 343 year: 2019 ident: 10.1016/j.sna.2022.113787_bib38 article-title: Novel tetrakis lanthanide β-diketonate complexes: Structural study, luminescence properties and temperature sensing publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.05.035 – volume: 42 start-page: 679 year: 2016 ident: 10.1016/j.sna.2022.113787_bib39 article-title: Photoluminescence of Lanthanide Aromatic Carboxylates – volume: 217 start-page: 76 year: 2011 ident: 10.1016/j.sna.2022.113787_bib46 article-title: Spectroscopic properties of lanthanoid benzene carboxylates in the solid state: Part 2. Polar substituted benzoates publication-title: J. Photochem. Photobio. A Chem. doi: 10.1016/j.jphotochem.2010.09.021 – volume: 42 start-page: 117 year: 1983 ident: 10.1016/j.sna.2022.113787_bib18 article-title: Remote thermal imaging with 0.7-μm spatial resolution using temperature-dependent fluorescent thin flims publication-title: Appl. Phys. Lett. doi: 10.1063/1.93766 – volume: 120 start-page: 69 year: 2016 ident: 10.1016/j.sna.2022.113787_bib43 article-title: Structural diversity of lanthanoid salicylate hydrates publication-title: Polyhedron doi: 10.1016/j.poly.2016.05.047 – volume: 8 start-page: 2397 year: 2018 ident: 10.1016/j.sna.2022.113787_bib21 article-title: In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions – volume: 35 start-page: 74 year: 1939 ident: 10.1016/j.sna.2022.113787_bib33 article-title: An interpretation of crystal luminescence publication-title: Trans. Faraday Soc. doi: 10.1039/tf9393500074 – ident: 10.1016/j.sna.2022.113787_bib22 doi: 10.1088/1361-6463/ab236e – volume: 8 start-page: 5673 year: 2008 ident: 10.1016/j.sna.2022.113787_bib30 article-title: Thermographic phosphors for high temperature measurements: principles publication-title: Curr. State Art. Recent Appl. – volume: 216 start-page: 76 year: 2013 ident: 10.1016/j.sna.2022.113787_bib23 article-title: Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures publication-title: Catal. Today doi: 10.1016/j.cattod.2013.06.009 – volume: 10 start-page: 941 year: 2018 ident: 10.1016/j.sna.2022.113787_bib17 article-title: Near-field thermal imaging of optically excited gold nanostructures: Scaling principles for collective heating with heat dissipation into the surrounding medium publication-title: Nanoscale doi: 10.1039/C7NR08349A – volume: 42 start-page: 339 year: 2009 ident: 10.1016/j.sna.2022.113787_bib49 article-title: OLEX2: A complete structure solution, refinement and analysis program publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808042726 – volume: 2019 start-page: 2320 year: 2019 ident: 10.1016/j.sna.2022.113787_bib40 article-title: On the structural features of substituted lanthanide benzoates publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201801561 – volume: 23 start-page: 14 year: 2017 ident: 10.1016/j.sna.2022.113787_bib26 article-title: Driving toward accessibility: of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles publication-title: IEEE Ind. Appl. Mag. doi: 10.1109/MIAS.2016.2600739 – volume: 389 year: 2020 ident: 10.1016/j.sna.2022.113787_bib3 article-title: Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124506 – volume: 11 start-page: 42455 year: 2019 ident: 10.1016/j.sna.2022.113787_bib29 publication-title: Dual-Mode Upconversion Nanoprobe Enables Broad-Range Thermom. Cryog. Room Temp. – ident: 10.1016/j.sna.2022.113787_bib32 doi: 10.1098/rspa.1938.0137 – volume: 10 start-page: 94 year: 2022 ident: 10.1016/j.sna.2022.113787_bib31 article-title: Chameleon luminescent films based on PMMA doped with europium(III) and terbium(III) anisometric complexes publication-title: Inorganics doi: 10.3390/inorganics10070094 – volume: 239 year: 2021 ident: 10.1016/j.sna.2022.113787_bib14 article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry publication-title: J. Lumin. doi: 10.1016/j.jlumin.2021.118400 – volume: 59 start-page: 11054 year: 2020 ident: 10.1016/j.sna.2022.113787_bib9 article-title: Deep-tissue temperature sensing realized in BaY2O4:Yb3+/Er3+with ultrahigh sensitivity and extremely intense red upconversion luminescence publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01543 – volume: 66 start-page: 54 year: 2010 ident: 10.1016/j.sna.2022.113787_bib42 article-title: Bis(μ-4-hydroxybenzoato-κ2 O:O′)bis-[triaquabis(4- hydroxybenzoato)-κO;κ2 O,O′-terbium(III)] deca-hydrate publication-title: Acta Cryst. – volume: 42 start-page: 1 year: 2008 ident: 10.1016/j.sna.2022.113787_bib45 article-title: Prospects for lanthanides in structural biology by NMR publication-title: J. Biomol. Nmr. doi: 10.1007/s10858-008-9256-0 – volume: 36 start-page: 86 year: 2003 ident: 10.1016/j.sna.2022.113787_bib47 article-title: Research papers Indexing of powder diffraction patterns by iterative use of singular value decomposition research papers publication-title: J. Appl. Cryst. doi: 10.1107/S0021889802019878 – ident: 10.1016/j.sna.2022.113787_bib48 – volume: 119 start-page: 28136 issue: 50 year: 2015 ident: 10.1016/j.sna.2022.113787_bib12 article-title: and infrared-laser-induced upconversion in er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b10302 – volume: 22 start-page: 14782 year: 2016 ident: 10.1016/j.sna.2022.113787_bib35 article-title: Lanthanide organic framework luminescent thermometers publication-title: Chem. - A Eur. J. doi: 10.1002/chem.201600860 – volume: 57 start-page: 12596 year: 2018 ident: 10.1016/j.sna.2022.113787_bib28 publication-title: Cryog. Lumin. Tb / Eu-MOF Thermometer Based a Fluor. -Modif. Tetracarboxylate Ligand – volume: 128 year: 2020 ident: 10.1016/j.sna.2022.113787_bib2 article-title: Trends in luminescence thermometry publication-title: J. Appl. Phys. doi: 10.1063/5.0014825 – volume: 31 start-page: 759 year: 2019 ident: 10.1016/j.sna.2022.113787_bib27 article-title: Lanthanide complexes with 2-(Tosylamino)-benzylidene- N-(aryloyl)hydrazones: universal luminescent materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03675 – volume: 39 start-page: 387 year: 2010 ident: 10.1016/j.sna.2022.113787_bib44 article-title: Protein NMR using paramagnetic ions publication-title: Annu Rev. Biophys. doi: 10.1146/annurev.biophys.093008.131321 – ident: 10.1016/j.sna.2022.113787_bib19 doi: 10.1016/B978-0-08-102029-6.00009-9 – volume: 49 start-page: 4741 year: 2020 ident: 10.1016/j.sna.2022.113787_bib37 article-title: Multi-functional lanthanide-CPs based on tricarboxylphenyl terpyridyl ligand as ratiometric luminescent thermometer and highly sensitive ion sensor with turn on/off effect publication-title: Dalt Trans. doi: 10.1039/D0DT00310G – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.sna.2022.113787_bib8 article-title: Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry publication-title: Adv. Opt. Mater.. doi: 10.1002/adom.201801239 – volume: 10 start-page: 39912 year: 2018 ident: 10.1016/j.sna.2022.113787_bib10 article-title: Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18184 – volume: 49 start-page: 339 year: 2016 ident: 10.1016/j.sna.2022.113787_bib15 article-title: Lanthanides in Luminescent Thermometry publication-title: Handb. Phys. Chem. Rare Earths doi: 10.1016/bs.hpcre.2016.03.005 – volume: 64 start-page: 112 year: 2008 ident: 10.1016/j.sna.2022.113787_bib50 article-title: A short history of SHELX publication-title: Acta Crystallogr. Sect. A Found. Crystallogr. doi: 10.1107/S0108767307043930 – volume: 5 start-page: 1607 year: 2017 ident: 10.1016/j.sna.2022.113787_bib36 article-title: Ratiometric dual-emitting MOF⊃dye thermometers with a tunable operating range and sensitivity publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC05203G – volume: 201 start-page: 500 year: 2018 ident: 10.1016/j.sna.2022.113787_bib1 article-title: Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: does sensitivity depend on the ligand publication-title: J. Lumin doi: 10.1016/j.jlumin.2018.05.002 – volume: 20 year: 2009 ident: 10.1016/j.sna.2022.113787_bib5 article-title: Scanning thermal imaging by near-field publication-title: Nanotechnology doi: 10.1088/0957-4484/20/11/115703 – volume: 33 start-page: 1079 year: 2012 ident: 10.1016/j.sna.2022.113787_bib6 article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.039 – volume: 13 start-page: 7161 year: 2021 ident: 10.1016/j.sna.2022.113787_bib11 article-title: Upconversion nanoparticles modified by Cu2S for photothermal therapy along with real-time optical thermometry publication-title: Nanoscale doi: 10.1039/D0NR09115D – ident: 10.1016/j.sna.2022.113787_bib4 – volume: 684 start-page: 1033 year: 2003 ident: 10.1016/j.sna.2022.113787_bib20 article-title: Phosphor thermometry at ORNL – volume: 35 start-page: 1177 year: 2011 ident: 10.1016/j.sna.2022.113787_bib16 article-title: Lanthanide-based luminescent molecular thermometers publication-title: N. J. Chem. doi: 10.1039/c0nj01010c – volume: 1 start-page: 3428 year: 2016 ident: 10.1016/j.sna.2022.113787_bib41 article-title: Crystal structures of new lanthanide hydroxybenzoates and different roles of LMCT state in the excitation energy transfer to Eu3+ Ions publication-title: ChemistrySelect doi: 10.1002/slct.201600618 |
SSID | ssj0003377 |
Score | 2.4741976 |
Snippet | To obtain ratiometric temperature sensor with high sensitivity we have synthesized three rows of bimetallic Tb-Eu hydroxybenzoates, whose sensitivity was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113787 |
SubjectTerms | Bimetals Chemical synthesis Crystal structure Europium Luminescence Luminescence thermometryelevated temperature hydroxobenzoates bimetallic complexeslanthanides Sensitivity Sensors Single crystals Temperature Temperature dependence Temperature sensors Thermometers Thermometry |
Title | Sensing temperature with Tb-Eu-based luminescent thermometer: A novel approach to increase the sensitivity |
URI | https://dx.doi.org/10.1016/j.sna.2022.113787 https://www.proquest.com/docview/2739797828 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ-eTCpLu09vhEBQIxcg4dZsH2sgsEtk8ehvt7Pb9RXDweNups1m2s587X79BqEbTxjY5jBJTKTTxJW-IDF1lHmkfug5Kgo1HA08j_zh1H2cebMa6lV3YYBWaWN_GdOLaG3ftK032-v5vD12zNbBpSB2WApZwQ12NwBa3937F82DsaL6IhgTsK7-bBYcr00K0kOUQmWTAFh1f-emX1G6SD2DI3RoMSPulp91jGo6PUEH35QET9FiDET09AWD1JTVScZwxoongvS3BJKVwiYQAcsdCJkYgN8qWwEb5h53cZq96SWuFMZxnuF5CoByo8ESb6D7stDEGZoO-pPekNgyCkQy6uXEl0GkIz_2hQwUE8IzGFF2YrP2HBqbDZLrJlB2OlGB6ijteQmTIqBSsISxQrDwHNXTLNUXCCtqdjyJAYlODBd4dRQHSeTSRDphpGSsG8ipHMil1RiHUhdLXpHJFtz4nIPPeenzBrr9bLIuBTZ2GbvVqPAfs4SbBLCrWbMaQW6X6IYb3BYFZg9Nw8v_9XqF9uGpZPY1UT1_3eprg1By0SqmYAvtdR-ehqMP4ujkrQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oHNSD8RkfqD14MmlY2n2w3giBgAoXIOHWbB9rILgYQX-_nd2uUWM4eNzddrOZtjPfdL9-A3AbSAvbPK6o9XSG-iqUNGGetpcsbAaejpsGtwYGw7A38R-mwXQL2uVZGKRVOt9f-PTcW7s7dWfN-utsVh95NnXwGYodFkJW21BFdSq_AtVW_7E3_HLInOcFGLE9xQ7lz82c5rXKUH2IMSxuEiGx7u_w9MtR59GnewD7DjaSVvFlh7BlsiPY-yYmeAzzEXLRs2eCalNOKpngNisZS9p5pxivNLG-CInuyMkkiP1eli9IiLknLZItP8yClCLjZL0kswwx5cpgS7LC1xe1Jk5g0u2M2z3qKilQxVmwpqGKYhOHSShVpLmUgYWJqpHY5eexxOZIvp9i5elUR7qhTRCkXMmIKclTznPNwlOoZMvMnAHRzCY9qcWJXoJneE2cRGnss1R5zVirxJyDVxpQKCczjtUuFqLkk82FtblAm4vC5udw99XltdDY2NTYL0dF_JgowsaATd1q5QgKt0pXwkK3OLJpNGte_O-tN7DTGw-exFN_-HgJu_ikIPrVoLJ-ezdXFrCs5bWbkJ_BCude |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+temperature+with+Tb-Eu-based+luminescent+thermometer%3A+A+novel+approach+to+increase+the+sensitivity&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tcelykh%2C+Liubov+O.&rft.au=Yu.+Kozhevnikova%2C+Vladislava&rft.au=Goloveshkin%2C+Alexander+S.&rft.au=Latipov%2C+Egor+V.&rft.date=2022-10-01&rft.issn=0924-4247&rft.volume=345&rft.spage=113787&rft_id=info:doi/10.1016%2Fj.sna.2022.113787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2022_113787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |