Streaming algorithms for robust submodular maximization
Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the ot...
Saved in:
Published in | Discrete Applied Mathematics Vol. 290; pp. 112 - 122 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0166-218X 1872-6771 |
DOI | 10.1016/j.dam.2020.05.001 |
Cover
Loading…
Abstract | Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the other is that some elements may be invalid at last. For this problem, which is called streaming robust submodular maximization (SRSM) problem, we explore an approximation algorithm, returning a subset S from the ground set V with a limit size, such that it represents V and is robust to a broken set E well. Our algorithm only makes one pass over data, and achieves a constant-factor 0.1224 approximation guarantee, independent of the cardinality constraint parameter k. Based on the algorithm for SRSM problem, we continue to discuss this problem over sliding windows, in which we are asked to obtain a proper set that only considers the last W elements, and derive an algorithm with a constant (0.0612−ϵ)-approximation guarantee. At last we also propose numerical experiments on some applications to well demonstrate our algorithm for SRSM problem over sliding windows. |
---|---|
AbstractList | Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the other is that some elements may be invalid at last. For this problem, which is called streaming robust submodular maximization (SRSM) problem, we explore an approximation algorithm, returning a subset S from the ground set V with a limit size, such that it represents V and is robust to a broken set E well. Our algorithm only makes one pass over data, and achieves a constant-factor 0.1224 approximation guarantee, independent of the cardinality constraint parameter k. Based on the algorithm for SRSM problem, we continue to discuss this problem over sliding windows, in which we are asked to obtain a proper set that only considers the last W elements, and derive an algorithm with a constant (0.0612−ϵ)-approximation guarantee. At last we also propose numerical experiments on some applications to well demonstrate our algorithm for SRSM problem over sliding windows. |
Author | Cheng, Yukun Zhang, Dongmei Wang, Yishui Yang, Ruiqi Xu, Dachuan |
Author_xml | – sequence: 1 givenname: Ruiqi surname: Yang fullname: Yang, Ruiqi organization: Department of Operations Research and Scientific Computing, Beijing University of Technology, Beijing 100124, PR China – sequence: 2 givenname: Dachuan surname: Xu fullname: Xu, Dachuan organization: Department of Operations Research and Scientific Computing, Beijing University of Technology, Beijing 100124, PR China – sequence: 3 givenname: Yukun surname: Cheng fullname: Cheng, Yukun email: ykcheng@amss.ac.cn organization: School of Business, Suzhou Key Laboratory for Big Data and Information Service, Suzhou University of Science and Technology, Suzhou 215009, PR China – sequence: 4 givenname: Yishui surname: Wang fullname: Wang, Yishui organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China – sequence: 5 givenname: Dongmei surname: Zhang fullname: Zhang, Dongmei organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, PR China |
BookMark | eNp9kMtKxDAUhoOM4MzoA7gruG49SS9JcSWDNxhwoYK7kKbJmNI2Y5KK-vRmHFcuZnU48H3n8i_QbLSjQugcQ4YBV5dd1oohI0AggzIDwEdojhklaUUpnqF5ZKqUYPZ6ghbedxCJ2M0RfQpOicGMm0T0G-tMeBt8oq1LnG0mHxI_NYNtp164ZBCfZjDfIhg7nqJjLXqvzv7qEr3c3jyv7tP1493D6nqdypyUIa1KXbaMNbgpNKvbghWFYtCALutKSV3nrJE1VConWtO8AM0k0LbOiZA0r4smX6KL_dyts--T8oF3dnJjXMlJwWqIz-c0UnRPSWe9d0pzacLvncEJ03MMfJcS73hMie9S4lDymEE08T9z68wg3NdB52rvqPj4h1GOe2nUKFVrnJKBt9YcsH8AOY2Bcw |
CitedBy_id | crossref_primary_10_1111_itor_13608 |
Cites_doi | 10.1145/2187836.2187907 10.1145/285055.285059 10.1109/FOCS.2007.55 10.1007/978-3-319-33461-5_26 10.1145/2623330.2623637 10.1007/s10107-015-0900-7 10.1137/S0097539701398363 10.1145/3038912.3052699 10.1145/956750.956769 10.1145/2809814 10.1007/BF01588971 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Feb 15, 2021 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Feb 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.dam.2020.05.001 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6771 |
EndPage | 122 |
ExternalDocumentID | 10_1016_j_dam_2020_05_001 S0166218X20302419 |
GroupedDBID | -~X ADEZE AFTJW ALMA_UNASSIGNED_HOLDINGS FDB OAUVE AAYXX AI. CITATION FA8 VH1 WUQ 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-65f5d88b1b4f89d4844e80b0f596ecf938bc906e32ff7340f8c07d932ac7394b3 |
IEDL.DBID | IXB |
ISSN | 0166-218X |
IngestDate | Mon Jun 30 05:40:19 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 05:41:52 EDT 2025 Sat Apr 29 23:34:27 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Streaming robust submodular maximization Sliding windows Performance guarantee |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-65f5d88b1b4f89d4844e80b0f596ecf938bc906e32ff7340f8c07d932ac7394b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2489010137 |
PQPubID | 2045487 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2489010137 crossref_citationtrail_10_1016_j_dam_2020_05_001 crossref_primary_10_1016_j_dam_2020_05_001 elsevier_sciencedirect_doi_10_1016_j_dam_2020_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | R. Gomes, A. Krause, Budgeted nonparametric learning from data streams, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 391–398. I. Bogunovic, S. Mitrović, J. Scarlett, V. Cevher, Robust submodular maximization: A non-uniform partitioning approach, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 508–516. Nemhauser, Wolsey, Fisher (b17) 1978; 14 Kumar, Moseley, Vassilvitskii, Vattani (b13) 2015; 2 Feige (b8) 1998; 45 Datar, Gionis, Indyk, Motwani (b6) 2002; 31 Krause, McMahan, Guestrin, Gupta (b12) 2008; 9 V. Braverman, R. Ostrovsky, Smooth histograms for sliding windows, in: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 283–293. Mitrović, Bogunovic, Norouzi-Fard, Tarnawski (b16) 2017 H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2011, pp. 510–520. A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, A. Krause, Streaming submodular maximization: Massive data summarization on the fly, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 671–680. B.J. Frey, D. Dueck, Mixture modeling by affinity propagation, in: Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005, pp. 379–386. B. Mirzasoleiman, A. Karbasi, R. Sarkar, A. Krause, Distributed submodular maximization: Identifying representative elements in massive data, in: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, 2013, pp. 2049–2057. Chakrabarti, Kale (b5) 2015; 154 A. Epasto, S. Lattanzi, S. Vassilvitskii, M. Zadimoghaddam, Submodular optimization over sliding windows, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 421–430. D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146. J.B. Orlin, A.S. Schulz, R. Udwani, Robust monotone submodular function maximization, in: Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization, 2016, pp. 312–324. E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in information diffusion, in: Proceedings of the 21st International Conference on World Wide Web, 2012, pp. 519–528. 10.1016/j.dam.2020.05.001_b3 Nemhauser (10.1016/j.dam.2020.05.001_b17) 1978; 14 10.1016/j.dam.2020.05.001_b4 10.1016/j.dam.2020.05.001_b1 10.1016/j.dam.2020.05.001_b2 10.1016/j.dam.2020.05.001_b10 Datar (10.1016/j.dam.2020.05.001_b6) 2002; 31 10.1016/j.dam.2020.05.001_b11 10.1016/j.dam.2020.05.001_b9 Mitrović (10.1016/j.dam.2020.05.001_b16) 2017 10.1016/j.dam.2020.05.001_b7 10.1016/j.dam.2020.05.001_b18 Feige (10.1016/j.dam.2020.05.001_b8) 1998; 45 10.1016/j.dam.2020.05.001_b14 10.1016/j.dam.2020.05.001_b15 Chakrabarti (10.1016/j.dam.2020.05.001_b5) 2015; 154 Krause (10.1016/j.dam.2020.05.001_b12) 2008; 9 Kumar (10.1016/j.dam.2020.05.001_b13) 2015; 2 |
References_xml | – volume: 14 start-page: 265 year: 1978 end-page: 294 ident: b17 article-title: An analysis of approximations for maximizing submodular set functions–I publication-title: Math. Program. – reference: E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in information diffusion, in: Proceedings of the 21st International Conference on World Wide Web, 2012, pp. 519–528. – year: 2017 ident: b16 article-title: Streaming robust submodular maximization: A partitioned thresholding approach – reference: J.B. Orlin, A.S. Schulz, R. Udwani, Robust monotone submodular function maximization, in: Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization, 2016, pp. 312–324. – reference: D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146. – volume: 45 start-page: 634 year: 1998 end-page: 652 ident: b8 article-title: A threshold of ln n for approximating set cover publication-title: J. ACM – reference: I. Bogunovic, S. Mitrović, J. Scarlett, V. Cevher, Robust submodular maximization: A non-uniform partitioning approach, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 508–516. – volume: 9 start-page: 2761 year: 2008 end-page: 2801 ident: b12 article-title: Robust submodular observation selection publication-title: J. Mach. Learn. Res. – reference: A. Epasto, S. Lattanzi, S. Vassilvitskii, M. Zadimoghaddam, Submodular optimization over sliding windows, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 421–430. – volume: 2 year: 2015 ident: b13 article-title: Fast greedy algorithms in mapreduce and streaming publication-title: ACM Trans. Parallel Comput. – reference: R. Gomes, A. Krause, Budgeted nonparametric learning from data streams, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 391–398. – reference: B. Mirzasoleiman, A. Karbasi, R. Sarkar, A. Krause, Distributed submodular maximization: Identifying representative elements in massive data, in: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, 2013, pp. 2049–2057. – volume: 154 start-page: 225 year: 2015 end-page: 247 ident: b5 article-title: Submodular maximization meets streaming: matchings, matroids, and more publication-title: Math. Program. – volume: 31 start-page: 1794 year: 2002 end-page: 1813 ident: b6 article-title: Maintaining stream statistics over sliding windows publication-title: SIAM J. Comput. – reference: A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, A. Krause, Streaming submodular maximization: Massive data summarization on the fly, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 671–680. – reference: V. Braverman, R. Ostrovsky, Smooth histograms for sliding windows, in: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 283–293. – reference: H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2011, pp. 510–520. – reference: B.J. Frey, D. Dueck, Mixture modeling by affinity propagation, in: Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005, pp. 379–386. – ident: 10.1016/j.dam.2020.05.001_b2 doi: 10.1145/2187836.2187907 – volume: 45 start-page: 634 year: 1998 ident: 10.1016/j.dam.2020.05.001_b8 article-title: A threshold of ln n for approximating set cover publication-title: J. ACM doi: 10.1145/285055.285059 – ident: 10.1016/j.dam.2020.05.001_b4 doi: 10.1109/FOCS.2007.55 – ident: 10.1016/j.dam.2020.05.001_b18 doi: 10.1007/978-3-319-33461-5_26 – ident: 10.1016/j.dam.2020.05.001_b1 doi: 10.1145/2623330.2623637 – ident: 10.1016/j.dam.2020.05.001_b9 – ident: 10.1016/j.dam.2020.05.001_b3 – volume: 154 start-page: 225 year: 2015 ident: 10.1016/j.dam.2020.05.001_b5 article-title: Submodular maximization meets streaming: matchings, matroids, and more publication-title: Math. Program. doi: 10.1007/s10107-015-0900-7 – year: 2017 ident: 10.1016/j.dam.2020.05.001_b16 – volume: 31 start-page: 1794 year: 2002 ident: 10.1016/j.dam.2020.05.001_b6 article-title: Maintaining stream statistics over sliding windows publication-title: SIAM J. Comput. doi: 10.1137/S0097539701398363 – ident: 10.1016/j.dam.2020.05.001_b7 doi: 10.1145/3038912.3052699 – ident: 10.1016/j.dam.2020.05.001_b11 doi: 10.1145/956750.956769 – volume: 2 issue: 3 year: 2015 ident: 10.1016/j.dam.2020.05.001_b13 article-title: Fast greedy algorithms in mapreduce and streaming publication-title: ACM Trans. Parallel Comput. doi: 10.1145/2809814 – ident: 10.1016/j.dam.2020.05.001_b14 – ident: 10.1016/j.dam.2020.05.001_b15 – volume: 14 start-page: 265 year: 1978 ident: 10.1016/j.dam.2020.05.001_b17 article-title: An analysis of approximations for maximizing submodular set functions–I publication-title: Math. Program. doi: 10.1007/BF01588971 – volume: 9 start-page: 2761 year: 2008 ident: 10.1016/j.dam.2020.05.001_b12 article-title: Robust submodular observation selection publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.dam.2020.05.001_b10 |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.2883906 |
Snippet | Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Algorithms Approximation Data mining Machine learning Maximization Optimization Performance guarantee Robustness (mathematics) Sliding Sliding windows Streaming robust submodular maximization |
Title | Streaming algorithms for robust submodular maximization |
URI | https://dx.doi.org/10.1016/j.dam.2020.05.001 https://www.proquest.com/docview/2489010137 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLuWAWEWhVDlwQgp1Yjuxj6UCla1CQKXerNixIaibmlTixLdjpw6bUA-cIkWxFY3teZPMmzcAnMRSKyxCc5Agg-YDJYl8GsjQR0kMUyJIIFNbKHzXi7p9fD0ggxXQqWphLK3S-f6FTy-9tbvTctZsTbOs9WiClcgA1CA0-9TgkC3iQ5iWRXyD828SUlYfrVb9dPnKMRisxU75O_LtPFXOs2R_pYktUw9hKevpOsb8gVq__HcJSpdbYNNFk1578cLbYEWNd8DG3acUa74LYpt3TkYGobxk-DyZZcXLKPdMqOrNJmKeF15uEHGSWjaqN0respErzNwD_cuLp07Xd90SfIlCUvgR0SSlVAQCa8pSTDFWFAqoCYuU1AxRIRmMFAq1jhGGmkoYpyZ8S2SMGBZoH6yNJ2N1ADxBoAxEkFBkbESJorEiZtooUEwyolkdwMoaXDopcdvRYsgrztgrNwbk1oAcEsubq4PTzyHThY7GsodxZWL-YzNw4-eXDWtUy8HdScx5iKlloAQoPvzfrEegFloei20CQxpgrZjN1bEJRArRBKtn70ETrLc7D7f39np10-01y_33Ae5Q2tI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3PXgSyqZN0iRHFWV9rBcV9haaNNGVfci2C_58J93UF-LBa2mGMp3MN22--QahY26cpTqFjYQlhg-UPItFYtKY5BwXTLPEFL5RuHuXdR7pdY_15tB50wvjaZUh989yep2tw5V28Gb7td9v30OxkgFA9VKIU8AhOY8WoBrgfn7DVe_si4aUF0hbav66fB4yANjSIP2dxd5Qc-hZ07-K3Pepp7jW9QwjY36BrR8JvEaly1W0EsrJ6HT2xGtozo7W0XL3Q4u13EDcHzznQ4CoKB88jSf96nlYRlCrRpOxnpZVVAIkjgtPR42G-Vt_GDozN9Hj5cXDeScO4xJiQ1JWxRlzrBBCJ5o6IQsqKLUCa-yYzKxxkghtJM4sSZ3jhGInDOYF1G-54URSTbZQazQe2W0UaYZNopNcEPCRYFZwy8BsllhpJHNyB-HGG8oELXE_0mKgGtLYiwIHKu9AhZknzu2gk48lrzMhjb9upo2L1bdoUJDo_1q237wOFbZiqVIqPAUlIXz3f1aP0GLnoXurbq_ubvbQUupJLX4iDNtHrWoytQdQlVT6sI66dye72dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+algorithms+for+robust+submodular+maximization&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Yang%2C+Ruiqi&rft.au=Xu%2C+Dachuan&rft.au=Cheng%2C+Yukun&rft.au=Wang%2C+Yishui&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=290&rft.spage=112&rft.epage=122&rft_id=info:doi/10.1016%2Fj.dam.2020.05.001&rft.externalDocID=S0166218X20302419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |