Streaming algorithms for robust submodular maximization

Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the ot...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 290; pp. 112 - 122
Main Authors Yang, Ruiqi, Xu, Dachuan, Cheng, Yukun, Wang, Yishui, Zhang, Dongmei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.02.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/j.dam.2020.05.001

Cover

Loading…
Abstract Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the other is that some elements may be invalid at last. For this problem, which is called streaming robust submodular maximization (SRSM) problem, we explore an approximation algorithm, returning a subset S from the ground set V with a limit size, such that it represents V and is robust to a broken set E well. Our algorithm only makes one pass over data, and achieves a constant-factor 0.1224 approximation guarantee, independent of the cardinality constraint parameter k. Based on the algorithm for SRSM problem, we continue to discuss this problem over sliding windows, in which we are asked to obtain a proper set that only considers the last W elements, and derive an algorithm with a constant (0.0612−ϵ)-approximation guarantee. At last we also propose numerical experiments on some applications to well demonstrate our algorithm for SRSM problem over sliding windows.
AbstractList Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality constraint k for large scale scenarios applications under two combined settings. One is that all elements arrive in a streaming fashion, and the other is that some elements may be invalid at last. For this problem, which is called streaming robust submodular maximization (SRSM) problem, we explore an approximation algorithm, returning a subset S from the ground set V with a limit size, such that it represents V and is robust to a broken set E well. Our algorithm only makes one pass over data, and achieves a constant-factor 0.1224 approximation guarantee, independent of the cardinality constraint parameter k. Based on the algorithm for SRSM problem, we continue to discuss this problem over sliding windows, in which we are asked to obtain a proper set that only considers the last W elements, and derive an algorithm with a constant (0.0612−ϵ)-approximation guarantee. At last we also propose numerical experiments on some applications to well demonstrate our algorithm for SRSM problem over sliding windows.
Author Cheng, Yukun
Zhang, Dongmei
Wang, Yishui
Yang, Ruiqi
Xu, Dachuan
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Yang
  fullname: Yang, Ruiqi
  organization: Department of Operations Research and Scientific Computing, Beijing University of Technology, Beijing 100124, PR China
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  organization: Department of Operations Research and Scientific Computing, Beijing University of Technology, Beijing 100124, PR China
– sequence: 3
  givenname: Yukun
  surname: Cheng
  fullname: Cheng, Yukun
  email: ykcheng@amss.ac.cn
  organization: School of Business, Suzhou Key Laboratory for Big Data and Information Service, Suzhou University of Science and Technology, Suzhou 215009, PR China
– sequence: 4
  givenname: Yishui
  surname: Wang
  fullname: Wang, Yishui
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
– sequence: 5
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
  organization: School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, PR China
BookMark eNp9kMtKxDAUhoOM4MzoA7gruG49SS9JcSWDNxhwoYK7kKbJmNI2Y5KK-vRmHFcuZnU48H3n8i_QbLSjQugcQ4YBV5dd1oohI0AggzIDwEdojhklaUUpnqF5ZKqUYPZ6ghbedxCJ2M0RfQpOicGMm0T0G-tMeBt8oq1LnG0mHxI_NYNtp164ZBCfZjDfIhg7nqJjLXqvzv7qEr3c3jyv7tP1493D6nqdypyUIa1KXbaMNbgpNKvbghWFYtCALutKSV3nrJE1VConWtO8AM0k0LbOiZA0r4smX6KL_dyts--T8oF3dnJjXMlJwWqIz-c0UnRPSWe9d0pzacLvncEJ03MMfJcS73hMie9S4lDymEE08T9z68wg3NdB52rvqPj4h1GOe2nUKFVrnJKBt9YcsH8AOY2Bcw
CitedBy_id crossref_primary_10_1111_itor_13608
Cites_doi 10.1145/2187836.2187907
10.1145/285055.285059
10.1109/FOCS.2007.55
10.1007/978-3-319-33461-5_26
10.1145/2623330.2623637
10.1007/s10107-015-0900-7
10.1137/S0097539701398363
10.1145/3038912.3052699
10.1145/956750.956769
10.1145/2809814
10.1007/BF01588971
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Feb 15, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dam.2020.05.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 122
ExternalDocumentID 10_1016_j_dam_2020_05_001
S0166218X20302419
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-65f5d88b1b4f89d4844e80b0f596ecf938bc906e32ff7340f8c07d932ac7394b3
IEDL.DBID IXB
ISSN 0166-218X
IngestDate Mon Jun 30 05:40:19 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 05:41:52 EDT 2025
Sat Apr 29 23:34:27 EDT 2023
IsPeerReviewed true
IsScholarly true
Keywords Streaming robust submodular maximization
Sliding windows
Performance guarantee
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-65f5d88b1b4f89d4844e80b0f596ecf938bc906e32ff7340f8c07d932ac7394b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2489010137
PQPubID 2045487
PageCount 11
ParticipantIDs proquest_journals_2489010137
crossref_citationtrail_10_1016_j_dam_2020_05_001
crossref_primary_10_1016_j_dam_2020_05_001
elsevier_sciencedirect_doi_10_1016_j_dam_2020_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Discrete Applied Mathematics
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References R. Gomes, A. Krause, Budgeted nonparametric learning from data streams, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 391–398.
I. Bogunovic, S. Mitrović, J. Scarlett, V. Cevher, Robust submodular maximization: A non-uniform partitioning approach, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 508–516.
Nemhauser, Wolsey, Fisher (b17) 1978; 14
Kumar, Moseley, Vassilvitskii, Vattani (b13) 2015; 2
Feige (b8) 1998; 45
Datar, Gionis, Indyk, Motwani (b6) 2002; 31
Krause, McMahan, Guestrin, Gupta (b12) 2008; 9
V. Braverman, R. Ostrovsky, Smooth histograms for sliding windows, in: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 283–293.
Mitrović, Bogunovic, Norouzi-Fard, Tarnawski (b16) 2017
H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2011, pp. 510–520.
A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, A. Krause, Streaming submodular maximization: Massive data summarization on the fly, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 671–680.
B.J. Frey, D. Dueck, Mixture modeling by affinity propagation, in: Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005, pp. 379–386.
B. Mirzasoleiman, A. Karbasi, R. Sarkar, A. Krause, Distributed submodular maximization: Identifying representative elements in massive data, in: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, 2013, pp. 2049–2057.
Chakrabarti, Kale (b5) 2015; 154
A. Epasto, S. Lattanzi, S. Vassilvitskii, M. Zadimoghaddam, Submodular optimization over sliding windows, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 421–430.
D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146.
J.B. Orlin, A.S. Schulz, R. Udwani, Robust monotone submodular function maximization, in: Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization, 2016, pp. 312–324.
E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in information diffusion, in: Proceedings of the 21st International Conference on World Wide Web, 2012, pp. 519–528.
10.1016/j.dam.2020.05.001_b3
Nemhauser (10.1016/j.dam.2020.05.001_b17) 1978; 14
10.1016/j.dam.2020.05.001_b4
10.1016/j.dam.2020.05.001_b1
10.1016/j.dam.2020.05.001_b2
10.1016/j.dam.2020.05.001_b10
Datar (10.1016/j.dam.2020.05.001_b6) 2002; 31
10.1016/j.dam.2020.05.001_b11
10.1016/j.dam.2020.05.001_b9
Mitrović (10.1016/j.dam.2020.05.001_b16) 2017
10.1016/j.dam.2020.05.001_b7
10.1016/j.dam.2020.05.001_b18
Feige (10.1016/j.dam.2020.05.001_b8) 1998; 45
10.1016/j.dam.2020.05.001_b14
10.1016/j.dam.2020.05.001_b15
Chakrabarti (10.1016/j.dam.2020.05.001_b5) 2015; 154
Krause (10.1016/j.dam.2020.05.001_b12) 2008; 9
Kumar (10.1016/j.dam.2020.05.001_b13) 2015; 2
References_xml – volume: 14
  start-page: 265
  year: 1978
  end-page: 294
  ident: b17
  article-title: An analysis of approximations for maximizing submodular set functions–I
  publication-title: Math. Program.
– reference: E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in information diffusion, in: Proceedings of the 21st International Conference on World Wide Web, 2012, pp. 519–528.
– year: 2017
  ident: b16
  article-title: Streaming robust submodular maximization: A partitioned thresholding approach
– reference: J.B. Orlin, A.S. Schulz, R. Udwani, Robust monotone submodular function maximization, in: Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization, 2016, pp. 312–324.
– reference: D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146.
– volume: 45
  start-page: 634
  year: 1998
  end-page: 652
  ident: b8
  article-title: A threshold of ln n for approximating set cover
  publication-title: J. ACM
– reference: I. Bogunovic, S. Mitrović, J. Scarlett, V. Cevher, Robust submodular maximization: A non-uniform partitioning approach, in: Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 508–516.
– volume: 9
  start-page: 2761
  year: 2008
  end-page: 2801
  ident: b12
  article-title: Robust submodular observation selection
  publication-title: J. Mach. Learn. Res.
– reference: A. Epasto, S. Lattanzi, S. Vassilvitskii, M. Zadimoghaddam, Submodular optimization over sliding windows, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 421–430.
– volume: 2
  year: 2015
  ident: b13
  article-title: Fast greedy algorithms in mapreduce and streaming
  publication-title: ACM Trans. Parallel Comput.
– reference: R. Gomes, A. Krause, Budgeted nonparametric learning from data streams, in: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010, pp. 391–398.
– reference: B. Mirzasoleiman, A. Karbasi, R. Sarkar, A. Krause, Distributed submodular maximization: Identifying representative elements in massive data, in: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, 2013, pp. 2049–2057.
– volume: 154
  start-page: 225
  year: 2015
  end-page: 247
  ident: b5
  article-title: Submodular maximization meets streaming: matchings, matroids, and more
  publication-title: Math. Program.
– volume: 31
  start-page: 1794
  year: 2002
  end-page: 1813
  ident: b6
  article-title: Maintaining stream statistics over sliding windows
  publication-title: SIAM J. Comput.
– reference: A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, A. Krause, Streaming submodular maximization: Massive data summarization on the fly, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 671–680.
– reference: V. Braverman, R. Ostrovsky, Smooth histograms for sliding windows, in: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 283–293.
– reference: H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2011, pp. 510–520.
– reference: B.J. Frey, D. Dueck, Mixture modeling by affinity propagation, in: Proceedings of the 18th International Conference on Neural Information Processing Systems, 2005, pp. 379–386.
– ident: 10.1016/j.dam.2020.05.001_b2
  doi: 10.1145/2187836.2187907
– volume: 45
  start-page: 634
  year: 1998
  ident: 10.1016/j.dam.2020.05.001_b8
  article-title: A threshold of ln n for approximating set cover
  publication-title: J. ACM
  doi: 10.1145/285055.285059
– ident: 10.1016/j.dam.2020.05.001_b4
  doi: 10.1109/FOCS.2007.55
– ident: 10.1016/j.dam.2020.05.001_b18
  doi: 10.1007/978-3-319-33461-5_26
– ident: 10.1016/j.dam.2020.05.001_b1
  doi: 10.1145/2623330.2623637
– ident: 10.1016/j.dam.2020.05.001_b9
– ident: 10.1016/j.dam.2020.05.001_b3
– volume: 154
  start-page: 225
  year: 2015
  ident: 10.1016/j.dam.2020.05.001_b5
  article-title: Submodular maximization meets streaming: matchings, matroids, and more
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0900-7
– year: 2017
  ident: 10.1016/j.dam.2020.05.001_b16
– volume: 31
  start-page: 1794
  year: 2002
  ident: 10.1016/j.dam.2020.05.001_b6
  article-title: Maintaining stream statistics over sliding windows
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701398363
– ident: 10.1016/j.dam.2020.05.001_b7
  doi: 10.1145/3038912.3052699
– ident: 10.1016/j.dam.2020.05.001_b11
  doi: 10.1145/956750.956769
– volume: 2
  issue: 3
  year: 2015
  ident: 10.1016/j.dam.2020.05.001_b13
  article-title: Fast greedy algorithms in mapreduce and streaming
  publication-title: ACM Trans. Parallel Comput.
  doi: 10.1145/2809814
– ident: 10.1016/j.dam.2020.05.001_b14
– ident: 10.1016/j.dam.2020.05.001_b15
– volume: 14
  start-page: 265
  year: 1978
  ident: 10.1016/j.dam.2020.05.001_b17
  article-title: An analysis of approximations for maximizing submodular set functions–I
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 9
  start-page: 2761
  year: 2008
  ident: 10.1016/j.dam.2020.05.001_b12
  article-title: Robust submodular observation selection
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.dam.2020.05.001_b10
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.2883906
Snippet Submodular maximization is well studied in the fields of data mining and machine learning. We study the submodular maximization subject to a cardinality...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Algorithms
Approximation
Data mining
Machine learning
Maximization
Optimization
Performance guarantee
Robustness (mathematics)
Sliding
Sliding windows
Streaming robust submodular maximization
Title Streaming algorithms for robust submodular maximization
URI https://dx.doi.org/10.1016/j.dam.2020.05.001
https://www.proquest.com/docview/2489010137
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLuWAWEWhVDlwQgp1Yjuxj6UCla1CQKXerNixIaibmlTixLdjpw6bUA-cIkWxFY3teZPMmzcAnMRSKyxCc5Agg-YDJYl8GsjQR0kMUyJIIFNbKHzXi7p9fD0ggxXQqWphLK3S-f6FTy-9tbvTctZsTbOs9WiClcgA1CA0-9TgkC3iQ5iWRXyD828SUlYfrVb9dPnKMRisxU75O_LtPFXOs2R_pYktUw9hKevpOsb8gVq__HcJSpdbYNNFk1578cLbYEWNd8DG3acUa74LYpt3TkYGobxk-DyZZcXLKPdMqOrNJmKeF15uEHGSWjaqN0respErzNwD_cuLp07Xd90SfIlCUvgR0SSlVAQCa8pSTDFWFAqoCYuU1AxRIRmMFAq1jhGGmkoYpyZ8S2SMGBZoH6yNJ2N1ADxBoAxEkFBkbESJorEiZtooUEwyolkdwMoaXDopcdvRYsgrztgrNwbk1oAcEsubq4PTzyHThY7GsodxZWL-YzNw4-eXDWtUy8HdScx5iKlloAQoPvzfrEegFloei20CQxpgrZjN1bEJRArRBKtn70ETrLc7D7f39np10-01y_33Ae5Q2tI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3PXgSyqZN0iRHFWV9rBcV9haaNNGVfci2C_58J93UF-LBa2mGMp3MN22--QahY26cpTqFjYQlhg-UPItFYtKY5BwXTLPEFL5RuHuXdR7pdY_15tB50wvjaZUh989yep2tw5V28Gb7td9v30OxkgFA9VKIU8AhOY8WoBrgfn7DVe_si4aUF0hbav66fB4yANjSIP2dxd5Qc-hZ07-K3Pepp7jW9QwjY36BrR8JvEaly1W0EsrJ6HT2xGtozo7W0XL3Q4u13EDcHzznQ4CoKB88jSf96nlYRlCrRpOxnpZVVAIkjgtPR42G-Vt_GDozN9Hj5cXDeScO4xJiQ1JWxRlzrBBCJ5o6IQsqKLUCa-yYzKxxkghtJM4sSZ3jhGInDOYF1G-54URSTbZQazQe2W0UaYZNopNcEPCRYFZwy8BsllhpJHNyB-HGG8oELXE_0mKgGtLYiwIHKu9AhZknzu2gk48lrzMhjb9upo2L1bdoUJDo_1q237wOFbZiqVIqPAUlIXz3f1aP0GLnoXurbq_ubvbQUupJLX4iDNtHrWoytQdQlVT6sI66dye72dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+algorithms+for+robust+submodular+maximization&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Yang%2C+Ruiqi&rft.au=Xu%2C+Dachuan&rft.au=Cheng%2C+Yukun&rft.au=Wang%2C+Yishui&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=290&rft.spage=112&rft.epage=122&rft_id=info:doi/10.1016%2Fj.dam.2020.05.001&rft.externalDocID=S0166218X20302419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon