Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach
•State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approac...
Saved in:
Published in | Applied Mathematical Modelling Vol. 70; pp. 532 - 544 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.06.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0307-904X 1088-8691 0307-904X |
DOI | 10.1016/j.apm.2019.01.031 |
Cover
Abstract | •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approach.
An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity. |
---|---|
AbstractList | •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approach.
An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity. An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity. |
Author | Wang, Youren He, Zhijia Yang, Liwen Chen, Zewang Zhao, Xiaobing |
Author_xml | – sequence: 1 givenname: Zewang surname: Chen fullname: Chen, Zewang email: czwnuaa306@163.com – sequence: 2 givenname: Liwen surname: Yang fullname: Yang, Liwen – sequence: 3 givenname: Xiaobing surname: Zhao fullname: Zhao, Xiaobing – sequence: 4 givenname: Youren surname: Wang fullname: Wang, Youren – sequence: 5 givenname: Zhijia surname: He fullname: He, Zhijia |
BookMark | eNp9UMtOwzAQtFCRaAsfwC0S5wTbSfMQJ1TxEpV6AYmbtXU21FXiBNut1L9nSzkgDj3t7uzMrmYmbGR7i4xdC54ILvLbTQJDl0guqoSLhKfijI15you44tnH6E9_wSbebzjnM5rGzCxtayxGPkDAqG8ivQb3iRH6YDoIprcHcGHiQ7eCENDtqXqsIwLARqYbXL-jcWu9Rhuoe4W2o01jWmJHMBAB9PqSnTfQerz6rVP2_vjwNn-OF8unl_n9ItapnIU4l5jzQstaZKUoV40GkGkNWGaVnGWV4LrBooBS54RWEhFXqGUGkAHtyyqdspvjXXr7tSUfatNvnaWXSspU5jmXVKdMHFna9d47bNTgyLDbK8HVIVG1UZSoOiSquFCUKGmKfxptwk9GwYFpTyrvjkok4zuDTnlt0GqsjUMdVN2bE-pvsq-Ttg |
CitedBy_id | crossref_primary_10_1016_j_est_2021_102593 crossref_primary_10_1016_j_est_2024_111908 crossref_primary_10_1108_COMPEL_03_2021_0113 crossref_primary_10_1016_j_est_2023_108979 crossref_primary_10_3390_en12214036 crossref_primary_10_1016_j_est_2021_103244 crossref_primary_10_1016_j_est_2022_106432 crossref_primary_10_1016_j_est_2024_111706 crossref_primary_10_3390_en16248010 crossref_primary_10_1016_j_energy_2023_129466 crossref_primary_10_1016_j_est_2022_104174 crossref_primary_10_1016_j_geits_2024_100192 crossref_primary_10_20964_2021_11_18 crossref_primary_10_1007_s00500_019_04180_3 crossref_primary_10_1016_j_egyr_2022_01_056 crossref_primary_10_3390_machines12100738 crossref_primary_10_1016_j_seta_2023_103457 crossref_primary_10_1109_ACCESS_2019_2936822 crossref_primary_10_1088_1742_6596_1575_1_012220 crossref_primary_10_1016_j_rser_2020_110274 crossref_primary_10_3390_en14113284 crossref_primary_10_1002_cta_3166 crossref_primary_10_1109_ACCESS_2020_3032752 crossref_primary_10_1016_j_est_2023_108777 crossref_primary_10_1016_j_jpowsour_2020_228767 crossref_primary_10_1016_j_scs_2022_104004 crossref_primary_10_3390_vehicles3030025 crossref_primary_10_1016_j_apenergy_2024_124190 crossref_primary_10_1016_j_dsp_2022_103788 crossref_primary_10_1016_j_est_2025_115524 crossref_primary_10_1016_j_est_2023_107081 crossref_primary_10_1016_j_jpowsour_2024_235813 crossref_primary_10_3390_su13095046 crossref_primary_10_1016_j_est_2021_103518 crossref_primary_10_1016_j_egyr_2021_08_113 crossref_primary_10_1016_j_jelechem_2022_116011 crossref_primary_10_54097_ije_v3i1_10144 crossref_primary_10_1002_cta_3356 crossref_primary_10_1016_j_energy_2021_120630 crossref_primary_10_1016_j_est_2022_104307 crossref_primary_10_1016_j_geits_2024_100207 crossref_primary_10_1007_s42154_021_00162_0 crossref_primary_10_1016_j_est_2023_109977 crossref_primary_10_1016_j_jclepro_2019_119787 crossref_primary_10_1016_j_est_2021_102587 crossref_primary_10_1002_er_5687 crossref_primary_10_1002_er_6930 crossref_primary_10_1016_j_jpowsour_2020_228450 crossref_primary_10_3390_batteries9100509 crossref_primary_10_1080_15325008_2023_2201285 crossref_primary_10_3390_wevj13090159 crossref_primary_10_3390_en17225722 crossref_primary_10_1002_er_5758 crossref_primary_10_1016_j_enconman_2022_116330 crossref_primary_10_1016_j_eswa_2022_117192 crossref_primary_10_20964_2020_03_47 crossref_primary_10_1109_ACCESS_2022_3148528 crossref_primary_10_1177_01423312211029489 crossref_primary_10_1016_j_rser_2020_110015 crossref_primary_10_3390_jmse13010126 crossref_primary_10_3390_math11092215 crossref_primary_10_1016_j_ymssp_2023_110148 crossref_primary_10_1002_er_8541 crossref_primary_10_1016_j_apenergy_2023_121992 crossref_primary_10_3389_fenrg_2022_863285 crossref_primary_10_3390_electronics10151859 crossref_primary_10_1007_s43236_022_00525_8 crossref_primary_10_1016_j_est_2023_109244 crossref_primary_10_1002_adts_202301022 crossref_primary_10_1016_j_est_2023_109689 crossref_primary_10_1115_1_4051254 crossref_primary_10_2139_ssrn_4145294 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_1007_s43236_021_00376_9 crossref_primary_10_1016_j_est_2022_104124 crossref_primary_10_1016_j_est_2024_110806 crossref_primary_10_1016_j_est_2025_116198 crossref_primary_10_1080_23307706_2020_1808863 crossref_primary_10_1002_wene_507 crossref_primary_10_1016_j_camwa_2022_05_009 crossref_primary_10_1016_j_est_2025_115346 crossref_primary_10_20964_2022_07_41 crossref_primary_10_1002_ente_202100235 crossref_primary_10_1002_er_7480 crossref_primary_10_1016_j_est_2023_107296 crossref_primary_10_1016_j_est_2023_108420 crossref_primary_10_20964_2022_04_53 crossref_primary_10_1016_j_apm_2020_03_014 crossref_primary_10_1016_j_est_2021_102843 crossref_primary_10_1007_s44291_024_00031_0 crossref_primary_10_3390_batteries10050154 crossref_primary_10_1016_j_est_2023_108547 crossref_primary_10_1109_ACCESS_2024_3389969 crossref_primary_10_1016_j_est_2021_102840 crossref_primary_10_1016_j_est_2022_104007 |
Cites_doi | 10.1016/j.jpowsour.2014.02.026 10.3390/en11051211 10.1109/TIE.2013.2259779 10.1016/j.energy.2011.03.059 10.5194/ars-14-55-2016 10.1109/TSTE.2016.2574755 10.1016/j.electacta.2016.06.042 10.1016/S0378-7753(01)00560-2 10.1016/j.jprocont.2012.01.002 10.1016/j.apm.2016.01.047 10.11591/telkomnika.v11i8.2629 10.1016/j.apenergy.2013.07.008 10.1016/j.jpowsour.2014.10.036 10.1016/j.jpowsour.2014.07.016 10.1016/j.jpowsour.2014.07.103 10.1109/TIE.2010.2043035 10.1149/07212.0013ecst |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Jun 2019 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Jun 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2019.01.031 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 544 |
ExternalDocumentID | 10_1016_j_apm_2019_01_031 S0307904X19300605 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
ID | FETCH-LOGICAL-c325t-62e607c2d14818bfcaa23dae849254910cfe77a8c63da92eeebec24aa4a254893 |
IEDL.DBID | AIKHN |
ISSN | 0307-904X 1088-8691 |
IngestDate | Sat Jul 26 02:30:23 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Tue Jul 01 04:23:57 EDT 2025 Fri Feb 23 02:28:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | State of charge estimation Model adaptive Unscented Kalman filter Li-ion battery Noise adaptive |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-62e607c2d14818bfcaa23dae849254910cfe77a8c63da92eeebec24aa4a254893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2232660222 |
PQPubID | 2045280 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2232660222 crossref_primary_10_1016_j_apm_2019_01_031 crossref_citationtrail_10_1016_j_apm_2019_01_031 elsevier_sciencedirect_doi_10_1016_j_apm_2019_01_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Weng, Sun, Peng (bib0004) 2014; 258 Sun, Hu, Yuan, Li (bib0018) 2014; 36 Huangfu, Xu, Zhao, Liu, Gao (bib0001) 2018; 11 He, Dong, Pan, Long, Wang (bib0012) 2016; 211 Huang, Chen, Guibas (bib0019) 2014 Hu, Hu, Lin, Li, Jiang, Qiu, Li (bib0009) 2014; 269 Charkhgard, Farrokhi (bib0017) 2010; 57 Gholizadeh, Salmasi (bib0014) 2014; 61 Piller, Perrin, Jossen (bib0002) 2001; 96 Jansen, Vollnhals, Renner, Vergossen, John, Götze (bib0005) 2016; 14 Burgos, Saez, Orchard, Cardenas (bib0008) 2015; 274 Zhu, Sun, Rong, Liu (bib0010) 2013; 11 Mirzaee, Salahshoor (bib0021) 2012; 22 Paschero, Storti, Rizzi, Mascioli, Rizzoni (bib0011) 2016; 7 Zhang, Wei, Qi (bib0016) 2016; 40 Stroe, Knap, Swierczynski, Stanciu, Schaltz, Teodorescu (bib0006) 2016; 72 Guo, Hu, Li (bib0003) 2015 Hunt, Motloch (bib0020) 2003 Xing, He, Pecht, Tsui (bib0007) 2014; 113 Xia, Chen, Tian, Sun, Xu, Zheng (bib0015) 2014; 270 Du, Wang, Wen (bib0013) 2013 Huang (10.1016/j.apm.2019.01.031_bib0019) 2014 Gholizadeh (10.1016/j.apm.2019.01.031_bib0014) 2014; 61 Huangfu (10.1016/j.apm.2019.01.031_bib0001) 2018; 11 He (10.1016/j.apm.2019.01.031_bib0012) 2016; 211 Piller (10.1016/j.apm.2019.01.031_bib0002) 2001; 96 Du (10.1016/j.apm.2019.01.031_bib0013) 2013 Jansen (10.1016/j.apm.2019.01.031_bib0005) 2016; 14 Stroe (10.1016/j.apm.2019.01.031_bib0006) 2016; 72 Zhang (10.1016/j.apm.2019.01.031_bib0016) 2016; 40 Xing (10.1016/j.apm.2019.01.031_bib0007) 2014; 113 Weng (10.1016/j.apm.2019.01.031_bib0004) 2014; 258 Hu (10.1016/j.apm.2019.01.031_bib0009) 2014; 269 Xia (10.1016/j.apm.2019.01.031_bib0015) 2014; 270 Mirzaee (10.1016/j.apm.2019.01.031_bib0021) 2012; 22 Burgos (10.1016/j.apm.2019.01.031_bib0008) 2015; 274 Paschero (10.1016/j.apm.2019.01.031_bib0011) 2016; 7 Hunt (10.1016/j.apm.2019.01.031_bib0020) 2003 Zhu (10.1016/j.apm.2019.01.031_bib0010) 2013; 11 Guo (10.1016/j.apm.2019.01.031_bib0003) 2015 Charkhgard (10.1016/j.apm.2019.01.031_bib0017) 2010; 57 Sun (10.1016/j.apm.2019.01.031_bib0018) 2014; 36 |
References_xml | – start-page: 1458 year: 2015 end-page: 1460 ident: bib0003 article-title: The SOC estimation of battery based on the method of improved ampere-hour and Kalman filter publication-title: Industrial Electronics and Applications – volume: 57 start-page: 4178 year: 2010 end-page: 4187 ident: bib0017 article-title: State-of-charge estimation for lithium-ion batteries using neural networks and EKF publication-title: IEEE Trans. Ind. Electron. – volume: 72 start-page: 13 year: 2016 end-page: 22 ident: bib0006 article-title: An electrochemical impedance spectroscopy study on a lithium sulfur pouch cell publication-title: ECS Trans. – volume: 270 start-page: 359 year: 2014 end-page: 366 ident: bib0015 article-title: A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer publication-title: J. Power Sources – start-page: 64 year: 2014 end-page: 72 ident: bib0019 article-title: Scalable semidefinite relaxation for maximum a posterior estimation publication-title: International Conference on Machine Learning – volume: 258 start-page: 228 year: 2014 end-page: 237 ident: bib0004 article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring publication-title: J. Power Sources – volume: 96 start-page: 113 year: 2001 end-page: 120 ident: bib0002 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources – volume: 36 start-page: 3531 year: 2014 end-page: 3540 ident: bib0018 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy – volume: 211 start-page: 101 year: 2016 end-page: 109 ident: bib0012 article-title: State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF publication-title: Electrochim. Acta – volume: 22 start-page: 626 year: 2012 end-page: 634 ident: bib0021 article-title: Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller publication-title: J. Process Control – volume: 274 start-page: 355 year: 2015 end-page: 366 ident: bib0008 article-title: Fuzzy modelling for the state-of-charge estimation of lead-acid batteries publication-title: J. Power Sources – volume: 11 start-page: 4208 year: 2013 end-page: 4213 ident: bib0010 article-title: SOC EKF estimation based on a second-order LiFePO4 battery model publication-title: Telkomnika – year: 2003 ident: bib0020 publication-title: Freedom Car Battery Test Manual for Power-Assist Hybrid Electric Vehicles – volume: 14 start-page: 55 year: 2016 end-page: 62 ident: bib0005 article-title: Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine publication-title: Adv. Radio Sci. – volume: 269 start-page: 682 year: 2014 end-page: 693 ident: bib0009 article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression publication-title: J. Power Sources – volume: 11 start-page: 1211 year: 2018 ident: bib0001 article-title: A novel battery state of charge estimation method based on a super-twisting sliding mode observer publication-title: Energies – volume: 113 start-page: 106 year: 2014 end-page: 115 ident: bib0007 article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures publication-title: Appl. Energy – volume: 7 start-page: 1695 year: 2016 end-page: 1702 ident: bib0011 article-title: A novel mechanical analogy-based battery model for SOC estimation using a multicell EKF publication-title: IEEE Trans. Sustainable Energy – start-page: 580 year: 2013 end-page: 585 ident: bib0013 article-title: Li-ion battery SOC estimation using particle filter based on an equivalent circuit model publication-title: 2013 10th IEEE International Conference on Control and Automation (ICCA) – volume: 61 start-page: 1335 year: 2014 end-page: 1344 ident: bib0014 article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model publication-title: IEEE Trans. Ind. Electron. – volume: 40 start-page: 6040 year: 2016 end-page: 6050 ident: bib0016 article-title: State of charge estimation of LiFePO4 batteries based on online parameter identification publication-title: Appl. Math. Modell. – start-page: 64 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0019 article-title: Scalable semidefinite relaxation for maximum a posterior estimation – volume: 258 start-page: 228 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0004 article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.026 – volume: 11 start-page: 1211 issue: 5 year: 2018 ident: 10.1016/j.apm.2019.01.031_bib0001 article-title: A novel battery state of charge estimation method based on a super-twisting sliding mode observer publication-title: Energies doi: 10.3390/en11051211 – start-page: 580 year: 2013 ident: 10.1016/j.apm.2019.01.031_bib0013 article-title: Li-ion battery SOC estimation using particle filter based on an equivalent circuit model – volume: 61 start-page: 1335 issue: 3 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0014 article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2259779 – volume: 36 start-page: 3531 issue: 5 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0018 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – volume: 14 start-page: 55 issue: C year: 2016 ident: 10.1016/j.apm.2019.01.031_bib0005 article-title: Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine publication-title: Adv. Radio Sci. doi: 10.5194/ars-14-55-2016 – volume: 7 start-page: 1695 issue: 4 year: 2016 ident: 10.1016/j.apm.2019.01.031_bib0011 article-title: A novel mechanical analogy-based battery model for SOC estimation using a multicell EKF publication-title: IEEE Trans. Sustainable Energy doi: 10.1109/TSTE.2016.2574755 – volume: 211 start-page: 101 year: 2016 ident: 10.1016/j.apm.2019.01.031_bib0012 article-title: State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.042 – volume: 96 start-page: 113 issue: 1 year: 2001 ident: 10.1016/j.apm.2019.01.031_bib0002 article-title: Methods for state-of-charge determination and their applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00560-2 – volume: 22 start-page: 626 issue: 3 year: 2012 ident: 10.1016/j.apm.2019.01.031_bib0021 article-title: Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.01.002 – volume: 40 start-page: 6040 issue: 11–12 year: 2016 ident: 10.1016/j.apm.2019.01.031_bib0016 article-title: State of charge estimation of LiFePO4 batteries based on online parameter identification publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2016.01.047 – volume: 11 start-page: 4208 issue: 8 year: 2013 ident: 10.1016/j.apm.2019.01.031_bib0010 article-title: SOC EKF estimation based on a second-order LiFePO4 battery model publication-title: Telkomnika doi: 10.11591/telkomnika.v11i8.2629 – start-page: 1458 year: 2015 ident: 10.1016/j.apm.2019.01.031_bib0003 article-title: The SOC estimation of battery based on the method of improved ampere-hour and Kalman filter – volume: 113 start-page: 106 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0007 article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.07.008 – volume: 274 start-page: 355 year: 2015 ident: 10.1016/j.apm.2019.01.031_bib0008 article-title: Fuzzy modelling for the state-of-charge estimation of lead-acid batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.036 – volume: 269 start-page: 682 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0009 article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.016 – year: 2003 ident: 10.1016/j.apm.2019.01.031_bib0020 – volume: 270 start-page: 359 year: 2014 ident: 10.1016/j.apm.2019.01.031_bib0015 article-title: A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.103 – volume: 57 start-page: 4178 issue: 12 year: 2010 ident: 10.1016/j.apm.2019.01.031_bib0017 article-title: State-of-charge estimation for lithium-ion batteries using neural networks and EKF publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2043035 – volume: 72 start-page: 13 issue: 12 year: 2016 ident: 10.1016/j.apm.2019.01.031_bib0006 article-title: An electrochemical impedance spectroscopy study on a lithium sulfur pouch cell publication-title: ECS Trans. doi: 10.1149/07212.0013ecst |
SSID | ssj0005904 ssj0012860 |
Score | 2.5473013 |
Snippet | •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive... An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 532 |
SubjectTerms | Adaptive algorithms Adaptive filters Algorithms Kalman filters Li-ion battery Lithium-ion batteries Mathematical models Model adaptive Noise adaptive Parameter identification Parameter sensitivity Robustness Sensitivity analysis State of charge State of charge estimation Unscented Kalman filter |
Title | Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach |
URI | https://dx.doi.org/10.1016/j.apm.2019.01.031 https://www.proquest.com/docview/2232660222 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrBmHLghFTWtGm7HDdgGs8LTNotSttUKhrdxLYDF347dtoOgQQHbonTRJXt2k5jfwE441mYCRlJx0jPOCIwgSOj2HOkwMcx5g8zTfXOD4_hcCRux8F4DS7rWhhKq6xsf2nTrbWuKJ2Km51ZnneeSD2lK8YYghCqSLAOG54vw6ABG72bu-HjV6aHdEWNh0gT6sNNm-alZ1SPzqUF7_T5b-7ph6G23mewA9tV2Mh65Zvtwpop9mDrYYW5Ot-HvEQNZbZEiE0zZkGQDCMYjbI-kYj3uUOt2MJqvjNyYilDgi5Ybv8vYHdZWIgnbN3pySuOZDmdqbMaf_wARoPr58uhU12k4CS-Fyyc0DOhGyVeinsf3o2zRGvPT7XpEjKhwIAhyUwU6W4SIhVlZkiyntBaaBzHiOYQGsW0MEfAROCmnIe4S_J9IXAJbCSpiytJHgdZ1AS35p9KKpRxuuxioup0sheFLFfEcuVyhSxvwvlqyqyE2PjrYVELRX3TE4Uu4K9prVqAqvpI5wojI1RG2vEe_2_VE9ikXpk51oLG4m1pTjFGWcRtWL_44G3UxP5Vf9CuNBKpN-P-J_DX58s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFMMBuTACalaH2m7HGFi2tjjwibtFqVtIhWNbmLbgX-PnTZDIMGBW-o8VNmu7TT2F0LuPB1pxmPuKO4rh4UqdHic-A5nMBxi_khLrHcejaPelD3PwlmNdGwtDKZVVra_tOnGWleUVsXN1jLPWy-ontxlMwhBEFUk3CG7EA1ECKDfnz1-5Xlwl1k0RBxujzZNkpdcYjW6xw10Z-D95px-mGnje7pH5LAKGulD-V7HpKaKE3Iw2iKurk5JXmKGUlMgRBeaGggkRRFEo6xOROIwd7CVGFDND4ouLKNAkAXNzd8FeNwUBuAJWgM5f4MeneOJOrXo42dk2n2adHpOdY2CkwZ-uHYiX0VunPoZ7Hy8dqJTKf0gk6qNuIQMwoVUqziW7TQCKkhMoVx9JiWT0A_xzDmpF4tCXRDKQjfzvAj2SEHAGCwBjTRzYSXuJaGOG8S1_BNphTGOV13MhU0mexXAcoEsF64ngOUNcr-dsiwBNv4azKxQxDctEeAA_prWtAIU1Se6EhAXgSrifvfyf6vekr3eZDQUw_54cEX2safMIWuS-vp9o64hWlknN0YbPwFVIuYt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+state+of+charge+estimation+of+Li-ion+battery+based+on+an+improved+unscented+Kalman+filter+approach&rft.jtitle=Applied+mathematical+modelling&rft.au=Chen%2C+Zewang&rft.au=Yang%2C+Liwen&rft.au=Zhao%2C+Xiaobing&rft.au=Wang%2C+Youren&rft.date=2019-06-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=70&rft.spage=532&rft.epage=544&rft_id=info:doi/10.1016%2Fj.apm.2019.01.031&rft.externalDocID=S0307904X19300605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |