Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach

•State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approac...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 70; pp. 532 - 544
Main Authors Chen, Zewang, Yang, Liwen, Zhao, Xiaobing, Wang, Youren, He, Zhijia
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.06.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0307-904X
1088-8691
0307-904X
DOI10.1016/j.apm.2019.01.031

Cover

Abstract •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approach. An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity.
AbstractList •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive was introduced.•Experiment of sensitivity analysis was designed.•The experimental results revealed the effectiveness of the purposed approach. An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity.
An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity.
Author Wang, Youren
He, Zhijia
Yang, Liwen
Chen, Zewang
Zhao, Xiaobing
Author_xml – sequence: 1
  givenname: Zewang
  surname: Chen
  fullname: Chen, Zewang
  email: czwnuaa306@163.com
– sequence: 2
  givenname: Liwen
  surname: Yang
  fullname: Yang, Liwen
– sequence: 3
  givenname: Xiaobing
  surname: Zhao
  fullname: Zhao, Xiaobing
– sequence: 4
  givenname: Youren
  surname: Wang
  fullname: Wang, Youren
– sequence: 5
  givenname: Zhijia
  surname: He
  fullname: He, Zhijia
BookMark eNp9UMtOwzAQtFCRaAsfwC0S5wTbSfMQJ1TxEpV6AYmbtXU21FXiBNut1L9nSzkgDj3t7uzMrmYmbGR7i4xdC54ILvLbTQJDl0guqoSLhKfijI15you44tnH6E9_wSbebzjnM5rGzCxtayxGPkDAqG8ivQb3iRH6YDoIprcHcGHiQ7eCENDtqXqsIwLARqYbXL-jcWu9Rhuoe4W2o01jWmJHMBAB9PqSnTfQerz6rVP2_vjwNn-OF8unl_n9ItapnIU4l5jzQstaZKUoV40GkGkNWGaVnGWV4LrBooBS54RWEhFXqGUGkAHtyyqdspvjXXr7tSUfatNvnaWXSspU5jmXVKdMHFna9d47bNTgyLDbK8HVIVG1UZSoOiSquFCUKGmKfxptwk9GwYFpTyrvjkok4zuDTnlt0GqsjUMdVN2bE-pvsq-Ttg
CitedBy_id crossref_primary_10_1016_j_est_2021_102593
crossref_primary_10_1016_j_est_2024_111908
crossref_primary_10_1108_COMPEL_03_2021_0113
crossref_primary_10_1016_j_est_2023_108979
crossref_primary_10_3390_en12214036
crossref_primary_10_1016_j_est_2021_103244
crossref_primary_10_1016_j_est_2022_106432
crossref_primary_10_1016_j_est_2024_111706
crossref_primary_10_3390_en16248010
crossref_primary_10_1016_j_energy_2023_129466
crossref_primary_10_1016_j_est_2022_104174
crossref_primary_10_1016_j_geits_2024_100192
crossref_primary_10_20964_2021_11_18
crossref_primary_10_1007_s00500_019_04180_3
crossref_primary_10_1016_j_egyr_2022_01_056
crossref_primary_10_3390_machines12100738
crossref_primary_10_1016_j_seta_2023_103457
crossref_primary_10_1109_ACCESS_2019_2936822
crossref_primary_10_1088_1742_6596_1575_1_012220
crossref_primary_10_1016_j_rser_2020_110274
crossref_primary_10_3390_en14113284
crossref_primary_10_1002_cta_3166
crossref_primary_10_1109_ACCESS_2020_3032752
crossref_primary_10_1016_j_est_2023_108777
crossref_primary_10_1016_j_jpowsour_2020_228767
crossref_primary_10_1016_j_scs_2022_104004
crossref_primary_10_3390_vehicles3030025
crossref_primary_10_1016_j_apenergy_2024_124190
crossref_primary_10_1016_j_dsp_2022_103788
crossref_primary_10_1016_j_est_2025_115524
crossref_primary_10_1016_j_est_2023_107081
crossref_primary_10_1016_j_jpowsour_2024_235813
crossref_primary_10_3390_su13095046
crossref_primary_10_1016_j_est_2021_103518
crossref_primary_10_1016_j_egyr_2021_08_113
crossref_primary_10_1016_j_jelechem_2022_116011
crossref_primary_10_54097_ije_v3i1_10144
crossref_primary_10_1002_cta_3356
crossref_primary_10_1016_j_energy_2021_120630
crossref_primary_10_1016_j_est_2022_104307
crossref_primary_10_1016_j_geits_2024_100207
crossref_primary_10_1007_s42154_021_00162_0
crossref_primary_10_1016_j_est_2023_109977
crossref_primary_10_1016_j_jclepro_2019_119787
crossref_primary_10_1016_j_est_2021_102587
crossref_primary_10_1002_er_5687
crossref_primary_10_1002_er_6930
crossref_primary_10_1016_j_jpowsour_2020_228450
crossref_primary_10_3390_batteries9100509
crossref_primary_10_1080_15325008_2023_2201285
crossref_primary_10_3390_wevj13090159
crossref_primary_10_3390_en17225722
crossref_primary_10_1002_er_5758
crossref_primary_10_1016_j_enconman_2022_116330
crossref_primary_10_1016_j_eswa_2022_117192
crossref_primary_10_20964_2020_03_47
crossref_primary_10_1109_ACCESS_2022_3148528
crossref_primary_10_1177_01423312211029489
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_3390_jmse13010126
crossref_primary_10_3390_math11092215
crossref_primary_10_1016_j_ymssp_2023_110148
crossref_primary_10_1002_er_8541
crossref_primary_10_1016_j_apenergy_2023_121992
crossref_primary_10_3389_fenrg_2022_863285
crossref_primary_10_3390_electronics10151859
crossref_primary_10_1007_s43236_022_00525_8
crossref_primary_10_1016_j_est_2023_109244
crossref_primary_10_1002_adts_202301022
crossref_primary_10_1016_j_est_2023_109689
crossref_primary_10_1115_1_4051254
crossref_primary_10_2139_ssrn_4145294
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1007_s43236_021_00376_9
crossref_primary_10_1016_j_est_2022_104124
crossref_primary_10_1016_j_est_2024_110806
crossref_primary_10_1016_j_est_2025_116198
crossref_primary_10_1080_23307706_2020_1808863
crossref_primary_10_1002_wene_507
crossref_primary_10_1016_j_camwa_2022_05_009
crossref_primary_10_1016_j_est_2025_115346
crossref_primary_10_20964_2022_07_41
crossref_primary_10_1002_ente_202100235
crossref_primary_10_1002_er_7480
crossref_primary_10_1016_j_est_2023_107296
crossref_primary_10_1016_j_est_2023_108420
crossref_primary_10_20964_2022_04_53
crossref_primary_10_1016_j_apm_2020_03_014
crossref_primary_10_1016_j_est_2021_102843
crossref_primary_10_1007_s44291_024_00031_0
crossref_primary_10_3390_batteries10050154
crossref_primary_10_1016_j_est_2023_108547
crossref_primary_10_1109_ACCESS_2024_3389969
crossref_primary_10_1016_j_est_2021_102840
crossref_primary_10_1016_j_est_2022_104007
Cites_doi 10.1016/j.jpowsour.2014.02.026
10.3390/en11051211
10.1109/TIE.2013.2259779
10.1016/j.energy.2011.03.059
10.5194/ars-14-55-2016
10.1109/TSTE.2016.2574755
10.1016/j.electacta.2016.06.042
10.1016/S0378-7753(01)00560-2
10.1016/j.jprocont.2012.01.002
10.1016/j.apm.2016.01.047
10.11591/telkomnika.v11i8.2629
10.1016/j.apenergy.2013.07.008
10.1016/j.jpowsour.2014.10.036
10.1016/j.jpowsour.2014.07.016
10.1016/j.jpowsour.2014.07.103
10.1109/TIE.2010.2043035
10.1149/07212.0013ecst
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Jun 2019
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Jun 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.01.031
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 544
ExternalDocumentID 10_1016_j_apm_2019_01_031
S0307904X19300605
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-62e607c2d14818bfcaa23dae849254910cfe77a8c63da92eeebec24aa4a254893
IEDL.DBID AIKHN
ISSN 0307-904X
1088-8691
IngestDate Sat Jul 26 02:30:23 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Tue Jul 01 04:23:57 EDT 2025
Fri Feb 23 02:28:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords State of charge estimation
Model adaptive
Unscented Kalman filter
Li-ion battery
Noise adaptive
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-62e607c2d14818bfcaa23dae849254910cfe77a8c63da92eeebec24aa4a254893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2232660222
PQPubID 2045280
PageCount 13
ParticipantIDs proquest_journals_2232660222
crossref_primary_10_1016_j_apm_2019_01_031
crossref_citationtrail_10_1016_j_apm_2019_01_031
elsevier_sciencedirect_doi_10_1016_j_apm_2019_01_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Weng, Sun, Peng (bib0004) 2014; 258
Sun, Hu, Yuan, Li (bib0018) 2014; 36
Huangfu, Xu, Zhao, Liu, Gao (bib0001) 2018; 11
He, Dong, Pan, Long, Wang (bib0012) 2016; 211
Huang, Chen, Guibas (bib0019) 2014
Hu, Hu, Lin, Li, Jiang, Qiu, Li (bib0009) 2014; 269
Charkhgard, Farrokhi (bib0017) 2010; 57
Gholizadeh, Salmasi (bib0014) 2014; 61
Piller, Perrin, Jossen (bib0002) 2001; 96
Jansen, Vollnhals, Renner, Vergossen, John, Götze (bib0005) 2016; 14
Burgos, Saez, Orchard, Cardenas (bib0008) 2015; 274
Zhu, Sun, Rong, Liu (bib0010) 2013; 11
Mirzaee, Salahshoor (bib0021) 2012; 22
Paschero, Storti, Rizzi, Mascioli, Rizzoni (bib0011) 2016; 7
Zhang, Wei, Qi (bib0016) 2016; 40
Stroe, Knap, Swierczynski, Stanciu, Schaltz, Teodorescu (bib0006) 2016; 72
Guo, Hu, Li (bib0003) 2015
Hunt, Motloch (bib0020) 2003
Xing, He, Pecht, Tsui (bib0007) 2014; 113
Xia, Chen, Tian, Sun, Xu, Zheng (bib0015) 2014; 270
Du, Wang, Wen (bib0013) 2013
Huang (10.1016/j.apm.2019.01.031_bib0019) 2014
Gholizadeh (10.1016/j.apm.2019.01.031_bib0014) 2014; 61
Huangfu (10.1016/j.apm.2019.01.031_bib0001) 2018; 11
He (10.1016/j.apm.2019.01.031_bib0012) 2016; 211
Piller (10.1016/j.apm.2019.01.031_bib0002) 2001; 96
Du (10.1016/j.apm.2019.01.031_bib0013) 2013
Jansen (10.1016/j.apm.2019.01.031_bib0005) 2016; 14
Stroe (10.1016/j.apm.2019.01.031_bib0006) 2016; 72
Zhang (10.1016/j.apm.2019.01.031_bib0016) 2016; 40
Xing (10.1016/j.apm.2019.01.031_bib0007) 2014; 113
Weng (10.1016/j.apm.2019.01.031_bib0004) 2014; 258
Hu (10.1016/j.apm.2019.01.031_bib0009) 2014; 269
Xia (10.1016/j.apm.2019.01.031_bib0015) 2014; 270
Mirzaee (10.1016/j.apm.2019.01.031_bib0021) 2012; 22
Burgos (10.1016/j.apm.2019.01.031_bib0008) 2015; 274
Paschero (10.1016/j.apm.2019.01.031_bib0011) 2016; 7
Hunt (10.1016/j.apm.2019.01.031_bib0020) 2003
Zhu (10.1016/j.apm.2019.01.031_bib0010) 2013; 11
Guo (10.1016/j.apm.2019.01.031_bib0003) 2015
Charkhgard (10.1016/j.apm.2019.01.031_bib0017) 2010; 57
Sun (10.1016/j.apm.2019.01.031_bib0018) 2014; 36
References_xml – start-page: 1458
  year: 2015
  end-page: 1460
  ident: bib0003
  article-title: The SOC estimation of battery based on the method of improved ampere-hour and Kalman filter
  publication-title: Industrial Electronics and Applications
– volume: 57
  start-page: 4178
  year: 2010
  end-page: 4187
  ident: bib0017
  article-title: State-of-charge estimation for lithium-ion batteries using neural networks and EKF
  publication-title: IEEE Trans. Ind. Electron.
– volume: 72
  start-page: 13
  year: 2016
  end-page: 22
  ident: bib0006
  article-title: An electrochemical impedance spectroscopy study on a lithium sulfur pouch cell
  publication-title: ECS Trans.
– volume: 270
  start-page: 359
  year: 2014
  end-page: 366
  ident: bib0015
  article-title: A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer
  publication-title: J. Power Sources
– start-page: 64
  year: 2014
  end-page: 72
  ident: bib0019
  article-title: Scalable semidefinite relaxation for maximum a posterior estimation
  publication-title: International Conference on Machine Learning
– volume: 258
  start-page: 228
  year: 2014
  end-page: 237
  ident: bib0004
  article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
  publication-title: J. Power Sources
– volume: 96
  start-page: 113
  year: 2001
  end-page: 120
  ident: bib0002
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
– volume: 36
  start-page: 3531
  year: 2014
  end-page: 3540
  ident: bib0018
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– volume: 211
  start-page: 101
  year: 2016
  end-page: 109
  ident: bib0012
  article-title: State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 626
  year: 2012
  end-page: 634
  ident: bib0021
  article-title: Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller
  publication-title: J. Process Control
– volume: 274
  start-page: 355
  year: 2015
  end-page: 366
  ident: bib0008
  article-title: Fuzzy modelling for the state-of-charge estimation of lead-acid batteries
  publication-title: J. Power Sources
– volume: 11
  start-page: 4208
  year: 2013
  end-page: 4213
  ident: bib0010
  article-title: SOC EKF estimation based on a second-order LiFePO4 battery model
  publication-title: Telkomnika
– year: 2003
  ident: bib0020
  publication-title: Freedom Car Battery Test Manual for Power-Assist Hybrid Electric Vehicles
– volume: 14
  start-page: 55
  year: 2016
  end-page: 62
  ident: bib0005
  article-title: Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine
  publication-title: Adv. Radio Sci.
– volume: 269
  start-page: 682
  year: 2014
  end-page: 693
  ident: bib0009
  article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression
  publication-title: J. Power Sources
– volume: 11
  start-page: 1211
  year: 2018
  ident: bib0001
  article-title: A novel battery state of charge estimation method based on a super-twisting sliding mode observer
  publication-title: Energies
– volume: 113
  start-page: 106
  year: 2014
  end-page: 115
  ident: bib0007
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl. Energy
– volume: 7
  start-page: 1695
  year: 2016
  end-page: 1702
  ident: bib0011
  article-title: A novel mechanical analogy-based battery model for SOC estimation using a multicell EKF
  publication-title: IEEE Trans. Sustainable Energy
– start-page: 580
  year: 2013
  end-page: 585
  ident: bib0013
  article-title: Li-ion battery SOC estimation using particle filter based on an equivalent circuit model
  publication-title: 2013 10th IEEE International Conference on Control and Automation (ICCA)
– volume: 61
  start-page: 1335
  year: 2014
  end-page: 1344
  ident: bib0014
  article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
  publication-title: IEEE Trans. Ind. Electron.
– volume: 40
  start-page: 6040
  year: 2016
  end-page: 6050
  ident: bib0016
  article-title: State of charge estimation of LiFePO4 batteries based on online parameter identification
  publication-title: Appl. Math. Modell.
– start-page: 64
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0019
  article-title: Scalable semidefinite relaxation for maximum a posterior estimation
– volume: 258
  start-page: 228
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0004
  article-title: A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.026
– volume: 11
  start-page: 1211
  issue: 5
  year: 2018
  ident: 10.1016/j.apm.2019.01.031_bib0001
  article-title: A novel battery state of charge estimation method based on a super-twisting sliding mode observer
  publication-title: Energies
  doi: 10.3390/en11051211
– start-page: 580
  year: 2013
  ident: 10.1016/j.apm.2019.01.031_bib0013
  article-title: Li-ion battery SOC estimation using particle filter based on an equivalent circuit model
– volume: 61
  start-page: 1335
  issue: 3
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0014
  article-title: Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2259779
– volume: 36
  start-page: 3531
  issue: 5
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0018
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 14
  start-page: 55
  issue: C
  year: 2016
  ident: 10.1016/j.apm.2019.01.031_bib0005
  article-title: Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine
  publication-title: Adv. Radio Sci.
  doi: 10.5194/ars-14-55-2016
– volume: 7
  start-page: 1695
  issue: 4
  year: 2016
  ident: 10.1016/j.apm.2019.01.031_bib0011
  article-title: A novel mechanical analogy-based battery model for SOC estimation using a multicell EKF
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2016.2574755
– volume: 211
  start-page: 101
  year: 2016
  ident: 10.1016/j.apm.2019.01.031_bib0012
  article-title: State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.042
– volume: 96
  start-page: 113
  issue: 1
  year: 2001
  ident: 10.1016/j.apm.2019.01.031_bib0002
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00560-2
– volume: 22
  start-page: 626
  issue: 3
  year: 2012
  ident: 10.1016/j.apm.2019.01.031_bib0021
  article-title: Fault diagnosis and accommodation of nonlinear systems based on multiple-model adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.01.002
– volume: 40
  start-page: 6040
  issue: 11–12
  year: 2016
  ident: 10.1016/j.apm.2019.01.031_bib0016
  article-title: State of charge estimation of LiFePO4 batteries based on online parameter identification
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2016.01.047
– volume: 11
  start-page: 4208
  issue: 8
  year: 2013
  ident: 10.1016/j.apm.2019.01.031_bib0010
  article-title: SOC EKF estimation based on a second-order LiFePO4 battery model
  publication-title: Telkomnika
  doi: 10.11591/telkomnika.v11i8.2629
– start-page: 1458
  year: 2015
  ident: 10.1016/j.apm.2019.01.031_bib0003
  article-title: The SOC estimation of battery based on the method of improved ampere-hour and Kalman filter
– volume: 113
  start-page: 106
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0007
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.008
– volume: 274
  start-page: 355
  year: 2015
  ident: 10.1016/j.apm.2019.01.031_bib0008
  article-title: Fuzzy modelling for the state-of-charge estimation of lead-acid batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.036
– volume: 269
  start-page: 682
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0009
  article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.016
– year: 2003
  ident: 10.1016/j.apm.2019.01.031_bib0020
– volume: 270
  start-page: 359
  year: 2014
  ident: 10.1016/j.apm.2019.01.031_bib0015
  article-title: A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.103
– volume: 57
  start-page: 4178
  issue: 12
  year: 2010
  ident: 10.1016/j.apm.2019.01.031_bib0017
  article-title: State-of-charge estimation for lithium-ion batteries using neural networks and EKF
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2043035
– volume: 72
  start-page: 13
  issue: 12
  year: 2016
  ident: 10.1016/j.apm.2019.01.031_bib0006
  article-title: An electrochemical impedance spectroscopy study on a lithium sulfur pouch cell
  publication-title: ECS Trans.
  doi: 10.1149/07212.0013ecst
SSID ssj0005904
ssj0012860
Score 2.5473013
Snippet •State equations are derived from the battery equivalent circuit model.•Improved unscented Kalman filter approach composed of model adaptive and noise adaptive...
An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 532
SubjectTerms Adaptive algorithms
Adaptive filters
Algorithms
Kalman filters
Li-ion battery
Lithium-ion batteries
Mathematical models
Model adaptive
Noise adaptive
Parameter identification
Parameter sensitivity
Robustness
Sensitivity analysis
State of charge
State of charge estimation
Unscented Kalman filter
Title Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach
URI https://dx.doi.org/10.1016/j.apm.2019.01.031
https://www.proquest.com/docview/2232660222
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrBmHLghFTWtGm7HDdgGs8LTNotSttUKhrdxLYDF347dtoOgQQHbonTRJXt2k5jfwE441mYCRlJx0jPOCIwgSOj2HOkwMcx5g8zTfXOD4_hcCRux8F4DS7rWhhKq6xsf2nTrbWuKJ2Km51ZnneeSD2lK8YYghCqSLAOG54vw6ABG72bu-HjV6aHdEWNh0gT6sNNm-alZ1SPzqUF7_T5b-7ph6G23mewA9tV2Mh65Zvtwpop9mDrYYW5Ot-HvEQNZbZEiE0zZkGQDCMYjbI-kYj3uUOt2MJqvjNyYilDgi5Ybv8vYHdZWIgnbN3pySuOZDmdqbMaf_wARoPr58uhU12k4CS-Fyyc0DOhGyVeinsf3o2zRGvPT7XpEjKhwIAhyUwU6W4SIhVlZkiyntBaaBzHiOYQGsW0MEfAROCmnIe4S_J9IXAJbCSpiytJHgdZ1AS35p9KKpRxuuxioup0sheFLFfEcuVyhSxvwvlqyqyE2PjrYVELRX3TE4Uu4K9prVqAqvpI5wojI1RG2vEe_2_VE9ikXpk51oLG4m1pTjFGWcRtWL_44G3UxP5Vf9CuNBKpN-P-J_DX58s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFMMBuTACalaH2m7HGFi2tjjwibtFqVtIhWNbmLbgX-PnTZDIMGBW-o8VNmu7TT2F0LuPB1pxmPuKO4rh4UqdHic-A5nMBxi_khLrHcejaPelD3PwlmNdGwtDKZVVra_tOnGWleUVsXN1jLPWy-ontxlMwhBEFUk3CG7EA1ECKDfnz1-5Xlwl1k0RBxujzZNkpdcYjW6xw10Z-D95px-mGnje7pH5LAKGulD-V7HpKaKE3Iw2iKurk5JXmKGUlMgRBeaGggkRRFEo6xOROIwd7CVGFDND4ouLKNAkAXNzd8FeNwUBuAJWgM5f4MeneOJOrXo42dk2n2adHpOdY2CkwZ-uHYiX0VunPoZ7Hy8dqJTKf0gk6qNuIQMwoVUqziW7TQCKkhMoVx9JiWT0A_xzDmpF4tCXRDKQjfzvAj2SEHAGCwBjTRzYSXuJaGOG8S1_BNphTGOV13MhU0mexXAcoEsF64ngOUNcr-dsiwBNv4azKxQxDctEeAA_prWtAIU1Se6EhAXgSrifvfyf6vekr3eZDQUw_54cEX2safMIWuS-vp9o64hWlknN0YbPwFVIuYt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+state+of+charge+estimation+of+Li-ion+battery+based+on+an+improved+unscented+Kalman+filter+approach&rft.jtitle=Applied+mathematical+modelling&rft.au=Chen%2C+Zewang&rft.au=Yang%2C+Liwen&rft.au=Zhao%2C+Xiaobing&rft.au=Wang%2C+Youren&rft.date=2019-06-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=70&rft.spage=532&rft.epage=544&rft_id=info:doi/10.1016%2Fj.apm.2019.01.031&rft.externalDocID=S0307904X19300605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon