A deep learning method for predicting metabolite–disease associations via graph neural network
Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are diffe...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
18.07.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future. |
---|---|
AbstractList | Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite-disease associations, metabolite-metabolite similarities and disease-disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite-disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite-disease associations in the future.Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite-disease associations, metabolite-metabolite similarities and disease-disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite-disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite-disease associations in the future. Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future. Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future. |
Author | Zhao, Qi Sun, Jianqiang Sun, Feiyue |
Author_xml | – sequence: 1 givenname: Feiyue surname: Sun fullname: Sun, Feiyue email: 2384253913@qq.com – sequence: 2 givenname: Jianqiang surname: Sun fullname: Sun, Jianqiang email: sjqyjs@sina.com – sequence: 3 givenname: Qi orcidid: 0000-0001-9713-1864 surname: Zhao fullname: Zhao, Qi email: zhaoqi@lnu.edu.cn |
BookMark | eNp90M1KxDAQB_AgK7iunnyBgCCCVJO0adrjIn6B4EXPdZJONWu3qUmqePMdfEOfxOruSdDTDOE3Q-a_TSad65CQPc6OOSvTE231idZgRJ5vkCnPlEoyJrPJd5-rRGZ5ukW2Q1gwJpgq-JTcz2mN2NMWwXe2e6BLjI-upo3ztPdYWxPXr6BdayN-vn_UNiAEpBCCMxaidV2gLxbog4f-kXY4eGjHEl-df9ohmw20AXfXdUbuzs9uTy-T65uLq9P5dWJSIWMimwIawXTBJWDOtFQGGi6QqzyrVVFLrrkpNZdN2QDWTGdZIUQGTJda5oVMZ-Rwtbf37nnAEKulDQbbFjp0Q6hEXhRSpIyrke7_ogs3-G783ajKUpYpU2xUfKWMdyF4bCpj48-x0YNtK86q78yrMfNqnfk4c_Rrpvd2Cf7tD32w0m7o_4Vft6yVLw |
CitedBy_id | crossref_primary_10_1038_s41598_023_42904_6 crossref_primary_10_1038_s41598_024_53716_7 crossref_primary_10_1111_jcmm_18590 crossref_primary_10_1111_jcmm_18591 crossref_primary_10_3390_molecules28186546 crossref_primary_10_1093_bib_bbac463 crossref_primary_10_3389_fmicb_2024_1351678 crossref_primary_10_1021_acs_jcim_4c00586 crossref_primary_10_1007_s12539_024_00633_y crossref_primary_10_1038_s41598_024_56694_y crossref_primary_10_1109_JBHI_2022_3219213 crossref_primary_10_1038_s41598_024_57135_6 crossref_primary_10_3934_mbe_2023345 crossref_primary_10_3389_fmicb_2023_1236653 crossref_primary_10_1002_ddr_22223 crossref_primary_10_1016_j_jare_2024_06_002 crossref_primary_10_1186_s13321_024_00940_y crossref_primary_10_1016_j_compbiolchem_2024_108219 crossref_primary_10_1016_j_compbiomed_2023_107440 crossref_primary_10_1038_s41598_024_67717_z crossref_primary_10_3390_math11112466 crossref_primary_10_3389_fgene_2022_1001608 crossref_primary_10_3389_fgene_2022_1023615 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1038_s41598_024_67227_y crossref_primary_10_1111_jcmm_70083 crossref_primary_10_1186_s12859_023_05314_z crossref_primary_10_1038_s41598_024_64308_w crossref_primary_10_1049_sil2_12201 crossref_primary_10_1007_s11306_025_02227_1 crossref_primary_10_3934_mbe_2023085 crossref_primary_10_1016_j_sbi_2024_102881 crossref_primary_10_1093_bfgp_elad010 crossref_primary_10_1111_jcmm_18345 crossref_primary_10_1371_journal_pone_0317369 crossref_primary_10_3389_fmicb_2023_1216811 crossref_primary_10_3934_mbe_2023476 crossref_primary_10_1016_j_compbiomed_2022_106464 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_1016_j_ab_2024_115628 crossref_primary_10_3389_fmicb_2022_995323 crossref_primary_10_1038_s41598_024_63446_5 crossref_primary_10_3389_fmicb_2022_1024104 crossref_primary_10_1038_s41598_023_47793_3 crossref_primary_10_1093_bib_bbae627 crossref_primary_10_1038_s41598_023_51126_9 crossref_primary_10_1039_D4ME00056K crossref_primary_10_1038_s41598_023_43223_6 crossref_primary_10_1371_journal_pone_0299898 crossref_primary_10_3233_IDT_220285 crossref_primary_10_3389_fmicb_2022_1040252 crossref_primary_10_1111_apm_13462 crossref_primary_10_3389_fgene_2025_1527300 crossref_primary_10_1016_j_intimp_2024_112464 crossref_primary_10_1038_s41598_024_63582_y crossref_primary_10_1186_s12864_024_11188_z crossref_primary_10_1038_s41598_024_55160_z crossref_primary_10_1016_j_compbiolchem_2024_108036 crossref_primary_10_3934_mbe_2022630 crossref_primary_10_3934_mbe_2024015 crossref_primary_10_1016_j_ymeth_2023_11_014 crossref_primary_10_1016_j_compbiomed_2023_107067 crossref_primary_10_1021_acs_jpcb_3c07304 crossref_primary_10_1186_s12859_023_05571_y crossref_primary_10_1038_s41598_023_47816_z crossref_primary_10_1186_s12859_023_05192_5 crossref_primary_10_1038_s41598_023_46480_7 crossref_primary_10_1038_s41598_023_50977_6 crossref_primary_10_1371_journal_pone_0296676 crossref_primary_10_1016_j_eswa_2025_126637 crossref_primary_10_3389_fmicb_2024_1483983 crossref_primary_10_1111_jcmm_17889 crossref_primary_10_1093_bib_bbac595 crossref_primary_10_1016_j_jocs_2024_102477 crossref_primary_10_1089_cmb_2023_0266 crossref_primary_10_1186_s12859_024_05863_x crossref_primary_10_1038_s41598_024_66880_7 crossref_primary_10_1016_j_compbiolchem_2024_108320 crossref_primary_10_1038_s41598_023_50092_6 crossref_primary_10_1038_s41598_023_42053_w crossref_primary_10_1038_s41598_022_25730_0 crossref_primary_10_1097_MD_0000000000036456 crossref_primary_10_3389_fmicb_2022_1090770 crossref_primary_10_1186_s12864_023_09879_0 crossref_primary_10_3934_mbe_2022644 crossref_primary_10_1038_s41598_023_47796_0 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1109_JBHI_2024_3383591 crossref_primary_10_1038_s41598_023_48610_7 crossref_primary_10_1038_s41598_023_40474_1 crossref_primary_10_1021_acs_jcim_4c01118 crossref_primary_10_1038_s41598_023_27435_4 crossref_primary_10_1038_s41598_023_44506_8 crossref_primary_10_1038_s41598_022_21243_y crossref_primary_10_1111_jcmm_18156 crossref_primary_10_1111_jcmm_18398 crossref_primary_10_1111_jcmm_18553 crossref_primary_10_3389_fmicb_2023_1207209 crossref_primary_10_1016_j_compbiomed_2022_105984 crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1007_s12539_024_00616_z crossref_primary_10_1186_s12864_022_09027_0 crossref_primary_10_1093_bib_bbad227 crossref_primary_10_1002_cem_3553 crossref_primary_10_1016_j_artmed_2025_103090 crossref_primary_10_1016_j_ymeth_2024_10_002 crossref_primary_10_1038_s41598_024_61849_y crossref_primary_10_3389_fgene_2024_1356205 crossref_primary_10_1016_j_nexres_2025_100154 crossref_primary_10_3389_fmicb_2023_1174308 crossref_primary_10_1038_s41598_022_25745_7 crossref_primary_10_1093_bib_bbae672 crossref_primary_10_3389_fmicb_2022_1093615 crossref_primary_10_1089_cmb_2023_0449 crossref_primary_10_1186_s12859_024_05989_y crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_1038_s41598_024_60009_6 crossref_primary_10_3934_mbe_2024131 crossref_primary_10_1093_bib_bbad466 crossref_primary_10_1080_07391102_2024_2313712 crossref_primary_10_1038_s41598_023_41972_y crossref_primary_10_1093_bib_bbae708 crossref_primary_10_1038_s41598_024_55187_2 crossref_primary_10_1111_jcmm_70315 crossref_primary_10_1093_bib_bbac527 crossref_primary_10_1186_s12864_024_10058_y crossref_primary_10_1016_j_aquatox_2025_107244 crossref_primary_10_1016_j_compbiomed_2023_107137 crossref_primary_10_1186_s12864_024_10038_2 crossref_primary_10_1016_j_compbiolchem_2023_107833 crossref_primary_10_3934_mbe_2022622 crossref_primary_10_1038_s41598_023_50740_x crossref_primary_10_1186_s12859_023_05564_x crossref_primary_10_1016_j_artmed_2024_102775 crossref_primary_10_1016_j_inffus_2024_102894 crossref_primary_10_1089_cmb_2024_0720 crossref_primary_10_1186_s12864_023_09496_x crossref_primary_10_1111_jcmm_18372 crossref_primary_10_1186_s12859_024_05708_7 crossref_primary_10_3389_fpsyt_2023_1148534 crossref_primary_10_1038_s41598_024_55812_0 crossref_primary_10_3389_fmicb_2024_1353278 crossref_primary_10_1038_s41598_024_53442_0 crossref_primary_10_1038_s41598_023_45034_1 crossref_primary_10_1093_bib_bbad097 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1016_j_compbiomed_2023_106733 crossref_primary_10_3389_fmicb_2023_1290746 crossref_primary_10_1186_s12859_023_05228_w crossref_primary_10_1186_s12864_023_09273_w crossref_primary_10_1007_s40747_024_01344_z crossref_primary_10_1186_s12864_023_09363_9 crossref_primary_10_1016_j_heliyon_2023_e17726 crossref_primary_10_3389_fmicb_2022_963704 crossref_primary_10_1109_OJEMB_2024_3480708 crossref_primary_10_1038_s41598_024_56583_4 crossref_primary_10_1080_01480545_2024_2364905 crossref_primary_10_1186_s12859_023_05348_3 crossref_primary_10_3389_fnagi_2023_1176400 crossref_primary_10_1021_acsomega_3c07923 crossref_primary_10_1016_j_compbiomed_2024_109068 crossref_primary_10_1186_s12859_022_05069_z crossref_primary_10_1093_bib_bbad005 crossref_primary_10_1016_j_heliyon_2023_e20184 crossref_primary_10_1038_s41598_023_45626_x crossref_primary_10_1142_S0129183124501936 crossref_primary_10_1007_s12539_024_00645_8 crossref_primary_10_1097_MD_0000000000040072 crossref_primary_10_1038_s41598_023_41965_x crossref_primary_10_3934_mbe_2023534 crossref_primary_10_1038_s41598_024_65457_8 crossref_primary_10_1109_JBHI_2024_3375025 crossref_primary_10_1111_jcmm_18127 crossref_primary_10_1038_s41598_023_44677_4 crossref_primary_10_3934_mbe_2023894 crossref_primary_10_1002_prp2_70034 crossref_primary_10_1016_j_compbiomed_2022_106200 crossref_primary_10_1038_s41598_023_46669_w crossref_primary_10_1016_j_compbiomed_2023_107793 crossref_primary_10_1038_s41598_024_52653_9 crossref_primary_10_1038_s41598_024_61762_4 crossref_primary_10_1016_j_csbj_2023_11_013 crossref_primary_10_1016_j_mex_2024_103148 |
Cites_doi | 10.3389/fbioe.2020.00040 10.1186/1477-7819-12-164 10.1007/s00394-014-0698-8 10.18388/abp.2002_3788 10.1186/s13029-015-0046-2 10.1016/0304-3835(88)90023-7 10.1007/s12539-021-00458-z 10.1002/jnr.10349 10.1021/pr500443c 10.1007/s102380300015 10.1053/j.gastro.2004.05.021 10.1371/journal.pcbi.1000641 10.1016/j.phrs.2007.01.006 10.1161/CIRCULATIONAHA.104.517565 10.1186/s13040-019-0206-z 10.1093/bioinformatics/btq241 10.1371/journal.pone.0118432 10.1093/bib/bbaa212 10.3389/fgene.2021.660275 10.1515/CCLM.2004.034 10.1186/s40170-016-0151-y 10.1093/bib/bbaa243 10.1126/science.1127647 10.1038/sj.ejcn.1601396 10.1016/j.cyto.2006.12.007 10.1007/s00726-006-0409-8 10.1159/000343204 10.1097/MCG.0b013e318207f76c 10.1093/nar/gkab1062 10.4103/1119-3077.183314 10.1371/journal.pcbi.1007209 10.1159/000022031 10.1093/bib/bbaa186 10.1093/bib/bbz159 10.1186/s12859-018-2098-1 10.1002/elps.201300019 10.1093/bioinformatics/btz621 10.1109/TNB.2019.2922214 10.1093/carcin/bgu131 10.1093/bib/bbab286 10.1021/ac801627c 10.1152/ajpgi.00417.2002 10.3389/fmolb.2020.603121 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbac266 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10_1093_bib_bbac266 10.1093/bib/bbac266 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-5f8af20b815ae60b57caf12e1764d78d51b1c9b15f9faed0b448224a0b9b56853 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Wed Jul 30 11:12:59 EDT 2025 Fri Jul 25 10:38:44 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Apr 02 07:01:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | graph attention network graph convolutional network metabolite–disease associations metabolite disease |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-5f8af20b815ae60b57caf12e1764d78d51b1c9b15f9faed0b448224a0b9b56853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9713-1864 |
PQID | 2699593070 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2688523017 proquest_journals_2699593070 crossref_citationtrail_10_1093_bib_bbac266 crossref_primary_10_1093_bib_bbac266 oup_primary_10_1093_bib_bbac266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-18 |
PublicationDateYYYYMMDD | 2022-07-18 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Reinehr (2022071906194500600_ref46) 2015; 54 Zhang (2022071906194500600_ref13) 2021; 13 Ugorski (2022071906194500600_ref50) 2002; 49 Bonita (2022071906194500600_ref7) 2007; 55 Huang (2022071906194500600_ref30) 2020; 36 Zhao (2022071906194500600_ref24) 2021; 22 Wishart (2022071906194500600_ref25) 2022; 50 Kingma (2022071906194500600_ref32) 2015 Abe (2022071906194500600_ref38) 2002; 70 Hu (2022071906194500600_ref11) 2018; 15 Fonteh (2022071906194500600_ref40) 2007; 32 Zhang (2022071906194500600_ref22) 2021; 12 Stadler (2022071906194500600_ref4) 1988; 38 Liu (2022071906194500600_ref12) 2019; 191 Redjems-Bennani (2022071906194500600_ref39) 1998; 44 Hinton (2022071906194500600_ref36); 313 Hong (2022071906194500600_ref49) 2011; 45 Goedert (2022071906194500600_ref44) 2014; 35 Ajouz (2022071906194500600_ref2) 2014; 12 Bruni (2022071906194500600_ref9) 2003; 3 Glorot (2022071906194500600_ref31) 2010 Peng (2022071906194500600_ref37) 2020; 8 Costarelli (2022071906194500600_ref5) 2002; 56 Tonelli (2022071906194500600_ref10) 2005; 112 Chen (2022071906194500600_ref15) 2021; 22 Yates (2022071906194500600_ref35) 2015; 10 Yu (2022071906194500600_ref28) 2021; 22 Ni (2022071906194500600_ref43) 2014; 13 Veličković (2022071906194500600_ref29) 2018 Chen (2022071906194500600_ref14) 2021; 22 Brown (2022071906194500600_ref45) 2016; 4 Nobuoka (2022071906194500600_ref6) 2004; 127 Tsuruoka (2022071906194500600_ref41) 2013; 34 Gronwald (2022071906194500600_ref48) 2008; 80 Zhao (2022071906194500600_ref18) 2019; 18 Srivastava (2022071906194500600_ref33) 2014; 15 Wahl (2022071906194500600_ref47) 2012; 5 Lei (2022071906194500600_ref20) 2019; 12 Chen (2022071906194500600_ref16) 2019; 15 Ma (2022071906194500600_ref23) 2021 Takaya (2022071906194500600_ref34) 2015; 10 Wang (2022071906194500600_ref17) 2021; 22 Leoni (2022071906194500600_ref42) 2004; 42 Vanunu (2022071906194500600_ref27) 2010; 6 Dhanya (2022071906194500600_ref1) 2016; 19 Chiang (2022071906194500600_ref3) 2003; 284 Wang (2022071906194500600_ref26) 2010; 26 Hu (2022071906194500600_ref19) 2018; 19 Marquez-Martin (2022071906194500600_ref8) 2006; 36 Lei (2022071906194500600_ref21) 2020; 7 |
References_xml | – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 2022071906194500600_ref33 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J of Mach Learn Res – volume: 8 start-page: 40 year: 2020 ident: 2022071906194500600_ref37 article-title: A computational study of potential miRNA-disease association inference based on ensemble learning and kernel ridge regression publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00040 – volume: 12 start-page: 164 year: 2014 ident: 2022071906194500600_ref2 article-title: Secondary bile acids: an underrecognized cause of colon cancer publication-title: World J Surg Oncol doi: 10.1186/1477-7819-12-164 – volume: 54 start-page: 173 issue: 2 year: 2015 ident: 2022071906194500600_ref46 article-title: Changes in the serum metabolite profile in obese children with weight loss publication-title: Eur J Nutr doi: 10.1007/s00394-014-0698-8 – volume: 49 start-page: 303 issue: 2 year: 2002 ident: 2022071906194500600_ref50 article-title: Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells publication-title: Acta Biochim Pol doi: 10.18388/abp.2002_3788 – volume: 10 start-page: 16 year: 2015 ident: 2022071906194500600_ref35 article-title: PageRank as a method to rank biomedical literature by importance publication-title: Source Code Biol Med doi: 10.1186/s13029-015-0046-2 – volume: 38 start-page: 315 issue: 3 year: 1988 ident: 2022071906194500600_ref4 article-title: Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer publication-title: Cancer Lett doi: 10.1016/0304-3835(88)90023-7 – volume: 13 start-page: 535 issue: 3 year: 2021 ident: 2022071906194500600_ref13 article-title: Using network distance analysis to predict lncRNA-miRNA interactions publication-title: Interdiscip Sci: Comput Life Sci doi: 10.1007/s12539-021-00458-z – volume: 70 start-page: 447 issue: 3 year: 2002 ident: 2022071906194500600_ref38 article-title: Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease publication-title: J Neurosci Res doi: 10.1002/jnr.10349 – volume: 13 start-page: 3857 issue: 9 year: 2014 ident: 2022071906194500600_ref43 article-title: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery publication-title: J Proteome Res doi: 10.1021/pr500443c – volume: 15 start-page: 797 issue: 6 year: 2018 ident: 2022071906194500600_ref11 article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Biol – volume: 3 start-page: 45 issue: 1 year: 2003 ident: 2022071906194500600_ref9 article-title: Different effect induced by treatment with several statins on monocyte tissue factor expression in hypercholesterolemic subjects publication-title: Clin Exp Med doi: 10.1007/s102380300015 – volume: 127 start-page: 428 issue: 2 year: 2004 ident: 2022071906194500600_ref6 article-title: Glutathione-S-transferase P1-1 protects aberrant crypt foci from apoptosis induced by deoxycholic acid publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.05.021 – volume: 6 start-page: e1000641 issue: 1 year: 2010 ident: 2022071906194500600_ref27 article-title: Associating genes and protein complexes with disease via network propagation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000641 – volume: 55 start-page: 187 issue: 3 year: 2007 ident: 2022071906194500600_ref7 article-title: Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies publication-title: Pharmacol Res doi: 10.1016/j.phrs.2007.01.006 – volume: 112 start-page: 171 issue: 2 year: 2005 ident: 2022071906194500600_ref10 article-title: Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.104.517565 – volume: 12 start-page: 19 year: 2019 ident: 2022071906194500600_ref20 article-title: Predicting metabolite-disease associations based on KATZ model publication-title: BioData Min doi: 10.1186/s13040-019-0206-z – volume: 26 start-page: 1644 issue: 13 year: 2010 ident: 2022071906194500600_ref26 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btq241 – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: 2022071906194500600_ref34 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS One doi: 10.1371/journal.pone.0118432 – volume: 22 start-page: bbaa212 issue: 4 year: 2021 ident: 2022071906194500600_ref24 article-title: Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches publication-title: Brief Bioinform doi: 10.1093/bib/bbaa212 – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: 2022071906194500600_ref31 – volume: 191 year: 2019 ident: 2022071906194500600_ref12 article-title: Predicting lncRNA-miRNA interactions based on logistic matrix factorization with neighborhood regularized publication-title: Knowledge-Based Syst – volume: 12 start-page: 660275 year: 2021 ident: 2022071906194500600_ref22 article-title: Predicting metabolite-disease associations based on LightGBM model publication-title: Front Genet doi: 10.3389/fgene.2021.660275 – volume: 42 start-page: 186 issue: 2 year: 2004 ident: 2022071906194500600_ref42 article-title: Diagnostic use of cerebral and extracerebral oxysterols publication-title: Clin Chem Lab Med doi: 10.1515/CCLM.2004.034 – volume: 4 start-page: 11 year: 2016 ident: 2022071906194500600_ref45 article-title: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool publication-title: Cancer & Metabolism doi: 10.1186/s40170-016-0151-y – start-page: btab652 year: 2021 ident: 2022071906194500600_ref23 article-title: Hypergraph-based logistic matrix factorization for metabolite-disease interaction prediction publication-title: Bioinformatics – volume: 22 start-page: bbaa243 issue: 4 year: 2021 ident: 2022071906194500600_ref28 article-title: Predicting drug-disease associations through layer attention graph convolutional network publication-title: Brief Bioinform doi: 10.1093/bib/bbaa243 – volume: 313 start-page: 504 issue: 5786 ident: 2022071906194500600_ref36 article-title: Reducing the dimensionality of data with neural networks publication-title: SCIENCE doi: 10.1126/science.1127647 – volume: 56 start-page: 925 issue: 9 year: 2002 ident: 2022071906194500600_ref5 article-title: Plasma deoxycholic acid concentration is elevated in postmenopausal women with newly diagnosed breast cancer publication-title: Eur J Clin Nutr doi: 10.1038/sj.ejcn.1601396 – volume: 36 start-page: 211 issue: 5–6 year: 2006 ident: 2022071906194500600_ref8 article-title: Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells publication-title: Cytokine doi: 10.1016/j.cyto.2006.12.007 – volume: 32 start-page: 213 issue: 2 year: 2007 ident: 2022071906194500600_ref40 article-title: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects publication-title: Amino Acids doi: 10.1007/s00726-006-0409-8 – volume: 5 start-page: 660 issue: 5 year: 2012 ident: 2022071906194500600_ref47 article-title: Childhood obesity is associated with changes in the serum metabolite profile publication-title: Obes Facts doi: 10.1159/000343204 – volume-title: International Conference on Learning Representations (ICLR) year: 2018 ident: 2022071906194500600_ref29 – volume: 45 start-page: 415 issue: 5 year: 2011 ident: 2022071906194500600_ref49 article-title: Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome publication-title: J Clin Gastroenterol doi: 10.1097/MCG.0b013e318207f76c – volume: 50 start-page: D622 issue: D1 year: 2022 ident: 2022071906194500600_ref25 article-title: HMDB 5.0: the human metabolome database for 2022 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1062 – volume: 19 start-page: 486 issue: 4 year: 2016 ident: 2022071906194500600_ref1 article-title: Salivary glucose as a diagnostic tool in type II diabetes mellitus: a case-control study publication-title: Niger J Clin Pract doi: 10.4103/1119-3077.183314 – volume: 15 start-page: e1007209 issue: 7 year: 2019 ident: 2022071906194500600_ref16 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007209 – volume: 44 start-page: 300 issue: 5 year: 1998 ident: 2022071906194500600_ref39 article-title: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients publication-title: Gerontology doi: 10.1159/000022031 – volume: 22 issue: 3 year: 2021 ident: 2022071906194500600_ref15 article-title: Deep-belief network for predicting potential miRNA-disease associations publication-title: Brief Bioinform doi: 10.1093/bib/bbaa186 – volume: 22 start-page: 485 issue: 1 year: 2021 ident: 2022071906194500600_ref14 article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion publication-title: Brief Bioinform doi: 10.1093/bib/bbz159 – volume: 19 start-page: 116 issue: Suppl 5 year: 2018 ident: 2022071906194500600_ref19 article-title: Identifying diseases-related metabolites using random walk publication-title: BMC Bioinform doi: 10.1186/s12859-018-2098-1 – volume: 34 start-page: 2865 issue: 19 year: 2013 ident: 2022071906194500600_ref41 article-title: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients publication-title: Electrophoresis doi: 10.1002/elps.201300019 – volume: 36 start-page: 851 issue: 3 year: 2020 ident: 2022071906194500600_ref30 article-title: Graph convolution for predicting associations between miRNA and drug resistance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz621 – volume: 18 start-page: 578 issue: 4 year: 2019 ident: 2022071906194500600_ref18 article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations publication-title: IEEE Trans Nanobioscience doi: 10.1109/TNB.2019.2922214 – volume: 35 start-page: 2089 issue: 9 year: 2014 ident: 2022071906194500600_ref44 article-title: Fecal metabolomics: assay performance and association with colorectal cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgu131 – volume: 22 start-page: bbab286 issue: 6 year: 2021 ident: 2022071906194500600_ref17 article-title: Circular RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbab286 – volume: 80 start-page: 9288 issue: 23 year: 2008 ident: 2022071906194500600_ref48 article-title: Urinary metabolite quantification employing 2D NMR spectroscopy publication-title: Anal Chem doi: 10.1021/ac801627c – volume: 284 start-page: G349 issue: 3 year: 2003 ident: 2022071906194500600_ref3 article-title: Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00417.2002 – volume-title: International Conference on Learning Representations (ICLR) year: 2015 ident: 2022071906194500600_ref32 – volume: 7 start-page: 603121 year: 2020 ident: 2022071906194500600_ref21 article-title: Predicting metabolite-disease associations based on spy strategy and ABC algorithm publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.603121 |
SSID | ssj0020781 |
Score | 2.6661973 |
Snippet | Abstract
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining... Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life,... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Artificial neural networks Computer applications Deep learning Disease Graph neural networks Identification methods Machine learning Medical research Metabolites Neural networks Similarity |
Title | A deep learning method for predicting metabolite–disease associations via graph neural network |
URI | https://www.proquest.com/docview/2699593070 https://www.proquest.com/docview/2688523017 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF6kIHgRf7FadYWehNDsJrtJjkUsRVAvLfQW91cKkpY2LXjzHXxDn8TZZFupFL0mExZmd-abyex8g1BbMgA516IMWBYGsaJgUlpngWRW2Iza1FTDJh6feH8YP4zYyF-QnW8p4WdRR45lR0qhAErA1QL8Oor8wfNonVc5vpq6iSgJHLu7b8P79e0G8Gw0s628bwUpvQO072NB3K037xDtmOII7dbTId-P0UsXa2Om2A92eMX1tGcMYSaezlyBpfRPYSNdK_HXx6evt2Dxo_U5Xo4FroipsWOvhBWL-u73CRr27gd3_cAPRAhURFkZMJsKS0OZEiYMDyVLlLCEGpLwWCepZkQSlUnCbGaF0aGE3AsgWoQyk4wDMJ-iRjEpzBnCVHMDuYpIVMRjyzMRSwi9iEqEIZwR3US3K23lyrOFu6EVb3ldtY5yUG3uVdtE7bXwtCbJ2C52DWr_W6K12pLc29I8p9xxojnf1EQ369dgBa60IQozWTiZNHX_t0ly_u8iF2iPuh4Gx46ZtlCjnC3MJUQWpbyqztU3LCrNjg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+method+for+predicting+metabolite%E2%80%93disease+associations+via+graph+neural+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Feiyue&rft.au=Sun%2C+Jianqiang&rft.au=Zhao%2C+Qi&rft.date=2022-07-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbac266&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |