A deep learning method for predicting metabolite–disease associations via graph neural network

Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are diffe...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 4
Main Authors Sun, Feiyue, Sun, Jianqiang, Zhao, Qi
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 18.07.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future.
AbstractList Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite-disease associations, metabolite-metabolite similarities and disease-disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite-disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite-disease associations in the future.Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite-disease associations, metabolite-metabolite similarities and disease-disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite-disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite-disease associations in the future.
Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future.
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite–disease associations, metabolite–metabolite similarities and disease–disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite–disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite–disease associations in the future.
Author Zhao, Qi
Sun, Jianqiang
Sun, Feiyue
Author_xml – sequence: 1
  givenname: Feiyue
  surname: Sun
  fullname: Sun, Feiyue
  email: 2384253913@qq.com
– sequence: 2
  givenname: Jianqiang
  surname: Sun
  fullname: Sun, Jianqiang
  email: sjqyjs@sina.com
– sequence: 3
  givenname: Qi
  orcidid: 0000-0001-9713-1864
  surname: Zhao
  fullname: Zhao, Qi
  email: zhaoqi@lnu.edu.cn
BookMark eNp90M1KxDAQB_AgK7iunnyBgCCCVJO0adrjIn6B4EXPdZJONWu3qUmqePMdfEOfxOruSdDTDOE3Q-a_TSad65CQPc6OOSvTE231idZgRJ5vkCnPlEoyJrPJd5-rRGZ5ukW2Q1gwJpgq-JTcz2mN2NMWwXe2e6BLjI-upo3ztPdYWxPXr6BdayN-vn_UNiAEpBCCMxaidV2gLxbog4f-kXY4eGjHEl-df9ohmw20AXfXdUbuzs9uTy-T65uLq9P5dWJSIWMimwIawXTBJWDOtFQGGi6QqzyrVVFLrrkpNZdN2QDWTGdZIUQGTJda5oVMZ-Rwtbf37nnAEKulDQbbFjp0Q6hEXhRSpIyrke7_ogs3-G783ajKUpYpU2xUfKWMdyF4bCpj48-x0YNtK86q78yrMfNqnfk4c_Rrpvd2Cf7tD32w0m7o_4Vft6yVLw
CitedBy_id crossref_primary_10_1038_s41598_023_42904_6
crossref_primary_10_1038_s41598_024_53716_7
crossref_primary_10_1111_jcmm_18590
crossref_primary_10_1111_jcmm_18591
crossref_primary_10_3390_molecules28186546
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_3389_fmicb_2024_1351678
crossref_primary_10_1021_acs_jcim_4c00586
crossref_primary_10_1007_s12539_024_00633_y
crossref_primary_10_1038_s41598_024_56694_y
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_1038_s41598_024_57135_6
crossref_primary_10_3934_mbe_2023345
crossref_primary_10_3389_fmicb_2023_1236653
crossref_primary_10_1002_ddr_22223
crossref_primary_10_1016_j_jare_2024_06_002
crossref_primary_10_1186_s13321_024_00940_y
crossref_primary_10_1016_j_compbiolchem_2024_108219
crossref_primary_10_1016_j_compbiomed_2023_107440
crossref_primary_10_1038_s41598_024_67717_z
crossref_primary_10_3390_math11112466
crossref_primary_10_3389_fgene_2022_1001608
crossref_primary_10_3389_fgene_2022_1023615
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1038_s41598_024_67227_y
crossref_primary_10_1111_jcmm_70083
crossref_primary_10_1186_s12859_023_05314_z
crossref_primary_10_1038_s41598_024_64308_w
crossref_primary_10_1049_sil2_12201
crossref_primary_10_1007_s11306_025_02227_1
crossref_primary_10_3934_mbe_2023085
crossref_primary_10_1016_j_sbi_2024_102881
crossref_primary_10_1093_bfgp_elad010
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_1371_journal_pone_0317369
crossref_primary_10_3389_fmicb_2023_1216811
crossref_primary_10_3934_mbe_2023476
crossref_primary_10_1016_j_compbiomed_2022_106464
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1016_j_ab_2024_115628
crossref_primary_10_3389_fmicb_2022_995323
crossref_primary_10_1038_s41598_024_63446_5
crossref_primary_10_3389_fmicb_2022_1024104
crossref_primary_10_1038_s41598_023_47793_3
crossref_primary_10_1093_bib_bbae627
crossref_primary_10_1038_s41598_023_51126_9
crossref_primary_10_1039_D4ME00056K
crossref_primary_10_1038_s41598_023_43223_6
crossref_primary_10_1371_journal_pone_0299898
crossref_primary_10_3233_IDT_220285
crossref_primary_10_3389_fmicb_2022_1040252
crossref_primary_10_1111_apm_13462
crossref_primary_10_3389_fgene_2025_1527300
crossref_primary_10_1016_j_intimp_2024_112464
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1186_s12864_024_11188_z
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_1016_j_compbiolchem_2024_108036
crossref_primary_10_3934_mbe_2022630
crossref_primary_10_3934_mbe_2024015
crossref_primary_10_1016_j_ymeth_2023_11_014
crossref_primary_10_1016_j_compbiomed_2023_107067
crossref_primary_10_1021_acs_jpcb_3c07304
crossref_primary_10_1186_s12859_023_05571_y
crossref_primary_10_1038_s41598_023_47816_z
crossref_primary_10_1186_s12859_023_05192_5
crossref_primary_10_1038_s41598_023_46480_7
crossref_primary_10_1038_s41598_023_50977_6
crossref_primary_10_1371_journal_pone_0296676
crossref_primary_10_1016_j_eswa_2025_126637
crossref_primary_10_3389_fmicb_2024_1483983
crossref_primary_10_1111_jcmm_17889
crossref_primary_10_1093_bib_bbac595
crossref_primary_10_1016_j_jocs_2024_102477
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_1186_s12859_024_05863_x
crossref_primary_10_1038_s41598_024_66880_7
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_1038_s41598_023_50092_6
crossref_primary_10_1038_s41598_023_42053_w
crossref_primary_10_1038_s41598_022_25730_0
crossref_primary_10_1097_MD_0000000000036456
crossref_primary_10_3389_fmicb_2022_1090770
crossref_primary_10_1186_s12864_023_09879_0
crossref_primary_10_3934_mbe_2022644
crossref_primary_10_1038_s41598_023_47796_0
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1109_JBHI_2024_3383591
crossref_primary_10_1038_s41598_023_48610_7
crossref_primary_10_1038_s41598_023_40474_1
crossref_primary_10_1021_acs_jcim_4c01118
crossref_primary_10_1038_s41598_023_27435_4
crossref_primary_10_1038_s41598_023_44506_8
crossref_primary_10_1038_s41598_022_21243_y
crossref_primary_10_1111_jcmm_18156
crossref_primary_10_1111_jcmm_18398
crossref_primary_10_1111_jcmm_18553
crossref_primary_10_3389_fmicb_2023_1207209
crossref_primary_10_1016_j_compbiomed_2022_105984
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1007_s12539_024_00616_z
crossref_primary_10_1186_s12864_022_09027_0
crossref_primary_10_1093_bib_bbad227
crossref_primary_10_1002_cem_3553
crossref_primary_10_1016_j_artmed_2025_103090
crossref_primary_10_1016_j_ymeth_2024_10_002
crossref_primary_10_1038_s41598_024_61849_y
crossref_primary_10_3389_fgene_2024_1356205
crossref_primary_10_1016_j_nexres_2025_100154
crossref_primary_10_3389_fmicb_2023_1174308
crossref_primary_10_1038_s41598_022_25745_7
crossref_primary_10_1093_bib_bbae672
crossref_primary_10_3389_fmicb_2022_1093615
crossref_primary_10_1089_cmb_2023_0449
crossref_primary_10_1186_s12859_024_05989_y
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_1038_s41598_024_60009_6
crossref_primary_10_3934_mbe_2024131
crossref_primary_10_1093_bib_bbad466
crossref_primary_10_1080_07391102_2024_2313712
crossref_primary_10_1038_s41598_023_41972_y
crossref_primary_10_1093_bib_bbae708
crossref_primary_10_1038_s41598_024_55187_2
crossref_primary_10_1111_jcmm_70315
crossref_primary_10_1093_bib_bbac527
crossref_primary_10_1186_s12864_024_10058_y
crossref_primary_10_1016_j_aquatox_2025_107244
crossref_primary_10_1016_j_compbiomed_2023_107137
crossref_primary_10_1186_s12864_024_10038_2
crossref_primary_10_1016_j_compbiolchem_2023_107833
crossref_primary_10_3934_mbe_2022622
crossref_primary_10_1038_s41598_023_50740_x
crossref_primary_10_1186_s12859_023_05564_x
crossref_primary_10_1016_j_artmed_2024_102775
crossref_primary_10_1016_j_inffus_2024_102894
crossref_primary_10_1089_cmb_2024_0720
crossref_primary_10_1186_s12864_023_09496_x
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1186_s12859_024_05708_7
crossref_primary_10_3389_fpsyt_2023_1148534
crossref_primary_10_1038_s41598_024_55812_0
crossref_primary_10_3389_fmicb_2024_1353278
crossref_primary_10_1038_s41598_024_53442_0
crossref_primary_10_1038_s41598_023_45034_1
crossref_primary_10_1093_bib_bbad097
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1016_j_compbiomed_2023_106733
crossref_primary_10_3389_fmicb_2023_1290746
crossref_primary_10_1186_s12859_023_05228_w
crossref_primary_10_1186_s12864_023_09273_w
crossref_primary_10_1007_s40747_024_01344_z
crossref_primary_10_1186_s12864_023_09363_9
crossref_primary_10_1016_j_heliyon_2023_e17726
crossref_primary_10_3389_fmicb_2022_963704
crossref_primary_10_1109_OJEMB_2024_3480708
crossref_primary_10_1038_s41598_024_56583_4
crossref_primary_10_1080_01480545_2024_2364905
crossref_primary_10_1186_s12859_023_05348_3
crossref_primary_10_3389_fnagi_2023_1176400
crossref_primary_10_1021_acsomega_3c07923
crossref_primary_10_1016_j_compbiomed_2024_109068
crossref_primary_10_1186_s12859_022_05069_z
crossref_primary_10_1093_bib_bbad005
crossref_primary_10_1016_j_heliyon_2023_e20184
crossref_primary_10_1038_s41598_023_45626_x
crossref_primary_10_1142_S0129183124501936
crossref_primary_10_1007_s12539_024_00645_8
crossref_primary_10_1097_MD_0000000000040072
crossref_primary_10_1038_s41598_023_41965_x
crossref_primary_10_3934_mbe_2023534
crossref_primary_10_1038_s41598_024_65457_8
crossref_primary_10_1109_JBHI_2024_3375025
crossref_primary_10_1111_jcmm_18127
crossref_primary_10_1038_s41598_023_44677_4
crossref_primary_10_3934_mbe_2023894
crossref_primary_10_1002_prp2_70034
crossref_primary_10_1016_j_compbiomed_2022_106200
crossref_primary_10_1038_s41598_023_46669_w
crossref_primary_10_1016_j_compbiomed_2023_107793
crossref_primary_10_1038_s41598_024_52653_9
crossref_primary_10_1038_s41598_024_61762_4
crossref_primary_10_1016_j_csbj_2023_11_013
crossref_primary_10_1016_j_mex_2024_103148
Cites_doi 10.3389/fbioe.2020.00040
10.1186/1477-7819-12-164
10.1007/s00394-014-0698-8
10.18388/abp.2002_3788
10.1186/s13029-015-0046-2
10.1016/0304-3835(88)90023-7
10.1007/s12539-021-00458-z
10.1002/jnr.10349
10.1021/pr500443c
10.1007/s102380300015
10.1053/j.gastro.2004.05.021
10.1371/journal.pcbi.1000641
10.1016/j.phrs.2007.01.006
10.1161/CIRCULATIONAHA.104.517565
10.1186/s13040-019-0206-z
10.1093/bioinformatics/btq241
10.1371/journal.pone.0118432
10.1093/bib/bbaa212
10.3389/fgene.2021.660275
10.1515/CCLM.2004.034
10.1186/s40170-016-0151-y
10.1093/bib/bbaa243
10.1126/science.1127647
10.1038/sj.ejcn.1601396
10.1016/j.cyto.2006.12.007
10.1007/s00726-006-0409-8
10.1159/000343204
10.1097/MCG.0b013e318207f76c
10.1093/nar/gkab1062
10.4103/1119-3077.183314
10.1371/journal.pcbi.1007209
10.1159/000022031
10.1093/bib/bbaa186
10.1093/bib/bbz159
10.1186/s12859-018-2098-1
10.1002/elps.201300019
10.1093/bioinformatics/btz621
10.1109/TNB.2019.2922214
10.1093/carcin/bgu131
10.1093/bib/bbab286
10.1021/ac801627c
10.1152/ajpgi.00417.2002
10.3389/fmolb.2020.603121
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac266
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbac266
10.1093/bib/bbac266
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-5f8af20b815ae60b57caf12e1764d78d51b1c9b15f9faed0b448224a0b9b56853
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Wed Jul 30 11:12:59 EDT 2025
Fri Jul 25 10:38:44 EDT 2025
Tue Jul 01 03:39:41 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Apr 02 07:01:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords graph attention network
graph convolutional network
metabolite–disease associations
metabolite
disease
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-5f8af20b815ae60b57caf12e1764d78d51b1c9b15f9faed0b448224a0b9b56853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9713-1864
PQID 2699593070
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2688523017
proquest_journals_2699593070
crossref_citationtrail_10_1093_bib_bbac266
crossref_primary_10_1093_bib_bbac266
oup_primary_10_1093_bib_bbac266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-18
  day: 18
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Reinehr (2022071906194500600_ref46) 2015; 54
Zhang (2022071906194500600_ref13) 2021; 13
Ugorski (2022071906194500600_ref50) 2002; 49
Bonita (2022071906194500600_ref7) 2007; 55
Huang (2022071906194500600_ref30) 2020; 36
Zhao (2022071906194500600_ref24) 2021; 22
Wishart (2022071906194500600_ref25) 2022; 50
Kingma (2022071906194500600_ref32) 2015
Abe (2022071906194500600_ref38) 2002; 70
Hu (2022071906194500600_ref11) 2018; 15
Fonteh (2022071906194500600_ref40) 2007; 32
Zhang (2022071906194500600_ref22) 2021; 12
Stadler (2022071906194500600_ref4) 1988; 38
Liu (2022071906194500600_ref12) 2019; 191
Redjems-Bennani (2022071906194500600_ref39) 1998; 44
Hinton (2022071906194500600_ref36); 313
Hong (2022071906194500600_ref49) 2011; 45
Goedert (2022071906194500600_ref44) 2014; 35
Ajouz (2022071906194500600_ref2) 2014; 12
Bruni (2022071906194500600_ref9) 2003; 3
Glorot (2022071906194500600_ref31) 2010
Peng (2022071906194500600_ref37) 2020; 8
Costarelli (2022071906194500600_ref5) 2002; 56
Tonelli (2022071906194500600_ref10) 2005; 112
Chen (2022071906194500600_ref15) 2021; 22
Yates (2022071906194500600_ref35) 2015; 10
Yu (2022071906194500600_ref28) 2021; 22
Ni (2022071906194500600_ref43) 2014; 13
Veličković (2022071906194500600_ref29) 2018
Chen (2022071906194500600_ref14) 2021; 22
Brown (2022071906194500600_ref45) 2016; 4
Nobuoka (2022071906194500600_ref6) 2004; 127
Tsuruoka (2022071906194500600_ref41) 2013; 34
Gronwald (2022071906194500600_ref48) 2008; 80
Zhao (2022071906194500600_ref18) 2019; 18
Srivastava (2022071906194500600_ref33) 2014; 15
Wahl (2022071906194500600_ref47) 2012; 5
Lei (2022071906194500600_ref20) 2019; 12
Chen (2022071906194500600_ref16) 2019; 15
Ma (2022071906194500600_ref23) 2021
Takaya (2022071906194500600_ref34) 2015; 10
Wang (2022071906194500600_ref17) 2021; 22
Leoni (2022071906194500600_ref42) 2004; 42
Vanunu (2022071906194500600_ref27) 2010; 6
Dhanya (2022071906194500600_ref1) 2016; 19
Chiang (2022071906194500600_ref3) 2003; 284
Wang (2022071906194500600_ref26) 2010; 26
Hu (2022071906194500600_ref19) 2018; 19
Marquez-Martin (2022071906194500600_ref8) 2006; 36
Lei (2022071906194500600_ref21) 2020; 7
References_xml – volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 2022071906194500600_ref33
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J of Mach Learn Res
– volume: 8
  start-page: 40
  year: 2020
  ident: 2022071906194500600_ref37
  article-title: A computational study of potential miRNA-disease association inference based on ensemble learning and kernel ridge regression
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00040
– volume: 12
  start-page: 164
  year: 2014
  ident: 2022071906194500600_ref2
  article-title: Secondary bile acids: an underrecognized cause of colon cancer
  publication-title: World J Surg Oncol
  doi: 10.1186/1477-7819-12-164
– volume: 54
  start-page: 173
  issue: 2
  year: 2015
  ident: 2022071906194500600_ref46
  article-title: Changes in the serum metabolite profile in obese children with weight loss
  publication-title: Eur J Nutr
  doi: 10.1007/s00394-014-0698-8
– volume: 49
  start-page: 303
  issue: 2
  year: 2002
  ident: 2022071906194500600_ref50
  article-title: Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells
  publication-title: Acta Biochim Pol
  doi: 10.18388/abp.2002_3788
– volume: 10
  start-page: 16
  year: 2015
  ident: 2022071906194500600_ref35
  article-title: PageRank as a method to rank biomedical literature by importance
  publication-title: Source Code Biol Med
  doi: 10.1186/s13029-015-0046-2
– volume: 38
  start-page: 315
  issue: 3
  year: 1988
  ident: 2022071906194500600_ref4
  article-title: Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer
  publication-title: Cancer Lett
  doi: 10.1016/0304-3835(88)90023-7
– volume: 13
  start-page: 535
  issue: 3
  year: 2021
  ident: 2022071906194500600_ref13
  article-title: Using network distance analysis to predict lncRNA-miRNA interactions
  publication-title: Interdiscip Sci: Comput Life Sci
  doi: 10.1007/s12539-021-00458-z
– volume: 70
  start-page: 447
  issue: 3
  year: 2002
  ident: 2022071906194500600_ref38
  article-title: Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.10349
– volume: 13
  start-page: 3857
  issue: 9
  year: 2014
  ident: 2022071906194500600_ref43
  article-title: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery
  publication-title: J Proteome Res
  doi: 10.1021/pr500443c
– volume: 15
  start-page: 797
  issue: 6
  year: 2018
  ident: 2022071906194500600_ref11
  article-title: HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy
  publication-title: RNA Biol
– volume: 3
  start-page: 45
  issue: 1
  year: 2003
  ident: 2022071906194500600_ref9
  article-title: Different effect induced by treatment with several statins on monocyte tissue factor expression in hypercholesterolemic subjects
  publication-title: Clin Exp Med
  doi: 10.1007/s102380300015
– volume: 127
  start-page: 428
  issue: 2
  year: 2004
  ident: 2022071906194500600_ref6
  article-title: Glutathione-S-transferase P1-1 protects aberrant crypt foci from apoptosis induced by deoxycholic acid
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.05.021
– volume: 6
  start-page: e1000641
  issue: 1
  year: 2010
  ident: 2022071906194500600_ref27
  article-title: Associating genes and protein complexes with disease via network propagation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000641
– volume: 55
  start-page: 187
  issue: 3
  year: 2007
  ident: 2022071906194500600_ref7
  article-title: Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2007.01.006
– volume: 112
  start-page: 171
  issue: 2
  year: 2005
  ident: 2022071906194500600_ref10
  article-title: Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.517565
– volume: 12
  start-page: 19
  year: 2019
  ident: 2022071906194500600_ref20
  article-title: Predicting metabolite-disease associations based on KATZ model
  publication-title: BioData Min
  doi: 10.1186/s13040-019-0206-z
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: 2022071906194500600_ref26
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btq241
– volume: 10
  start-page: e0118432
  issue: 3
  year: 2015
  ident: 2022071906194500600_ref34
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 22
  start-page: bbaa212
  issue: 4
  year: 2021
  ident: 2022071906194500600_ref24
  article-title: Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa212
– start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: 2022071906194500600_ref31
– volume: 191
  year: 2019
  ident: 2022071906194500600_ref12
  article-title: Predicting lncRNA-miRNA interactions based on logistic matrix factorization with neighborhood regularized
  publication-title: Knowledge-Based Syst
– volume: 12
  start-page: 660275
  year: 2021
  ident: 2022071906194500600_ref22
  article-title: Predicting metabolite-disease associations based on LightGBM model
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.660275
– volume: 42
  start-page: 186
  issue: 2
  year: 2004
  ident: 2022071906194500600_ref42
  article-title: Diagnostic use of cerebral and extracerebral oxysterols
  publication-title: Clin Chem Lab Med
  doi: 10.1515/CCLM.2004.034
– volume: 4
  start-page: 11
  year: 2016
  ident: 2022071906194500600_ref45
  article-title: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool
  publication-title: Cancer & Metabolism
  doi: 10.1186/s40170-016-0151-y
– start-page: btab652
  year: 2021
  ident: 2022071906194500600_ref23
  article-title: Hypergraph-based logistic matrix factorization for metabolite-disease interaction prediction
  publication-title: Bioinformatics
– volume: 22
  start-page: bbaa243
  issue: 4
  year: 2021
  ident: 2022071906194500600_ref28
  article-title: Predicting drug-disease associations through layer attention graph convolutional network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa243
– volume: 313
  start-page: 504
  issue: 5786
  ident: 2022071906194500600_ref36
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: SCIENCE
  doi: 10.1126/science.1127647
– volume: 56
  start-page: 925
  issue: 9
  year: 2002
  ident: 2022071906194500600_ref5
  article-title: Plasma deoxycholic acid concentration is elevated in postmenopausal women with newly diagnosed breast cancer
  publication-title: Eur J Clin Nutr
  doi: 10.1038/sj.ejcn.1601396
– volume: 36
  start-page: 211
  issue: 5–6
  year: 2006
  ident: 2022071906194500600_ref8
  article-title: Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2006.12.007
– volume: 32
  start-page: 213
  issue: 2
  year: 2007
  ident: 2022071906194500600_ref40
  article-title: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0409-8
– volume: 5
  start-page: 660
  issue: 5
  year: 2012
  ident: 2022071906194500600_ref47
  article-title: Childhood obesity is associated with changes in the serum metabolite profile
  publication-title: Obes Facts
  doi: 10.1159/000343204
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2018
  ident: 2022071906194500600_ref29
– volume: 45
  start-page: 415
  issue: 5
  year: 2011
  ident: 2022071906194500600_ref49
  article-title: Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome
  publication-title: J Clin Gastroenterol
  doi: 10.1097/MCG.0b013e318207f76c
– volume: 50
  start-page: D622
  issue: D1
  year: 2022
  ident: 2022071906194500600_ref25
  article-title: HMDB 5.0: the human metabolome database for 2022
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1062
– volume: 19
  start-page: 486
  issue: 4
  year: 2016
  ident: 2022071906194500600_ref1
  article-title: Salivary glucose as a diagnostic tool in type II diabetes mellitus: a case-control study
  publication-title: Niger J Clin Pract
  doi: 10.4103/1119-3077.183314
– volume: 15
  start-page: e1007209
  issue: 7
  year: 2019
  ident: 2022071906194500600_ref16
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007209
– volume: 44
  start-page: 300
  issue: 5
  year: 1998
  ident: 2022071906194500600_ref39
  article-title: Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients
  publication-title: Gerontology
  doi: 10.1159/000022031
– volume: 22
  issue: 3
  year: 2021
  ident: 2022071906194500600_ref15
  article-title: Deep-belief network for predicting potential miRNA-disease associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa186
– volume: 22
  start-page: 485
  issue: 1
  year: 2021
  ident: 2022071906194500600_ref14
  article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz159
– volume: 19
  start-page: 116
  issue: Suppl 5
  year: 2018
  ident: 2022071906194500600_ref19
  article-title: Identifying diseases-related metabolites using random walk
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2098-1
– volume: 34
  start-page: 2865
  issue: 19
  year: 2013
  ident: 2022071906194500600_ref41
  article-title: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300019
– volume: 36
  start-page: 851
  issue: 3
  year: 2020
  ident: 2022071906194500600_ref30
  article-title: Graph convolution for predicting associations between miRNA and drug resistance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz621
– volume: 18
  start-page: 578
  issue: 4
  year: 2019
  ident: 2022071906194500600_ref18
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans Nanobioscience
  doi: 10.1109/TNB.2019.2922214
– volume: 35
  start-page: 2089
  issue: 9
  year: 2014
  ident: 2022071906194500600_ref44
  article-title: Fecal metabolomics: assay performance and association with colorectal cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgu131
– volume: 22
  start-page: bbab286
  issue: 6
  year: 2021
  ident: 2022071906194500600_ref17
  article-title: Circular RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab286
– volume: 80
  start-page: 9288
  issue: 23
  year: 2008
  ident: 2022071906194500600_ref48
  article-title: Urinary metabolite quantification employing 2D NMR spectroscopy
  publication-title: Anal Chem
  doi: 10.1021/ac801627c
– volume: 284
  start-page: G349
  issue: 3
  year: 2003
  ident: 2022071906194500600_ref3
  article-title: Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00417.2002
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2015
  ident: 2022071906194500600_ref32
– volume: 7
  start-page: 603121
  year: 2020
  ident: 2022071906194500600_ref21
  article-title: Predicting metabolite-disease associations based on spy strategy and ABC algorithm
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.603121
SSID ssj0020781
Score 2.6661973
Snippet Abstract Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining...
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life,...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Computer applications
Deep learning
Disease
Graph neural networks
Identification methods
Machine learning
Medical research
Metabolites
Neural networks
Similarity
Title A deep learning method for predicting metabolite–disease associations via graph neural network
URI https://www.proquest.com/docview/2699593070
https://www.proquest.com/docview/2688523017
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NSsNAEF6kIHgRf7FadYWehNDsJrtJjkUsRVAvLfQW91cKkpY2LXjzHXxDn8TZZFupFL0mExZmd-abyex8g1BbMgA516IMWBYGsaJgUlpngWRW2Iza1FTDJh6feH8YP4zYyF-QnW8p4WdRR45lR0qhAErA1QL8Oor8wfNonVc5vpq6iSgJHLu7b8P79e0G8Gw0s628bwUpvQO072NB3K037xDtmOII7dbTId-P0UsXa2Om2A92eMX1tGcMYSaezlyBpfRPYSNdK_HXx6evt2Dxo_U5Xo4FroipsWOvhBWL-u73CRr27gd3_cAPRAhURFkZMJsKS0OZEiYMDyVLlLCEGpLwWCepZkQSlUnCbGaF0aGE3AsgWoQyk4wDMJ-iRjEpzBnCVHMDuYpIVMRjyzMRSwi9iEqEIZwR3US3K23lyrOFu6EVb3ldtY5yUG3uVdtE7bXwtCbJ2C52DWr_W6K12pLc29I8p9xxojnf1EQ369dgBa60IQozWTiZNHX_t0ly_u8iF2iPuh4Gx46ZtlCjnC3MJUQWpbyqztU3LCrNjg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+method+for+predicting+metabolite%E2%80%93disease+associations+via+graph+neural+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Sun%2C+Feiyue&rft.au=Sun%2C+Jianqiang&rft.au=Zhao%2C+Qi&rft.date=2022-07-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbac266&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon