A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system
•A high order all-Mach number solver for isentropic Euler equations is presented.•It is based on finite difference in space and IMEX in time.•Material waves are treated explicitly, while acoustic waves are treated implicitly.•The schemes are shown to be asymptotic preserving with incompressible limi...
Saved in:
Published in | Journal of computational physics Vol. 392; pp. 594 - 618 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
01.09.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A high order all-Mach number solver for isentropic Euler equations is presented.•It is based on finite difference in space and IMEX in time.•Material waves are treated explicitly, while acoustic waves are treated implicitly.•The schemes are shown to be asymptotic preserving with incompressible limit.•Several tests in one and two space dimensions show the effectiveness of the schemes.
In this paper, new high order schemes are constructed and analyzed, for the numerical solution of Euler equations of isentropic gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in space is obtained by finite difference WENO schemes; while high order in time is obtained by IMEX methods with semi-implicit linearization treatment. The schemes are proven to be asymptotic preserving and asymptotic accurate as the Mach number vanishes. Several tests in one and two space dimensions illustrate the effectiveness of the proposed schemes. |
---|---|
AbstractList | In this paper, new high order schemes are constructed and analyzed, for the numerical solution of Euler equations of isentropic gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in space is obtained by finite difference WENO schemes; while high order in time is obtained by IMEX methods with semi-implicit linearization treatment. The schemes are proven to be asymptotic preserving and asymptotic accurate as the Mach number vanishes. Several tests in one and two space dimensions illustrate the effectiveness of the proposed schemes. •A high order all-Mach number solver for isentropic Euler equations is presented.•It is based on finite difference in space and IMEX in time.•Material waves are treated explicitly, while acoustic waves are treated implicitly.•The schemes are shown to be asymptotic preserving with incompressible limit.•Several tests in one and two space dimensions show the effectiveness of the schemes. In this paper, new high order schemes are constructed and analyzed, for the numerical solution of Euler equations of isentropic gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in space is obtained by finite difference WENO schemes; while high order in time is obtained by IMEX methods with semi-implicit linearization treatment. The schemes are proven to be asymptotic preserving and asymptotic accurate as the Mach number vanishes. Several tests in one and two space dimensions illustrate the effectiveness of the proposed schemes. |
Author | Boscarino, Sebastiano Xiong, Tao Russo, Giovanni Qiu, Jing-Mei |
Author_xml | – sequence: 1 givenname: Sebastiano orcidid: 0000-0002-3447-8016 surname: Boscarino fullname: Boscarino, Sebastiano email: boscarino@dmi.unict.it organization: Department of Mathematics and Computer Science, University of Catania, Catania, 95125, Italy – sequence: 2 givenname: Jing-Mei surname: Qiu fullname: Qiu, Jing-Mei email: jingqiu@udel.edu organization: Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA – sequence: 3 givenname: Giovanni orcidid: 0000-0003-4215-1926 surname: Russo fullname: Russo, Giovanni email: russo@dmi.unict.it organization: Department of Mathematics and Computer Science, University of Catania, Catania, 95125, Italy – sequence: 4 givenname: Tao orcidid: 0000-0002-4912-6574 surname: Xiong fullname: Xiong, Tao email: txiong@xmu.edu.cn organization: School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian, 361005, PR China |
BookMark | eNp9kD1PwzAQhi0EEqXwA9gsMSec7XxZTFVVoBIfSxFslutciKMkDnaK1H9PqjIxMN3yPu_dPRfktHc9EnLNIGbAstsmbswQc2AyhiSGND8hMwYSIp6z7JTMADiLpJTsnFyE0ABAkSbFjGwWtLafNXW-RE8Ddjay3dBaY0e6fl590PfVyysNpsYOaeU8HWukum2jZ21qagP2o3eDNXS1aw8F-zBid0nOKt0GvPqdc_J2v9osH6On14f1cvEUGcHTMUpNbjIUujBSbwXDjAlhtMwBJUrBs5wxWSEUWSLyKqnKRGYpboXOODOFKaWYk5tj7-Dd1w7DqBq38_20UnGeQlow4MWUyo8p410IHis1PadH66bTtW0VA3VQqBo1KVQHhQoSNSmcSPaHHLzttN__y9wdGZwe_7boVTAWe4Ol9WhGVTr7D_0DdT-J7Q |
CitedBy_id | crossref_primary_10_1007_s10915_024_02606_1 crossref_primary_10_1016_j_camwa_2022_01_020 crossref_primary_10_1016_j_cma_2024_117502 crossref_primary_10_1016_j_jcp_2024_113197 crossref_primary_10_1016_j_jcp_2023_112240 crossref_primary_10_1007_s10915_022_01768_0 crossref_primary_10_1007_s10915_020_01138_8 crossref_primary_10_1016_j_jcp_2024_113092 crossref_primary_10_1007_s00211_021_01240_5 crossref_primary_10_1007_s10915_024_02492_7 crossref_primary_10_1016_j_jcp_2021_110216 crossref_primary_10_1007_s10915_021_01733_3 crossref_primary_10_1137_21M1424433 crossref_primary_10_1007_s10915_023_02152_2 crossref_primary_10_1016_j_jcp_2024_113348 crossref_primary_10_1007_s10915_020_01206_z crossref_primary_10_1186_s42774_020_00052_9 crossref_primary_10_1016_j_apnum_2022_02_005 crossref_primary_10_1016_j_compfluid_2022_105443 crossref_primary_10_1007_s10915_023_02389_x crossref_primary_10_1016_j_cam_2022_114272 crossref_primary_10_1007_s10915_024_02577_3 crossref_primary_10_1007_s40324_024_00351_x crossref_primary_10_1016_j_jcp_2021_110206 crossref_primary_10_1063_5_0193083 crossref_primary_10_1007_s10915_023_02235_0 crossref_primary_10_1016_j_camwa_2025_02_021 crossref_primary_10_1016_j_amc_2021_126469 crossref_primary_10_1063_5_0168363 crossref_primary_10_1016_j_jcp_2022_111255 crossref_primary_10_1016_j_apnum_2020_09_004 crossref_primary_10_1016_j_camwa_2023_12_040 crossref_primary_10_1016_j_jcp_2022_111034 |
Cites_doi | 10.1007/s10915-016-0168-y 10.1016/j.cma.2005.10.010 10.1016/j.jcp.2011.03.025 10.4208/cicp.250910.131011a 10.1016/j.jcp.2017.03.030 10.1137/060656929 10.1006/jcph.1996.0193 10.1007/s00574-016-0130-5 10.1137/120893136 10.4208/cicp.210709.210610a 10.1016/j.jcp.2012.04.025 10.1137/16M1105232 10.1016/j.jcp.2009.11.007 10.1016/j.jcp.2009.09.044 10.1016/0021-9991(85)90148-2 10.1006/jcph.1998.6152 10.1137/080713562 10.1016/0021-9991(89)90151-4 10.1002/fld.1650041102 10.1016/S0168-9274(97)00056-1 10.1137/140967544 10.1016/S0021-9991(95)90034-9 10.1016/0021-9991(87)90084-2 10.1137/110850803 10.1137/070679065 10.1090/S0025-5718-1968-0242392-2 10.1137/16M1069274 10.1002/fld.1650110510 10.1016/j.jcp.2015.12.041 10.1051/0004-6361/201425059 10.1016/S0045-7930(02)00010-5 10.1002/cpa.3160340405 10.1016/S0309-1708(02)00052-0 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright Elsevier Science Ltd. Sep 1, 2019 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Sep 1, 2019 |
DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jcp.2019.04.057 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
EndPage | 618 |
ExternalDocumentID | 10_1016_j_jcp_2019_04_057 S0021999119303109 |
GrantInformation_xml | – fundername: NSAF grantid: U1630247 – fundername: Fundamental Research Funds for the Central Universities grantid: 20720160009 funderid: https://doi.org/10.13039/501100012226 – fundername: INdAM-GNCS grantid: U-UFMBAZ-2018-000092 05-02-2018 – fundername: NSFC grantid: 11601455 funderid: https://doi.org/10.13039/501100001809 – fundername: University of Catania – fundername: NSF grantid: 2016J05022 funderid: https://doi.org/10.13039/501100001809 – fundername: Horizon 2020 grantid: 642768 funderid: https://doi.org/10.13039/100010661 – fundername: NSF grantid: NSF-DMS-1522777; 1818924 funderid: https://doi.org/10.13039/100000001 – fundername: Air Force Office of Scientific Computing grantid: FA9550-18-1-0257 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG SSH T9H UQL WUQ ZY4 7SC 7SP 7U5 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-5c7c6e3a8c9ab31e6133ca970e9e93267119fe086437f4fd4965eb3a621c8cd93 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Jul 25 08:09:54 EDT 2025 Tue Jul 01 01:54:42 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Fri Feb 23 02:17:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Semi-implicit IMEX WENO reconstruction Low-Mach Incompressible solver Asymptotic preserving |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-5c7c6e3a8c9ab31e6133ca970e9e93267119fe086437f4fd4965eb3a621c8cd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4215-1926 0000-0002-3447-8016 0000-0002-4912-6574 |
PQID | 2250581028 |
PQPubID | 2047462 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2250581028 crossref_citationtrail_10_1016_j_jcp_2019_04_057 crossref_primary_10_1016_j_jcp_2019_04_057 elsevier_sciencedirect_doi_10_1016_j_jcp_2019_04_057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of computational physics |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Boscarino, Russo (br0090) 2009; 31 Dellacherie (br0200) 2010; 229 Rieper (br0350) 2011; 230 Ascher, Ruuth, Spiteri (br0010) 1997; 25 Toro (br0380) 2009 Shu (br0360) 2009; 51 Klein (br0290) 1995; 121 Boscarino, LeFloch, Russo (br0070) 2014; 36 Chorin (br0130) 1968; 22 Dimarco, Loubère, Vignal (br0210) 2017; 39 Colella, Pao (br0150) 1999; 149 Degond, Tang (br0190) 2011; 10 Miczek, Röpke, Edelmann (br0320) 2015; 576 Boscarino, Russo, Scandurra (br0110) 2017 Boscarino, Qiu, Russo (br0080) 2017; 40 Casulli, Greenspan (br0120) 1984; 4 Klainerman, Majda (br0280) 1981; 34 Boscarino, Bürger, Mulet, Russo, Villada (br0050) 2016; 47 Cordier, Degond, Kumbaro (br0160) 2012; 231 de Frutos, John, Novo (br0180) 2016; 309 Haack, Jin, Liu (br0250) 2012; 12 Gresho (br0230) 1990; 11 LeVeque (br0310) 2002 Turkel (br0390) 1987; 72 Cockburn, Johnson, Shu, Tadmor (br0140) 2006 Boscarino (br0030) 2008; 45 Langtangen, Mardal, Winther (br0300) 2002; 25 Tavelli, Dumbser (br0370) 2017; 341 Godlewski, Raviart (br0220) 2014 Pareschi, Russo (br0340) 2005; 25 Zhong (br0410) 1996; 128 Boscarino, Bürger, Mulet, Russo, Villada (br0040) 2015; 37 Guermond, Minev, Shen (br0240) 2006; 195 Munz, Roller, Klein, Geratz (br0330) 2003; 32 Crouseilles, Mehrenberger, Sonnendrücker (br0170) 2010; 229 Zhu, Qiu, Qiu (br0420) 2017 Bell, Colella, Glaz (br0020) 1989; 85 Boscarino, Filbet, Russo (br0060) 2016; 68 Viozat (br0400) 1997 Hairer, Wanner (br0260) 1993 Boscarino, Russo (br0100) 2013; 51 Kim, Moin (br0270) 1985; 59 Dellacherie (10.1016/j.jcp.2019.04.057_br0200) 2010; 229 Boscarino (10.1016/j.jcp.2019.04.057_br0060) 2016; 68 Klein (10.1016/j.jcp.2019.04.057_br0290) 1995; 121 Crouseilles (10.1016/j.jcp.2019.04.057_br0170) 2010; 229 Miczek (10.1016/j.jcp.2019.04.057_br0320) 2015; 576 Boscarino (10.1016/j.jcp.2019.04.057_br0080) 2017; 40 Boscarino (10.1016/j.jcp.2019.04.057_br0100) 2013; 51 de Frutos (10.1016/j.jcp.2019.04.057_br0180) 2016; 309 Haack (10.1016/j.jcp.2019.04.057_br0250) 2012; 12 Turkel (10.1016/j.jcp.2019.04.057_br0390) 1987; 72 Klainerman (10.1016/j.jcp.2019.04.057_br0280) 1981; 34 Pareschi (10.1016/j.jcp.2019.04.057_br0340) 2005; 25 Boscarino (10.1016/j.jcp.2019.04.057_br0110) 2017 Guermond (10.1016/j.jcp.2019.04.057_br0240) 2006; 195 Bell (10.1016/j.jcp.2019.04.057_br0020) 1989; 85 Zhong (10.1016/j.jcp.2019.04.057_br0410) 1996; 128 Dimarco (10.1016/j.jcp.2019.04.057_br0210) 2017; 39 Chorin (10.1016/j.jcp.2019.04.057_br0130) 1968; 22 Cordier (10.1016/j.jcp.2019.04.057_br0160) 2012; 231 Godlewski (10.1016/j.jcp.2019.04.057_br0220) 2014 Boscarino (10.1016/j.jcp.2019.04.057_br0040) 2015; 37 Langtangen (10.1016/j.jcp.2019.04.057_br0300) 2002; 25 Boscarino (10.1016/j.jcp.2019.04.057_br0050) 2016; 47 Boscarino (10.1016/j.jcp.2019.04.057_br0090) 2009; 31 Hairer (10.1016/j.jcp.2019.04.057_br0260) 1993 Toro (10.1016/j.jcp.2019.04.057_br0380) 2009 Casulli (10.1016/j.jcp.2019.04.057_br0120) 1984; 4 Cockburn (10.1016/j.jcp.2019.04.057_br0140) 2006 Viozat (10.1016/j.jcp.2019.04.057_br0400) 1997 Tavelli (10.1016/j.jcp.2019.04.057_br0370) 2017; 341 Ascher (10.1016/j.jcp.2019.04.057_br0010) 1997; 25 Boscarino (10.1016/j.jcp.2019.04.057_br0070) 2014; 36 Kim (10.1016/j.jcp.2019.04.057_br0270) 1985; 59 Boscarino (10.1016/j.jcp.2019.04.057_br0030) 2008; 45 Gresho (10.1016/j.jcp.2019.04.057_br0230) 1990; 11 Munz (10.1016/j.jcp.2019.04.057_br0330) 2003; 32 Shu (10.1016/j.jcp.2019.04.057_br0360) 2009; 51 LeVeque (10.1016/j.jcp.2019.04.057_br0310) 2002 Rieper (10.1016/j.jcp.2019.04.057_br0350) 2011; 230 Zhu (10.1016/j.jcp.2019.04.057_br0420) 2017 Colella (10.1016/j.jcp.2019.04.057_br0150) 1999; 149 Degond (10.1016/j.jcp.2019.04.057_br0190) 2011; 10 |
References_xml | – volume: 51 start-page: 163 year: 2013 end-page: 190 ident: br0100 article-title: Flux-explicit IMEX Runge-Kutta schemes for hyperbolic to parabolic relaxation problems publication-title: SIAM J. Numer. Anal. – start-page: 1 year: 2017 end-page: 35 ident: br0110 article-title: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics publication-title: J. Sci. Comput. – volume: 40 start-page: A787 year: 2017 end-page: A816 ident: br0080 article-title: On the implicit-explicit integral deferred correction methods for stiff problems publication-title: SIAM J. Sci. Comput. – volume: 72 start-page: 277 year: 1987 end-page: 298 ident: br0390 article-title: Preconditioned methods for solving the incompressible and low speed compressible equations publication-title: J. Comput. Phys. – volume: 195 start-page: 6011 year: 2006 end-page: 6045 ident: br0240 article-title: An overview of projection methods for incompressible flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 12 start-page: 955 year: 2012 end-page: 980 ident: br0250 article-title: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations publication-title: Commun. Comput. Phys. – volume: 36 start-page: A377 year: 2014 end-page: A395 ident: br0070 article-title: High-order asymptotic-preserving methods for fully nonlinear relaxation problems publication-title: SIAM J. Sci. Comput. – year: 1997 ident: br0400 article-title: Implicit Upwind Schemes for Low Mach Number Compressible Flows – volume: 121 start-page: 213 year: 1995 end-page: 237 ident: br0290 article-title: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow publication-title: J. Comput. Phys. – year: 2014 ident: br0220 article-title: Numerical Approximation of Hyperbolic Systems of Conservation Laws – volume: 68 start-page: 975 year: 2016 end-page: 1001 ident: br0060 article-title: High order semi-implicit schemes for time dependent partial differential equations publication-title: J. Sci. Comput. – volume: 39 start-page: A2099 year: 2017 end-page: A2128 ident: br0210 article-title: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit publication-title: SIAM J. Sci. Comput. – volume: 128 start-page: 19 year: 1996 end-page: 31 ident: br0410 article-title: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows publication-title: J. Comput. Phys. – volume: 230 start-page: 5263 year: 2011 end-page: 5287 ident: br0350 article-title: A low-Mach number fix for Roe's approximate Riemann solver publication-title: J. Comput. Phys. – volume: 149 start-page: 245 year: 1999 end-page: 269 ident: br0150 article-title: A projection method for low speed flows publication-title: J. Comput. Phys. – volume: 25 start-page: 129 year: 2005 end-page: 155 ident: br0340 article-title: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation publication-title: J. Sci. Comput. – volume: 34 start-page: 481 year: 1981 end-page: 524 ident: br0280 article-title: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids publication-title: Commun. Pure Appl. Math. – volume: 10 start-page: 1 year: 2011 end-page: 31 ident: br0190 article-title: All speed scheme for the low Mach number limit of the isentropic Euler equations publication-title: Commun. Comput. Phys. – year: 1993 ident: br0260 article-title: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, vol. 2 – volume: 229 start-page: 978 year: 2010 end-page: 1016 ident: br0200 article-title: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number publication-title: J. Comput. Phys. – volume: 37 start-page: B305 year: 2015 end-page: B331 ident: br0040 article-title: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection-diffusion problems publication-title: SIAM J. Sci. Comput. – volume: 32 start-page: 173 year: 2003 end-page: 196 ident: br0330 article-title: The extension of incompressible flow solvers to the weakly compressible regime publication-title: Comput. Fluids – year: 2006 ident: br0140 publication-title: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (CIME) Held in Cetraro – volume: 341 start-page: 341 year: 2017 end-page: 376 ident: br0370 article-title: A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers publication-title: J. Comput. Phys. – volume: 45 start-page: 1600 year: 2008 end-page: 1621 ident: br0030 article-title: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems publication-title: SIAM J. Numer. Anal. – volume: 229 start-page: 1927 year: 2010 end-page: 1953 ident: br0170 article-title: Conservative semi-Lagrangian schemes for Vlasov equations publication-title: J. Comput. Phys. – volume: 85 start-page: 257 year: 1989 end-page: 283 ident: br0020 article-title: A second-order projection method for the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. – volume: 576 year: 2015 ident: br0320 article-title: A new numerical solver for flows at various Mach numbers publication-title: Astron. Astrophys. – start-page: 1 year: 2017 end-page: 22 ident: br0420 article-title: An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model publication-title: J. Sci. Comput. – volume: 51 start-page: 82 year: 2009 end-page: 126 ident: br0360 article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems publication-title: SIAM Rev. – year: 2002 ident: br0310 article-title: Finite Volume Methods for Hyperbolic Problems, vol. 31 – volume: 25 start-page: 151 year: 1997 end-page: 167 ident: br0010 article-title: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations publication-title: Appl. Numer. Math. – volume: 11 start-page: 621 year: 1990 end-page: 659 ident: br0230 article-title: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via finite-element method that also introduces a nearly consistent mass matrix. Part 2: Implementation publication-title: Int. J. Numer. Methods Fluids – volume: 309 start-page: 368 year: 2016 end-page: 386 ident: br0180 article-title: Projection methods for incompressible flow problems with WENO finite difference schemes publication-title: J. Comput. Phys. – volume: 25 start-page: 1125 year: 2002 end-page: 1146 ident: br0300 article-title: Numerical methods for incompressible viscous flow publication-title: Adv. Water Resour. – volume: 47 start-page: 171 year: 2016 end-page: 185 ident: br0050 article-title: On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation publication-title: Bull. Braz. Math. Soc. (N.S.) – volume: 31 start-page: 1926 year: 2009 end-page: 1945 ident: br0090 article-title: On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation publication-title: SIAM J. Sci. Comput. – volume: 59 start-page: 308 year: 1985 end-page: 323 ident: br0270 article-title: Application of a fractional-step method to incompressible Navier-Stokes equations publication-title: J. Comput. Phys. – year: 2009 ident: br0380 article-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction – volume: 231 start-page: 5685 year: 2012 end-page: 5704 ident: br0160 article-title: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations publication-title: J. Comput. Phys. – volume: 4 start-page: 1001 year: 1984 end-page: 1012 ident: br0120 article-title: Pressure method for the numerical solution of transient, compressible fluid flows publication-title: Int. J. Numer. Methods Fluids – volume: 22 start-page: 745 year: 1968 end-page: 762 ident: br0130 article-title: Numerical solution of the Navier-Stokes equations publication-title: Math. Comput. – volume: 68 start-page: 975 year: 2016 ident: 10.1016/j.jcp.2019.04.057_br0060 article-title: High order semi-implicit schemes for time dependent partial differential equations publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0168-y – volume: 195 start-page: 6011 year: 2006 ident: 10.1016/j.jcp.2019.04.057_br0240 article-title: An overview of projection methods for incompressible flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.10.010 – year: 2006 ident: 10.1016/j.jcp.2019.04.057_br0140 – volume: 230 start-page: 5263 year: 2011 ident: 10.1016/j.jcp.2019.04.057_br0350 article-title: A low-Mach number fix for Roe's approximate Riemann solver publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.03.025 – start-page: 1 year: 2017 ident: 10.1016/j.jcp.2019.04.057_br0420 article-title: An h-adaptive RKDG method for the two-dimensional incompressible Euler equations and the guiding center Vlasov model publication-title: J. Sci. Comput. – volume: 12 start-page: 955 year: 2012 ident: 10.1016/j.jcp.2019.04.057_br0250 article-title: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.250910.131011a – start-page: 1 year: 2017 ident: 10.1016/j.jcp.2019.04.057_br0110 article-title: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics publication-title: J. Sci. Comput. – volume: 341 start-page: 341 year: 2017 ident: 10.1016/j.jcp.2019.04.057_br0370 article-title: A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.030 – volume: 45 start-page: 1600 year: 2008 ident: 10.1016/j.jcp.2019.04.057_br0030 article-title: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems publication-title: SIAM J. Numer. Anal. doi: 10.1137/060656929 – volume: 25 start-page: 129 year: 2005 ident: 10.1016/j.jcp.2019.04.057_br0340 article-title: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation publication-title: J. Sci. Comput. – volume: 128 start-page: 19 year: 1996 ident: 10.1016/j.jcp.2019.04.057_br0410 article-title: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0193 – year: 1997 ident: 10.1016/j.jcp.2019.04.057_br0400 – volume: 47 start-page: 171 year: 2016 ident: 10.1016/j.jcp.2019.04.057_br0050 article-title: On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation publication-title: Bull. Braz. Math. Soc. (N.S.) doi: 10.1007/s00574-016-0130-5 – volume: 36 start-page: A377 year: 2014 ident: 10.1016/j.jcp.2019.04.057_br0070 article-title: High-order asymptotic-preserving methods for fully nonlinear relaxation problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/120893136 – volume: 10 start-page: 1 year: 2011 ident: 10.1016/j.jcp.2019.04.057_br0190 article-title: All speed scheme for the low Mach number limit of the isentropic Euler equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.210709.210610a – year: 1993 ident: 10.1016/j.jcp.2019.04.057_br0260 – volume: 231 start-page: 5685 year: 2012 ident: 10.1016/j.jcp.2019.04.057_br0160 article-title: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.025 – year: 2014 ident: 10.1016/j.jcp.2019.04.057_br0220 – year: 2002 ident: 10.1016/j.jcp.2019.04.057_br0310 – volume: 40 start-page: A787 issue: 2 year: 2017 ident: 10.1016/j.jcp.2019.04.057_br0080 article-title: On the implicit-explicit integral deferred correction methods for stiff problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1105232 – volume: 229 start-page: 1927 year: 2010 ident: 10.1016/j.jcp.2019.04.057_br0170 article-title: Conservative semi-Lagrangian schemes for Vlasov equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.007 – volume: 229 start-page: 978 year: 2010 ident: 10.1016/j.jcp.2019.04.057_br0200 article-title: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.09.044 – volume: 59 start-page: 308 year: 1985 ident: 10.1016/j.jcp.2019.04.057_br0270 article-title: Application of a fractional-step method to incompressible Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90148-2 – volume: 149 start-page: 245 year: 1999 ident: 10.1016/j.jcp.2019.04.057_br0150 article-title: A projection method for low speed flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6152 – volume: 31 start-page: 1926 year: 2009 ident: 10.1016/j.jcp.2019.04.057_br0090 article-title: On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation publication-title: SIAM J. Sci. Comput. doi: 10.1137/080713562 – volume: 85 start-page: 257 year: 1989 ident: 10.1016/j.jcp.2019.04.057_br0020 article-title: A second-order projection method for the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90151-4 – volume: 4 start-page: 1001 year: 1984 ident: 10.1016/j.jcp.2019.04.057_br0120 article-title: Pressure method for the numerical solution of transient, compressible fluid flows publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650041102 – volume: 25 start-page: 151 year: 1997 ident: 10.1016/j.jcp.2019.04.057_br0010 article-title: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(97)00056-1 – volume: 37 start-page: B305 year: 2015 ident: 10.1016/j.jcp.2019.04.057_br0040 article-title: Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection-diffusion problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/140967544 – volume: 121 start-page: 213 year: 1995 ident: 10.1016/j.jcp.2019.04.057_br0290 article-title: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(95)90034-9 – year: 2009 ident: 10.1016/j.jcp.2019.04.057_br0380 – volume: 72 start-page: 277 year: 1987 ident: 10.1016/j.jcp.2019.04.057_br0390 article-title: Preconditioned methods for solving the incompressible and low speed compressible equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90084-2 – volume: 51 start-page: 163 year: 2013 ident: 10.1016/j.jcp.2019.04.057_br0100 article-title: Flux-explicit IMEX Runge-Kutta schemes for hyperbolic to parabolic relaxation problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/110850803 – volume: 51 start-page: 82 year: 2009 ident: 10.1016/j.jcp.2019.04.057_br0360 article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems publication-title: SIAM Rev. doi: 10.1137/070679065 – volume: 22 start-page: 745 year: 1968 ident: 10.1016/j.jcp.2019.04.057_br0130 article-title: Numerical solution of the Navier-Stokes equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1968-0242392-2 – volume: 39 start-page: A2099 year: 2017 ident: 10.1016/j.jcp.2019.04.057_br0210 article-title: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1069274 – volume: 11 start-page: 621 year: 1990 ident: 10.1016/j.jcp.2019.04.057_br0230 article-title: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via finite-element method that also introduces a nearly consistent mass matrix. Part 2: Implementation publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650110510 – volume: 309 start-page: 368 year: 2016 ident: 10.1016/j.jcp.2019.04.057_br0180 article-title: Projection methods for incompressible flow problems with WENO finite difference schemes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.041 – volume: 576 year: 2015 ident: 10.1016/j.jcp.2019.04.057_br0320 article-title: A new numerical solver for flows at various Mach numbers publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201425059 – volume: 32 start-page: 173 year: 2003 ident: 10.1016/j.jcp.2019.04.057_br0330 article-title: The extension of incompressible flow solvers to the weakly compressible regime publication-title: Comput. Fluids doi: 10.1016/S0045-7930(02)00010-5 – volume: 34 start-page: 481 year: 1981 ident: 10.1016/j.jcp.2019.04.057_br0280 article-title: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160340405 – volume: 25 start-page: 1125 year: 2002 ident: 10.1016/j.jcp.2019.04.057_br0300 article-title: Numerical methods for incompressible viscous flow publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00052-0 |
SSID | ssj0008548 |
Score | 2.5267394 |
Snippet | •A high order all-Mach number solver for isentropic Euler equations is presented.•It is based on finite difference in space and IMEX in time.•Material waves... In this paper, new high order schemes are constructed and analyzed, for the numerical solution of Euler equations of isentropic gas dynamics. Material waves... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 594 |
SubjectTerms | Acoustic waves Asymptotic methods Asymptotic preserving Asymptotic properties Computational physics Euler-Lagrange equation Finite difference method Gas dynamics IMEX Incompressible solver Low-Mach Mach number Semi-implicit WENO reconstruction |
Title | A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system |
URI | https://dx.doi.org/10.1016/j.jcp.2019.04.057 https://www.proquest.com/docview/2250581028 |
Volume | 392 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqsrDwRhRK5YEJKTSJ8xyrKlULalla0c1KbmyRqi_1sfLt-DoOCIQ6sCWRHUXX9r3HyjnHhDz4QSTCHDILwJeW56qrONMCn9TOJYAIYlQjD0dBf-I9T_1pjXQrLQzSKk3uL3O6ztbmSdtEs70uCtT4uqihdxQE0f6WqGD3QpzlTx_fNI_I98psjFQE1br6s6k5XjNAy0on1m6nWKH-rk2_srQuPb0zcmIwI-2Un3VOamJ5QU4NfqRmdW4vybhD0X2YajtNuhWLwio0YbzY0cEwmdK3ZPRK1XZWLARVYJUq8EfT-dwapvBOC5QhbVbrAmiyn-MLtMnzFZn0knG3b5lTEyxgrr-zfAghECyNIE4z5ghVrxmkcWiLWCBYC1XApFA7GY-F0pM5GsarHXUauA5EkMfsmtSXq6W4IdR1ZOSEaQZSgUQGbhQErgycXDDG8kjaDWJX8eJgLMXxZIs5r7hjM65CzDHE3Pa4CnGDPH51WZd-Gocae9Ug8B-Tgqt8f6hbsxowblbklruI9SKEU7f_e-sdOca7kl_WJPXdZi_uFSDZZS0941rkqDN46Y8-AVZc3hU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BO8DCN6JQwAMTUkQS53OsUFELbVla0c1KLrZIVUrVlv-Pz3GQQIiBLUpyVnS2371T7p4BbsIokXGBuYMYKifw9VWamwafzC0UooxS6kYejqLeJHichtMtuK97Yais0mJ_hekGre2dO-vNu2VZUo-vTz30nqYgRt9yG5qkThU2oNnpP_VGX4CchEEFyFSNoA3qn5umzGuGpFrppUbwlILU7-HpB1Cb6PNwAHuWNrJO9WWHsCUXR7BvKSSzG3R9DOMOIwFiZhQ12Vq-lU5pasbLDesPu1P20h09M53RyjfJNF9lmv-xbD53hhm-spI6kVbvyxJZ92NOAxid5xOYPHTH9z3HHpzgIPfDjRNijJHkWYJplnNP6pDNMUtjV6aS-FqsfaakTmYCHqtAFaQZr5PqLPI9TLBI-Sk0Fu8LeQbM91TixVmOSvNEjn4SRb6KvEJyzotEuS1wa38JtKridLjFXNTlYzOhXSzIxcINhHZxC26_TJaVpMZfLwf1JIhv60JoyP_LrF1PmLCbci18onsJMarz_416DTu98XAgBv3R0wXs0pOq3KwNjc3qQ15qfrLJr-z6-wQDxeDG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high+order+semi-implicit+IMEX+WENO+scheme+for+the+all-Mach+isentropic+Euler+system&rft.jtitle=Journal+of+computational+physics&rft.au=Boscarino%2C+Sebastiano&rft.au=Qiu%2C+Jing-Mei&rft.au=Russo%2C+Giovanni&rft.au=Xiong%2C+Tao&rft.date=2019-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=392&rft.spage=594&rft.epage=618&rft_id=info:doi/10.1016%2Fj.jcp.2019.04.057&rft.externalDocID=S0021999119303109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |