Ankle foot motion recognition based on wireless wearable sEMG and acceleration sensors for smart AFO

[Display omitted] •A wireless signal acquisition system (WAS) was designed specifically, high precision sEMG signal and three-axis ACC data were acquired simultaneously.•TKEO based signal preprocessing algorithm was proposed to detect the onset of the raw data.•Features from sEMG and ACC data of fou...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 331; p. 113025
Main Authors Zhou, Congcong, Yang, Lilin, Liao, Heng, Liang, Bo, Ye, Xuesong
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A wireless signal acquisition system (WAS) was designed specifically, high precision sEMG signal and three-axis ACC data were acquired simultaneously.•TKEO based signal preprocessing algorithm was proposed to detect the onset of the raw data.•Features from sEMG and ACC data of four kinds of typical motions including dorsiflexion, plantar flexion, eversion and inversion were studied properly.•DT,NB, SVM, ANN and BiLSTM models were proposed, the accuracy results and confusion matrix of typical motion mode were discussed.•The input referred noise of sEMG module in WAS(1 μV) was lower than many other systems, and the classification accuracy of BiLSTM reached 99.8 %. Ankle joint is one of the important anatomical structures of the human body, smart ankle-foot orthosis(AFO) can assist human walking and improve the ankle motion for patients. This study focused on ankle foot movements recognition based on data fusion via sEMG and acceleration sensors. A wireless signal acquisition system (WAS) was designed specifically, forming a platform to demonstrate and record individual sEMG and acceleration data simultaneously. In the experimental tests, three channel sEMG signals from Tibialis Anterior (TA), Gastrocnemius (GM) and Soleus (SO), as well as three-axis acceleration data of the ankle joints, were collected when subjects performed four kinds of typical motions including dorsiflexion, plantar flexion, eversion and inversion. A total of 21,600 frames of sEMG /acceleration action data were constructed and then different kinds of classification algorithms were studied to classify the motions by the principal component analysis (PCA) based data fusion signal features. Results showed that the classification accuracy of bi-directional long short-term memory (BiLSTM) algorithm performed the best compared with traditional networks such as support vector machine(SVM), artificial neural network (ANN) and reached 99.8 %. These results demonstrated the potential application for accurate ankle foot intent identification by sEMG and acceleration sensors, which provided the basis for further implementation of subsequent smart AFO manipulation.
AbstractList [Display omitted] •A wireless signal acquisition system (WAS) was designed specifically, high precision sEMG signal and three-axis ACC data were acquired simultaneously.•TKEO based signal preprocessing algorithm was proposed to detect the onset of the raw data.•Features from sEMG and ACC data of four kinds of typical motions including dorsiflexion, plantar flexion, eversion and inversion were studied properly.•DT,NB, SVM, ANN and BiLSTM models were proposed, the accuracy results and confusion matrix of typical motion mode were discussed.•The input referred noise of sEMG module in WAS(1 μV) was lower than many other systems, and the classification accuracy of BiLSTM reached 99.8 %. Ankle joint is one of the important anatomical structures of the human body, smart ankle-foot orthosis(AFO) can assist human walking and improve the ankle motion for patients. This study focused on ankle foot movements recognition based on data fusion via sEMG and acceleration sensors. A wireless signal acquisition system (WAS) was designed specifically, forming a platform to demonstrate and record individual sEMG and acceleration data simultaneously. In the experimental tests, three channel sEMG signals from Tibialis Anterior (TA), Gastrocnemius (GM) and Soleus (SO), as well as three-axis acceleration data of the ankle joints, were collected when subjects performed four kinds of typical motions including dorsiflexion, plantar flexion, eversion and inversion. A total of 21,600 frames of sEMG /acceleration action data were constructed and then different kinds of classification algorithms were studied to classify the motions by the principal component analysis (PCA) based data fusion signal features. Results showed that the classification accuracy of bi-directional long short-term memory (BiLSTM) algorithm performed the best compared with traditional networks such as support vector machine(SVM), artificial neural network (ANN) and reached 99.8 %. These results demonstrated the potential application for accurate ankle foot intent identification by sEMG and acceleration sensors, which provided the basis for further implementation of subsequent smart AFO manipulation.
Ankle joint is one of the important anatomical structures of the human body, smart ankle-foot orthosis(AFO) can assist human walking and improve the ankle motion for patients. This study focused on ankle foot movements recognition based on data fusion via sEMG and acceleration sensors. A wireless signal acquisition system (WAS) was designed specifically, forming a platform to demonstrate and record individual sEMG and acceleration data simultaneously. In the experimental tests, three channel sEMG signals from Tibialis Anterior (TA), Gastrocnemius (GM) and Soleus (SO), as well as three-axis acceleration data of the ankle joints, were collected when subjects performed four kinds of typical motions including dorsiflexion, plantar flexion, eversion and inversion. A total of 21,600 frames of sEMG /acceleration action data were constructed and then different kinds of classification algorithms were studied to classify the motions by the principal component analysis (PCA) based data fusion signal features. Results showed that the classification accuracy of bi-directional long short-term memory (BiLSTM) algorithm performed the best compared with traditional networks such as support vector machine(SVM), artificial neural network (ANN) and reached 99.8 %. These results demonstrated the potential application for accurate ankle foot intent identification by sEMG and acceleration sensors, which provided the basis for further implementation of subsequent smart AFO manipulation.
ArticleNumber 113025
Author Ye, Xuesong
Liao, Heng
Liang, Bo
Yang, Lilin
Zhou, Congcong
Author_xml – sequence: 1
  givenname: Congcong
  orcidid: 0000-0001-8397-1491
  surname: Zhou
  fullname: Zhou, Congcong
  email: zjdxzcc@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Biosensor National Special Laboratory, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 2
  givenname: Lilin
  surname: Yang
  fullname: Yang, Lilin
  organization: College of Biomedical Engineering and Instrument Science, Biosensor National Special Laboratory, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 3
  givenname: Heng
  surname: Liao
  fullname: Liao, Heng
  organization: College of Biomedical Engineering and Instrument Science, Biosensor National Special Laboratory, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 4
  givenname: Bo
  surname: Liang
  fullname: Liang, Bo
  organization: College of Biomedical Engineering and Instrument Science, Biosensor National Special Laboratory, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 5
  givenname: Xuesong
  surname: Ye
  fullname: Ye, Xuesong
  email: yexuesong@zju.edu.cn
  organization: College of Biomedical Engineering and Instrument Science, Biosensor National Special Laboratory, Zhejiang University, Hangzhou, 310027, PR China
BookMark eNp9kEtPAyEQgInRxLb6A7yReN6V51LiqTH1kWi86JmwMDXUCgpbG_-9tPXkoaeZzMw3MN8YHccUAaELSlpKaHe1bEu0LSOMtpRywuQRGtGp4g0nnT5GI6KZaAQT6hSNS1kSQjhXaoT8LL6vAC9SGvBHGkKKOINLbzHs8t4W8Lgmm5BhBaXgDdhs-4qU-dMdttFj61xtZbsDCsSScqkLMy4fNg94dvt8hk4WdlXg_C9O0Ovt_OXmvnl8vnu4mT02jjM5NLLX1FvpNAfFlOj0lImeEg1Sa09AeSYY7aXkltNaqjXda9I71nunBKd8gi73ez9z-lpDGcwyrXOsTxomtew6OhWiTqn9lMuplAwL48Kw-_2QbVgZSsxWqVmaqtRslZq90krSf-RnDvXIn4PM9Z6Bevh3gGyKCxAd-GrUDcancID-Bbimj6k
CitedBy_id crossref_primary_10_1016_j_humov_2024_103300
crossref_primary_10_1016_j_sna_2022_113463
crossref_primary_10_3390_healthcare12222273
crossref_primary_10_1017_S0263574723001509
crossref_primary_10_3390_s23104818
crossref_primary_10_3390_electronics10222767
crossref_primary_10_1109_ACCESS_2024_3388044
crossref_primary_10_2139_ssrn_4019507
crossref_primary_10_3390_prosthesis5040085
crossref_primary_10_3390_bios12070516
crossref_primary_10_3390_bios12121182
crossref_primary_10_1155_2022_7049429
crossref_primary_10_1038_s41597_023_02263_3
crossref_primary_10_1088_1361_6579_ad7776
crossref_primary_10_1109_JSEN_2023_3285214
crossref_primary_10_1016_j_engappai_2025_110286
crossref_primary_10_3389_fbioe_2023_1006326
crossref_primary_10_3390_mi13122047
crossref_primary_10_1002_advs_202305025
crossref_primary_10_3390_act13020054
Cites_doi 10.1007/s11517-015-1443-z
10.1109/TBME.2013.2264466
10.3390/s17092020
10.1016/j.sna.2019.111738
10.1016/j.bspc.2018.08.030
10.1109/ACCESS.2020.2988550
10.3390/bios10080085
10.1109/ACCESS.2020.3008901
10.1109/TNSRE.2019.2909585
10.1109/TII.2017.2779814
10.1109/TNSRE.2019.2895221
10.3390/s19183827
10.1186/s12984-020-00726-x
10.1007/s11517-012-1010-9
10.1109/TBME.2003.813539
10.1504/IJBET.2020.107711
10.1016/S0031-9406(10)62588-6
10.1109/TNSRE.2013.2274657
10.1109/TIE.2019.2914621
10.3390/sym9080147
10.1109/TNSRE.2014.2357806
10.3390/s20143972
10.1162/neco.1997.9.8.1735
10.3390/electronics8030259
10.3390/s16040556
10.1109/TBME.2008.919734
10.1109/10.204774
10.1016/j.matpr.2020.04.416
10.1115/1.4033900
10.1016/0013-4694(87)90003-4
10.1177/0269215520927738
10.1016/j.jneumeth.2003.10.014
10.1109/ACCESS.2019.2930005
10.1109/TITB.2012.2226905
10.1109/JSEN.2019.2931715
10.3389/fbioe.2019.00335
10.1371/journal.pone.0227039
10.1109/JSEN.2015.2459067
10.1088/1361-6579/aab2ed
10.3390/app10082638
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Nov 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Nov 1, 2021
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2021.113025
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2021_113025
S0924424721004908
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-5b91da5c93e727469824b109e599d0e7d2421b553a315999d09b90bc2bdc74313
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Mon Jul 14 10:33:27 EDT 2025
Tue Jul 01 01:05:35 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Fri Feb 23 02:43:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless signal acquisition system (WAS)
Data fusion
Motion recognition
Ankle foot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-5b91da5c93e727469824b109e599d0e7d2421b553a315999d09b90bc2bdc74313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8397-1491
PQID 2595661844
PQPubID 2045401
ParticipantIDs proquest_journals_2595661844
crossref_citationtrail_10_1016_j_sna_2021_113025
crossref_primary_10_1016_j_sna_2021_113025
elsevier_sciencedirect_doi_10_1016_j_sna_2021_113025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhou, Meng, Lu, Liu, Ai, Xie (bib0165) 2016; 16
Cheng, Chen, Shen (bib0135) 2013; 17
Khadivi, Nazarpour, Zadeh (bib0055) 2005; Vol. 5
Jiang, Li, Xu, Xu, Gu, Shull (bib0100) 2020; 67
Shi, Cai, Zhu, Zhong, Wang (bib0040) 2013; 51
Gao, Wang, Fang, Xu (bib0010) 2020; 10
Zhang, Xiong, Zhang, Liu, Lai, Rong, Fu (bib0130) 2019; 27
Toledo-Pérez, Martínez-Prado, Gómez-Loenzo, Paredes-García, Rodríguez-Reséndiz (bib0125) 2019; 8
Fang, He, Wang, Cao, Gao (bib0035) 2020; 10
Su, Wang, Liu, Sheng, Jiang, Xiang (bib0140) 2019; 27
Gregory, Ren (bib0235) 2019; 7
Winter, Yack (bib0190) 1987; 67
Day (bib0200) 2002
Karakkattil, Trudelle-Jackson, Medley, Swank (bib0020) 2020; 34
Liu, Zhang, (Helen) Huang (bib0160) 2017; 17
Tschiedel, Russold, Kaniusas (bib0145) 2020; 17
Bao, Intille (bib0060) 2004
Rainoldi, Melchiorri, Caruso (bib0185) 2004; 134
Sarma, Sahai, Bhatia (bib0005) 2020; 33
Kim, Cho, Lee, Jung (bib0090) 2019; 19
Kaiser (bib0210) 1993; vol. 3
Hu (bib0240) 2017
Nazmi, Abdul Rahman, Yamamoto, Ahmad (bib0195) 2019; 47
Jiang, Lv, Guo, Zhang, Wang, Sheng, Shull (bib0085) 2018; 14
Hameed, Garcia-Zapirain (bib0250) 2020; 8
Ertuğrul, Kaya, Tekin (bib0045) 2016; 54
Guo, Sheng, Liu, Zhu (bib0225) 2016; 16
Margarito, Helaoui, Bianchi, Sartor, Bonomi (bib0070) 2016; 63
Ai, Zhang, Qi, Liu, Chen (bib0025) 2017; 9
Hu, Wong, Dai, Kankanhalli, Geng, Li (bib0110) 2019; 7
Wei, Chen, Yang, Cao, Zhang (bib0080) 2016; 16
Jiang, Gao, Liu, Shull (bib0095) 2020; 301
Zhang, Meng, Davies, Zhang, Xie (bib0170) 2016; 63
Hudgins, Parker, Scott (bib0075) 1993; 40
Ji, Wang, Zhou, Li, Wang, Ye (bib0180) 2018; 39
Miller, Beazer, Hahn (bib0120) 2013; 60
Hochreiter, Schmidhuber (bib0245) 1997; 9
Englehart, Hudgins (bib0215) 2003; 50
Lyons, Joshi (bib0175) 2015
Biagetti, Crippa, Falaschetti, Luzzi, Turchetti (bib0030) 2019
Lee, Robinovitch, Park (bib0065) 2015; 23
Shi, Qin, Zhu, Zhai, Shi (bib0050) 2020; 8
Hermens, Freriks, Merletti, Stegeman, Blok, Rau, Disselhorst-Klug, Hägg (bib0205) 1999; 8
Oskoei, Hu (bib0220) 2008; 55
Siddiqui, Chan (bib0105) 2020; 15
Maragliulo, Lopes, Osório, De Almeida, Tavakoli (bib0230) 2019; 19
Vu, Dong, Cao, Verstraten, Lefeber, Vanderborght, Geeroms (bib0150) 2020; 20
Carr, Shepherd (bib0015) 1989; 75
Bhardwaj, Ali Khan, Muzammil, Mohd Khan (bib0155) 2020; 24
Sikdar, Rangwala, Eastlake, Hunt, Nelson, Devanathan, Shin, Pancrazio (bib0115) 2014; 22
Gregory (10.1016/j.sna.2021.113025_bib0235) 2019; 7
Margarito (10.1016/j.sna.2021.113025_bib0070) 2016; 63
Jiang (10.1016/j.sna.2021.113025_bib0100) 2020; 67
Kim (10.1016/j.sna.2021.113025_bib0090) 2019; 19
Guo (10.1016/j.sna.2021.113025_bib0225) 2016; 16
Sarma (10.1016/j.sna.2021.113025_bib0005) 2020; 33
Carr (10.1016/j.sna.2021.113025_bib0015) 1989; 75
Shi (10.1016/j.sna.2021.113025_bib0050) 2020; 8
Fang (10.1016/j.sna.2021.113025_bib0035) 2020; 10
Winter (10.1016/j.sna.2021.113025_bib0190) 1987; 67
Bhardwaj (10.1016/j.sna.2021.113025_bib0155) 2020; 24
Bao (10.1016/j.sna.2021.113025_bib0060) 2004
Karakkattil (10.1016/j.sna.2021.113025_bib0020) 2020; 34
Zhang (10.1016/j.sna.2021.113025_bib0130) 2019; 27
Day (10.1016/j.sna.2021.113025_bib0200) 2002
Liu (10.1016/j.sna.2021.113025_bib0160) 2017; 17
Tschiedel (10.1016/j.sna.2021.113025_bib0145) 2020; 17
Hochreiter (10.1016/j.sna.2021.113025_bib0245) 1997; 9
Su (10.1016/j.sna.2021.113025_bib0140) 2019; 27
Rainoldi (10.1016/j.sna.2021.113025_bib0185) 2004; 134
Hu (10.1016/j.sna.2021.113025_bib0240) 2017
Englehart (10.1016/j.sna.2021.113025_bib0215) 2003; 50
Toledo-Pérez (10.1016/j.sna.2021.113025_bib0125) 2019; 8
Kaiser (10.1016/j.sna.2021.113025_bib0210) 1993; vol. 3
Maragliulo (10.1016/j.sna.2021.113025_bib0230) 2019; 19
Siddiqui (10.1016/j.sna.2021.113025_bib0105) 2020; 15
Cheng (10.1016/j.sna.2021.113025_bib0135) 2013; 17
Ertuğrul (10.1016/j.sna.2021.113025_bib0045) 2016; 54
Khadivi (10.1016/j.sna.2021.113025_bib0055) 2005; Vol. 5
Jiang (10.1016/j.sna.2021.113025_bib0085) 2018; 14
Oskoei (10.1016/j.sna.2021.113025_bib0220) 2008; 55
Lyons (10.1016/j.sna.2021.113025_bib0175) 2015
Hu (10.1016/j.sna.2021.113025_bib0110) 2019; 7
Sikdar (10.1016/j.sna.2021.113025_bib0115) 2014; 22
Vu (10.1016/j.sna.2021.113025_bib0150) 2020; 20
Nazmi (10.1016/j.sna.2021.113025_bib0195) 2019; 47
Biagetti (10.1016/j.sna.2021.113025_bib0030) 2019
Shi (10.1016/j.sna.2021.113025_bib0040) 2013; 51
Zhang (10.1016/j.sna.2021.113025_bib0170) 2016; 63
Miller (10.1016/j.sna.2021.113025_bib0120) 2013; 60
Hudgins (10.1016/j.sna.2021.113025_bib0075) 1993; 40
Hameed (10.1016/j.sna.2021.113025_bib0250) 2020; 8
Lee (10.1016/j.sna.2021.113025_bib0065) 2015; 23
Hermens (10.1016/j.sna.2021.113025_bib0205) 1999; 8
Wei (10.1016/j.sna.2021.113025_bib0080) 2016; 16
Ji (10.1016/j.sna.2021.113025_bib0180) 2018; 39
Gao (10.1016/j.sna.2021.113025_bib0010) 2020; 10
Zhou (10.1016/j.sna.2021.113025_bib0165) 2016; 16
Ai (10.1016/j.sna.2021.113025_bib0025) 2017; 9
Jiang (10.1016/j.sna.2021.113025_bib0095) 2020; 301
References_xml – volume: 8
  start-page: 259
  year: 2019
  ident: bib0125
  article-title: A study of movement classification of the lower limb based on up to 4-EMG channels
  publication-title: Electronics
– volume: 63
  start-page: 814
  year: 2016
  end-page: 821
  ident: bib0170
  article-title: A robot-driven computational model for estimating passive ankle torque with subject-specific adaptation
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1
  year: 2004
  end-page: 17
  ident: bib0060
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive Computing
– volume: Vol. 5
  year: 2005
  ident: bib0055
  publication-title: SEMG classification for upper-limb prosthesis control using higher order statistics
– volume: 67
  start-page: 402
  year: 1987
  end-page: 411
  ident: bib0190
  article-title: EMG profiles during normal human walking: stride-to-stride and inter-subject variability
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib0175
  article-title: A case study on classification of foot gestures via surface electromyography
  publication-title: Proc. Annu. Conf. Rehabil. Eng. Assist. Technol. Soc. Amer.
– volume: 63
  start-page: 788
  year: 2016
  end-page: 796
  ident: bib0070
  article-title: User-independent recognition of sports activities from a single wrist-worn accelerometer: a template-matching-based approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 38
  year: 2013
  end-page: 45
  ident: bib0135
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 51
  start-page: 417
  year: 2013
  end-page: 427
  ident: bib0040
  article-title: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine
  publication-title: Med. Biol. Eng. Comput.
– volume: 301
  year: 2020
  ident: bib0095
  article-title: A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition
  publication-title: Sens. Actuators A: Phys.
– volume: 16
  start-page: 447
  year: 2016
  end-page: 456
  ident: bib0225
  article-title: Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation
  publication-title: IEEE Sens. J.
– volume: 27
  start-page: 465
  year: 2019
  end-page: 476
  ident: bib0130
  article-title: Environmental features recognition for lower limb prostheses toward predictive walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 7
  year: 2019
  ident: bib0235
  article-title: Intent prediction of multi-axial ankle motion using limited EMG signals
  publication-title: Front. Bioeng. Biotechnol.
– volume: 17
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0145
  article-title: Relying on more sense for enhancing lower limb prostheses control: a review
  publication-title: J. Neuroeng. Rehabil.
– volume: 33
  start-page: 159
  year: 2020
  end-page: 173
  ident: bib0005
  article-title: Recent advances on ankle foot orthosis for gait rehabilitation: a review
  publication-title: Int. J. Biomed. Eng. Technol.
– volume: 39
  year: 2018
  ident: bib0180
  article-title: Assessment of ankle muscle activation by muscle synergies in healthy and post-stroke gait
  publication-title: Physiol. Meas.
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: bib0215
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 73992
  year: 2020
  end-page: 74001
  ident: bib0250
  article-title: Sentiment classification using a single-layered BiLSTM model
  publication-title: IEEE Access
– volume: 75
  start-page: 372
  year: 1989
  end-page: 380
  ident: bib0015
  article-title: A motor learning model for stroke rehabilitation
  publication-title: Physiotherapy
– volume: 17
  start-page: 2020
  year: 2017
  ident: bib0160
  article-title: An adaptive classification strategy for reliable locomotion mode recognition
  publication-title: Sensors
– volume: 24
  start-page: 1029
  year: 2020
  end-page: 1034
  ident: bib0155
  article-title: ANN based classification of sit to stand transfer
  publication-title: Mater. Today Proc.
– volume: 60
  start-page: 2745
  year: 2013
  end-page: 2750
  ident: bib0120
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 85
  year: 2020
  ident: bib0035
  article-title: EMG-centered multisensory based technologies for pattern recognition in rehabilitation: state of the art and challenges
  publication-title: Biosensors
– volume: 34
  start-page: 1094
  year: 2020
  end-page: 1102
  ident: bib0020
  article-title: Effects of two different types of ankle–foot orthoses on gait outcomes in patients with subacute stroke: a randomized crossover trial
  publication-title: Clin. Rehabil.
– volume: 10
  start-page: 2638
  year: 2020
  ident: bib0010
  article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation
  publication-title: Appl. Sci.
– volume: 23
  start-page: 258
  year: 2015
  end-page: 266
  ident: bib0065
  article-title: Inertial sensing-based pre-impact detection of falls involving near-fall scenarios
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 54
  start-page: 1137
  year: 2016
  end-page: 1146
  ident: bib0045
  article-title: A novel approach for SEMG signal classification with adaptive local binary patterns
  publication-title: Med. Biol. Eng. Comput.
– volume: 22
  start-page: 69
  year: 2014
  end-page: 76
  ident: bib0115
  article-title: Novel method for predicting dexterous individual finger movements by imaging muscle activity using a wearable ultrasonic system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 134
  start-page: 37
  year: 2004
  end-page: 43
  ident: bib0185
  article-title: A method for positioning electrodes during surface EMG recordings in lower limb muscles
  publication-title: J. Neurosci. Methods
– volume: 8
  start-page: 132882
  year: 2020
  end-page: 132892
  ident: bib0050
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
– volume: 19
  start-page: 3827
  year: 2019
  ident: bib0090
  article-title: IMU sensor-based hand gesture recognition for human-machine interfaces
  publication-title: Sensors
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: bib0075
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 1032
  year: 2019
  end-page: 1042
  ident: bib0140
  article-title: A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 19
  start-page: 10187
  year: 2019
  end-page: 10197
  ident: bib0230
  article-title: Foot gesture recognition through dual channel wearable EMG system
  publication-title: IEEE Sens. J.
– volume: 16
  year: 2016
  ident: bib0165
  article-title: Bio-inspired design and iterative feedback tuning control of a wearable ankle rehabilitation robot
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 16
  start-page: 556
  year: 2016
  ident: bib0080
  article-title: A component-based vocabulary-extensible sign language gesture recognition framework
  publication-title: Sensors
– volume: vol. 3
  start-page: 149
  year: 1993
  end-page: 152
  ident: bib0210
  publication-title: Some useful properties of Teager’s energy operators
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0245
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 9
  start-page: 147
  year: 2017
  ident: bib0025
  article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals
  publication-title: Symmetry
– start-page: 37
  year: 2019
  end-page: 47
  ident: bib0030
  article-title: Recognition of daily human activities using accelerometer and sEMG signals
  publication-title: Intelligent Decision Technologies 2019
– volume: 15
  year: 2020
  ident: bib0105
  article-title: Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist
  publication-title: PLoS One
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: bib0220
  article-title: Support vector machine-based classification scheme for myoelectric control applied to Upper Limb
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2017
  ident: bib0240
  article-title: Pattern Recognition for Active Motion of Ankle Joint Based on Dual Modal Feature Fusion
– volume: 20
  start-page: 3972
  year: 2020
  ident: bib0150
  article-title: A review of gait phase detection algorithms for lower limb prostheses
  publication-title: Sensors
– start-page: 1
  year: 2002
  end-page: 17
  ident: bib0200
  article-title: Important Factors in Surface EMG Measurement
– volume: 7
  start-page: 104108
  year: 2019
  end-page: 104120
  ident: bib0110
  article-title: sEMG-based gesture recognition with embedded virtual hand poses and adversarial learning
  publication-title: IEEE Access
– volume: 14
  start-page: 3376
  year: 2018
  end-page: 3385
  ident: bib0085
  article-title: Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing
  publication-title: IEEE Trans. Industr. Inform.
– volume: 67
  start-page: 647
  year: 2020
  end-page: 657
  ident: bib0100
  article-title: Stretchable e-Skin patch for gesture recognition on the back of the hand
  publication-title: IEEE Trans. Ind. Electron.
– volume: 47
  start-page: 334
  year: 2019
  end-page: 343
  ident: bib0195
  article-title: Walking gait event detection based on electromyography signals using artificial neural network
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 13
  year: 1999
  end-page: 54
  ident: bib0205
  article-title: European recommendations for surface electromyography
  publication-title: Roessingh Res. Dev.
– volume: 54
  start-page: 1137
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0045
  article-title: A novel approach for SEMG signal classification with adaptive local binary patterns
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1443-z
– volume: 63
  start-page: 788
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0070
  article-title: User-independent recognition of sports activities from a single wrist-worn accelerometer: a template-matching-based approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 60
  start-page: 2745
  year: 2013
  ident: 10.1016/j.sna.2021.113025_bib0120
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2264466
– volume: 17
  start-page: 2020
  year: 2017
  ident: 10.1016/j.sna.2021.113025_bib0160
  article-title: An adaptive classification strategy for reliable locomotion mode recognition
  publication-title: Sensors
  doi: 10.3390/s17092020
– volume: 301
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0095
  article-title: A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2019.111738
– volume: 47
  start-page: 334
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0195
  article-title: Walking gait event detection based on electromyography signals using artificial neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.030
– volume: 8
  start-page: 73992
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0250
  article-title: Sentiment classification using a single-layered BiLSTM model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988550
– volume: 10
  start-page: 85
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0035
  article-title: EMG-centered multisensory based technologies for pattern recognition in rehabilitation: state of the art and challenges
  publication-title: Biosensors
  doi: 10.3390/bios10080085
– volume: 8
  start-page: 132882
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0050
  article-title: Feature extraction and classification of lower limb motion based on sEMG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008901
– volume: 27
  start-page: 1032
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0140
  article-title: A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2909585
– volume: 14
  start-page: 3376
  year: 2018
  ident: 10.1016/j.sna.2021.113025_bib0085
  article-title: Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2017.2779814
– volume: 27
  start-page: 465
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0130
  article-title: Environmental features recognition for lower limb prostheses toward predictive walking
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2895221
– volume: 19
  start-page: 3827
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0090
  article-title: IMU sensor-based hand gesture recognition for human-machine interfaces
  publication-title: Sensors
  doi: 10.3390/s19183827
– volume: 17
  start-page: 1
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0145
  article-title: Relying on more sense for enhancing lower limb prostheses control: a review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00726-x
– volume: 51
  start-page: 417
  year: 2013
  ident: 10.1016/j.sna.2021.113025_bib0040
  article-title: SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1010-9
– volume: 50
  start-page: 848
  year: 2003
  ident: 10.1016/j.sna.2021.113025_bib0215
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– volume: 63
  start-page: 814
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0170
  article-title: A robot-driven computational model for estimating passive ankle torque with subject-specific adaptation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 33
  start-page: 159
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0005
  article-title: Recent advances on ankle foot orthosis for gait rehabilitation: a review
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2020.107711
– volume: Vol. 5
  year: 2005
  ident: 10.1016/j.sna.2021.113025_bib0055
– year: 2017
  ident: 10.1016/j.sna.2021.113025_bib0240
– volume: 75
  start-page: 372
  year: 1989
  ident: 10.1016/j.sna.2021.113025_bib0015
  article-title: A motor learning model for stroke rehabilitation
  publication-title: Physiotherapy
  doi: 10.1016/S0031-9406(10)62588-6
– volume: 22
  start-page: 69
  year: 2014
  ident: 10.1016/j.sna.2021.113025_bib0115
  article-title: Novel method for predicting dexterous individual finger movements by imaging muscle activity using a wearable ultrasonic system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2274657
– start-page: 1
  year: 2015
  ident: 10.1016/j.sna.2021.113025_bib0175
  article-title: A case study on classification of foot gestures via surface electromyography
  publication-title: Proc. Annu. Conf. Rehabil. Eng. Assist. Technol. Soc. Amer.
– volume: 67
  start-page: 647
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0100
  article-title: Stretchable e-Skin patch for gesture recognition on the back of the hand
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2914621
– volume: 9
  start-page: 147
  year: 2017
  ident: 10.1016/j.sna.2021.113025_bib0025
  article-title: Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals
  publication-title: Symmetry
  doi: 10.3390/sym9080147
– volume: 23
  start-page: 258
  year: 2015
  ident: 10.1016/j.sna.2021.113025_bib0065
  article-title: Inertial sensing-based pre-impact detection of falls involving near-fall scenarios
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2357806
– start-page: 1
  year: 2004
  ident: 10.1016/j.sna.2021.113025_bib0060
  article-title: Activity recognition from user-annotated acceleration data
– volume: 20
  start-page: 3972
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0150
  article-title: A review of gait phase detection algorithms for lower limb prostheses
  publication-title: Sensors
  doi: 10.3390/s20143972
– volume: 8
  start-page: 13
  year: 1999
  ident: 10.1016/j.sna.2021.113025_bib0205
  article-title: European recommendations for surface electromyography
  publication-title: Roessingh Res. Dev.
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.sna.2021.113025_bib0245
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 259
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0125
  article-title: A study of movement classification of the lower limb based on up to 4-EMG channels
  publication-title: Electronics
  doi: 10.3390/electronics8030259
– volume: 16
  start-page: 556
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0080
  article-title: A component-based vocabulary-extensible sign language gesture recognition framework
  publication-title: Sensors
  doi: 10.3390/s16040556
– volume: 55
  start-page: 1956
  year: 2008
  ident: 10.1016/j.sna.2021.113025_bib0220
  article-title: Support vector machine-based classification scheme for myoelectric control applied to Upper Limb
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919734
– start-page: 1
  year: 2002
  ident: 10.1016/j.sna.2021.113025_bib0200
– volume: 40
  start-page: 82
  year: 1993
  ident: 10.1016/j.sna.2021.113025_bib0075
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 24
  start-page: 1029
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0155
  article-title: ANN based classification of sit to stand transfer
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.04.416
– volume: 16
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0165
  article-title: Bio-inspired design and iterative feedback tuning control of a wearable ankle rehabilitation robot
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4033900
– volume: 67
  start-page: 402
  year: 1987
  ident: 10.1016/j.sna.2021.113025_bib0190
  article-title: EMG profiles during normal human walking: stride-to-stride and inter-subject variability
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90003-4
– volume: 34
  start-page: 1094
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0020
  article-title: Effects of two different types of ankle–foot orthoses on gait outcomes in patients with subacute stroke: a randomized crossover trial
  publication-title: Clin. Rehabil.
  doi: 10.1177/0269215520927738
– volume: 134
  start-page: 37
  year: 2004
  ident: 10.1016/j.sna.2021.113025_bib0185
  article-title: A method for positioning electrodes during surface EMG recordings in lower limb muscles
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.014
– volume: 7
  start-page: 104108
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0110
  article-title: sEMG-based gesture recognition with embedded virtual hand poses and adversarial learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930005
– volume: 17
  start-page: 38
  year: 2013
  ident: 10.1016/j.sna.2021.113025_bib0135
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2226905
– start-page: 37
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0030
  article-title: Recognition of daily human activities using accelerometer and sEMG signals
– volume: 19
  start-page: 10187
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0230
  article-title: Foot gesture recognition through dual channel wearable EMG system
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2931715
– volume: 7
  year: 2019
  ident: 10.1016/j.sna.2021.113025_bib0235
  article-title: Intent prediction of multi-axial ankle motion using limited EMG signals
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00335
– volume: 15
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0105
  article-title: Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227039
– volume: 16
  start-page: 447
  year: 2016
  ident: 10.1016/j.sna.2021.113025_bib0225
  article-title: Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2459067
– volume: 39
  year: 2018
  ident: 10.1016/j.sna.2021.113025_bib0180
  article-title: Assessment of ankle muscle activation by muscle synergies in healthy and post-stroke gait
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aab2ed
– volume: vol. 3
  start-page: 149
  year: 1993
  ident: 10.1016/j.sna.2021.113025_bib0210
– volume: 10
  start-page: 2638
  year: 2020
  ident: 10.1016/j.sna.2021.113025_bib0010
  article-title: A smart terrain identification technique based on electromyography, ground reaction force, and machine learning for lower limb rehabilitation
  publication-title: Appl. Sci.
  doi: 10.3390/app10082638
SSID ssj0003377
Score 2.4678137
Snippet [Display omitted] •A wireless signal acquisition system (WAS) was designed specifically, high precision sEMG signal and three-axis ACC data were acquired...
Ankle joint is one of the important anatomical structures of the human body, smart ankle-foot orthosis(AFO) can assist human walking and improve the ankle...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113025
SubjectTerms Acceleration
Algorithms
Ankle foot
Artificial neural networks
Classification
Data fusion
Data integration
Human motion
Motion perception
Motion recognition
Multisensor fusion
Neural networks
Principal components analysis
Recognition
Sensors
Smart sensors
Studies
Support vector machines
Three axis
Wearable computers
Wireless signal acquisition system (WAS)
Title Ankle foot motion recognition based on wireless wearable sEMG and acceleration sensors for smart AFO
URI https://dx.doi.org/10.1016/j.sna.2021.113025
https://www.proquest.com/docview/2595661844
Volume 331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ-eTFZ2ty3Q44aAqAEPSsKt2T5IUFwIi_Hmb3dmH_iI8eCt7bbNZjqdzmQeHyEXOgid0VZ7wky5x6EHd84xr2WBmWLrApuhNwxHrcGY307EpEK6ZS4MhlUWsj-X6Zm0LkaaBTWby9ms-eCD6cBDDiZM7r7CDHbeRi6_ev8M82AsQ1_EyR7OLj2bWYxXmmDpoTBAZBMf0bJ_f5t-SOns6envkd1CZ6RR_lv7pOKSA7LzpZLgIbFR8jx3dLpYrGkOzEM3oUHQxrfKUmhgZeI5CDf6BhyOWVM07Q2vaZxYGhsDn3KGoClYt4tVChuuaPoCBKFR__6IjPu9x-7AKwAUPMNCsfaEloGNhZHMgZqCWJEh14EvnZDS-q5t0R-shWAxA60Gx6SWvjahtgY1C3ZMqskicSeEdqThHRtjbZwOD9om1rrF2hpMcS3F1E1rxC9Jp0xRXRxBLuaqDCN7UkBthdRWObVr5HKzZJmX1vhrMi_PQ33jDwWi_69l9fLsVHE5UwUWHyixYNry0__teka2sZenJNZJdb16deegm6x1I2O-BtmKbu4Gow-DQuH0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcGg5IOhDpQ3gQ3uptM3u2k7iA4cICKEQeihIubnrx0qUdBNlU0Vc-FP8QWb2QSlCOVTitmuvLWtmdj6PPJ4P4JOJYm-NM4G0qQgEvuE_53nQdmhMifORK9gbhmftwYX4NpKjFbit78JQWmXl-0ufXnjrqqVVSbM1vbxs_QgxdBCxwBCmPL6qMitP_PUC47Z87_gAlfw5jvuH5_uDoKIWCCyP5TyQRkUukVZxjwBOLIqxMFGovFTKhb7j6KTUSMkTjnhPbcqo0NjYOEuYy3HeF7Aq0F0QbcLXm795JZwXdI-0uoCWVx-lFklleUa1juKIqFRCoud-GgwfwUKBdf0NWK82qaxXymETVnz2GtYelC58A66XXY09SyeTOSuZgNh9LhI-Ezg6hg9UCnmM3pQtUGx0TYvlh8MjlmSOJdZiV2mBLMdwejLLccIZy3-jBliv__0tXDyLWN9BI5tk_j2wrrKi6xIqxtMVUccmxrR5x2Dsb5RMfboFYS06baty5sSqMdZ13tovjdLWJG1dSnsLvtwPmZa1PJZ9LGp96H8MUiPWLBvWrHWnK2-QawwxcdeMsbT48H-z7sLLwfnwVJ8en518hFfUU96HbEJjPvvjt3FjNDc7hSEy-Pncln8HXCsbmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ankle+foot+motion+recognition+based+on+wireless+wearable+sEMG+and+acceleration+sensors+for+smart+AFO&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Zhou%2C+Congcong&rft.au=Yang%2C+Lilin&rft.au=Liao%2C+Heng&rft.au=Liang%2C+Bo&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=331&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2021.113025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon