Near-minimal spanning trees: A scaling exponent in probability models

We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model...

Full description

Saved in:
Bibliographic Details
Published inAnnales de l'I.H.P. Probabilités et statistiques Vol. 44; no. 5; pp. 962 - 976
Main Authors Aldous, David J., Bordenave, Charles, Lelarge, Marc
Format Journal Article
LanguageEnglish
Published Institut Henri Poincaré 01.10.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2). We prove this scaling result in the model of the lattice with random edge-lengths and in the Euclidean model.
AbstractList We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion δ of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as 1+Θ(δ2). We prove this scaling result in the model of the lattice with random edge-lengths and in the Euclidean model.
Author Lelarge, Marc
Aldous, David J.
Bordenave, Charles
Author_xml – sequence: 1
  givenname: David J.
  surname: Aldous
  fullname: Aldous, David J.
– sequence: 2
  givenname: Charles
  surname: Bordenave
  fullname: Bordenave, Charles
– sequence: 3
  givenname: Marc
  surname: Lelarge
  fullname: Lelarge, Marc
BookMark eNptULFOwzAU9FAk2sLCF2RGCjw7TuywRVWhlSpgoLP16jjgKnUi20j070nVdEG85aTT3b3TzcjEdc4QckfhgTLKH0Gk1Xr1TjM5IVNgvEiBQXZNZiHsAaAooZiS5atBnx6sswdsk9Cjc9Z9JtEbE56SKgka2xNhfvoh3cXEuqT33Q53trXxmBy62rThhlw12AZzO-KcbJ-XH4tVunl7WS-qTaozlsc0lxnnbGdoqXOe14w1yHVTllI3tQYUspAlE5o3GmuJYKDOa5HnWSOkwFLIbE6qc-5QYW90NN-6tbXq_dDeH1WHVi22m5EdAe1XrygbrqDlMMCcwDlD-y4EbxqlbcRoOxc92lZRUKf5FAg1zjdY7v9YLh__Ef8Czsp1Rw
CitedBy_id crossref_primary_10_1214_17_EJP129
crossref_primary_10_1137_070709037
crossref_primary_10_1214_20_AAP1660
Cites_doi 10.1209/0295-5075/8/3/002
10.1002/rsa.1015
10.1007/BFb0093472
10.1214/aoap/1042765669
10.1142/4016
10.1007/978-3-662-09444-0_1
10.1017/CBO9780511895357
10.1007/BF02099583
10.1007/BF01194923
10.1214/aop/1176988378
10.1137/1.9781611970029
10.1073/pnas.1635191100
ContentType Journal Article
Copyright Copyright 2008 Institut Henri Poincaré
Copyright_xml – notice: Copyright 2008 Institut Henri Poincaré
DBID AAYXX
CITATION
DOI 10.1214/07-AIHP138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EndPage 976
ExternalDocumentID oai_CULeuclid_euclid_aihp_1222261920
10_1214_07_AIHP138
GroupedDBID --Z
0R~
AAFWJ
AAYXX
ACGFS
AETVE
AFFOW
AFFVI
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
EBS
EJD
FAM
FDB
G-Q
GR0
HZ~
O9-
OAV
PUASD
RBU
RPE
RPZ
S70
TN5
~S-
0R
1B1
4.4
AAEDT
AAQFI
AFRUD
AITUG
ASPBG
AVWKF
AZFZN
EO8
FGOYB
HZ
IHE
K
M41
NQ-
R2-
RBV
ROL
S-
SDG
SEW
SSZ
UHS
UNR
VH1
Z
ID FETCH-LOGICAL-c325t-583442be19c545d22fa4cf998cfdc0a7868927c4fcad8a0e0d5d7553f787a9783
ISSN 0246-0203
IngestDate Tue Jan 05 18:13:58 EST 2021
Tue Jul 01 03:14:46 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-583442be19c545d22fa4cf998cfdc0a7868927c4fcad8a0e0d5d7553f787a9783
OpenAccessLink https://projecteuclid.org/journals/annales-de-linstitut-henri-poincare-probabilites-et-statistiques/volume-44/issue-5/Near-minimal-spanning-trees--A-scaling-exponent-in-probability/10.1214/07-AIHP138.pdf
PageCount 15
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_aihp_1222261920
crossref_citationtrail_10_1214_07_AIHP138
crossref_primary_10_1214_07_AIHP138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationTitle Annales de l'I.H.P. Probabilités et statistiques
PublicationYear 2008
Publisher Institut Henri Poincaré
Publisher_xml – name: Institut Henri Poincaré
References 11
12
13
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 9
  doi: 10.1209/0295-5075/8/3/002
– ident: 2
  doi: 10.1002/rsa.1015
– ident: 13
  doi: 10.1007/BFb0093472
– ident: 12
  doi: 10.1214/aoap/1042765669
– ident: 8
  doi: 10.1142/4016
– ident: 4
  doi: 10.1007/978-3-662-09444-0_1
– ident: 10
  doi: 10.1017/CBO9780511895357
– ident: 6
  doi: 10.1007/BF02099583
– ident: 3
  doi: 10.1007/BF01194923
– ident: 7
– ident: 5
  doi: 10.1214/aop/1176988378
– ident: 11
  doi: 10.1137/1.9781611970029
– ident: 1
  doi: 10.1073/pnas.1635191100
SSID ssj0006906
Score 1.7717665
Snippet We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that...
SourceID projecteuclid
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 962
SubjectTerms 05C80
60K35
68W40
Combinatorial optimization
Continuum percolation
Disordered lattice
Local weak convergence
Minimal spanning tree
Poisson point process
Probabilistic analysis of algorithms
Random geometric graph
Title Near-minimal spanning trees: A scaling exponent in probability models
URI http://projecteuclid.org/euclid.aihp/1222261920
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbKeAFNiA0Q45csARJTlOCmcZPsLUxDHWKjDyvaW-TYjogU0mpJEfAn8FdzF7tpIvYw4CWJLCeWfF_Od767z4S8iplkWnHmRnoiXNCSoRtPMonF7jLn8RScLtyHPDufzhbBh0t-ORr96mUtrZvMkz-vrSv5F6lCG8gVq2T_QrLdR6EBnkG-cAUJw_VGMj4HmLpIDvIVqz5W5vghzB03iW6JU4MEsEl_Xy0rjPoXbUZWZsi5f5hzcOq-gdoSKuvaUdopX_vhqTfz5h6WE9h3TGC9dnSDuxANaghcWTrclGq5rrtk-W3Q6R1yfFbim-7F-LfJQCXmo9vSITnYiIi6lDbrnNrkBgerKwpnviwqKWy4v69uDd2jhVW19Bze05-xVc1mKY7N0TB_aHl_HGDQKXST09l8bNhhhlTaoviyGrZ2XNrHi496LctCpfaGfdMx2EmtM8lukds-uByoMz8ln7tVHQmdLb0tDP92O_jAoNm1-2fm0z1L5eI-uWddDJoYvOyRka72yd2zjp-33id7VqXX9I3lHT98QE76cKIbONEWTkc0oRZMdAMmWlS0ByZqwPSQLN6fXBzPXHvKhisnPm-w7C4I_EyPYwnWtPL9XAQyBy9c5koyEUbTKPZDGeRSqEgwzRRXIeeTHFS9wI3DR2SngmEfE5ph3bZSUag5OJ6ZiCMeaCkwdZCJXLMDcriZqlRaCno8CaVM0RWFaU1ZmNppPSAvu74rQ7xyba-jwYx3XW8i6Sf_8_JTcmf7EzwjO83VWj8H-7TJXrTA-Q1GNJg2
linkProvider Cellule MathDoc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-minimal+spanning+trees%3A+A+scaling+exponent+in+probability+models&rft.jtitle=Annales+de+l%27I.H.P.+Probabilit%C3%A9s+et+statistiques&rft.au=Aldous%2C+David+J&rft.au=Bordenave%2C+Charles&rft.au=Lelarge%2C+Marc&rft.date=2008-10-01&rft.pub=Institut+Henri+Poincar%C3%A9&rft.volume=44&rft.issue=no.+5&rft.spage=962&rft.epage=976&rft_id=info:doi/10.1214%2F07-AIHP138&rft.externalDBID=aihp&rft.externalDocID=oai_CULeuclid_euclid_aihp_1222261920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0246-0203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0246-0203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0246-0203&client=summon