Low cost portable 3-D printed optical fiber sensor for real-time monitoring of lower back bending
•An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when diff...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 265; pp. 193 - 201 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.10.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when different postures are sustained.•Experimental results captured from the sensor mounted on human subjects were correlated with angular deformation values obtained using a simultaneous image capture method.•All-plastic composition 3-D printed sensor that has advantage to be used in conjunction with magnetic resonance imaging (MRI) scanning machines as well as X-ray based scanning machines.
A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the lower back. The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between −12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic. |
---|---|
AbstractList | •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when different postures are sustained.•Experimental results captured from the sensor mounted on human subjects were correlated with angular deformation values obtained using a simultaneous image capture method.•All-plastic composition 3-D printed sensor that has advantage to be used in conjunction with magnetic resonance imaging (MRI) scanning machines as well as X-ray based scanning machines.
A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the lower back. The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between −12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic. A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the tower back The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between -12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic |
Author | O'Sullivan, Kieran Kam, Wern Lewis, Elfed Mohammed, Waleed S. O'Keeffe, Sinead O'Keeffe, Mary |
Author_xml | – sequence: 1 givenname: Wern surname: Kam fullname: Kam, Wern email: wern.kam@ul.ie organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland – sequence: 2 givenname: Kieran surname: O'Sullivan fullname: O'Sullivan, Kieran organization: Department of Clinical Therapies, University of Limerick, Limerick, Ireland – sequence: 3 givenname: Mary surname: O'Keeffe fullname: O'Keeffe, Mary organization: Department of Clinical Therapies, University of Limerick, Limerick, Ireland – sequence: 4 givenname: Sinead surname: O'Keeffe fullname: O'Keeffe, Sinead organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland – sequence: 5 givenname: Waleed S. surname: Mohammed fullname: Mohammed, Waleed S. organization: Center of Research in Optoelectronics, Communication and Control Systems (BU-CROCCS), School of Engineering, Bangkok University, 12120 Patumthani, Thailand – sequence: 6 givenname: Elfed surname: Lewis fullname: Lewis, Elfed organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland |
BookMark | eNp9kEtLLDEQhYMoOD5-gLvAXXebdNKdNK5Erw8YcKPrkK6pSMaeZG6SUe6_NzKuXLgoqijOV8U5J-QwxICEXHDWcsaHy3Wbg207xlXLdMukPCALrpVoBBvGQ7JgYycb2Ul1TE5yXjPGhFBqQewyflCIudBtTMVOM1LR3NJt8qHgisZt8WBn6vyEiWYMOSbqaiW0c1P8BukmBl9i1b_S6OgcP6pwsvBGJwyruj0jR87OGc-_-yl5ufv7fPPQLJ_uH2-ulw2Iri9NzyzrwE12lCAAZd9NzlotegkSRhCSaQStBj2AU-M49LbOk-6Q9w4Us-KU_Nnf3ab4b4e5mHXcpVBfGj4OSneS931V8b0KUsw5oTPV6sam_4Yz85WkWZuapPlK0jBtapKVUT8Y8MUWH0NJ1s-_kld7Eqvxd4_JZPAYAFc-IRSziv4X-hOYEZA0 |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2025_112792 crossref_primary_10_1002_pi_5511 crossref_primary_10_1002_smtd_202401368 crossref_primary_10_1016_j_sna_2018_05_026 crossref_primary_10_3390_ma12050762 crossref_primary_10_1115_1_4048466 crossref_primary_10_1117_1_OE_61_9_097102 crossref_primary_10_3390_s19224968 |
Cites_doi | 10.1109/JLT.2014.2378754 10.1016/j.jacr.2009.02.008 10.1109/TNSRE.2005.843446 10.1007/s00586-008-0586-0 10.1016/j.medengphy.2010.07.005 10.1016/S0167-9457(99)00032-9 10.1097/01.brs.0000217763.80593.50 10.1097/01.brs.0000202532.76925.d2 10.1007/s00586-005-0057-9 10.1016/j.gaitpost.2007.03.001 10.1007/s00586-013-2777-6 10.1093/ptj/66.5.677 10.1088/0957-0233/22/4/045801 10.3390/s131114466 10.1016/0268-0033(86)90081-1 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Oct 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2017 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2017.08.044 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 201 |
ExternalDocumentID | 10_1016_j_sna_2017_08_044 S0924424717305940 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-50a02cfba94c3ce452bfaa8354c4c9c3408ec87686cf79965a768b82e15fc70a3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Mon Jul 14 10:28:04 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Fri Feb 23 02:21:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 3-D printed sensor Lower back bending sensor Lateral and sagittal plane motions Optical fiber sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-50a02cfba94c3ce452bfaa8354c4c9c3408ec87686cf79965a768b82e15fc70a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1967824155 |
PQPubID | 2045401 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1967824155 crossref_primary_10_1016_j_sna_2017_08_044 crossref_citationtrail_10_1016_j_sna_2017_08_044 elsevier_sciencedirect_doi_10_1016_j_sna_2017_08_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Burdett, Brown, Fall (bib0025) 1986; 66 Bilro, Oliveira, Pinto, Nogueira (bib0075) 2011; 22 Wong, Wong (bib0035) 2008; 17 Davis, Wippold, Brunberg, Cornelius, Robert, Dormont (bib0005) 2009; 6 Wong, Wong (bib0030) 2008; 27 Hackenberg, Hierholzer, Bullmann, Liljenqvist, Götze (bib0055) 2006; 15 Shin, Wang, Yao, Wood, Li (bib0050) 2013; 22 Williams, Haq, Lee (bib0070) 2010; 32 Cakir, Richter, Käfer, Wieser, Puhl, Schmidt (bib0015) 2006; 31 Dankaerts, O'Sullivan, Burnett, Straker (bib0085) 2006; 31 Donatell, Meister, O’Brien, Thurlow, Webster, Salvi (bib0040) 2005; 13 Zawawi, O’Keeffe, Lewis (bib0080) 2015; 33 Deyo (bib0010) 1994 Whittle, Levine (bib0045) 1999; 18 Zawawi, O’Keeffe, Lewis (bib0060) 2013; 13 Dunne, Walsh, Smyth, Caulfield (bib0065) 2006 Mellin (bib0020) 1986; 1 Wong (10.1016/j.sna.2017.08.044_bib0030) 2008; 27 Whittle (10.1016/j.sna.2017.08.044_bib0045) 1999; 18 Hackenberg (10.1016/j.sna.2017.08.044_bib0055) 2006; 15 Deyo (10.1016/j.sna.2017.08.044_bib0010) 1994 Williams (10.1016/j.sna.2017.08.044_bib0070) 2010; 32 Bilro (10.1016/j.sna.2017.08.044_bib0075) 2011; 22 Dankaerts (10.1016/j.sna.2017.08.044_bib0085) 2006; 31 Cakir (10.1016/j.sna.2017.08.044_bib0015) 2006; 31 Shin (10.1016/j.sna.2017.08.044_bib0050) 2013; 22 Zawawi (10.1016/j.sna.2017.08.044_bib0080) 2015; 33 Burdett (10.1016/j.sna.2017.08.044_bib0025) 1986; 66 Davis (10.1016/j.sna.2017.08.044_bib0005) 2009; 6 Wong (10.1016/j.sna.2017.08.044_bib0035) 2008; 17 Zawawi (10.1016/j.sna.2017.08.044_bib0060) 2013; 13 Donatell (10.1016/j.sna.2017.08.044_bib0040) 2005; 13 Mellin (10.1016/j.sna.2017.08.044_bib0020) 1986; 1 Dunne (10.1016/j.sna.2017.08.044_bib0065) 2006 |
References_xml | – volume: 66 start-page: 677 year: 1986 end-page: 684 ident: bib0025 article-title: Reliability and validity of four instruments for measuring lumbar spine and pelvic positions publication-title: Phys. Ther. – volume: 18 start-page: 681 year: 1999 end-page: 692 ident: bib0045 article-title: Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait publication-title: Hum. Mov. Sci. – volume: 27 start-page: 168 year: 2008 end-page: 171 ident: bib0030 article-title: Detecting spinal posture change in sitting positions with tri-axial accelerometers publication-title: Gait Posture – volume: 32 start-page: 1043 year: 2010 end-page: 1049 ident: bib0070 article-title: Dynamic measurement of lumbar curvature using fibre-optic sensors publication-title: Med. Eng. Phys. – volume: 13 start-page: 14466 year: 2013 end-page: 14483 ident: bib0060 article-title: Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation publication-title: Sensors – year: 1994 ident: bib0010 article-title: Back Pain Patient Outcomes Assessment Team (BOAT) – start-page: 65 year: 2006 end-page: 68 ident: bib0065 article-title: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture publication-title: 2006 10th IEEE International Symposium on Wearable Computers – volume: 31 start-page: 698 year: 2006 end-page: 704 ident: bib0085 article-title: Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified publication-title: Spine – volume: 13 start-page: 18 year: 2005 end-page: 23 ident: bib0040 article-title: A simple device to monitor flexion and lateral bending of the lumbar spine publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 31 start-page: 1258 year: 2006 end-page: 1264 ident: bib0015 article-title: Evaluation of lumbar spine motion with dynamic X-ray – a reliability analysis publication-title: Spine – volume: 6 start-page: 401 year: 2009 end-page: 407 ident: bib0005 article-title: ACR appropriateness criteria publication-title: J. Am. Coll. Radiol. – volume: 1 start-page: 85 year: 1986 end-page: 89 ident: bib0020 article-title: Accuracy of measuring lateral flexion of the spine with a tape publication-title: Clin. Biomech. – volume: 17 start-page: 743 year: 2008 end-page: 753 ident: bib0035 article-title: Trunk posture monitoring with inertial sensors publication-title: Eur. Spine J. – volume: 22 start-page: 2671 year: 2013 end-page: 2677 ident: bib0050 article-title: Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body publication-title: Eur. Spine J. – volume: 15 start-page: 1144 year: 2006 end-page: 1149 ident: bib0055 article-title: Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis publication-title: Eur. Spine J. – volume: 22 start-page: 045801 year: 2011 ident: bib0075 article-title: A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor publication-title: Meas. Sci. Technol. – volume: 33 start-page: 2492 year: 2015 end-page: 2498 ident: bib0080 article-title: Optical fibre bending sensor with automatic intensity compensation publication-title: J. Lightw. Technol. – volume: 33 start-page: 2492 year: 2015 ident: 10.1016/j.sna.2017.08.044_bib0080 article-title: Optical fibre bending sensor with automatic intensity compensation publication-title: J. Lightw. Technol. doi: 10.1109/JLT.2014.2378754 – volume: 6 start-page: 401 year: 2009 ident: 10.1016/j.sna.2017.08.044_bib0005 article-title: ACR appropriateness criteria® on low back pain publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2009.02.008 – volume: 13 start-page: 18 year: 2005 ident: 10.1016/j.sna.2017.08.044_bib0040 article-title: A simple device to monitor flexion and lateral bending of the lumbar spine publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.843446 – volume: 17 start-page: 743 year: 2008 ident: 10.1016/j.sna.2017.08.044_bib0035 article-title: Trunk posture monitoring with inertial sensors publication-title: Eur. Spine J. doi: 10.1007/s00586-008-0586-0 – volume: 32 start-page: 1043 year: 2010 ident: 10.1016/j.sna.2017.08.044_bib0070 article-title: Dynamic measurement of lumbar curvature using fibre-optic sensors publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.07.005 – volume: 18 start-page: 681 year: 1999 ident: 10.1016/j.sna.2017.08.044_bib0045 article-title: Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait publication-title: Hum. Mov. Sci. doi: 10.1016/S0167-9457(99)00032-9 – volume: 31 start-page: 1258 year: 2006 ident: 10.1016/j.sna.2017.08.044_bib0015 article-title: Evaluation of lumbar spine motion with dynamic X-ray – a reliability analysis publication-title: Spine doi: 10.1097/01.brs.0000217763.80593.50 – volume: 31 start-page: 698 year: 2006 ident: 10.1016/j.sna.2017.08.044_bib0085 article-title: Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified publication-title: Spine doi: 10.1097/01.brs.0000202532.76925.d2 – volume: 15 start-page: 1144 year: 2006 ident: 10.1016/j.sna.2017.08.044_bib0055 article-title: Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis publication-title: Eur. Spine J. doi: 10.1007/s00586-005-0057-9 – volume: 27 start-page: 168 year: 2008 ident: 10.1016/j.sna.2017.08.044_bib0030 article-title: Detecting spinal posture change in sitting positions with tri-axial accelerometers publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.03.001 – start-page: 65 year: 2006 ident: 10.1016/j.sna.2017.08.044_bib0065 article-title: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture – volume: 22 start-page: 2671 year: 2013 ident: 10.1016/j.sna.2017.08.044_bib0050 article-title: Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body publication-title: Eur. Spine J. doi: 10.1007/s00586-013-2777-6 – volume: 66 start-page: 677 year: 1986 ident: 10.1016/j.sna.2017.08.044_bib0025 article-title: Reliability and validity of four instruments for measuring lumbar spine and pelvic positions publication-title: Phys. Ther. doi: 10.1093/ptj/66.5.677 – volume: 22 start-page: 045801 year: 2011 ident: 10.1016/j.sna.2017.08.044_bib0075 article-title: A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/22/4/045801 – year: 1994 ident: 10.1016/j.sna.2017.08.044_bib0010 – volume: 13 start-page: 14466 year: 2013 ident: 10.1016/j.sna.2017.08.044_bib0060 article-title: Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation publication-title: Sensors doi: 10.3390/s131114466 – volume: 1 start-page: 85 year: 1986 ident: 10.1016/j.sna.2017.08.044_bib0020 article-title: Accuracy of measuring lateral flexion of the spine with a tape publication-title: Clin. Biomech. doi: 10.1016/0268-0033(86)90081-1 |
SSID | ssj0003377 |
Score | 2.2737658 |
Snippet | •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor... A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 193 |
SubjectTerms | 3-D printed sensor Bending Correlation analysis Fibers Lateral and sagittal plane motions Low cost Lower back bending sensor Optical fiber sensor Optical fibers Output Planes Real time Sensors Skin Spinal curvature Spots Studies Three dimensional printing |
Title | Low cost portable 3-D printed optical fiber sensor for real-time monitoring of lower back bending |
URI | https://dx.doi.org/10.1016/j.sna.2017.08.044 https://www.proquest.com/docview/1967824155 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQWWBAnKJQkAcmJNM0ec4xVhwq5wJIbJbt2lKhJFUTxMZvx89JuCQY2JLItqJn-_l7h99HyEEyVjKxY8t4GnNnoASGSW6A8TGPkSwnqv2Q1zfx6B4uHvjDAjlu78JgWmWj-2ud7rV186XfSLM_m0z6t4EzHSAEDCNj0RG02wESXOVHb59pHlHk2RexMcPWbWTT53iVOZYeGiS-iifAb2fTDy3tj56zVbLSYEY6rH9rjSyYfJ0sf6kkuEHkVfFKdVFW1ONpNTU0YicUvXYOUtJi5l3W1GJ-CC2d6VrMqYOr1EHGKUN-efrsNzeORgtLp0ieRpXUT1QZf_Flk9yfnd4dj1jDnsB0FPKK8UAGobZKZqAjbYCHykqJfh4NOtMRBKnRThemsbaJs3q4dM8qDc2AW50EMtoinbzIzTah2mZJFocYrA5BSZVloLCOW6ZTq41MuyRo5SZ0U1ocGS6mos0hexRO1AJFLZD1EqBLDj-6zOq6Gn81hnYyxLfFIZze_6tbr5040ezMUjiN40ARwqid_426S5bwrU7o65FONX8xew6YVGrfr7x9sjg8vxzdvAPjzuHx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14MmkYW7uPI0EJyMdFSLg1bWkTdDICGP99-7rNqIkcvC1b2yyv7a-_177-HkJ30VyKyMwNYXHIrIPiaSKYpoTNWQjJcoJ8H3I0DntT-jRjswrqlHdhIKyywP4c0x1aF2-ahTWbq8Wi-exZ14H6FI6RQXTE-u01UKdiVVRr9we98RcgB4FLwAjlCVQoDzddmNdmCepDrcgJeVL61_L0C6jd6tM9QocFbcTt_M-OUUUvT9DBNzHBUySG2QdW2WaLHaWWqcYBecCwcWdZJc5WbtcaGwgRwRvrvWZrbBkrtqwxJZBiHr-5-Q2t4czgFPKnYSnUK5ba3X05Q9Pu46TTI0UCBaICn20J84TnKyNFQlWgNGW-NELAVo-iKlEB9WKtLBzGoTKRdXyYsM8y9nWLGRV5IjhH1WW21BcIK5NESejDebVPpZBJQiVIuSUqNkqLuI680m5cFerikOQi5WUY2Qu3puZgag6JLymto_uvKqtcWmNXYVp2Bv8xPriF_l3VGmXH8WJybrgFHcuLgEld_q_VW7TXm4yGfNgfD67QPnzJ4_saqLpdv-try1O28qYYh5-squSi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cost+portable+3-D+printed+optical+fiber+sensor+for+real-time+monitoring+of+lower+back+bending&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Kam%2C+Wern&rft.au=O%27Sullivan%2C+Kieran&rft.au=O%27Keeffe%2C+Mary&rft.au=O%27Keeffe%2C+Sinead&rft.date=2017-10-01&rft.issn=0924-4247&rft.volume=265&rft.spage=193&rft.epage=201&rft_id=info:doi/10.1016%2Fj.sna.2017.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2017_08_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |