Low cost portable 3-D printed optical fiber sensor for real-time monitoring of lower back bending

•An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when diff...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 265; pp. 193 - 201
Main Authors Kam, Wern, O'Sullivan, Kieran, O'Keeffe, Mary, O'Keeffe, Sinead, Mohammed, Waleed S., Lewis, Elfed
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.10.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when different postures are sustained.•Experimental results captured from the sensor mounted on human subjects were correlated with angular deformation values obtained using a simultaneous image capture method.•All-plastic composition 3-D printed sensor that has advantage to be used in conjunction with magnetic resonance imaging (MRI) scanning machines as well as X-ray based scanning machines. A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the lower back. The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between −12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic.
AbstractList •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor system has an operation range between −12° to +12° for both bending modes.•Sensor provides real time feedback to the clinical therapist when different postures are sustained.•Experimental results captured from the sensor mounted on human subjects were correlated with angular deformation values obtained using a simultaneous image capture method.•All-plastic composition 3-D printed sensor that has advantage to be used in conjunction with magnetic resonance imaging (MRI) scanning machines as well as X-ray based scanning machines. A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the lower back. The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between −12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic.
A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal planes. Both bending modes are monitored through the change of the coupled optical intensity ratio between three output fibers aligned to one input fiber. This provides real-time feedback to the clinical therapist when different postures are sustained. The output ratio is calibrated against bending angle using an optical setup utilizing a precise rotational stage. The measured data is also correlated to the curvature of the lower back through the implementation of an ad-hoc imaging scheme. Sequences of images are also captured while the optical fiber sensor is attached on the skin surface to the tower back The imaging system tracks three spots placed on the sensor and skin to trace the angle changes. The optical fiber sensor system has an operational range between -12° to +12°. It is demonstrated that the sensor is suitable for clinical use with the additional benefits of being non-invasive, robust, straightforward to use and low cost. It also allows record of spinal curvature in the home and other real-world settings and potentially reduces the requirement for the use of X-rays and MRI in the clinic
Author O'Sullivan, Kieran
Kam, Wern
Lewis, Elfed
Mohammed, Waleed S.
O'Keeffe, Sinead
O'Keeffe, Mary
Author_xml – sequence: 1
  givenname: Wern
  surname: Kam
  fullname: Kam, Wern
  email: wern.kam@ul.ie
  organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
– sequence: 2
  givenname: Kieran
  surname: O'Sullivan
  fullname: O'Sullivan, Kieran
  organization: Department of Clinical Therapies, University of Limerick, Limerick, Ireland
– sequence: 3
  givenname: Mary
  surname: O'Keeffe
  fullname: O'Keeffe, Mary
  organization: Department of Clinical Therapies, University of Limerick, Limerick, Ireland
– sequence: 4
  givenname: Sinead
  surname: O'Keeffe
  fullname: O'Keeffe, Sinead
  organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
– sequence: 5
  givenname: Waleed S.
  surname: Mohammed
  fullname: Mohammed, Waleed S.
  organization: Center of Research in Optoelectronics, Communication and Control Systems (BU-CROCCS), School of Engineering, Bangkok University, 12120 Patumthani, Thailand
– sequence: 6
  givenname: Elfed
  surname: Lewis
  fullname: Lewis, Elfed
  organization: Optical Fibre Sensors Research Centre (OFSRC), Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
BookMark eNp9kEtLLDEQhYMoOD5-gLvAXXebdNKdNK5Erw8YcKPrkK6pSMaeZG6SUe6_NzKuXLgoqijOV8U5J-QwxICEXHDWcsaHy3Wbg207xlXLdMukPCALrpVoBBvGQ7JgYycb2Ul1TE5yXjPGhFBqQewyflCIudBtTMVOM1LR3NJt8qHgisZt8WBn6vyEiWYMOSbqaiW0c1P8BukmBl9i1b_S6OgcP6pwsvBGJwyruj0jR87OGc-_-yl5ufv7fPPQLJ_uH2-ulw2Iri9NzyzrwE12lCAAZd9NzlotegkSRhCSaQStBj2AU-M49LbOk-6Q9w4Us-KU_Nnf3ab4b4e5mHXcpVBfGj4OSneS931V8b0KUsw5oTPV6sam_4Yz85WkWZuapPlK0jBtapKVUT8Y8MUWH0NJ1s-_kld7Eqvxd4_JZPAYAFc-IRSziv4X-hOYEZA0
CitedBy_id crossref_primary_10_1016_j_optlastec_2025_112792
crossref_primary_10_1002_pi_5511
crossref_primary_10_1002_smtd_202401368
crossref_primary_10_1016_j_sna_2018_05_026
crossref_primary_10_3390_ma12050762
crossref_primary_10_1115_1_4048466
crossref_primary_10_1117_1_OE_61_9_097102
crossref_primary_10_3390_s19224968
Cites_doi 10.1109/JLT.2014.2378754
10.1016/j.jacr.2009.02.008
10.1109/TNSRE.2005.843446
10.1007/s00586-008-0586-0
10.1016/j.medengphy.2010.07.005
10.1016/S0167-9457(99)00032-9
10.1097/01.brs.0000217763.80593.50
10.1097/01.brs.0000202532.76925.d2
10.1007/s00586-005-0057-9
10.1016/j.gaitpost.2007.03.001
10.1007/s00586-013-2777-6
10.1093/ptj/66.5.677
10.1088/0957-0233/22/4/045801
10.3390/s131114466
10.1016/0268-0033(86)90081-1
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2017
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2017.08.044
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 201
ExternalDocumentID 10_1016_j_sna_2017_08_044
S0924424717305940
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-50a02cfba94c3ce452bfaa8354c4c9c3408ec87686cf79965a768b82e15fc70a3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Mon Jul 14 10:28:04 EDT 2025
Thu Apr 24 23:02:02 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Fri Feb 23 02:21:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 3-D printed sensor
Lower back bending sensor
Lateral and sagittal plane motions
Optical fiber sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-50a02cfba94c3ce452bfaa8354c4c9c3408ec87686cf79965a768b82e15fc70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1967824155
PQPubID 2045401
PageCount 9
ParticipantIDs proquest_journals_1967824155
crossref_primary_10_1016_j_sna_2017_08_044
crossref_citationtrail_10_1016_j_sna_2017_08_044
elsevier_sciencedirect_doi_10_1016_j_sna_2017_08_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Burdett, Brown, Fall (bib0025) 1986; 66
Bilro, Oliveira, Pinto, Nogueira (bib0075) 2011; 22
Wong, Wong (bib0035) 2008; 17
Davis, Wippold, Brunberg, Cornelius, Robert, Dormont (bib0005) 2009; 6
Wong, Wong (bib0030) 2008; 27
Hackenberg, Hierholzer, Bullmann, Liljenqvist, Götze (bib0055) 2006; 15
Shin, Wang, Yao, Wood, Li (bib0050) 2013; 22
Williams, Haq, Lee (bib0070) 2010; 32
Cakir, Richter, Käfer, Wieser, Puhl, Schmidt (bib0015) 2006; 31
Dankaerts, O'Sullivan, Burnett, Straker (bib0085) 2006; 31
Donatell, Meister, O’Brien, Thurlow, Webster, Salvi (bib0040) 2005; 13
Zawawi, O’Keeffe, Lewis (bib0080) 2015; 33
Deyo (bib0010) 1994
Whittle, Levine (bib0045) 1999; 18
Zawawi, O’Keeffe, Lewis (bib0060) 2013; 13
Dunne, Walsh, Smyth, Caulfield (bib0065) 2006
Mellin (bib0020) 1986; 1
Wong (10.1016/j.sna.2017.08.044_bib0030) 2008; 27
Whittle (10.1016/j.sna.2017.08.044_bib0045) 1999; 18
Hackenberg (10.1016/j.sna.2017.08.044_bib0055) 2006; 15
Deyo (10.1016/j.sna.2017.08.044_bib0010) 1994
Williams (10.1016/j.sna.2017.08.044_bib0070) 2010; 32
Bilro (10.1016/j.sna.2017.08.044_bib0075) 2011; 22
Dankaerts (10.1016/j.sna.2017.08.044_bib0085) 2006; 31
Cakir (10.1016/j.sna.2017.08.044_bib0015) 2006; 31
Shin (10.1016/j.sna.2017.08.044_bib0050) 2013; 22
Zawawi (10.1016/j.sna.2017.08.044_bib0080) 2015; 33
Burdett (10.1016/j.sna.2017.08.044_bib0025) 1986; 66
Davis (10.1016/j.sna.2017.08.044_bib0005) 2009; 6
Wong (10.1016/j.sna.2017.08.044_bib0035) 2008; 17
Zawawi (10.1016/j.sna.2017.08.044_bib0060) 2013; 13
Donatell (10.1016/j.sna.2017.08.044_bib0040) 2005; 13
Mellin (10.1016/j.sna.2017.08.044_bib0020) 1986; 1
Dunne (10.1016/j.sna.2017.08.044_bib0065) 2006
References_xml – volume: 66
  start-page: 677
  year: 1986
  end-page: 684
  ident: bib0025
  article-title: Reliability and validity of four instruments for measuring lumbar spine and pelvic positions
  publication-title: Phys. Ther.
– volume: 18
  start-page: 681
  year: 1999
  end-page: 692
  ident: bib0045
  article-title: Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait
  publication-title: Hum. Mov. Sci.
– volume: 27
  start-page: 168
  year: 2008
  end-page: 171
  ident: bib0030
  article-title: Detecting spinal posture change in sitting positions with tri-axial accelerometers
  publication-title: Gait Posture
– volume: 32
  start-page: 1043
  year: 2010
  end-page: 1049
  ident: bib0070
  article-title: Dynamic measurement of lumbar curvature using fibre-optic sensors
  publication-title: Med. Eng. Phys.
– volume: 13
  start-page: 14466
  year: 2013
  end-page: 14483
  ident: bib0060
  article-title: Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation
  publication-title: Sensors
– year: 1994
  ident: bib0010
  article-title: Back Pain Patient Outcomes Assessment Team (BOAT)
– start-page: 65
  year: 2006
  end-page: 68
  ident: bib0065
  article-title: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture
  publication-title: 2006 10th IEEE International Symposium on Wearable Computers
– volume: 31
  start-page: 698
  year: 2006
  end-page: 704
  ident: bib0085
  article-title: Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified
  publication-title: Spine
– volume: 13
  start-page: 18
  year: 2005
  end-page: 23
  ident: bib0040
  article-title: A simple device to monitor flexion and lateral bending of the lumbar spine
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 31
  start-page: 1258
  year: 2006
  end-page: 1264
  ident: bib0015
  article-title: Evaluation of lumbar spine motion with dynamic X-ray – a reliability analysis
  publication-title: Spine
– volume: 6
  start-page: 401
  year: 2009
  end-page: 407
  ident: bib0005
  article-title: ACR appropriateness criteria
  publication-title: J. Am. Coll. Radiol.
– volume: 1
  start-page: 85
  year: 1986
  end-page: 89
  ident: bib0020
  article-title: Accuracy of measuring lateral flexion of the spine with a tape
  publication-title: Clin. Biomech.
– volume: 17
  start-page: 743
  year: 2008
  end-page: 753
  ident: bib0035
  article-title: Trunk posture monitoring with inertial sensors
  publication-title: Eur. Spine J.
– volume: 22
  start-page: 2671
  year: 2013
  end-page: 2677
  ident: bib0050
  article-title: Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body
  publication-title: Eur. Spine J.
– volume: 15
  start-page: 1144
  year: 2006
  end-page: 1149
  ident: bib0055
  article-title: Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis
  publication-title: Eur. Spine J.
– volume: 22
  start-page: 045801
  year: 2011
  ident: bib0075
  article-title: A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor
  publication-title: Meas. Sci. Technol.
– volume: 33
  start-page: 2492
  year: 2015
  end-page: 2498
  ident: bib0080
  article-title: Optical fibre bending sensor with automatic intensity compensation
  publication-title: J. Lightw. Technol.
– volume: 33
  start-page: 2492
  year: 2015
  ident: 10.1016/j.sna.2017.08.044_bib0080
  article-title: Optical fibre bending sensor with automatic intensity compensation
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2014.2378754
– volume: 6
  start-page: 401
  year: 2009
  ident: 10.1016/j.sna.2017.08.044_bib0005
  article-title: ACR appropriateness criteria® on low back pain
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2009.02.008
– volume: 13
  start-page: 18
  year: 2005
  ident: 10.1016/j.sna.2017.08.044_bib0040
  article-title: A simple device to monitor flexion and lateral bending of the lumbar spine
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.843446
– volume: 17
  start-page: 743
  year: 2008
  ident: 10.1016/j.sna.2017.08.044_bib0035
  article-title: Trunk posture monitoring with inertial sensors
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-008-0586-0
– volume: 32
  start-page: 1043
  year: 2010
  ident: 10.1016/j.sna.2017.08.044_bib0070
  article-title: Dynamic measurement of lumbar curvature using fibre-optic sensors
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.07.005
– volume: 18
  start-page: 681
  year: 1999
  ident: 10.1016/j.sna.2017.08.044_bib0045
  article-title: Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/S0167-9457(99)00032-9
– volume: 31
  start-page: 1258
  year: 2006
  ident: 10.1016/j.sna.2017.08.044_bib0015
  article-title: Evaluation of lumbar spine motion with dynamic X-ray – a reliability analysis
  publication-title: Spine
  doi: 10.1097/01.brs.0000217763.80593.50
– volume: 31
  start-page: 698
  year: 2006
  ident: 10.1016/j.sna.2017.08.044_bib0085
  article-title: Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified
  publication-title: Spine
  doi: 10.1097/01.brs.0000202532.76925.d2
– volume: 15
  start-page: 1144
  year: 2006
  ident: 10.1016/j.sna.2017.08.044_bib0055
  article-title: Rasterstereographic analysis of axial back surface rotation in standing versus forward bending posture in idiopathic scoliosis
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-005-0057-9
– volume: 27
  start-page: 168
  year: 2008
  ident: 10.1016/j.sna.2017.08.044_bib0030
  article-title: Detecting spinal posture change in sitting positions with tri-axial accelerometers
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.03.001
– start-page: 65
  year: 2006
  ident: 10.1016/j.sna.2017.08.044_bib0065
  article-title: Design and evaluation of a wearable optical sensor for monitoring seated spinal posture
– volume: 22
  start-page: 2671
  year: 2013
  ident: 10.1016/j.sna.2017.08.044_bib0050
  article-title: Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-013-2777-6
– volume: 66
  start-page: 677
  year: 1986
  ident: 10.1016/j.sna.2017.08.044_bib0025
  article-title: Reliability and validity of four instruments for measuring lumbar spine and pelvic positions
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/66.5.677
– volume: 22
  start-page: 045801
  year: 2011
  ident: 10.1016/j.sna.2017.08.044_bib0075
  article-title: A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/22/4/045801
– year: 1994
  ident: 10.1016/j.sna.2017.08.044_bib0010
– volume: 13
  start-page: 14466
  year: 2013
  ident: 10.1016/j.sna.2017.08.044_bib0060
  article-title: Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation
  publication-title: Sensors
  doi: 10.3390/s131114466
– volume: 1
  start-page: 85
  year: 1986
  ident: 10.1016/j.sna.2017.08.044_bib0020
  article-title: Accuracy of measuring lateral flexion of the spine with a tape
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(86)90081-1
SSID ssj0003377
Score 2.2737658
Snippet •An optical fiber intensity modulated sensor that can monitor the bending of lower back bone in both sagittal and frontal planes.•The optical fiber sensor...
A mechanically robust and compact novel optical fiber sensor system is described to monitor the bending of the lower back bone in both sagittal and frontal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms 3-D printed sensor
Bending
Correlation analysis
Fibers
Lateral and sagittal plane motions
Low cost
Lower back bending sensor
Optical fiber sensor
Optical fibers
Output
Planes
Real time
Sensors
Skin
Spinal curvature
Spots
Studies
Three dimensional printing
Title Low cost portable 3-D printed optical fiber sensor for real-time monitoring of lower back bending
URI https://dx.doi.org/10.1016/j.sna.2017.08.044
https://www.proquest.com/docview/1967824155
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQWWBAnKJQkAcmJNM0ec4xVhwq5wJIbJbt2lKhJFUTxMZvx89JuCQY2JLItqJn-_l7h99HyEEyVjKxY8t4GnNnoASGSW6A8TGPkSwnqv2Q1zfx6B4uHvjDAjlu78JgWmWj-2ud7rV186XfSLM_m0z6t4EzHSAEDCNj0RG02wESXOVHb59pHlHk2RexMcPWbWTT53iVOZYeGiS-iifAb2fTDy3tj56zVbLSYEY6rH9rjSyYfJ0sf6kkuEHkVfFKdVFW1ONpNTU0YicUvXYOUtJi5l3W1GJ-CC2d6VrMqYOr1EHGKUN-efrsNzeORgtLp0ieRpXUT1QZf_Flk9yfnd4dj1jDnsB0FPKK8UAGobZKZqAjbYCHykqJfh4NOtMRBKnRThemsbaJs3q4dM8qDc2AW50EMtoinbzIzTah2mZJFocYrA5BSZVloLCOW6ZTq41MuyRo5SZ0U1ocGS6mos0hexRO1AJFLZD1EqBLDj-6zOq6Gn81hnYyxLfFIZze_6tbr5040ezMUjiN40ARwqid_426S5bwrU7o65FONX8xew6YVGrfr7x9sjg8vxzdvAPjzuHx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TOiqD14MmkYW7uPI0EJyMdFSLg1bWkTdDICGP99-7rNqIkcvC1b2yyv7a-_177-HkJ30VyKyMwNYXHIrIPiaSKYpoTNWQjJcoJ8H3I0DntT-jRjswrqlHdhIKyywP4c0x1aF2-ahTWbq8Wi-exZ14H6FI6RQXTE-u01UKdiVVRr9we98RcgB4FLwAjlCVQoDzddmNdmCepDrcgJeVL61_L0C6jd6tM9QocFbcTt_M-OUUUvT9DBNzHBUySG2QdW2WaLHaWWqcYBecCwcWdZJc5WbtcaGwgRwRvrvWZrbBkrtqwxJZBiHr-5-Q2t4czgFPKnYSnUK5ba3X05Q9Pu46TTI0UCBaICn20J84TnKyNFQlWgNGW-NELAVo-iKlEB9WKtLBzGoTKRdXyYsM8y9nWLGRV5IjhH1WW21BcIK5NESejDebVPpZBJQiVIuSUqNkqLuI680m5cFerikOQi5WUY2Qu3puZgag6JLymto_uvKqtcWmNXYVp2Bv8xPriF_l3VGmXH8WJybrgFHcuLgEld_q_VW7TXm4yGfNgfD67QPnzJ4_saqLpdv-try1O28qYYh5-squSi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cost+portable+3-D+printed+optical+fiber+sensor+for+real-time+monitoring+of+lower+back+bending&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Kam%2C+Wern&rft.au=O%27Sullivan%2C+Kieran&rft.au=O%27Keeffe%2C+Mary&rft.au=O%27Keeffe%2C+Sinead&rft.date=2017-10-01&rft.issn=0924-4247&rft.volume=265&rft.spage=193&rft.epage=201&rft_id=info:doi/10.1016%2Fj.sna.2017.08.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2017_08_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon