Improving the energetic utilization of household food waste: Impact of temperature and atmosphere during storage

[Display omitted] •Household food waste was monitored during storage to optimize energetic utilization.•Recipe-based and reproducible samples improved comparability of experiments.•Aerobic storage reduced energy contents drastically but lowered mass of waste.•Anaerobic storage has the potential to p...

Full description

Saved in:
Bibliographic Details
Published inWaste management (Elmsford) Vol. 144; pp. 366 - 375
Main Authors Sailer, Gregor, Eichermüller, Johanna, Empl, Florian, Poetsch, Jens, Pelz, Stefan, Kuptz, Daniel, Oechsner, Hans, Müller, Joachim
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Household food waste was monitored during storage to optimize energetic utilization.•Recipe-based and reproducible samples improved comparability of experiments.•Aerobic storage reduced energy contents drastically but lowered mass of waste.•Anaerobic storage has the potential to preserve energy contents almost completely.•Reduced energy losses during storage could improve energy yields in waste digestion. Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.
AbstractList Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.
Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.
[Display omitted] •Household food waste was monitored during storage to optimize energetic utilization.•Recipe-based and reproducible samples improved comparability of experiments.•Aerobic storage reduced energy contents drastically but lowered mass of waste.•Anaerobic storage has the potential to preserve energy contents almost completely.•Reduced energy losses during storage could improve energy yields in waste digestion. Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.
Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is carried out, storage conditions in the biowaste bin influence FW properties. To draw conclusions for an optimized waste utilization in anaerobic digestion (AD), the aim of this study was to evaluate the impact of storage duration (20 to 40 days) and temperature (5 °C and 20 °C) on inherent energy potentials of household FW during aerobic and anaerobic storage. Therefore, physico-chemical parameters of recipe-based FW samples with reproducible initial compositions were monitored. After 20 days of aerobic storage, water contents (WC) were reduced from 61.9% to 39.5% (20 °C) and from 63.9% to 50.3% (5 °C) while organic dry matter (oDM) concentrations were lowered by 4.3% (20 °C) and 1.1% (5 °C). Increased pH-values of 6.6 (initially 5.5) were only measured for FW stored aerobically at 20 °C. In total, the energy potential was decreased by 31% (20 °C) and by 16% (5 °C). Thus, storage temperature and duration are crucial parameters for optimized aerobic FW storage leading to higher energy yields in AD. Instead, anaerobic storage of FW decreased pH-values to <5 while increasing WC in all samples (up to 67% at 20 °C). As oDM concentrations were preserved almost completely, the energy potential losses were only marginal proving that energy contents of FW could be preserved at household level. Consequently, energy yields in AD of FW could be increased through anaerobic storage conditions.
Author Sailer, Gregor
Pelz, Stefan
Empl, Florian
Eichermüller, Johanna
Kuptz, Daniel
Müller, Joachim
Poetsch, Jens
Oechsner, Hans
Author_xml – sequence: 1
  givenname: Gregor
  surname: Sailer
  fullname: Sailer, Gregor
  organization: University of Applied Forest Sciences Rottenburg, Schadenweilerhof, 72108 Rottenburg, Germany
– sequence: 2
  givenname: Johanna
  surname: Eichermüller
  fullname: Eichermüller, Johanna
  organization: University of Applied Forest Sciences Rottenburg, Schadenweilerhof, 72108 Rottenburg, Germany
– sequence: 3
  givenname: Florian
  surname: Empl
  fullname: Empl, Florian
  organization: University of Applied Forest Sciences Rottenburg, Schadenweilerhof, 72108 Rottenburg, Germany
– sequence: 4
  givenname: Jens
  surname: Poetsch
  fullname: Poetsch, Jens
  organization: University of Applied Forest Sciences Rottenburg, Schadenweilerhof, 72108 Rottenburg, Germany
– sequence: 5
  givenname: Stefan
  surname: Pelz
  fullname: Pelz, Stefan
  email: sbc@hs-rottenburg.de
  organization: University of Applied Forest Sciences Rottenburg, Schadenweilerhof, 72108 Rottenburg, Germany
– sequence: 6
  givenname: Daniel
  surname: Kuptz
  fullname: Kuptz, Daniel
  organization: Technology and Support Centre in the Centre of Excellence for Renewable Resources (TFZ), Department of Solid Biofuels, Schulgasse 18, 94315 Straubing, Germany
– sequence: 7
  givenname: Hans
  surname: Oechsner
  fullname: Oechsner, Hans
  organization: State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany
– sequence: 8
  givenname: Joachim
  surname: Müller
  fullname: Müller, Joachim
  organization: University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70599 Stuttgart, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35439687$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAUtFAR3Rb-AUI-ctnw_JHE6QEJVXxUqsQFJG6WY7_sepXEwXZawa_Hy7YXDsDp6enNzNPMXJCzOcxIyEsGFQPWvDlU9yZNZq44cF6BrIDxJ2TDVNttuaybM7KBrm62UItv5-QipQMAk4rBM3Iuaim6RrUbstxMSwx3ft7RvEeKM8YdZm_pmv3of5rsw0zDQPdhTbgPo6NDCI6W1xmvaCEbm4_3jNOC0eQ1IjWzoyZPIS17LKtb41E-5RDNDp-Tp4MZE754mJfk64f3X64_bW8_f7y5fne7tYLXeSsHJnqpnLGtglb0phF9Z4HVRnHR2aFrBhCDcZIhtE72xY-RPSpQfa8GMOKSvD7pFnvfV0xZTz5ZHEczY_GiedMwgE6o7j-gNVdN-cAL9NUDdO0ndHqJfjLxh34MtACuTgAbQ0oRB219_p1ijsaPmoE-tqcP-tSePranQerSXiHLP8iP-v-gvT3RsOR55zHqZD3OFp2PaLN2wf9d4Bf4VLfL
CitedBy_id crossref_primary_10_1007_s12649_024_02705_y
crossref_primary_10_1007_s12649_024_02841_5
crossref_primary_10_1016_j_jwpe_2023_103840
crossref_primary_10_1016_j_jenvman_2023_118170
crossref_primary_10_1016_j_dib_2022_108519
crossref_primary_10_1016_j_envres_2023_118033
Cites_doi 10.1016/S0960-8524(00)00023-7
10.1007/978-3-662-47438-9
10.1016/B978-0-08-021791-8.50019-6
10.1016/j.wasman.2006.03.008
10.1016/j.biortech.2014.06.009
10.1016/j.wasman.2003.09.009
10.1016/j.wasman.2006.02.013
10.1016/j.jclepro.2018.02.030
10.1016/j.biortech.2010.10.035
10.1016/j.rser.2020.110401
10.1016/j.rser.2018.05.051
10.1093/ijlct/cts029
10.1016/j.wasman.2012.06.012
10.1016/j.dib.2021.107543
10.1016/j.biortech.2006.02.039
10.1016/j.btre.2014.10.005
10.1016/j.biortech.2008.01.052
10.1016/j.chemosphere.2021.130097
10.1016/j.biortech.2010.10.075
10.1016/j.wasman.2016.05.016
10.1016/j.jenvman.2016.11.058
10.1016/j.wasman.2017.05.034
10.1080/15435075.2013.833930
10.1016/j.wasman.2021.07.004
10.1016/j.wasman.2012.01.008
10.1016/j.biombioe.2021.106228
10.1016/j.wasman.2022.02.029
10.1016/j.apenergy.2012.11.017
10.1016/j.biortech.2008.01.007
10.1016/j.wasman.2014.11.019
10.1016/j.ibiod.2010.06.013
10.3389/fmicb.2017.01628
10.1016/j.wasman.2016.02.008
10.1016/j.wasman.2006.02.014
10.1016/j.biortech.2010.08.005
10.1016/j.wasman.2016.01.041
10.1016/j.biombioe.2003.08.006
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.wasman.2022.04.012
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-2456
EndPage 375
ExternalDocumentID 35439687
10_1016_j_wasman_2022_04_012
S0956053X22001805
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
4.4
457
4G.
5VS
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SDG
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
Y6R
~02
~G-
1~5
29R
53G
7-5
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RPZ
SEN
SEW
SSH
TAE
WUQ
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c325t-4f13b48dac78073ba63b9c015a8239cf96f03fad41e07d4b439a4be808bb8f0a3
IEDL.DBID .~1
ISSN 0956-053X
1879-2456
IngestDate Fri Jul 11 00:53:44 EDT 2025
Thu Jul 10 22:44:07 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Tue Jul 01 01:03:24 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Sat Apr 06 16:25:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords OFMSW
MPstoich
AD
FM
SMPstoich
DM
Organic fraction of municipal solid waste
WC
Anaerobic digestion
Food waste
Kitchen waste
Energy potential
mFM
Physico-chemical characteristics
Aerobic and anaerobic storage
mDM
moDM
oDM
mash
DOE
GCV
EPstoich
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-4f13b48dac78073ba63b9c015a8239cf96f03fad41e07d4b439a4be808bb8f0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35439687
PQID 2652864392
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2661009389
proquest_miscellaneous_2652864392
pubmed_primary_35439687
crossref_citationtrail_10_1016_j_wasman_2022_04_012
crossref_primary_10_1016_j_wasman_2022_04_012
elsevier_sciencedirect_doi_10_1016_j_wasman_2022_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
2022-May-01
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Waste management (Elmsford)
PublicationTitleAlternate Waste Manag
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sailer, G., Eichermüller, J., Poetsch, J., Paczkowski, S., Pelz, S., Oechsner, H., Müller, J., 2021a. Characterization of the separately collected organic fraction of municipal solid waste (OFMSW) from rural and urban districts for a one-year period in Germany. Waste management (New York, N.Y.) 131, 471–482. 10.1016/j.wasman.2021.07.004.
Bernstad, Malmquist, Truedsson, Jansen (b0025) 2013; 33
Alibardi, Cossu (b0010) 2015; 36
Mata-Alvarez, Macé, Llabrés (b0190) 2000; 74
Fachagentur Nachwachsende Rohstoffe e.V., 2016. Leitfaden Biogas: Von der Gewinnung zur Nutzung, Gülzow. http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Leitfaden_Biogas_web_V01.pdf (accessed 2 October 2021).
Labatut, Angenent, Scott (b0175) 2011; 102
(accessed 26 March 2018).
Maroušek, Strunecký, Kolář, Vochozka, Kopecký, Maroušková, Batt, Poliak, Šoch, Bartoš, Klieštik, Filip, Konvalina, Moudrý, Peterka, Suchý, Zoubek, Cera (b0185) 2020; 49
Deutsches Institut für Normung e.V., 2017. Solid biofuels – Determination of calorific value (DIN EN
Melts, Normak, Nurka, Heinsoo (b0195) 2014; 167
Ceccotti, C., Bruno, D., Tettamanti, G., Branduardi, P., Bertacchi, S., Labra, M., Rimoldi, S., Terova, G., 2022. New value from food and industrial wastes - Bioaccumulation of omega-3 fatty acids from an oleaginous microbial biomass paired with a brewery by-product using black soldier fly (Hermetia illucens) larvae. Waste management (New York, N.Y.) 143, 95–104. 10.1016/j.wasman.2022.02.029.
Naroznova, Møller, Scheutz (b0200) 2016; 50
Villa, Rodriguez, Fenech, Anika (b0260) 2020
Deutsches Institut für Normung e.V., 2012. Solid biofuels – Determination of ash content (DIN EN 14775:2012). Beuth Verlag GmbH, Berlin 75.160.10.
Schanes, Dobernig, Gözet (b0230) 2018; 182
Davidsson, Gruvberger, Christensen, Hansen, Jansen (b0065) 2007; 27
Hansen, Schmidt, Angelidaki, Marca, Jansen, Mosbaek, Christensen (b0135) 2004; 24
Kern, M., Raussen, T., Graven, T., Bergs, C.-G., Hermann, T., Radde, C.-A., 2012. Ökologisch sinnvolle Verwertung von Bioabfällen: Anregungen für kommunale Entscheidungsträger.
BMEL, 2018. Nutrition Report 2018, Berlin, Bonn. https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/Ernaehrungsreport2018.html (accessed 29 August 2021).
Hansen, Jansen, Davidsson, Christensen (b0140) 2007; 27
Al Seadi, T., Owen, N., Hellström, H., Kang, H., 2013. Source separation of MSW: An overview of the source separation and separate collection of the digestible fraction of household waste, and of other similar wastes from municipalities, aimed to be used as feedstock for anaerobic digestion in biogas plants. https://www.ieabioenergy.com/blog/publications/source-separation-of-msw/ (accessed 29 August 2021).
Fisgativa, Tremier, Le Roux, Bureau, Dabert (b0110) 2017; 188
Nielfa, Cano, Fdz-Polanco (b0205) 2015; 5
Tyagi, Fdez-Güelfo, Zhou, Álvarez-Gallego, Garcia, Ng (b0255) 2018; 93
Maroušek (b0180) 2014; 11
Browne, Murphy (b0040) 2013; 104
Deutsches Institut für Normung e.V., 2008. Soil improvers and growing media – Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density (DIN EN 13040:2008). Beuth Verlag GmbH, Berlin 65.080.
Campuzano, González-Martínez (b0050) 2016
Zhang, El-Mashad, Hartman, Wang, Liu, Choate, Gamble (b0265) 2007; 98
Gunaseelan (b0130) 2004; 26
Kougioumtzis, Karampinis, Grammelis, Kakaras (b0170) 2021; 153
Nilsson Påledal, Hellman, Moestedt (b0210) 2018
Sailer, Eichermüller, Poetsch, Paczkowski, Pelz, Oechsner, Müller (b0225) 2021; 39
Teixeira Franco, R., Buffiere, P., Bayard, R., 2017. How to preserve the energy potential of organic residues during storage? Focus on anaerobic digestion: 5th International Conference on Sustainable Solid Waste Management (Athenes, Greece). hal-01692820.
Buswell, A.M., 1936. Anaerobic fermentations. https://www.ideals.illinois.edu/bitstream/handle/2142/94555/ISWSB-32.pdf?sequence=1 (accessed 10 April 2018).
Graham, Eastwick, Snape, Quick (b0125) 2012; 7
Stávková, Maroušek (b0240) 2021; 276
Heaven, S., Zhan, Y., Arnold, R., Paavola, T., Vaz, F., Cavinato, C., 2010. Compositional analysis of food waste from study sites in geographically distinct regions of Europe: Valorgas. Valorisation of food waste to biogas. http://www.valorgas.soton.ac.uk/Deliverables/VALORGAS_241334_D2-1_rev%5B1%5D_130106.pdf (accessed 1 May 2021).
Izumi, Okishio, Nagao, Niwa, Yamamoto, Toda (b0155) 2010; 64
Deutsches Institut für Normung e.V., 2012. Sludge, treated biowaste and soil – Determination of pH (DIN EN 15933:2012). Beuth Verlag GmbH, Berlin 13.030.01.
Kaltschmitt, M., Hartmann, H., Hofbauer, H. (Eds.), 2016. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd ed.
Destatis, 2019. Statistical Yearbook 2019, Wiesbaden. https://www.destatis.de/DE/Themen/Querschnitt/Jahrbuch/statistisches-jahrbuch-aktuell.html (accessed 29 August 2021).
Fisgativa, Tremier, Dabert (b0105) 2016; 50
Hansen, Jansen, Spliid, Davidsson, Christensen (b0145) 2007; 27
Banks, Chesshire, Heaven, Arnold (b0015) 2011; 102
Bernstad, Jansen (b0020) 2012; 32
Pakarinen, Lehtomäki, Rissanen, Rintala (b0215) 2008; 99
22.
ISO 18125:2017). Beuth Verlag GmbH, Berlin 75.160.40.
Forster-Carneiro, Pérez, Romero (b0115) 2008; 99
Deutsches Institut für Normung e.V., 2015. Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen (DIN EN ISO 16948:2015). Beuth Verlag GmbH, Berlin 75.160.10.
Fritz, T., 2008. Entwicklung, Implementierung und Validierung einer praxisnahen Verfahrens zur Bestimmung von Biogas- bzw. Methanerträgen: Dissertation, in: Universität Rostock, Institut für Umweltingenieurwesen, vol.
Shumo, M.A.H.I.H., 2020. Use of Black Soldier Fly (Hermetia illucens) in bioconversion and feed production. Universitäts- und Landesbibliothek Bonn, Bonn, Online-Ressource.
Cortes-Tolalpa, Salles, van Elsas (b0060) 2017; 8
Sundberg, Franke-Whittle, Kauppi, Yu, Romantschuk, Insam, Jönsson (b0245) 2011
Boyle, W.C., 1976. Energy recovery from sanitary landfills: A review. The Proceedings of a Seminar Sponsored by the UN Institute for Training and Research (UNITAR) and the Ministry for Research and Technology of the Federal Republic of Germany Held in Göttingen, pp. 119–138.
10.1016/j.wasman.2022.04.012_b0160
10.1016/j.wasman.2022.04.012_b0085
10.1016/j.wasman.2022.04.012_b0120
10.1016/j.wasman.2022.04.012_b0165
Bernstad (10.1016/j.wasman.2022.04.012_b0020) 2012; 32
10.1016/j.wasman.2022.04.012_b0045
Izumi (10.1016/j.wasman.2022.04.012_b0155) 2010; 64
Maroušek (10.1016/j.wasman.2022.04.012_b0185) 2020; 49
Sailer (10.1016/j.wasman.2022.04.012_b0225) 2021; 39
10.1016/j.wasman.2022.04.012_b0080
Hansen (10.1016/j.wasman.2022.04.012_b0140) 2007; 27
Nilsson Påledal (10.1016/j.wasman.2022.04.012_b0210) 2018
10.1016/j.wasman.2022.04.012_b0235
Mata-Alvarez (10.1016/j.wasman.2022.04.012_b0190) 2000; 74
10.1016/j.wasman.2022.04.012_b0150
10.1016/j.wasman.2022.04.012_b0030
10.1016/j.wasman.2022.04.012_b0075
Kougioumtzis (10.1016/j.wasman.2022.04.012_b0170) 2021; 153
10.1016/j.wasman.2022.04.012_b0035
Maroušek (10.1016/j.wasman.2022.04.012_b0180) 2014; 11
Banks (10.1016/j.wasman.2022.04.012_b0015) 2011; 102
Schanes (10.1016/j.wasman.2022.04.012_b0230) 2018; 182
10.1016/j.wasman.2022.04.012_b0070
Alibardi (10.1016/j.wasman.2022.04.012_b0010) 2015; 36
Fisgativa (10.1016/j.wasman.2022.04.012_b0110) 2017; 188
10.1016/j.wasman.2022.04.012_b0220
Davidsson (10.1016/j.wasman.2022.04.012_b0065) 2007; 27
10.1016/j.wasman.2022.04.012_b0100
Melts (10.1016/j.wasman.2022.04.012_b0195) 2014; 167
Hansen (10.1016/j.wasman.2022.04.012_b0145) 2007; 27
Pakarinen (10.1016/j.wasman.2022.04.012_b0215) 2008; 99
Nielfa (10.1016/j.wasman.2022.04.012_b0205) 2015; 5
Bernstad (10.1016/j.wasman.2022.04.012_b0025) 2013; 33
Campuzano (10.1016/j.wasman.2022.04.012_b0050) 2016
Browne (10.1016/j.wasman.2022.04.012_b0040) 2013; 104
Zhang (10.1016/j.wasman.2022.04.012_b0265) 2007; 98
Fisgativa (10.1016/j.wasman.2022.04.012_b0105) 2016; 50
Cortes-Tolalpa (10.1016/j.wasman.2022.04.012_b0060) 2017; 8
Labatut (10.1016/j.wasman.2022.04.012_b0175) 2011; 102
Hansen (10.1016/j.wasman.2022.04.012_b0135) 2004; 24
Gunaseelan (10.1016/j.wasman.2022.04.012_b0130) 2004; 26
10.1016/j.wasman.2022.04.012_b0095
10.1016/j.wasman.2022.04.012_b0250
10.1016/j.wasman.2022.04.012_b0055
10.1016/j.wasman.2022.04.012_b0090
Stávková (10.1016/j.wasman.2022.04.012_b0240) 2021; 276
Sundberg (10.1016/j.wasman.2022.04.012_b0245) 2011
Forster-Carneiro (10.1016/j.wasman.2022.04.012_b0115) 2008; 99
Villa (10.1016/j.wasman.2022.04.012_b0260) 2020
Graham (10.1016/j.wasman.2022.04.012_b0125) 2012; 7
Naroznova (10.1016/j.wasman.2022.04.012_b0200) 2016; 50
10.1016/j.wasman.2022.04.012_b0005
Tyagi (10.1016/j.wasman.2022.04.012_b0255) 2018; 93
References_xml – volume: 27
  start-page: 398
  year: 2007
  end-page: 405
  ident: b0140
  article-title: Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery
  publication-title: Waste Manage.
– volume: 182
  start-page: 978
  year: 2018
  end-page: 991
  ident: b0230
  article-title: Food waste matters - A systematic review of household food waste practices and their policy implications
  publication-title: J. Cleaner Prod.
– start-page: 3
  year: 2016
  end-page: 12
  ident: b0050
  article-title: Characteristics of the organic fraction of municipal solid waste and methane production: a review
  publication-title: Waste Manage.
– volume: 5
  start-page: 14
  year: 2015
  end-page: 21
  ident: b0205
  article-title: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge
  publication-title: Biotechnol. Rep,
– volume: 7
  start-page: 113
  year: 2012
  end-page: 119
  ident: b0125
  article-title: Degradation of biomass fuels during artificial storage in a laboratory environment
  publication-title: Int. J. Low-Carbon Tech.
– reference: Buswell, A.M., 1936. Anaerobic fermentations. https://www.ideals.illinois.edu/bitstream/handle/2142/94555/ISWSB-32.pdf?sequence=1 (accessed 10 April 2018).
– reference: Fritz, T., 2008. Entwicklung, Implementierung und Validierung einer praxisnahen Verfahrens zur Bestimmung von Biogas- bzw. Methanerträgen: Dissertation, in: Universität Rostock, Institut für Umweltingenieurwesen, vol.
– reference: BMEL, 2018. Nutrition Report 2018, Berlin, Bonn. https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/Ernaehrungsreport2018.html (accessed 29 August 2021).
– volume: 39
  year: 2021
  ident: b0225
  article-title: Dataset for a full-year time series characterization of separately collected organic fraction of municipal solid waste from rural and urban regions in Germany
  publication-title: Data in Brief
– reference: Kern, M., Raussen, T., Graven, T., Bergs, C.-G., Hermann, T., Radde, C.-A., 2012. Ökologisch sinnvolle Verwertung von Bioabfällen: Anregungen für kommunale Entscheidungsträger.
– volume: 153
  year: 2021
  ident: b0170
  article-title: Monitoring feedstock losses over five months storage of olive tree pruning hog fuel in piles. Comparison of covered vs. uncovered storage
  publication-title: Biomass Bioenergy
– reference: Fachagentur Nachwachsende Rohstoffe e.V., 2016. Leitfaden Biogas: Von der Gewinnung zur Nutzung, Gülzow. http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Leitfaden_Biogas_web_V01.pdf (accessed 2 October 2021).
– volume: 49
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0185
  article-title: Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing
  publication-title: Energy Sources Part A
– start-page: 636
  year: 2018
  end-page: 643
  ident: b0210
  article-title: The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste
  publication-title: Waste Manage.
– volume: 27
  start-page: 406
  year: 2007
  end-page: 414
  ident: b0065
  article-title: Methane yield in source-sorted organic fraction of municipal solid waste
  publication-title: Waste Manage.
– volume: 11
  start-page: 962
  year: 2014
  end-page: 968
  ident: b0180
  article-title: Biotechnological Partition of the Grass Silage to Streamline its Complex Energy Utilization
  publication-title: Int. J. Green Energy
– volume: 8
  start-page: 1628
  year: 2017
  ident: b0060
  article-title: Bacterial Synergism in Lignocellulose Biomass Degradation - Complementary Roles of Degraders As Influenced by Complexity of the Carbon Source
  publication-title: Front. Microbiol.
– reference: Destatis, 2019. Statistical Yearbook 2019, Wiesbaden. https://www.destatis.de/DE/Themen/Querschnitt/Jahrbuch/statistisches-jahrbuch-aktuell.html (accessed 29 August 2021).
– volume: 50
  start-page: 39
  year: 2016
  end-page: 48
  ident: b0200
  article-title: Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste
  publication-title: Waste Manage.
– volume: 93
  start-page: 380
  year: 2018
  end-page: 399
  ident: b0255
  article-title: Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges
  publication-title: Renew. Sustain. Energy Rev.
– volume: 102
  start-page: 2255
  year: 2011
  end-page: 2264
  ident: b0175
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
– volume: 32
  start-page: 806
  year: 2012
  end-page: 815
  ident: b0020
  article-title: Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective
  publication-title: Waste Manage.
– volume: 33
  start-page: 746
  year: 2013
  end-page: 754
  ident: b0025
  article-title: Need for improvements in physical pretreatment of source-separated household food waste
  publication-title: Waste Manage.
– volume: 98
  start-page: 929
  year: 2007
  end-page: 935
  ident: b0265
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
– reference: Heaven, S., Zhan, Y., Arnold, R., Paavola, T., Vaz, F., Cavinato, C., 2010. Compositional analysis of food waste from study sites in geographically distinct regions of Europe: Valorgas. Valorisation of food waste to biogas. http://www.valorgas.soton.ac.uk/Deliverables/VALORGAS_241334_D2-1_rev%5B1%5D_130106.pdf (accessed 1 May 2021).
– volume: 102
  start-page: 612
  year: 2011
  end-page: 620
  ident: b0015
  article-title: Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance
  publication-title: Bioresour. Technol.
– reference: Boyle, W.C., 1976. Energy recovery from sanitary landfills: A review. The Proceedings of a Seminar Sponsored by the UN Institute for Training and Research (UNITAR) and the Ministry for Research and Technology of the Federal Republic of Germany Held in Göttingen, pp. 119–138.
– start-page: 2859
  year: 2011
  end-page: 2867
  ident: b0245
  article-title: Characterisation of source-separated household waste intended for composting
  publication-title: Bioresour. Technol.
– reference: Al Seadi, T., Owen, N., Hellström, H., Kang, H., 2013. Source separation of MSW: An overview of the source separation and separate collection of the digestible fraction of household waste, and of other similar wastes from municipalities, aimed to be used as feedstock for anaerobic digestion in biogas plants. https://www.ieabioenergy.com/blog/publications/source-separation-of-msw/ (accessed 29 August 2021).
– volume: 24
  start-page: 393
  year: 2004
  end-page: 400
  ident: b0135
  article-title: Method for determination of methane potentials of solid organic waste
  publication-title: Waste Manage.
– volume: 64
  start-page: 601
  year: 2010
  end-page: 608
  ident: b0155
  article-title: Effects of particle size on anaerobic digestion of food waste
  publication-title: Int. Biodeterior. Biodegrad.
– reference: Kaltschmitt, M., Hartmann, H., Hofbauer, H. (Eds.), 2016. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd ed.
– volume: 99
  start-page: 7074
  year: 2008
  end-page: 7082
  ident: b0215
  article-title: Storing energy crops for methane production: Effects of solids content and biological additive
  publication-title: Bioresour. Technol.
– volume: 167
  start-page: 226
  year: 2014
  end-page: 231
  ident: b0195
  article-title: Chemical characteristics of biomass from nature conservation management for methane production
  publication-title: Bioresour. Technol.
– reference: Shumo, M.A.H.I.H., 2020. Use of Black Soldier Fly (Hermetia illucens) in bioconversion and feed production. Universitäts- und Landesbibliothek Bonn, Bonn, Online-Ressource.
– volume: 26
  start-page: 389
  year: 2004
  end-page: 399
  ident: b0130
  article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks
  publication-title: Biomass Bioenergy
– reference: Ceccotti, C., Bruno, D., Tettamanti, G., Branduardi, P., Bertacchi, S., Labra, M., Rimoldi, S., Terova, G., 2022. New value from food and industrial wastes - Bioaccumulation of omega-3 fatty acids from an oleaginous microbial biomass paired with a brewery by-product using black soldier fly (Hermetia illucens) larvae. Waste management (New York, N.Y.) 143, 95–104. 10.1016/j.wasman.2022.02.029.
– reference: Deutsches Institut für Normung e.V., 2008. Soil improvers and growing media – Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density (DIN EN 13040:2008). Beuth Verlag GmbH, Berlin 65.080.
– reference: 22.
– volume: 74
  start-page: 3
  year: 2000
  end-page: 16
  ident: b0190
  article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
  publication-title: Bioresour. Technol.
– volume: 36
  start-page: 147
  year: 2015
  end-page: 155
  ident: b0010
  article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials
  publication-title: Waste Manage.
– volume: 99
  start-page: 6763
  year: 2008
  end-page: 6770
  ident: b0115
  article-title: Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste
  publication-title: Bioresour. Technol.
– reference: ISO 18125:2017). Beuth Verlag GmbH, Berlin 75.160.40.
– reference: Deutsches Institut für Normung e.V., 2017. Solid biofuels – Determination of calorific value (DIN EN
– volume: 104
  start-page: 170
  year: 2013
  end-page: 177
  ident: b0040
  article-title: Assessment of the resource associated with biomethane from food waste
  publication-title: Appl. Energy
– year: 2020
  ident: b0260
  article-title: Ensiling for anaerobic digestion: a review of key considerations to maximise methane yields
  publication-title: Renew. Sustain. Energy Rev.
– reference: Sailer, G., Eichermüller, J., Poetsch, J., Paczkowski, S., Pelz, S., Oechsner, H., Müller, J., 2021a. Characterization of the separately collected organic fraction of municipal solid waste (OFMSW) from rural and urban districts for a one-year period in Germany. Waste management (New York, N.Y.) 131, 471–482. 10.1016/j.wasman.2021.07.004.
– reference: Teixeira Franco, R., Buffiere, P., Bayard, R., 2017. How to preserve the energy potential of organic residues during storage? Focus on anaerobic digestion: 5th International Conference on Sustainable Solid Waste Management (Athenes, Greece). hal-01692820.
– reference: Deutsches Institut für Normung e.V., 2012. Sludge, treated biowaste and soil – Determination of pH (DIN EN 15933:2012). Beuth Verlag GmbH, Berlin 13.030.01.
– reference: Deutsches Institut für Normung e.V., 2015. Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen (DIN EN ISO 16948:2015). Beuth Verlag GmbH, Berlin 75.160.10.
– reference: (accessed 26 March 2018).
– volume: 188
  start-page: 95
  year: 2017
  end-page: 107
  ident: b0110
  article-title: Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics
  publication-title: J. Environ. Manage.
– volume: 50
  start-page: 264
  year: 2016
  end-page: 274
  ident: b0105
  article-title: Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion
  publication-title: Waste Manage.
– volume: 27
  start-page: 510
  year: 2007
  end-page: 518
  ident: b0145
  article-title: Composition of source-sorted municipal organic waste collected in Danish cities
  publication-title: Waste Manage.
– reference: Deutsches Institut für Normung e.V., 2012. Solid biofuels – Determination of ash content (DIN EN 14775:2012). Beuth Verlag GmbH, Berlin 75.160.10.
– volume: 276
  year: 2021
  ident: b0240
  article-title: Novel sorbent shows promising financial results on P recovery from sludge water
  publication-title: Chemosphere
– volume: 74
  start-page: 3
  year: 2000
  ident: 10.1016/j.wasman.2022.04.012_b0190
  article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(00)00023-7
– ident: 10.1016/j.wasman.2022.04.012_b0160
  doi: 10.1007/978-3-662-47438-9
– ident: 10.1016/j.wasman.2022.04.012_b0035
  doi: 10.1016/B978-0-08-021791-8.50019-6
– volume: 27
  start-page: 510
  year: 2007
  ident: 10.1016/j.wasman.2022.04.012_b0145
  article-title: Composition of source-sorted municipal organic waste collected in Danish cities
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2006.03.008
– volume: 167
  start-page: 226
  year: 2014
  ident: 10.1016/j.wasman.2022.04.012_b0195
  article-title: Chemical characteristics of biomass from nature conservation management for methane production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.009
– ident: 10.1016/j.wasman.2022.04.012_b0120
– volume: 24
  start-page: 393
  year: 2004
  ident: 10.1016/j.wasman.2022.04.012_b0135
  article-title: Method for determination of methane potentials of solid organic waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2003.09.009
– volume: 27
  start-page: 406
  year: 2007
  ident: 10.1016/j.wasman.2022.04.012_b0065
  article-title: Methane yield in source-sorted organic fraction of municipal solid waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2006.02.013
– volume: 182
  start-page: 978
  year: 2018
  ident: 10.1016/j.wasman.2022.04.012_b0230
  article-title: Food waste matters - A systematic review of household food waste practices and their policy implications
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.02.030
– ident: 10.1016/j.wasman.2022.04.012_b0070
– ident: 10.1016/j.wasman.2022.04.012_b0095
– volume: 102
  start-page: 2255
  year: 2011
  ident: 10.1016/j.wasman.2022.04.012_b0175
  article-title: Biochemical methane potential and biodegradability of complex organic substrates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.035
– year: 2020
  ident: 10.1016/j.wasman.2022.04.012_b0260
  article-title: Ensiling for anaerobic digestion: a review of key considerations to maximise methane yields
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110401
– volume: 93
  start-page: 380
  year: 2018
  ident: 10.1016/j.wasman.2022.04.012_b0255
  article-title: Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.05.051
– ident: 10.1016/j.wasman.2022.04.012_b0100
– volume: 7
  start-page: 113
  year: 2012
  ident: 10.1016/j.wasman.2022.04.012_b0125
  article-title: Degradation of biomass fuels during artificial storage in a laboratory environment
  publication-title: Int. J. Low-Carbon Tech.
  doi: 10.1093/ijlct/cts029
– volume: 33
  start-page: 746
  year: 2013
  ident: 10.1016/j.wasman.2022.04.012_b0025
  article-title: Need for improvements in physical pretreatment of source-separated household food waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2012.06.012
– volume: 39
  year: 2021
  ident: 10.1016/j.wasman.2022.04.012_b0225
  article-title: Dataset for a full-year time series characterization of separately collected organic fraction of municipal solid waste from rural and urban regions in Germany
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2021.107543
– volume: 98
  start-page: 929
  year: 2007
  ident: 10.1016/j.wasman.2022.04.012_b0265
  article-title: Characterization of food waste as feedstock for anaerobic digestion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.02.039
– ident: 10.1016/j.wasman.2022.04.012_b0085
– volume: 5
  start-page: 14
  year: 2015
  ident: 10.1016/j.wasman.2022.04.012_b0205
  article-title: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge
  publication-title: Biotechnol. Rep,
  doi: 10.1016/j.btre.2014.10.005
– volume: 99
  start-page: 6763
  year: 2008
  ident: 10.1016/j.wasman.2022.04.012_b0115
  article-title: Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.01.052
– volume: 276
  year: 2021
  ident: 10.1016/j.wasman.2022.04.012_b0240
  article-title: Novel sorbent shows promising financial results on P recovery from sludge water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130097
– ident: 10.1016/j.wasman.2022.04.012_b0005
– start-page: 2859
  year: 2011
  ident: 10.1016/j.wasman.2022.04.012_b0245
  article-title: Characterisation of source-separated household waste intended for composting
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.10.075
– start-page: 3
  year: 2016
  ident: 10.1016/j.wasman.2022.04.012_b0050
  article-title: Characteristics of the organic fraction of municipal solid waste and methane production: a review
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.05.016
– volume: 188
  start-page: 95
  year: 2017
  ident: 10.1016/j.wasman.2022.04.012_b0110
  article-title: Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.11.058
– start-page: 636
  year: 2018
  ident: 10.1016/j.wasman.2022.04.012_b0210
  article-title: The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.05.034
– volume: 11
  start-page: 962
  year: 2014
  ident: 10.1016/j.wasman.2022.04.012_b0180
  article-title: Biotechnological Partition of the Grass Silage to Streamline its Complex Energy Utilization
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2013.833930
– ident: 10.1016/j.wasman.2022.04.012_b0220
  doi: 10.1016/j.wasman.2021.07.004
– volume: 32
  start-page: 806
  year: 2012
  ident: 10.1016/j.wasman.2022.04.012_b0020
  article-title: Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2012.01.008
– volume: 153
  year: 2021
  ident: 10.1016/j.wasman.2022.04.012_b0170
  article-title: Monitoring feedstock losses over five months storage of olive tree pruning hog fuel in piles. Comparison of covered vs. uncovered storage
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2021.106228
– ident: 10.1016/j.wasman.2022.04.012_b0055
  doi: 10.1016/j.wasman.2022.02.029
– ident: 10.1016/j.wasman.2022.04.012_b0075
– volume: 104
  start-page: 170
  year: 2013
  ident: 10.1016/j.wasman.2022.04.012_b0040
  article-title: Assessment of the resource associated with biomethane from food waste
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.017
– ident: 10.1016/j.wasman.2022.04.012_b0235
– ident: 10.1016/j.wasman.2022.04.012_b0165
– ident: 10.1016/j.wasman.2022.04.012_b0250
– volume: 99
  start-page: 7074
  year: 2008
  ident: 10.1016/j.wasman.2022.04.012_b0215
  article-title: Storing energy crops for methane production: Effects of solids content and biological additive
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.01.007
– ident: 10.1016/j.wasman.2022.04.012_b0090
– ident: 10.1016/j.wasman.2022.04.012_b0080
– volume: 49
  start-page: 1
  year: 2020
  ident: 10.1016/j.wasman.2022.04.012_b0185
  article-title: Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing
  publication-title: Energy Sources Part A
– volume: 36
  start-page: 147
  year: 2015
  ident: 10.1016/j.wasman.2022.04.012_b0010
  article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.11.019
– ident: 10.1016/j.wasman.2022.04.012_b0045
– volume: 64
  start-page: 601
  year: 2010
  ident: 10.1016/j.wasman.2022.04.012_b0155
  article-title: Effects of particle size on anaerobic digestion of food waste
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2010.06.013
– ident: 10.1016/j.wasman.2022.04.012_b0030
– volume: 8
  start-page: 1628
  year: 2017
  ident: 10.1016/j.wasman.2022.04.012_b0060
  article-title: Bacterial Synergism in Lignocellulose Biomass Degradation - Complementary Roles of Degraders As Influenced by Complexity of the Carbon Source
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01628
– volume: 50
  start-page: 39
  year: 2016
  ident: 10.1016/j.wasman.2022.04.012_b0200
  article-title: Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.02.008
– volume: 27
  start-page: 398
  year: 2007
  ident: 10.1016/j.wasman.2022.04.012_b0140
  article-title: Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2006.02.014
– volume: 102
  start-page: 612
  year: 2011
  ident: 10.1016/j.wasman.2022.04.012_b0015
  article-title: Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.005
– volume: 50
  start-page: 264
  year: 2016
  ident: 10.1016/j.wasman.2022.04.012_b0105
  article-title: Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2016.01.041
– ident: 10.1016/j.wasman.2022.04.012_b0150
– volume: 26
  start-page: 389
  year: 2004
  ident: 10.1016/j.wasman.2022.04.012_b0130
  article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2003.08.006
SSID ssj0014810
Score 2.3913925
Snippet [Display omitted] •Household food waste was monitored during storage to optimize energetic utilization.•Recipe-based and reproducible samples improved...
Food waste (FW) from households represents a major fraction of municipal waste and it is often collected in separate biowaste bins. Until waste collection is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 366
SubjectTerms Aerobic and anaerobic storage
Anaerobic digestion
energy
Energy potential
Food waste
Kitchen waste
Organic fraction of municipal solid waste
Physico-chemical characteristics
storage temperature
storage time
waste utilization
Title Improving the energetic utilization of household food waste: Impact of temperature and atmosphere during storage
URI https://dx.doi.org/10.1016/j.wasman.2022.04.012
https://www.ncbi.nlm.nih.gov/pubmed/35439687
https://www.proquest.com/docview/2652864392
https://www.proquest.com/docview/2661009389
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V7QE4oFK-lkJlJK5hE9tJHG7VimoLoheotDfLn6KoTVZsKm797Z1xklU5lEock9jSyDOZeYnnPQN8oF8TqihVlocKP1AKU2Ae5D4rPNYXVwdRSCInfzurlufyy6pc7cBi4sJQW-WY-4ecnrL1eGc-ruZ8fXEx_04SehhCK05tQSrpmEpZU5R_vNm2eSDaT4oESW-PRk_0udTj9cdsrgypoHKeBE8Lfl95ug9-pjJ0sg9PR_zIjgcTn8FOaA_g0WI6tu0AntxRGHwO6-1PA4ZIj5HGNPHKHMN4uxwpmKyL7Gd3vQm0E8Vi13mGFvfhEztNFEp6TgpWo_wyM61npr_qNqRIENhAdGTUZYm56QWcn3z-sVhm4yELmRO87DMZC2Gl8sbVCl93ayphG4cgwSguGhebKuYiGi-LkNdeWgQwRtqgcmWtirkRL2G37drwGlgZK1cGboWsBKYG07jGqNwZrnz0SpgZiGlttRsVyOkgjEs9tZr90oNHNHlE51KjR2aQbWetBwWOB8bXk9v0X5GksUg8MPP95GWNTqOdE9MGXH_Nq5Irwm7_HINING8QAM7g1RAiW3tFiXMrVb_5b9sO4TFdDa2Wb2G3_30d3iEc6u1Rivcj2Ds-_bo8uwWwDAsd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6Vcig9ICjQLk8jwTFsYjuJU6kHVKh26eNCK-3N2I4titpkxaaquPRP9Q8yk8cKDqUSUq9xHFkzk5mx_c03AO_oaEIlqYpin-EGJTEJ-kFeRkmJ8cXlXiSSipMPj7LJifwyS2crcD3UwhCssvf9nU9vvXX_ZNxLczw_PR1_JQo9NKEZJ1iQigdk5b7_dYn7tsXO9BMq-T3ne5-PdydR31ogcoKnTSRDIqxUpXG5QiO3JhO2cBgajeKicKHIQiyCKWXi47yUFsO2kdarWFmrQmwEfvce3JfoLqhtwoerJa4EtxctBUJL8EfLG-r1WlDZpVmcG6Jd5bxlWE34TfHwpny3jXt7j-Bhn7Cyj51MHsOKrzZgbXfoE7cB639QGj6B-fKUgmFqyYjUmgrZHEMDP-trPlkd2Pf6YuHp6ouFui4Zrrjx22za1mzSOFFm9XzPzFQlM815vSAKBM-6ykpGsE50hk_h5E5E_wxWq7ryW8DSkLnUcytkJtAXmcIVRsXOcFWGUgkzAjHIVrue8pw6b5zpAdv2Q3ca0aQRHUuNGhlBtJw17yg_bnk_H9Sm_zJdjVHplplvBy1rVBpd1ZjKo_w1z1KuKFn85zuY-sYFZpwj2OxMZLlekeLcTOXP_3ttb2Btcnx4oA-mR_sv4AGNdDjPl7Da_LzwrzAXa-zr1vYZfLvrn-03EqRHKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+energetic+utilization+of+household+food+waste%3A+Impact+of+temperature+and+atmosphere+during+storage&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Sailer%2C+Gregor&rft.au=Eicherm%C3%BCller%2C+Johanna&rft.au=Empl%2C+Florian&rft.au=Poetsch%2C+Jens&rft.date=2022-05-01&rft.issn=0956-053X&rft.volume=144+p.366-375&rft.spage=366&rft.epage=375&rft_id=info:doi/10.1016%2Fj.wasman.2022.04.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon