Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes

All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. H...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 10; pp. 2905 - 2910
Main Authors Sun, Shuang-Qiao, Hua, Xiao-Chen, Liu, Qing-Wei, Wang, Tong-Tong, Luo, Wei, Zhang, Yi-Jie, Liao, Liang-Sheng, Fung, Man-Keung
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text
ISSN2050-7526
2050-7534
DOI10.1039/C8TC06365F

Cover

Loading…
Abstract All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr 3 film. A small amount of lecithin (LE) introduced into CsPbBr 3 precursor solution can promote the formation of small CsPbBr 3 grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr 3 –LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr 3 –5 wt% LE film exhibit a current efficiency (CE) of 24 cd A −1 with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs.
AbstractList All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr3 film. A small amount of lecithin (LE) introduced into CsPbBr3 precursor solution can promote the formation of small CsPbBr3 grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr3–LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr3–5 wt% LE film exhibit a current efficiency (CE) of 24 cd A−1 with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs.
All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr 3 film. A small amount of lecithin (LE) introduced into CsPbBr 3 precursor solution can promote the formation of small CsPbBr 3 grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr 3 –LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr 3 –5 wt% LE film exhibit a current efficiency (CE) of 24 cd A −1 with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs.
Author Wang, Tong-Tong
Liao, Liang-Sheng
Liu, Qing-Wei
Hua, Xiao-Chen
Sun, Shuang-Qiao
Luo, Wei
Zhang, Yi-Jie
Fung, Man-Keung
Author_xml – sequence: 1
  givenname: Shuang-Qiao
  surname: Sun
  fullname: Sun, Shuang-Qiao
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 2
  givenname: Xiao-Chen
  surname: Hua
  fullname: Hua, Xiao-Chen
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 3
  givenname: Qing-Wei
  surname: Liu
  fullname: Liu, Qing-Wei
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 4
  givenname: Tong-Tong
  surname: Wang
  fullname: Wang, Tong-Tong
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 5
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 6
  givenname: Yi-Jie
  surname: Zhang
  fullname: Zhang, Yi-Jie
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 7
  givenname: Liang-Sheng
  orcidid: 0000-0002-2352-9666
  surname: Liao
  fullname: Liao, Liang-Sheng
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
– sequence: 8
  givenname: Man-Keung
  orcidid: 0000-0003-3447-9673
  surname: Fung
  fullname: Fung, Man-Keung
  organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
BookMark eNptkE1LAzEQhoNUsNZe_AUBb8JqdvPR7FEWq4WCl3pe0mS2Td0mNUkL_ntT6geIc5lh5nlnmPcSDZx3gNB1Se5KQuv7Ri4aIqjg0zM0rAgnxYRTNvipK3GBxjFuSA5ZCinqIYKZ6_o9OA3Yd1jhHrRNa-uwMsYme8hth9Ma8A5C58NWfZN9X1jnw0o5q49Df4hvNgHu7WqdCtjalKxbYWO9gXiFzjvVRxh_5RF6nT4umudi_vI0ax7mhaYVTwWTklZMSSNYVXMtJoR3mtNSMLXURhrN8nswMcCMVhoM7ZY1ZwJIXdGSZ_EI3Zz27oJ_30NM7cbvg8sn26qUUvJaUJqp2xOlg48xQNfugt2q8NGWpD062f46mWHyB84GqWS9S0HZ_j_JJ_Oed9I
CitedBy_id crossref_primary_10_1039_C9TC04834K
crossref_primary_10_1039_C9TC07047H
crossref_primary_10_1016_j_orgel_2021_106295
crossref_primary_10_1016_j_rinp_2023_106982
crossref_primary_10_1039_D0TC05227B
crossref_primary_10_1002_adom_202101602
crossref_primary_10_1021_acsomega_0c00758
crossref_primary_10_7498_aps_68_20190307
crossref_primary_10_1016_j_mtphys_2023_101098
crossref_primary_10_1088_1361_6463_abc4a9
crossref_primary_10_1016_j_nanoen_2020_104752
crossref_primary_10_1039_D4CP01651C
crossref_primary_10_1002_aesr_202300263
crossref_primary_10_1021_acsaelm_4c01007
crossref_primary_10_1039_D0TC02062A
crossref_primary_10_1002_adma_202103268
crossref_primary_10_1016_j_jlumin_2019_116915
crossref_primary_10_1039_D1NR04618G
crossref_primary_10_1002_adfm_201908760
crossref_primary_10_1016_j_mtener_2022_101139
Cites_doi 10.1126/science.aad1818
10.1002/adma.201700579
10.1002/adfm.201706401
10.1039/C5EE02733K
10.1021/acs.nanolett.5b00235
10.1039/c3ee43822h
10.1021/acsnano.7b05191
10.1002/adma.201505002
10.1002/adma.201403751
10.1002/adma.201800710
10.1039/C5EE03255E
10.1002/adma.201600064
10.1002/adfm.201604580
10.1039/C4CS00458B
10.1002/adfm.201600958
10.1039/C4EE01138D
10.1002/adfm.201302090
10.1039/c3ta10518k
10.1021/acsnano.5b01154
10.1021/acsami.8b00079
10.1016/j.joule.2017.07.017
10.1002/adma.201405217
10.1002/adma.201602513
10.1002/adma.201603157
10.1038/nnano.2014.149
10.1002/aenm.201501420
10.1021/acsenergylett.6b00002
10.1021/acs.jpclett.7b01922
10.1021/acs.jpclett.5b02011
10.1002/adma.201405044
10.1002/anie.201801780
10.1002/adfm.201700338
10.1002/adma.201800251
10.1039/C6TA03092K
10.1021/acsnano.7b00608
10.1038/nphoton.2016.269
10.1039/C6NR05330K
10.1021/acs.nanolett.5b04959
10.1021/acs.jpclett.5b00732
10.1021/ja511132a
10.1039/C6EE00409A
10.1021/jacs.5b00321
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/C8TC06365F
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 2910
ExternalDocumentID 10_1039_C8TC06365F
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c325t-488324a8d64295c6705fc53164abcd8dc4063e7de4dcaced3fb9546e092315883
ISSN 2050-7526
IngestDate Mon Jun 30 06:36:35 EDT 2025
Tue Jul 01 02:08:53 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-488324a8d64295c6705fc53164abcd8dc4063e7de4dcaced3fb9546e092315883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2352-9666
0000-0003-3447-9673
PQID 2188859633
PQPubID 2047521
PageCount 6
ParticipantIDs proquest_journals_2188859633
crossref_primary_10_1039_C8TC06365F
crossref_citationtrail_10_1039_C8TC06365F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Si (C8TC06365F-(cit32)/*[position()=1]) 2017; 11
Alarousu (C8TC06365F-(cit17)/*[position()=1]) 2017; 8
Ma (C8TC06365F-(cit4)/*[position()=1]) 2018; 30
Tiep (C8TC06365F-(cit23)/*[position()=1]) 2016; 6
Wu (C8TC06365F-(cit29)/*[position()=1]) 2017; 27
Wang (C8TC06365F-(cit10)/*[position()=1]) 2015; 27
Xiao (C8TC06365F-(cit33)/*[position()=1]) 2014; 7
Chen (C8TC06365F-(cit16)/*[position()=1]) 2017; 29
Cho (C8TC06365F-(cit37)/*[position()=1]) 2017; 29
Shi (C8TC06365F-(cit41)/*[position()=1]) 2018
Zhang (C8TC06365F-(cit12)/*[position()=1]) 2016; 26
Yi (C8TC06365F-(cit20)/*[position()=1]) 2016; 9
Kerner (C8TC06365F-(cit31)/*[position()=1]) 2016; 4
Li (C8TC06365F-(cit13)/*[position()=1]) 2016; 28
Baikie (C8TC06365F-(cit19)/*[position()=1]) 2013; 1
Eperon (C8TC06365F-(cit24)/*[position()=1]) 2014; 7
Han (C8TC06365F-(cit15)/*[position()=1]) 2016; 28
Hoye (C8TC06365F-(cit7)/*[position()=1]) 2015; 27
Zhang (C8TC06365F-(cit28)/*[position()=1]) 2016; 16
Eperon (C8TC06365F-(cit34)/*[position()=1]) 2014; 24
Zhang (C8TC06365F-(cit9)/*[position()=1]) 2015; 9
Dai (C8TC06365F-(cit42)/*[position()=1]) 2018; 57
Kim (C8TC06365F-(cit8)/*[position()=1]) 2015; 27
Xiao (C8TC06365F-(cit3)/*[position()=1]) 2017; 11
Berhe (C8TC06365F-(cit22)/*[position()=1]) 2016; 9
Ling (C8TC06365F-(cit26)/*[position()=1]) 2016; 28
Jaramillo-Quintero (C8TC06365F-(cit6)/*[position()=1]) 2015; 6
Li (C8TC06365F-(cit38)/*[position()=1]) 2015; 15
Yantara (C8TC06365F-(cit11)/*[position()=1]) 2015; 6
Shi (C8TC06365F-(cit5)/*[position()=1]) 2018; 10
Lee (C8TC06365F-(cit30)/*[position()=1]) 2017; 11
Yan (C8TC06365F-(cit35)/*[position()=1]) 2015; 137
Tan (C8TC06365F-(cit1)/*[position()=1]) 2014; 9
Cho (C8TC06365F-(cit2)/*[position()=1]) 2015; 350
Zhumekenov (C8TC06365F-(cit14)/*[position()=1]) 2016; 1
Jeong (C8TC06365F-(cit40)/*[position()=1]) 2018; 28
Bryant (C8TC06365F-(cit21)/*[position()=1]) 2016; 9
Yassitepe (C8TC06365F-(cit36)/*[position()=1]) 2016; 26
Zhao (C8TC06365F-(cit18)/*[position()=1]) 2016; 45
Wang (C8TC06365F-(cit39)/*[position()=1]) 2017; 1
Wei (C8TC06365F-(cit27)/*[position()=1]) 2016; 8
Christians (C8TC06365F-(cit25)/*[position()=1]) 2015; 137
References_xml – volume: 350
  start-page: 1222
  year: 2015
  ident: C8TC06365F-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad1818
– volume: 29
  start-page: 1700579
  year: 2017
  ident: C8TC06365F-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700579
– volume: 28
  start-page: 1706401
  year: 2018
  ident: C8TC06365F-(cit40)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706401
– volume: 9
  start-page: 323
  year: 2016
  ident: C8TC06365F-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02733K
– volume: 15
  start-page: 2640
  year: 2015
  ident: C8TC06365F-(cit38)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00235
– volume: 7
  start-page: 982
  year: 2014
  ident: C8TC06365F-(cit24)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 11
  start-page: 11100
  year: 2017
  ident: C8TC06365F-(cit32)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05191
– volume: 28
  start-page: 2253
  year: 2016
  ident: C8TC06365F-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505002
– volume: 27
  start-page: 1248
  year: 2015
  ident: C8TC06365F-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403751
– volume: 30
  start-page: 1800710
  year: 2018
  ident: C8TC06365F-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800710
– volume: 9
  start-page: 656
  year: 2016
  ident: C8TC06365F-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03255E
– volume: 28
  start-page: 3528
  year: 2016
  ident: C8TC06365F-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600064
– volume: 26
  start-page: 8757
  year: 2016
  ident: C8TC06365F-(cit36)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604580
– volume: 45
  start-page: 655
  year: 2016
  ident: C8TC06365F-(cit18)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00458B
– volume: 26
  start-page: 4595
  year: 2016
  ident: C8TC06365F-(cit12)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600958
– volume: 7
  start-page: 2619
  year: 2014
  ident: C8TC06365F-(cit33)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01138D
– volume: 24
  start-page: 151
  year: 2014
  ident: C8TC06365F-(cit34)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302090
– volume: 1
  start-page: 5628
  year: 2013
  ident: C8TC06365F-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10518k
– volume: 9
  start-page: 4533
  year: 2015
  ident: C8TC06365F-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01154
– volume: 10
  start-page: 9849
  year: 2018
  ident: C8TC06365F-(cit5)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00079
– volume: 1
  start-page: 371
  year: 2017
  ident: C8TC06365F-(cit39)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.017
– volume: 27
  start-page: 2311
  year: 2015
  ident: C8TC06365F-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405217
– volume: 28
  start-page: 8983
  year: 2016
  ident: C8TC06365F-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602513
– volume: 29
  start-page: 1603157
  year: 2017
  ident: C8TC06365F-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603157
– volume: 9
  start-page: 687
  year: 2014
  ident: C8TC06365F-(cit1)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 6
  start-page: 1501420
  year: 2016
  ident: C8TC06365F-(cit23)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501420
– volume: 1
  start-page: 32
  year: 2016
  ident: C8TC06365F-(cit14)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00002
– volume: 8
  start-page: 4386
  year: 2017
  ident: C8TC06365F-(cit17)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01922
– volume: 6
  start-page: 4360
  year: 2015
  ident: C8TC06365F-(cit11)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02011
– volume: 27
  start-page: 1414
  year: 2015
  ident: C8TC06365F-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405044
– volume: 57
  start-page: 5754
  year: 2018
  ident: C8TC06365F-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801780
– volume: 27
  start-page: 1700338
  year: 2017
  ident: C8TC06365F-(cit29)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700338
– start-page: e1800251
  year: 2018
  ident: C8TC06365F-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800251
– volume: 4
  start-page: 8308
  year: 2016
  ident: C8TC06365F-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03092K
– volume: 11
  start-page: 3311
  year: 2017
  ident: C8TC06365F-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00608
– volume: 11
  start-page: 108
  year: 2017
  ident: C8TC06365F-(cit3)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.269
– volume: 8
  start-page: 18021
  year: 2016
  ident: C8TC06365F-(cit27)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR05330K
– volume: 16
  start-page: 1415
  year: 2016
  ident: C8TC06365F-(cit28)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04959
– volume: 6
  start-page: 1883
  year: 2015
  ident: C8TC06365F-(cit6)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00732
– volume: 137
  start-page: 1530
  year: 2015
  ident: C8TC06365F-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511132a
– volume: 9
  start-page: 1655
  year: 2016
  ident: C8TC06365F-(cit21)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00409A
– volume: 137
  start-page: 4460
  year: 2015
  ident: C8TC06365F-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00321
SSID ssj0000816869
Score 2.323336
Snippet All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2905
SubjectTerms Current efficiency
Fluorescence
Lecithin
Light emitting diodes
Optoelectronics
Organic light emitting diodes
Perovskites
Quantum efficiency
Spin coating
Surface roughness
Surface stability
Title Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes
URI https://www.proquest.com/docview/2188859633
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhwQFBAFAqyBBe0csnDTuJjFbVqUUGqlIq9rRLbYSOlScVmOfDv-GeM7Ty8bA-Fi7UaO1Gy82VmPJ4HQh9CSikTpU94zhShTHH4pIKQBHEh9UEeV5HOHf7yNTq_pp8XbDGb_XailjZdcSx-3ZlX8j9cBRrwVWfJ_gNnx5sCAX4Df2EEDsN4Lx5fDB1GbJZjrUTVrapmroOETEiQPQnQtYnH7AC9sq5J1dh-TkJPtj_X2ok7r01VEXVT2WBoWbWyDzHcNV_B0rWvOBdDz7jjeWrTf4YZHcLY3nZjQQKn545URkRNZ1LWD7va5M13clXl7YQ3Y94ugETS1ZS4dlltNP0KHpR8U9V0MGCFV9YCXQ-uW6MXm0buBR7zSMyCvkK2S-v9nr3gjl18eq4U5h5zNHrA7eyOtvBCXWw1TbIUDLWInU06cYgD-EtVjgGM5ug-5Mvp2gdoP4hjHwTr_slpdnE5OvpMZxPTWnF8saFMbsg_TTfYNoy27QJj7GRP0ZOezfjEQu4ZmqnmAD12alceoIcmdlisnyM1whC3Jc7xAEM8wBC3DQYYYgeGZqULQzzBEG_DEFsYvkDXZ6dZek767h1EhAHrCGgGMNbzRMIOlzMRxR4rBUj8iOaFkIkUYEqGKpaKSpELJcOy4IxGytNbDgYXv0R7TduoVwj7RV5Qv4z9kpU0EYKzRPg57BxkDsZUER2ij8NftxR9aXvdYaVe7vLpEL0f197agi53rjoaOLDsP_j1EqzhJGGgscLX97rJG_RII9s67I7QXvdjo96CCdsV73qQ_AG4d59C
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+a+lecithin+additive+on+the+performance+of+all-inorganic+perovskite+light-emitting+diodes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Sun%2C+Shuang-Qiao&rft.au=Hua%2C+Xiao-Chen&rft.au=Liu%2C+Qing-Wei&rft.au=Wang%2C+Tong-Tong&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=10&rft.spage=2905&rft.epage=2910&rft_id=info:doi/10.1039%2FC8TC06365F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC06365F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon