Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes
All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. H...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 7; no. 10; pp. 2905 - 2910 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7526 2050-7534 |
DOI | 10.1039/C8TC06365F |
Cover
Loading…
Abstract | All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr
3
film. A small amount of lecithin (LE) introduced into CsPbBr
3
precursor solution can promote the formation of small CsPbBr
3
grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr
3
–LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr
3
–5 wt% LE film exhibit a current efficiency (CE) of 24 cd A
−1
with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs. |
---|---|
AbstractList | All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr3 film. A small amount of lecithin (LE) introduced into CsPbBr3 precursor solution can promote the formation of small CsPbBr3 grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr3–LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr3–5 wt% LE film exhibit a current efficiency (CE) of 24 cd A−1 with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs. All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they usually suffer from a large grain size (hundreds of nanometers), high surface roughness and poor stability during the spin coating process. Here, we report a facile strategy to fabricate a uniform and flat CsPbBr 3 film. A small amount of lecithin (LE) introduced into CsPbBr 3 precursor solution can promote the formation of small CsPbBr 3 grains that remarkably improve the uniformity of perovskite films with a surface roughness of about 2.2 nm. Furthermore, the CsPbBr 3 –LE films display excellent fluorescence stability in ambient air and LED devices based on the CsPbBr 3 –5 wt% LE film exhibit a current efficiency (CE) of 24 cd A −1 with an external quantum efficiency (EQE) of 6.5%. Therefore, it is anticipated that the findings of the present study will have great potential to boost the development of PeLEDs. |
Author | Wang, Tong-Tong Liao, Liang-Sheng Liu, Qing-Wei Hua, Xiao-Chen Sun, Shuang-Qiao Luo, Wei Zhang, Yi-Jie Fung, Man-Keung |
Author_xml | – sequence: 1 givenname: Shuang-Qiao surname: Sun fullname: Sun, Shuang-Qiao organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 2 givenname: Xiao-Chen surname: Hua fullname: Hua, Xiao-Chen organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 3 givenname: Qing-Wei surname: Liu fullname: Liu, Qing-Wei organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 4 givenname: Tong-Tong surname: Wang fullname: Wang, Tong-Tong organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 5 givenname: Wei surname: Luo fullname: Luo, Wei organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 6 givenname: Yi-Jie surname: Zhang fullname: Zhang, Yi-Jie organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 7 givenname: Liang-Sheng orcidid: 0000-0002-2352-9666 surname: Liao fullname: Liao, Liang-Sheng organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China – sequence: 8 givenname: Man-Keung orcidid: 0000-0003-3447-9673 surname: Fung fullname: Fung, Man-Keung organization: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China |
BookMark | eNptkE1LAzEQhoNUsNZe_AUBb8JqdvPR7FEWq4WCl3pe0mS2Td0mNUkL_ntT6geIc5lh5nlnmPcSDZx3gNB1Se5KQuv7Ri4aIqjg0zM0rAgnxYRTNvipK3GBxjFuSA5ZCinqIYKZ6_o9OA3Yd1jhHrRNa-uwMsYme8hth9Ma8A5C58NWfZN9X1jnw0o5q49Df4hvNgHu7WqdCtjalKxbYWO9gXiFzjvVRxh_5RF6nT4umudi_vI0ax7mhaYVTwWTklZMSSNYVXMtJoR3mtNSMLXURhrN8nswMcCMVhoM7ZY1ZwJIXdGSZ_EI3Zz27oJ_30NM7cbvg8sn26qUUvJaUJqp2xOlg48xQNfugt2q8NGWpD062f46mWHyB84GqWS9S0HZ_j_JJ_Oed9I |
CitedBy_id | crossref_primary_10_1039_C9TC04834K crossref_primary_10_1039_C9TC07047H crossref_primary_10_1016_j_orgel_2021_106295 crossref_primary_10_1016_j_rinp_2023_106982 crossref_primary_10_1039_D0TC05227B crossref_primary_10_1002_adom_202101602 crossref_primary_10_1021_acsomega_0c00758 crossref_primary_10_7498_aps_68_20190307 crossref_primary_10_1016_j_mtphys_2023_101098 crossref_primary_10_1088_1361_6463_abc4a9 crossref_primary_10_1016_j_nanoen_2020_104752 crossref_primary_10_1039_D4CP01651C crossref_primary_10_1002_aesr_202300263 crossref_primary_10_1021_acsaelm_4c01007 crossref_primary_10_1039_D0TC02062A crossref_primary_10_1002_adma_202103268 crossref_primary_10_1016_j_jlumin_2019_116915 crossref_primary_10_1039_D1NR04618G crossref_primary_10_1002_adfm_201908760 crossref_primary_10_1016_j_mtener_2022_101139 |
Cites_doi | 10.1126/science.aad1818 10.1002/adma.201700579 10.1002/adfm.201706401 10.1039/C5EE02733K 10.1021/acs.nanolett.5b00235 10.1039/c3ee43822h 10.1021/acsnano.7b05191 10.1002/adma.201505002 10.1002/adma.201403751 10.1002/adma.201800710 10.1039/C5EE03255E 10.1002/adma.201600064 10.1002/adfm.201604580 10.1039/C4CS00458B 10.1002/adfm.201600958 10.1039/C4EE01138D 10.1002/adfm.201302090 10.1039/c3ta10518k 10.1021/acsnano.5b01154 10.1021/acsami.8b00079 10.1016/j.joule.2017.07.017 10.1002/adma.201405217 10.1002/adma.201602513 10.1002/adma.201603157 10.1038/nnano.2014.149 10.1002/aenm.201501420 10.1021/acsenergylett.6b00002 10.1021/acs.jpclett.7b01922 10.1021/acs.jpclett.5b02011 10.1002/adma.201405044 10.1002/anie.201801780 10.1002/adfm.201700338 10.1002/adma.201800251 10.1039/C6TA03092K 10.1021/acsnano.7b00608 10.1038/nphoton.2016.269 10.1039/C6NR05330K 10.1021/acs.nanolett.5b04959 10.1021/acs.jpclett.5b00732 10.1021/ja511132a 10.1039/C6EE00409A 10.1021/jacs.5b00321 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/C8TC06365F |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 2910 |
ExternalDocumentID | 10_1039_C8TC06365F |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c325t-488324a8d64295c6705fc53164abcd8dc4063e7de4dcaced3fb9546e092315883 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 06:36:35 EDT 2025 Tue Jul 01 02:08:53 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-488324a8d64295c6705fc53164abcd8dc4063e7de4dcaced3fb9546e092315883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2352-9666 0000-0003-3447-9673 |
PQID | 2188859633 |
PQPubID | 2047521 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2188859633 crossref_primary_10_1039_C8TC06365F crossref_citationtrail_10_1039_C8TC06365F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Si (C8TC06365F-(cit32)/*[position()=1]) 2017; 11 Alarousu (C8TC06365F-(cit17)/*[position()=1]) 2017; 8 Ma (C8TC06365F-(cit4)/*[position()=1]) 2018; 30 Tiep (C8TC06365F-(cit23)/*[position()=1]) 2016; 6 Wu (C8TC06365F-(cit29)/*[position()=1]) 2017; 27 Wang (C8TC06365F-(cit10)/*[position()=1]) 2015; 27 Xiao (C8TC06365F-(cit33)/*[position()=1]) 2014; 7 Chen (C8TC06365F-(cit16)/*[position()=1]) 2017; 29 Cho (C8TC06365F-(cit37)/*[position()=1]) 2017; 29 Shi (C8TC06365F-(cit41)/*[position()=1]) 2018 Zhang (C8TC06365F-(cit12)/*[position()=1]) 2016; 26 Yi (C8TC06365F-(cit20)/*[position()=1]) 2016; 9 Kerner (C8TC06365F-(cit31)/*[position()=1]) 2016; 4 Li (C8TC06365F-(cit13)/*[position()=1]) 2016; 28 Baikie (C8TC06365F-(cit19)/*[position()=1]) 2013; 1 Eperon (C8TC06365F-(cit24)/*[position()=1]) 2014; 7 Han (C8TC06365F-(cit15)/*[position()=1]) 2016; 28 Hoye (C8TC06365F-(cit7)/*[position()=1]) 2015; 27 Zhang (C8TC06365F-(cit28)/*[position()=1]) 2016; 16 Eperon (C8TC06365F-(cit34)/*[position()=1]) 2014; 24 Zhang (C8TC06365F-(cit9)/*[position()=1]) 2015; 9 Dai (C8TC06365F-(cit42)/*[position()=1]) 2018; 57 Kim (C8TC06365F-(cit8)/*[position()=1]) 2015; 27 Xiao (C8TC06365F-(cit3)/*[position()=1]) 2017; 11 Berhe (C8TC06365F-(cit22)/*[position()=1]) 2016; 9 Ling (C8TC06365F-(cit26)/*[position()=1]) 2016; 28 Jaramillo-Quintero (C8TC06365F-(cit6)/*[position()=1]) 2015; 6 Li (C8TC06365F-(cit38)/*[position()=1]) 2015; 15 Yantara (C8TC06365F-(cit11)/*[position()=1]) 2015; 6 Shi (C8TC06365F-(cit5)/*[position()=1]) 2018; 10 Lee (C8TC06365F-(cit30)/*[position()=1]) 2017; 11 Yan (C8TC06365F-(cit35)/*[position()=1]) 2015; 137 Tan (C8TC06365F-(cit1)/*[position()=1]) 2014; 9 Cho (C8TC06365F-(cit2)/*[position()=1]) 2015; 350 Zhumekenov (C8TC06365F-(cit14)/*[position()=1]) 2016; 1 Jeong (C8TC06365F-(cit40)/*[position()=1]) 2018; 28 Bryant (C8TC06365F-(cit21)/*[position()=1]) 2016; 9 Yassitepe (C8TC06365F-(cit36)/*[position()=1]) 2016; 26 Zhao (C8TC06365F-(cit18)/*[position()=1]) 2016; 45 Wang (C8TC06365F-(cit39)/*[position()=1]) 2017; 1 Wei (C8TC06365F-(cit27)/*[position()=1]) 2016; 8 Christians (C8TC06365F-(cit25)/*[position()=1]) 2015; 137 |
References_xml | – volume: 350 start-page: 1222 year: 2015 ident: C8TC06365F-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.aad1818 – volume: 29 start-page: 1700579 year: 2017 ident: C8TC06365F-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700579 – volume: 28 start-page: 1706401 year: 2018 ident: C8TC06365F-(cit40)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706401 – volume: 9 start-page: 323 year: 2016 ident: C8TC06365F-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02733K – volume: 15 start-page: 2640 year: 2015 ident: C8TC06365F-(cit38)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00235 – volume: 7 start-page: 982 year: 2014 ident: C8TC06365F-(cit24)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 11 start-page: 11100 year: 2017 ident: C8TC06365F-(cit32)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05191 – volume: 28 start-page: 2253 year: 2016 ident: C8TC06365F-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505002 – volume: 27 start-page: 1248 year: 2015 ident: C8TC06365F-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201403751 – volume: 30 start-page: 1800710 year: 2018 ident: C8TC06365F-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800710 – volume: 9 start-page: 656 year: 2016 ident: C8TC06365F-(cit20)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03255E – volume: 28 start-page: 3528 year: 2016 ident: C8TC06365F-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600064 – volume: 26 start-page: 8757 year: 2016 ident: C8TC06365F-(cit36)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604580 – volume: 45 start-page: 655 year: 2016 ident: C8TC06365F-(cit18)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00458B – volume: 26 start-page: 4595 year: 2016 ident: C8TC06365F-(cit12)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600958 – volume: 7 start-page: 2619 year: 2014 ident: C8TC06365F-(cit33)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01138D – volume: 24 start-page: 151 year: 2014 ident: C8TC06365F-(cit34)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302090 – volume: 1 start-page: 5628 year: 2013 ident: C8TC06365F-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10518k – volume: 9 start-page: 4533 year: 2015 ident: C8TC06365F-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01154 – volume: 10 start-page: 9849 year: 2018 ident: C8TC06365F-(cit5)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00079 – volume: 1 start-page: 371 year: 2017 ident: C8TC06365F-(cit39)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.07.017 – volume: 27 start-page: 2311 year: 2015 ident: C8TC06365F-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405217 – volume: 28 start-page: 8983 year: 2016 ident: C8TC06365F-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602513 – volume: 29 start-page: 1603157 year: 2017 ident: C8TC06365F-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603157 – volume: 9 start-page: 687 year: 2014 ident: C8TC06365F-(cit1)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 6 start-page: 1501420 year: 2016 ident: C8TC06365F-(cit23)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501420 – volume: 1 start-page: 32 year: 2016 ident: C8TC06365F-(cit14)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00002 – volume: 8 start-page: 4386 year: 2017 ident: C8TC06365F-(cit17)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01922 – volume: 6 start-page: 4360 year: 2015 ident: C8TC06365F-(cit11)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02011 – volume: 27 start-page: 1414 year: 2015 ident: C8TC06365F-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201405044 – volume: 57 start-page: 5754 year: 2018 ident: C8TC06365F-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801780 – volume: 27 start-page: 1700338 year: 2017 ident: C8TC06365F-(cit29)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700338 – start-page: e1800251 year: 2018 ident: C8TC06365F-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800251 – volume: 4 start-page: 8308 year: 2016 ident: C8TC06365F-(cit31)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03092K – volume: 11 start-page: 3311 year: 2017 ident: C8TC06365F-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00608 – volume: 11 start-page: 108 year: 2017 ident: C8TC06365F-(cit3)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.269 – volume: 8 start-page: 18021 year: 2016 ident: C8TC06365F-(cit27)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR05330K – volume: 16 start-page: 1415 year: 2016 ident: C8TC06365F-(cit28)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04959 – volume: 6 start-page: 1883 year: 2015 ident: C8TC06365F-(cit6)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00732 – volume: 137 start-page: 1530 year: 2015 ident: C8TC06365F-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511132a – volume: 9 start-page: 1655 year: 2016 ident: C8TC06365F-(cit21)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00409A – volume: 137 start-page: 4460 year: 2015 ident: C8TC06365F-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00321 |
SSID | ssj0000816869 |
Score | 2.323336 |
Snippet | All-inorganic halide perovskites with superior optoelectronic properties are promising materials for efficient perovskite light-emitting diodes. However, they... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2905 |
SubjectTerms | Current efficiency Fluorescence Lecithin Light emitting diodes Optoelectronics Organic light emitting diodes Perovskites Quantum efficiency Spin coating Surface roughness Surface stability |
Title | Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes |
URI | https://www.proquest.com/docview/2188859633 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWVkhwQFBAFAqyBBe0csnDTuJjFbVqUUGqlIq9rRLbYSOlScVmOfDv-GeM7Ty8bA-Fi7UaO1Gy82VmPJ4HQh9CSikTpU94zhShTHH4pIKQBHEh9UEeV5HOHf7yNTq_pp8XbDGb_XailjZdcSx-3ZlX8j9cBRrwVWfJ_gNnx5sCAX4Df2EEDsN4Lx5fDB1GbJZjrUTVrapmroOETEiQPQnQtYnH7AC9sq5J1dh-TkJPtj_X2ok7r01VEXVT2WBoWbWyDzHcNV_B0rWvOBdDz7jjeWrTf4YZHcLY3nZjQQKn545URkRNZ1LWD7va5M13clXl7YQ3Y94ugETS1ZS4dlltNP0KHpR8U9V0MGCFV9YCXQ-uW6MXm0buBR7zSMyCvkK2S-v9nr3gjl18eq4U5h5zNHrA7eyOtvBCXWw1TbIUDLWInU06cYgD-EtVjgGM5ug-5Mvp2gdoP4hjHwTr_slpdnE5OvpMZxPTWnF8saFMbsg_TTfYNoy27QJj7GRP0ZOezfjEQu4ZmqnmAD12alceoIcmdlisnyM1whC3Jc7xAEM8wBC3DQYYYgeGZqULQzzBEG_DEFsYvkDXZ6dZek767h1EhAHrCGgGMNbzRMIOlzMRxR4rBUj8iOaFkIkUYEqGKpaKSpELJcOy4IxGytNbDgYXv0R7TduoVwj7RV5Qv4z9kpU0EYKzRPg57BxkDsZUER2ij8NftxR9aXvdYaVe7vLpEL0f197agi53rjoaOLDsP_j1EqzhJGGgscLX97rJG_RII9s67I7QXvdjo96CCdsV73qQ_AG4d59C |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+a+lecithin+additive+on+the+performance+of+all-inorganic+perovskite+light-emitting+diodes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Sun%2C+Shuang-Qiao&rft.au=Hua%2C+Xiao-Chen&rft.au=Liu%2C+Qing-Wei&rft.au=Wang%2C+Tong-Tong&rft.date=2019&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=7&rft.issue=10&rft.spage=2905&rft.epage=2910&rft_id=info:doi/10.1039%2FC8TC06365F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC06365F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |